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We consider the existence and stability of solitons in generalized Galileons, scalar-field theories with
higher-derivative interactions but second-order equations of motion. It has previously been proven that no
stable, static solitons exist in a single Galileon theory using an argument invoking the existence of zero
modes for the perturbations. Here we analyze the applicability of this argument to generalized Galileons
and discuss how this may be avoided by having potential terms in the energy functional for the
perturbations or by including time dependence. Given the presence of potential terms in the Lagrangian for
the perturbations, we find that stable, static solitons are not ruled out in conformal and (anti–)de Sitter
Galileons. For the case of Dirac-Born-Infeld and conformal Galileons, we find that solitonic solutions
moving at the speed of light exist, the former being stable and the latter unstable if the background soliton
satisfies a certain condition.
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I. INTRODUCTION

Solitons were first observed in a hydrodynamical context
[1,2] nearly two centuries ago and have since been found in
fields as diverse as condensed matter, cosmology, and
particle physics. Solitons have been particularly useful for
modeling hadrons due to their nonperturbative nature [3,4].
In condensed-matter systems, a variety of types of soliton
have been observed in experiments [5,6]. Solitonic sol-
utions that arise in field theories can be generated in the
early cosmos during a symmetry-breaking phase transition
and hence may play an important role in the evolution of
our Universe. Similarly, their existence can be highly
constrained by cosmological observations [7,8], and by
comparing their production rate in the early Universe with
the present bounds on their abundance, it is possible (as
long as inflation does not last too long) to constrain the
underlying field-theoretic model.
In this paper, “solitons” will refer specifically to non-

trivial field configurations with finite energy that are
localized in space and which do not dissipate over time.
These classical field solutions typically have energies
proportional to the inverse of the field’s coupling constant,
indicating their nonperturbative nature. Their existence is
due to nonlinearities in the field; they are not sustained by
external sources. Some solitons, known as topological
solitons, are stable due to a topological conserved charge.
Another class consists of nontopological solitons [9], such
as Q-balls [10], whose existence is due to a conserved

Noether charge. Nontopological solitons are stable because
their energy is lower than any other configuration (includ-
ing a collection of free particles) with the same charge.
Also of interest are oscillons [11,12]—metastable field
configurations similar to domain walls or bubbles which
are long-lived by virtue of oscillating in a specific mode.
These are approximate solutions that slowly radiate away
their energy.
The existence of topological solitons depends on the

structure of the vacuum manifold. If the vacuum has
sufficiently complicated topology, as measured by the
nontriviality of certain homotopy groups, then solitons
exist, and their stability is guaranteed since the boundary
conditions for the soliton are topologically different from
that of the physical vacuum state. Solitons may also arise in
the presence of higher-derivative terms in an effective field
theory; these can also lead to nonlinearities stabilizing the
soliton. Perhaps the best known example of this is in the
case of Skyrmions [4,13].
To date, defects in the presence of noncanonical kinetic

terms have been studied in only a handful of cases. In
scalar-field theories with noncanonical kinetic terms, topo-
logical defects are called k defects [14,15]. Here the
nontriviality of the homotopy groups of the vacuum
manifold is not enough to guarantee the existence of
solitonic solutions. In some cases k defects can mimic
the field profile and energy density of defects in the
corresponding canonical scalar-field theory [16]. Stable
domain-wall solutions were also found in particular higher-
derivative scalar theories in Ref. [17].
With the notable exception of the Skyrme model, the

aforementioned theories possess noncanonical derivative
terms in addition to a symmetry-breaking potential, so that
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the solitons are not sustained by noncanonical or higher-
derivative terms alone. To construct new examples of
solitons using solely derivative interactions, promising
candidates are the Galileon theories, a class of scalar
theories with higher-derivative interactions that lead to
only second-order equations of motion [18].1 These field
theories are invariant under the Galilean shift symmetry:

πðxÞ → πðxÞ þ cþ bμxμ: ð1:1Þ

Under this transformation, the Lagrangian shifts by a total
derivative, leaving the equations of motion unaffected.
It turns out that single-field Galileons do not admit stable

solitons [28], the proof of which we will review in Sec. III.
One possibility in the hunt for Galileon solitons is to extend
to theories of multiple Galileons, typically possessing some
internal symmetry [26,29–31]. For example, a stable
solitonic solution akin to a texture has been found in the
case of multi-Galileons with an internal SO(4) symmetry
[31]. Another is to consider single-field cousins of the
Galileon, or generalized Galileons, which maintain second-
order equations of motion due to symmetries differing
from Eq. (1.1).
Galileons have been generalized in a variety of ways.

Due to their wide applicability in cosmology, they have
been formulated in curved spacetimes, leading to the
covariant Galileons [32]. Covariantizing the Galileons is
not simple as it requires the introduction of nonminimal
coupling to gravity beyond the cubic term in order to keep
the equations of motion second order. These nonminimal
couplings destroy the shift symmetry (1.1).
An interesting construction was found in Ref. [33] which

points the way towards a method for systematically con-
structing generalized Galileons. The Galileon Lagrangian
appears as the nonrelativistic limit of the bending mode of a
probe brane embedded in a nondynamical bulk. In this
probe-brane construction, only a finite number of actions—
specifically the Lovelock invariants and their boundary
terms—will lead to second-order equations of motion for
the bending mode π. The scalar field π inherits its
symmetries from a combination of the bulk’s Killing
symmetries and the brane’s reparametrization invariance.
For the simplest example, a Minkowski brane embedded in
a Minkowski bulk, the Lagrangian for π is the Dirac-Born-
Infeld (DBI) Galileon, and in the small-field limit (corre-
sponding to the nonrelativistic limit for the brane) this
reduces to the standard Galileon. This construction has
been generalized to every combination of maximally

symmetric four-dimensional branes and five-dimensional
bulks [34]; to higher codimensions [26], leading to multi-
Galileons; and to cosmological bulks [35]. Another inter-
esting construction starts by noting that the symmetry (1.1)
is nonlinearly realized and leads to the conclusion that the
Galileons as Wess-Zumino terms for spontaneously broken
spacetime symmetries [36].
This paper is structured as follows. In Sec. II we briefly

review the Galileons and their generalizations. In Sec. III
we summarize the no-go theorem for stable, static solitons
in Galileons and discuss how to evade it. Afterwards, in
Sec. IV, we consider the crucial zero-mode argument from
the no-go theorem and check its applicability to generalized
Galileon theories. In Sec. V we consider Galileons
equipped with a potential. In Sec. VI we consider solitons
moving at the speed of light, which avoid many of the
arguments made in the preceding sections. We find moving
domain-wall-like solutions and analyze their stability.
Finally, we conclude in Sec. VII.

II. A GALILEON PRIMER

Before discussing defect solutions, we will very briefly
recap the structure of Galileon theories, as well as the ideas
behind the generalized theories which we will be inves-
tigating. The Lagrangians of the generalized Galileons are
presented in the Appendix.
In four dimensions there are five Galileon Lagrangians,

labeled Ln and given by

L1 ¼ π;

L2 ¼ ð∂πÞ2;
L3 ¼ ð∂πÞ2□π;

L4 ¼ ð∂πÞ2½ð□πÞ2 − ∂μ∂νπ∂μ∂νπ�;
L5 ¼ ð∂πÞ2½ð□πÞ3 − 3□π∂μ∂νπ∂μ∂νπ

þ 2∂μ∂νπ∂ν∂απ∂α∂μπ�: ð2:1Þ

Note that L1 is a tadpole and L2 is a canonical kinetic term
(up to a factor of −1=2), while the final three are nontrivial
higher-derivative terms. These are the unique interaction
terms which obey the Galilean symmetry and whose
equations of motion are second order in derivatives. In
N dimensions, Galileons up to LNþ1 can be constructed.
These properties are easier to see when we note that, after

integrations by parts, the Galileon Lagrangians can be
rewritten (up to constant factors) as

L2 ∝ εμ···εν···∂μπ∂νπ;

L3 ∝ εμα··ενβ ··∂μπ∂νπ∂α∂βπ;

L4 ∝ εμαρ·ενβσ ·∂μπ∂νπ∂α∂βπ∂ρ∂σπ;

L5 ∝ εμαργενβσλ∂μπ∂νπ∂α∂βπ∂ρ∂σπ∂γ∂λπ; ð2:2Þ

1Galileon theories exhibit a panoply of interesting effects. For
example, their effects on nonlinear scales are screened due to the
Vainshtein mechanism [19], they admit stable solutions violating
the null-energy condition [20–22], their cosmological solutions
can self-accelerate, providing an alternative to dark energy
[23,24], and they do not get renormalized at any order in
perturbation theory [25–27].
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where dots denote contracted indices. This antisymmetric
structure is responsible for many of the notable properties
of the Galileon. Under the Galilean transformation (1.1),
which implies ∂μπ → ∂μπ þ bμ, with ∂μbν ¼ 0, these
Lagrangians are manifestly shifted by total derivatives
due to the presence of the antisymmetric Levi-Civita
symbols and the fact that partial derivatives commute.
The second-order nature of the equations of motion
follows similarly. For example, consider L3, although
the argument generalizes trivially to the other Galileons.
After varying the action, the terms which could lead to
dangerous higher derivatives in the equations of motion are
εμα··ενβ ··bμ∂νπ∂α∂βδπ and εμα··ενβ ··bμbν∂α∂βδπ. The latter
is manifestly a total derivative and will not contribute to the
equations of motion. The former, after integration by parts,
becomes εμα··ενβ ··bμ∂α∂β∂νπδπ, which vanishes due to
symmetry. Furthermore, it is clear that the number of
Galileons one can construct is limited by the number of
indices carried by the Levi-Civita symbol, so that there are
N þ 1 Galileons in N dimensions.
The Galileons were originally discovered in a particular

decoupling limit of the higher-dimensional Dvali-
Gabadadze-Porrati (DGP) model [37]. In this model, the
Galileon arises as the brane-bending mode of a dynamical
four-dimensional brane living in a dynamical five-
dimensional bulk. As mentioned earlier, Galileons can also
be constructed by considering a probe brane embedded in a
nondynamical bulk. Contrary to the DGP model, in the
probe brane construction there is no need to take a
decoupling limit. The Galileon π is nothing other than
the position of the brane in a specific foliation. The case of
a flat brane embedded in a flat bulk leads to the DBI
Galileons whose precise form is given in the Appendix. As
an example, the L2 term is

L2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂πÞ2

q
; ð2:3Þ

which is the standard DBI kinetic term. It is clear that in the
small-field limit ð∂πÞ2 ≪ 1, corresponding to the brane
moving and bending at nonrelativistic speeds, this reduces
to the canonical kinetic term. Indeed, in this limit the L3

through L5 terms of the DBI Galileons reduce to their
standard Galileon counterparts as well. The DBI Galileons
are invariant under the symmetry

π → π þ cþ bμxμ − bμπ∂μπ; ð2:4Þ
which in the small-field limit trivially reduces to the
Galilean symmetry (1.1). The physical origin of the
Galilean symmetry is made clearer through this higher-
dimensional origin story as well: Equation (2.4) is a
combination of bulk Poincaré invariance2 and brane rep-
arametrization invariance.

This origin of the Galileon terms from a probe-brane
construction led to a systematic construction of generalized
Galileons for maximally symmetric probe branes in max-
imally symmetric bulks [34], so that the brane and bulk can
each be Minkowski, de Sitter (dS), or anti–de Sitter (AdS).3
These theories, as well as the theories constructed by taking
limits (such as the small-field limit or a “small-derivatives”
limit), lead to a rich family of higher-derivative scalar-field
theories with second-order equations of motion. The
generalized Galileons which we study in this paper are
presented in the Appendix.
In this construction, the conformal Galileons arise as the

small-derivative limit of the conformal DBI Galileons
(obtained by considering a Minkowski brane in an AdS
bulk). They can also be obtained by promoting the Galileon
symmetry to a conformal one, that is, promoting the
Poincaré and Galilean group to the conformal SO(4,2)
group. The conformal Galileon is invariant under dilations
and a special conformal transformation that read

δπ ¼ 1 − xμ∂μπ; ð2:5Þ

δμπ ¼ 2xμ þ x2∂μπ − 2xμxν∂νπ: ð2:6Þ

On the other hand, the (A)dS Galileons are found by taking
the small-field limit of the theories where a maximally
symmetric brane is embedded in a (A)dS bulk.
In addition to these Galileons constructed from max-

imally symmetric probe branes and bulks, we will also
consider an interesting and very natural generalization of
the Galileons known as covariant Galileons [32]. These are
motivated by the fact that the standard Galileons live on a
flat background, so for curved spacetimes we need some
covariantization procedure. A natural approach to cova-
riantizing the Galileons is to simply couple them minimally
to the metric by promoting ∂ → ∇. While this is adequate
for L2 and L3, this generates higher derivatives of the
metric for L4 and L5. This issue can be remedied by adding
specific nonminimal curvature couplings in these terms
which keep the equations of motion for both π and the
metric gμν second order. These nonminimal couplings are
presented in Eq. (A2).

III. DERRICK’S THEOREM AND THE
ZERO-MODE ARGUMENT

When dealing with canonical kinetic terms in a scalar-
field theory in d > 1 dimensions, Derrick’s theorem [38]
tells us that there are no stable, stationary solitons. This is
shown by assuming the existence of a stable soliton ϕ0ðxÞ;
perturbing this solution by a spatial dilation x → λx, it is

2Ignoring the unbroken four-dimensional Poincaré symmetry.

3Up to the caveat that dS5 cannot be foliated by AdS4 or M4

slices and M5 cannot be foliated by AdS4 slices; however, these
foliations are possible if we consider a bulk with more than one
time direction.
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straightforward to show that there are no stable stationary
points of the energy with respect to λ. It is well known that
Derrick’s theorem can be evaded by including a gauge field
or considering a time-dependent solution. A variation of
this theorem was proved in Ref. [28] for the case of a single
Galileon. The argument therein requires the existence of a
zero mode of the perturbations and demonstrates the
nonexistence of stable solitonic solutions in Galileons in
d dimensions. Here we will briefly sketch this proof.
Consider a theory of a single Galileon field with a

Lagrangian L ¼ P
ncnLn, where the Galileon Lagrangians

Ln are given in Eq. (2.1). Let us assume there exists a
soliton solution π0ðxÞ and consider small perturbations φ
about it. The energy of the fluctuations is given by

δE ¼ 1

2

Z
ddxZijðxÞ∂iφ∂jφ; ð3:1Þ

where

ZijðxÞ ¼ c2δij þ c3ðδij∇2π0 − ∂i∂jπ0Þ þ � � � : ð3:2Þ

In order to have a stable solution, we require ZijðxÞ to be
positive semidefinite everywhere in space. From Eq. (3.2)
we see that, far from the soliton’s core, the c2 term
dominates, implying that c2 > 0.
The key point in this proof is the existence of zero

modes, perturbations with δE ¼ 0. Because the Galileons
are invariant under spatial translations, the energy of the
soliton is clearly unaffected by translations, φϵ ¼ ϵ ·∇π0.
The existence of this zero mode implies that ZijðxÞ must
have a negative eigenvalue in some region of space in order
to compensate for the positive c2 term. This eigenvalue
signals a gradient instability for the fluctuations, so that if
the soliton exists it must be unstable. These kind of
instabilities can affect short-wavelength modes leading to
fast decay rates, and so we would not be able to trust the
effective field theory.
There are several ways to circumvent the zero-mode

argument. One possibility is the existence of a potential for
the perturbations; however, this will break the generalized
Galileon symmetry in some cases. Another is to introduce
time dependence, and a further route is to consider multiple
fields. In the first case, the existence of an extra potential
term relaxes the requirement of having a negative eigen-
value of Zij in some region in space in order to have a
vanishing energy for the zero mode. By introducing time
dependence, we remove one of the main assumptions in the
previous proof, as we required the field to be static. In
particular, this argument implies that one should investigate
solitons that move at the speed of light, as there is no frame
in which such a solution is static. This possibility was
investigated in Ref. [39], where it was shown that for a
single-field Galileon, a localized lump traveling at the
speed of light in one direction is stable against small

perturbations. Similar moving soliton solutions in Galileon
theories were also investigated in Ref. [40,41]. In the case
of multi-Galileons, the structure of the energy for the
perturbations is more complicated and the crucial zero-
mode argument no longer holds. For the case of a SO(4)
multi-Galileon confined on a S3, a soliton solution exists,
and while its stability has not been proven, it is expected
from topological arguments [31]. Having a theory confined
to a sphere is equivalent to adding a constraint λðjπj2 − 1Þ
to the Lagrangian, which leads to a potential term in the
Lagrangian for φ, rendering the zero-mode argument
invalid.

IV. ZERO-MODE ARGUMENT
IN GENERALIZED GALILEONS

A. DBI Galileons

In this section, we investigate the extent to which the no-
go theorem of Ref. [28] described in the previous section—
relying crucially on the zero-mode argument—can yield
information about the existence (or lack thereof) of stable
solitons in the generalized Galileon theories discussed in
Sec. II. In some cases this is a rather obvious extension of
the original results, whereas in others, interesting obstacles
exist.
We start with the DBI Galileons [33] whose Lagrangians

are given in Eq. (A1). As before, we assume that there
exists a soliton solution π0ðxÞ. In order to calculate the
energy of the fluctuations we use the fact that given the
action

Sφ ¼ 1

2

Z
ddxZμνðxÞ∂μφ∂νφ; ð4:1Þ

if we perturb the equations of motion of the soliton
solution, we get the equations of motion for φ:

δSφ
δφ

¼ ∂μðZμνðxÞ∂νφÞ ¼ 0; ð4:2Þ

and from these we can read off the matrix ZμνðxÞ. We
can then analyze the stability by looking at the spatial
components:

ZijðxÞ ¼ γ3½c2ð1þ ð∂π0Þ2Þδij − c2∂iπ0∂jπ0

þ γc3ð2□π0ð1þ ð∂π0Þ2Þδij ð4:3Þ

− 2ð1þ ð∂π0Þ2Þ∂i∂jπ0

− 2∂jπ0ð□π0∂iπ0 − ∂k∂iπ0∂kπ0ÞÞ þ � � ��: ð4:4Þ

In a similar way to the Galileon case, for regions far from
where the soliton is localized the term c2δij dominates, and
so Zij is positive far from the soliton. Additionally, this
theory has a zero mode given by the spatial translation of
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the soliton. Thus we arrive at the same conclusion as for the
standard Galileons: if a soliton solution exists, it must be
unstable.

B. Covariant Galileons

Now we consider the covariant Galileons [32] in a
nondynamical spacetime, with Lagrangians given in
Eq. (A2). Note that the L2 and L3 are the same as for
the flat space Galileon with ∂ → ∇, while the other terms
require additional nonminimal couplings to gμν in order to
maintain second-order equations of motion. These new
terms break the Galilean symmetry. We assume a solitonic
solution exists and analyze its stability by looking at ZijðxÞ,
which in this case is given by

ZijðxÞ ¼ c2δij þ c3ð∇ij∇2π0 −∇i∇jπ0Þ þ � � � ð4:5Þ

þc4R0ð∇kπ0∇kπ0δ
ijþ2∇iπ0∇jπ0Þþ �� � : ð4:6Þ

Since the soliton is a localized solution, we could expect the
spacetime to be flat far from the core of the soliton. If this is
the case, then, far from where the soliton is localized, the c2
term dominates; even if the space is asymptotically (A)dS,
this term will still dominate as long as the gradients vanish
fast enough relative to the curvature terms.
Next, we should worry about the existence of zero

modes. Previously we used translation modes since
Minkowski space is translationally invariant. For the
covariant Galileon, translations will provide a zero mode
if the spacetime is spatially homogeneous. In this case, we
can apply the zero-mode argument as in Galileons and DBI
Galileons. We find that stable, static solitons in covariant
Galileons living in a spatially homogeneous space are
ruled out.

C. Conformal and (A)dS Galileons:
No zero-mode argument

Interestingly, there are a few examples of generalized
Galileons, constructed using probe branes, for which the
zero-mode argument fails due to the presence of a potential
for the perturbations in the energy functional.4 This is the
case in particular for the conformal, dS, and AdS Galileons,
in both their DBI versions (which come directly from the
probe-brane construction) and the small-field or small-
derivative limits that yield analogues of the Galileons.5 The
corresponding Lagrangians for all of these theories can be

found in Ref. [34], while we present the Lagrangians for the
limiting theories in the Appendix.
As before, we consider a solitonic solution π and its

perturbations φ. The energy functional in each of these
theories can be written in the form

δE ¼ 1

2

Z
ddx½ZμνðxÞ∂μφ∂νφþ Vðπ; ð∂πÞnÞφ2�: ð4:7Þ

For the conformal DBI Galileons, each term contributes to
the potential. For example, L1 ¼ − R

4
e−4π=R will clearly

give such a contribution, while from L2 we get a term

V ⊃ 8
R e−

4π0
R γ−1, where γ≡1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þe

2π0
R ð∂π0Þ2

q
. Meanwhile,

the (A)dS DBI Galileons have explicit potential terms that
will contribute to Vðπ; ð∂πÞnÞ.
Let us consider the behavior of φ far from the core of the

soliton. As before, we demand that the eigenvalues of Zij

be positive and nonzero. If we use the zero-mode argument,
we do not find that a negative eigenvalue of Zij in another
region of space is required for the energy of the perturba-
tions to vanish, as there are extra potential terms. Thus, it is
clear that we are not be able to reach any conclusion on the
stability or existence of solitons in these generalized
Galileons.

V. GENERALIZED GALILEONS
WITH A POTENTIAL

We have seen that the existence of a potential term helps
us circumvent the zero-mode argument, opening up the
possibility of stable solitonic solutions with generalized
Galileons. Another important check is whether a scaling
argument rules out stable solutions, as it does for the
standard Galileons.6 Here we will show that, as might be
expected, having a symmetry-breaking potential is enough
to evade this argument. We will analyze various scenarios
for generalized Galileons with a potential that could give
rise to domain walls.

A. A note on the scaling argument

If we assume that a soliton solution exits for Galileons
and we rescale the amplitude of the solution as πðxÞ →
πωðxÞ ¼ ωπðxÞ, the energy functional will be given by

EðωÞ ¼
X
n

EnðωÞ ¼
X
n

ωnEð0Þ
n ; ð5:1Þ

where the En correspond to the terms with n copies of the
field and the superscript (0) denotes the energy when

ω ¼ 1. Note first a simple result: if all the Eð0Þ
n are positive,

4Note that this does not prove the existence of solitons but
rather signals the absence of a powerful argument which might
have been used to prove their nonexistence.

5In the language of Ref. [34], the results in this section apply to
the AdS DBI, conformal DBI, and type III dS DBI Galileons—all
of which are the same theory in different slicings, although their
limiting theories differ—as well as to the type I dS DBI Galileons.

6The standard spatial dilation argument does not rule out the
existence of stable solitons thanks to the noncanonical kinetic
terms.
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then clearly we can always reach lower-energy solitons by
choosing smaller values of ω. Since in this case we could
always perturb the solution to decrease its energy further,
such a soliton would not be stable.
Let us analyze the case of a scalar field with a poly-

nomial Lagrangian with terms up to quartic order. The
energy functional [dropping the superscript (0)] is given by

EðωÞ ¼ ωE1 þ ω2E2 þ ω3E3 þ ω4E4: ð5:2Þ

Demanding that the soliton extremize the energy and be
stable implies that

dE
dω

����
ω¼1

¼ E1 þ 2E2 þ 3E3 þ 4E4 ¼ 0; ð5:3Þ

d2E
dω2

����
ω¼1

¼ −ð3E1 þ 4E2 þ 3E3Þ > 0; ð5:4Þ

where in the second line we have solved for E4 using
Eq. (5.3). Splitting E2 into its kinetic and potential
contributions, E2 ≡ K2 þ V2, and assuming that the kinetic
part, which corresponds to the canonical kinetic term, is
positive, we have that

0 < K2 < −
3

4
ðE1 þ E3Þ − V2: ð5:5Þ

This condition should be satisfied by a stable solution but
does not prove the existence of such a solution.
Let us consider the specific case of a symmetry-breaking

potential which has a negative quadratic term. In Eq. (5.5),
we have a negative contribution from the kinetic terms, but
the potential term will give an infinite7 positive contribu-
tion, which causes the stability condition to always be
satisfied. This means that the scaling argument does not
rule out stable, static solitons in a scalar-field theory with a
polynomial Lagrangian and a symmetry-breaking potential.
This motivates us to look for solitons in Galileons with a
symmetry-breaking potential.

B. Galileons

If we add a potential to the standard Galileon
Lagrangian, then soliton solutions can be found. Of course,
the potential itself breaks the Galilean symmetry, but
nevertheless, this example provides a simple playground
in which to explore the effects of Galileon-type terms on
soliton solutions. For simplicity, let us focus on the cubic
Galileon

L ¼ −
1

2
ð∂πÞ2

�
1þ 1

Λ3
□π

�
− VðπÞ; ð5:6Þ

with a symmetry-breaking potential

VðπÞ ¼ λðπ2 − v2Þ2: ð5:7Þ

For a system which only depends on one spatial
dimension—which we will take, without loss of generality,
to be the Cartesian coordinate z—it is always possible to
calculate the first integral of the equations of motion due to
the fact that momentum is conserved in this direction.
A simple way of obtaining this first integral is to calculate
the conserved charge

J ¼ π0
∂L
∂π0 − Lþ ∂L

∂π00 π
00 −

d
dz

∂L
∂π00 π

0; ð5:8Þ

where 0≡ d=dz. The fact that J is conserved follows from
the Euler-Lagrange equations. For the cubic Galileon,
J turns out to be the same as for a canonical scalar field:

J ¼ −
1

2
π02 þ VðπÞ; ð5:9Þ

which means that we have the same domain walls as in the
canonical case. This is expected since we effectively have a
one-dimensional problem and thus the Galileon terms are
total derivatives.

C. DBI Galileons

Now let us consider equipping the cubic DBI Galileons
with a potential in order to look for domain walls. The
Lagrangian is given by a combination of L2 and L3 in
Eq. (A1):

L ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂πÞ2

q
− a

�
□π þ ∂μπ∂νπ∂μ∂νπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð∂πÞ2p
�

− VðπÞ ð5:10Þ

along with the symmetry-breaking potential (5.7). Taking
the field to depend only on the coordinate zwe find that the
conserved charge J is the same as for a DBI scalar:

J ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
2
π02

q þ VðπÞ: ð5:11Þ

This fact again follows from the new terms being total
derivatives. This implies that we obtain the same results as
the DBI case [14]. Such walls can have interesting effects
not present in the canonical case. For example, when
constructing a domain wall in DBI, there exist values of
the parameters for which a singularity develops and forbids
the existence of a global solution. In the language of
effective field theories, near this singularity the theory is
strongly coupled which obscures the validity of these
results [16].

7This infinite contribution is not a problem since it is canceled
by the other potential terms when considering the total energy.
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D. Conformal Galileons

As in the previous cases, we include a symmetry-
breaking potential to the conformal Galileons with
Lagrangian is given by Eq. (A3), in order to find
domain-wall solutions. We will consider the Lagrangian
up to the cubic term and assume that the field only depends
on the Cartesian coordinate z, so that the Lagrangian reads

L ¼ −
1

2
π02e−2π

�
1þ ae2π

�
π00 −

1

4
π02

��

− λðπ2 − v2Þ2: ð5:12Þ

The corresponding conserved charge is given by

J¼−
1

2
π02e−2π

�
1þ3

2
ae2ππ02

�
þλðπ2−v2Þ2 ¼ 0: ð5:13Þ

It is straightforward to see that solving this equation with
the boundary condition π0ð∞Þ ¼ 0 and πð∞Þ ¼ v results in
an imaginary derivative. From Eq. (5.13) we can solve
algebraically for π0; picking the branch that gives the
desired boundary conditions gives

π02 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12aλðϕ2 − v2Þ þ e−4ϕ

p
− e−2ϕ

3a
: ð5:14Þ

Requiring a positive value inside the square root gives the
constraint a < e−4v

12λv2. Even if this constraint is satisfied, π02

will always be negative. This indicates that the solution
does not exist. We conclude that there are no domain-wall
solutions for cubic conformal Galileons with a symmetry-
breaking potential.

E. (A)dS Galileons

The dS and AdS Galileons, as their names indicate, live
in dS and AdS space, respectively. They have the interest-
ing feature of naturally possessing polynomial potentials,
as can be seen in Eq. (A4). This is in sharp contrast to the
previous examples, where by adding in a potential we
broke the (generalized) Galilean symmetry. If we impose a
Z2 symmetry, only theL2 andL4 terms remain, which have
π2 and π4 potentials, respectively. This yields a symmetry-
breaking potential of the form (5.7) (as long as there is a
relative sign between L2 and L4), which suggests the
presence of domain walls. Given this, we take the
Lagrangians to be

dS∶ L2 − aL4; ð5:15Þ

AdS∶ − L2 þ aL4: ð5:16Þ

We may write the potential for both cases in a unified
form:

VðπÞ ¼ jRj
288

ð−48π2 þ aR2π4Þ þ 2

ajRj ; ð5:17Þ

where we have added an extra constant term so that the
potential vanishes at the minimum. Note that, with this
choice, we will have a ghost around π ¼ 0 for the AdS case
and around the minimum π ¼ � ffiffiffiffiffiffiffiffiffiffi

24=a
p

=R for the dS
case [34].
In order to construct a domain-wall solution we need to

pick the coordinates of the spacetime and the orientation of
the wall. One possibility is to work in global coordinates for
(A)dS, where the metric is given by

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2
2;

fðrÞ ¼ 1 −
r2

12
R: ð5:18Þ

In this case, the field configuration is a bubble: π depends
only on the coordinate r, and the appropriate boundary
conditions are

πð∞Þ ¼ 1

R

ffiffiffiffiffi
24

a

r
; πð0Þ ¼ −

1

R

ffiffiffiffiffi
24

a

r
: ð5:19Þ

This construction faces several problems. The energy
inside and outside the bubble is the same, so we expect the
surface tension of the wall to cause it shrink. This is the
case for canonical kinetic terms, which provide a positive
surface tension. One might hope that Galileon terms give a
different result; the contribution from the second derivative
terms becomes negative on one side of the wall and might
dominate the energy density causing the total surface
tension to vanish. Besides this issue, we face the problem
of the field becoming ghostly. The boundary conditions for
the bubble are those in Eq. (5.19), so πðRÞ ¼ 0 for some
r ¼ R. We also know that around π ¼ 0 for the AdS
Galileons and π ¼ � ffiffiffiffiffiffiffiffiffiffi

24=a
p

=R for dS Galileons the field
becomes a ghost. This means that in both cases the soliton
solution will become ghostly at some r.

VI. MOVING SOLITONS

Another possible way of avoiding Derrick’s theorem is to
include time dependence. For the standard Galileon model,
it has been shown [39] that solitons traveling at the speed of
light can evade the zero-mode argument and that these
domain-wall-like solutions are stable under small pertur-
bations. In this section we will investigate the stability of
solitons moving at the speed of light for DBI and conformal
Galileons. We will not consider the (A)dS Galileons here,
since the presence of potential terms implies that solitons
moving at the speed of light are not solutions of their
equations of motion.
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A. DBI Galileons

We start with the DBI Galileons (A1) and consider only
the L2 and L3 terms for simplicity. The Lagrangian for a
general combination of these two terms is

L ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂πÞ2

q
þ að−□π þ γ2∂μπ∂νπ∂μ∂νπÞ; ð6:1Þ

where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂πÞ2p

, and the equations of motion
are

□π

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð∂πÞ2p þ a
∂ν∂νπ

1þ ð∂πÞ2
�
−

∂μπ∂ν∂μπ∂νπ

ð1þ ð∂πÞ2Þ3=2

þa

�
2∂μπ∂νπ∂λ∂νπ∂λ∂μπ

ð1þ ð∂πÞ2Þ2 −
2∂μπ∂ν∂μπ∂νπ∂λ∂λπ

ð1þ ð∂πÞ2Þ2
�
¼ 0:

ð6:2Þ

We will work in light-cone coordinates, u ¼ x0 þ x1 and
v ¼ x0 − x1, and assume π ¼ πðu; vÞ so that the system
reduces to a (1þ 1)-dimensional one. In light-cone coor-
dinates the equations of motion read

2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2∂vπ∂uπ

p ∂u∂vπ
2

− ∂2
vπ
�
2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2∂vπ∂uπ

p ∂2
uπ þ 2∂vπ∂uπ

3 þ ∂uπ
2
	

− ð2∂vπ∂uπ þ 1Þ∂2
uπ∂vπ

2

þ ð4∂vπ
2∂uπ

2 þ 6∂vπ∂uπ þ 2Þ∂u∂vπ ¼ 0: ð6:3Þ

It is clear that if π is a function of u or of v alone, then the
equations of motion are satisfied. In fact, this will be the
case for any single field in flat space with no potential term:
whenever we contract indices in light-cone coordinates, the
structure of the metric—guu ¼ gvv ¼ 0—forbids terms
containing only u derivatives or only v derivatives. This
allows us to set initial conditions with a localized lump and
let it propagate to the right or left in the x1 direction at the
speed of light; this is the moving soliton.

1. Stability

We analyze the stability of this moving soliton by
perturbing the DBI Galileon equations of motion to linear
order. Defining

πðu; vÞ ¼ πbðuÞ þ ϕðu; vÞ; ð6:4Þ

where πb is the moving soliton found above, which we have
taken without loss of generality to be a left mover,
πb ¼ πbðuÞ, the linearized equation of motion is

2∂u∂vϕ − fðπbÞ∂2
vϕ ¼ 0; ð6:5Þ

where fðπbÞ ¼ 2aπ00b þ π2b0 . To simplify the stability analy-
sis, we expand the perturbation in a complete set of
functions

ϕ ¼
X
n

Ane−iðknx−ωntÞ; ð6:6Þ

which yields for a given mode (removing the subscript n)

k2ð−2þ fðπbÞÞ þ 2kωfðπbÞ þ ω2ð2þ fðπbÞÞ ¼ 0: ð6:7Þ

Solving for ω we find

ω ¼ −k; ω ¼ −k
fðπbÞ − 2

fðπbÞ þ 2
: ð6:8Þ

We see that if the background solution is real valued, then ω
is real for any (real) k. These solutions oscillate rather than
growing exponentially and are therefore stable.
Alternatively, we can analyze the local stability, as

defined in Ref. [42], at the level of the action. In order
to do so, we will assume that the characteristic time and
length scales of the perturbations are much smaller than the
typical scales on which the background solution varies, so
that we may treat πb and its derivatives as constants. The
quadratic Lagrangian for ϕ is

Lϕ ¼ 1

2
Zμν∂μϕ∂νϕ; ð6:9Þ

where, per Eq. (6.5), Zμν is given by

Zμν ¼ −gμν þ fðπbÞδμvδνv: ð6:10Þ

Diagonalizing this, we find

Zμν ¼

0
BBBBB@

1
2

�
fðπbÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfðπbÞÞ2 þ 4

p 	
0 0 0

0 1
2

�
fðπbÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfðπbÞÞ2 þ 4

p 	
0 0

0 0 1 0

0 0 0 1

1
CCCCCA
: ð6:11Þ
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We can see that one of the eigenvalues is positive and the
other one is negative, so that Zμν has the healthy signature
ð−;þ;þ;þÞ.
Another way of seeing the local stability condition is by

requiring all the eigenvalues of Zμ
ν to be negative. The

matrix Zμ
ν reads

Zμ
ν ¼

0
BBB@

−1 fðπbÞ 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1
CCCA; ð6:12Þ

so that the eigenvalues will indeed be negative. An issue to
notice here is that although Zμ

ν cannot be diagonalized, the
analysis at the level of the equations of motion indicates
stability. We conclude that a lump of DBI Galileon moving
at the speed of light is locally stable against small
fluctuations.
The analysis above does not account for ghostlike

instabilities related to the global sign of the Lagrangian.
If π interacts with other matter, then we also need to ensure
that Z00 > 0 in order to avoid ghost instabilities. This
translates to

Z00 ¼ 1þ 1

2
fðπbÞ > 0: ð6:13Þ

Another issue of this local stability analysis is that it may
miss instabilities related to resonances. In Ref. [43] it was
shown that lightlike Galileon solutions could be unstable;
however, if the finite energy condition is satisfied, then
stability is guaranteed. This was done by finding an exact
solution to the linear perturbation equations with the ansatz
ϕðu; vÞ ¼ UðuÞVðvÞ for the perturbations. In the next
subsection, we find a case where this local stability analysis
is not sufficient to guarantee the stability of the soliton
solutions.

2. Energy

It is possible to covariantize the DBI Galileons up to L3

by replacing partial derivatives with covariant ones while
keeping the equations of motion second order. By doing
this we can obtain the stress-energy tensor

Tμν ¼ γ∇μπ∇νπ − γ−1gμν

þ aγ2ð□π∇μπ∇νπ − 2∇ðμπ∇νÞ∇απ∇απ

þ∇απ∇βπ∇α∇βπgμνÞ; ð6:14Þ

where we have defined γ ≡ ð1þ ð∂πÞ2Þ−1=2. Without loss
of generality, we assume a left-moving solution πb ¼ πbðuÞ
and find that the energy is given by

E ¼
Z

d3xT00 ¼
Z

d3xð1þ π02b Þ: ð6:15Þ

This energy is positive and does not depend on the higher
order DBI Galileon terms: it is the same energy as in the
DBI case where a ¼ 0. This feature was also found for the
standard Galileons. From Eq. (6.15) we can then see that
steeper lumps have larger energy.

3. Propagation speed of fluctuations

Finally, we analyze the propagation speed of fluctuations
moving in the x1, x2, and x3 directions. Looking at the
linearly perturbed Lagrangian, Eqs. (6.9) and (6.10), we
find that the propagation speeds are

c2x1 ¼ −
Z11

Z00
¼ 1 − 1

2
fðπÞ

1þ 1
2
fðπÞ ;

c2x2 ¼ c2x3 ¼
1

1þ 1
2
fðπÞ : ð6:16Þ

From this we see that superluminalities or imaginary
velocities appear if fðπÞ < 0 or fðπÞ > 2. This allows
for the desired feature of a Galileon background solution
satisfying 0 < 2aπ00b þ π02b < 2 everywhere so that the
fluctuations are always subluminal. Whether superlumin-
alities present an obstruction to an acceptable low-energy
effective theory is an open question [44–47].

B. Conformal Galileons

Finally, we consider the conformal Galileons (A3). We
will again take a combination of L2 and L3,

L ¼ −
1

2
e−2πð∂πÞ2 þ a

�
−
1

2
ð∂πÞ2□π þ 1

4
ð∂πÞ4

�
; ð6:17Þ

for which the corresponding equation of motion is

e−2πð□π − ð∂πÞ2Þ þ a½ð□πÞ2 − ∂μ∂νπ∂μ∂νπ

−□πð∂πÞ2 − 2∂μπ∂νπ∂μ∂νπ� ¼ 0: ð6:18Þ

Working, as before, in light-cone coordinates, and assum-
ing π ¼ πðu; vÞ, the equations of motion read

e−2πð∂u∂vπ − ∂uπ∂vπÞ
− a½∂2

vπ∂uπ
2 þ 4∂vπ∂uπ∂u∂vπ − ð∂u∂vπÞ2

þ ∂vπ
2∂2

uπ þ ∂2
vπ∂2

uπ� ¼ 0: ð6:19Þ

This admits a solution that only depends on u or v, so, as in
the DBI Galileon case, we can construct a solitonic lump
moving at the speed of light.
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1. Stability

Perturbing around a background solution πðu; vÞ ¼
πbðuÞ þ ϕðu; vÞ to linear order in the perturbations gives

e−2πb∂u∂vϕ − fðπbÞ∂2
vϕ − e−2πbπ0b∂vϕ ¼ 0; ð6:20Þ

where fðπbÞ ¼ aðπ00b þ π02b Þ. Note that in addition to terms
like those in the DBI case (6.5), we have an extra term that
is linear in ∂ϕ. We expand the perturbation in terms of
plane waves, yielding, for a given mode,

ω2ðe−2πb þ fðπbÞÞ þ 2ie−2πbωπ0b þ k2ð−2e−2πb þ fðπbÞÞ
þ kð2ie−2πbπ0b þ 2ωfðπbÞÞ ¼ 0; ð6:21Þ

and solving for ω we find

ω ¼ −k; ω ¼ k − fðπbÞe2πbk − 2iπ0b
1þ fðπbÞe2πb

: ð6:22Þ

The latter mode has an imaginary part which could
lead to exponential growth. This mode behaves like
∝e2π0bt=ð1þfðπbÞe2πb ÞgðπbÞ, where g is an oscillatory function.
This mode grows exponentially if

2π0b
1þ fðπbÞe2πb

> 0 ð6:23Þ

and otherwise decays exponentially.
The term that appears in the equation of motion with a

single derivative is responsible for the imaginary part in
the dispersion relation. It comes from the first term in the
Lagrangian, which contributes the following term to the
equation of motion:

∂uðe−2πb∂vϕÞ: ð6:24Þ

Note that we would not have found this instability if we
had treated the background field as a constant as in the local
stability analysis. This can be seen by performing the local
analysis at the level of the action. In this case Zμν is
given by

Zμν ¼ −e−2πbgμν þ fðπbÞδμvδνv: ð6:25Þ

Diagonalizing Zμν we find (again writing only the non-
trivial components)

Zμν ¼

0
BBBBB@

1
2

�
fðπbÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfðπbÞÞ2 þ 4e−4πb

p 	
0 0 0

0 1
2

�
fðπbÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfðπbÞÞ2 þ 4e−4πb

p 	
0 0

0 0 1 0

0 0 0 1

1
CCCCCA
: ð6:26Þ

In order to have stability, we need this matrix to have the
healthy signature ð−;þ;þ;þÞ which is clearly satisfied.
Another way of seeing local stability is by looking at the
matrix Zμ

ν which in this case reads

Zμ
ν ¼

0
BBB@

−e−2πb fðπbÞ 0 0

0 −e−2πb 0 0

0 0 −e−2πb 0

0 0 0 −e−2πb

1
CCCA: ð6:27Þ

We see that the eigenvalues will be negative, as is required
for a locally stable solution. As before, it is important
to notice that Zμ

ν cannot be diagonalized. However,
we have shown at the level of the equations of motion

that the solution will be unstable if 2π0b
1þfðπbÞe2πb > 0. This is

an example of an instability not captured by the local
analysis.

2. Energy

Similar to the standard Galileons and DBI Galileons we
can covariantize the conformal Galileons up to L3 by
replacing partial derivatives with covariant ones while
keeping the equations of motion second order. The
stress-energy tensor is given by

Tμν ¼ e−2π
�
∇μπ∇νπ −

1

2
ð∂πÞ2gμν

�

þ a

�
ð□π − ð∂πÞ2Þ∇μπ∇νπ − 2∇ðμπ∇νÞαπ∇απ

þ
�
1

4
ð∂πÞ4 þ∇μ∇νπ∇μπ∇νπ

�
gμν

�
: ð6:28Þ

Assuming a left mover πb ¼ πbðuÞ, the energy is
given by

E ¼
Z

d3xT00 ¼
Z

d3xðe−2πbπ02b Þ: ð6:29Þ
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As with the Galileon and DBI Galileon cases, this is the
same energy as there would be in the absence of nontrivial
derivative interactions (i.e., with a ¼ 0). The energy is
positive and indicates that a steeper lump has a larger
energy. An interesting feature to notice here is that,
due to the exponential factor, a tall lump will have a small
energy.

3. Propagation speed of fluctuations

Following the previous section, we analyze the propa-
gation speed of the fluctuations. From the linearly per-
turbed Lagrangian, Eq. (6.9)(6.25), we find that the
propagation speeds are

c2x1 ¼ −
Z11

Z00
¼ 1 − 1

2
e2πbfðπÞ

1þ 1
2
e2πbfðπÞ ;

c2x2 ¼ c2x3 ¼
1

1þ 1
2
e2πbfðπÞ : ð6:30Þ

In order to avoid superluminalities and imaginary veloc-
ities, the background should satisfy 0<e2πbð2aπ00bþπ02b Þ<2
everywhere. Combining this requirement with the stability
requirement, Eq. (6.23), we find that in order to have a
stable solution without superluminalities we also need to
demand that π0 > 0 everywhere.

VII. CONCLUSIONS

Generalized Galileon theories possess a rich nonlinear
structure that could sustain solitonic solutions. Despite the
no-go theorem that rules out stable, static solitons for the
simplest Galileons, it is interesting to explore how to
circumvent this proof and to explore the types of gener-
alized Galileons to which it applies. In this paper, we have
explored two ways of avoiding this no-go theorem; one
consists of having a potential in the Lagrangian and the
other one considers time-dependent solitons moving at the
speed of light.
We have found that the no-go theorem, which relies on

the existence of a zero mode, can be applied to DBI
Galileons as well as covariant Galileons. In the latter case,
we were able to rule out the existence of stable, static
solitons in covariant Galileons living in a spatially homo-
geneous background. For the case of conformal and (A)dS
Galileons in both their DBI versions and their small-field or
small-derivative limit, the zero-mode argument does not
apply due to the presence of a potential for the
perturbations.
We have exhaustively analyzed the possibility of find-

ing solitons in generalized Galileon theories with a
potential. Scaling arguments that could rule out stable
solutions are easily evaded by theories with a polynomial
Lagrangian and a symmetry-breaking potential. In light of

this, we have added a symmetry-breaking potential to
cubic Galileons, DBI Galileons, and conformal Galileons.
For the first two cases, we found that the results are
insensitive to the existence of the Galileon terms. This is
simply the statement that, when looking for a domain-wall
solution, the problem is effectively one-dimensional and
the higher derivative Galileon terms are total derivatives.
For the case of the cubic conformal Galileon, we found
that a domain-wall solution does not exist. We have also
considered the (A)dS Galileons which naturally possess
potential terms satisfying their generalized Galileon sym-
metries. In these case, the construction faced several
problems related to bubble collapse and the field becom-
ing a ghost.
Finally, we have analyzed the case of solitons moving at

the speed of light. We found that any single scalar field in
flat space with no potential has a solution of the form ϕðuÞ
or ϕðvÞ, where u and v are light-cone coordinates. This
means that moving solitons exist for both DBI and
conformal Galileons, the former being stable and the latter
unstable depending on the background soliton. We have
traced the instability of the moving conformal solitons to
the presence of a term in the Lagrangian that breaks the
shift symmetry.
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APPENDIX: GENERALIZED GALILEON
LAGRANGIANS

In this Appendix we present the Lagrangians for the
specific generalized Galileon theories studied in this paper.
As in many treatments of Galileons (e.g., Ref. [34]), we
will find it convenient to establish some standard time-
saving notation. We will denote by Π the matrix of
second derivatives of π, Πμν ≡∇μ∇νπ. Square brackets
denote traces, e.g., ½Π�¼Πμ

μ¼□π and ½Π2� ¼ ΠμνΠμν ¼
∇μ∇νπ∇μ∇νπ. Finally, we will use the notation ½πn� for
contractions of Π and ∇π, defining ½πn�≡∇π · Πn−2 ·∇π,
e.g., ½π2� ¼ ∇μπ∇μπ and ½π3� ¼ ∇μπ∇νπ∇μ∇νπ. Note that
for the dS and AdS Galileons, ∇ refers to the dS or AdS
covariant derivative, and indices are raised and lowered
with the dS or AdS metric.
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1. DBI Galileons

We begin with the DBI Galileons, which, as mentioned
in Sec. II, arise from a Minkowski brane probing a
Minkowski bulk. The DBI Galileon Lagrangians are

L1 ¼ π;

L2 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂πÞ2

q
;

L3 ¼ −½Π� þ γ2½π3�;
L4 ¼ −γð½Π�2 − ½Π2�Þ − 2γ3ð½π4� − ½Π�½π3�Þ;
L5 ¼ −γ2ð½Π�3 þ 2½Π3� − 3½Π�½Π2�Þ

− γ4ð6½Π�½π4� − 6½π5� − 3ð½Π�2 − ½Π2�Þ½π3�Þ; ðA1Þ

where γ ≡ ð1þ ð∂πÞ2Þ−1=2.

2. Covariant Galileons

The Galileons introduced in Sec. II live in Minkowski
space. To investigate their dynamics, one might consider
simply promoting ∂ → ∇. This is fine for L2 and L3 but
leads to higher derivatives in L4 and L5. These higher
derivatives can be removed with the addition of non-
minimal curvature couplings [32], leading to the covariant
Galileons

L1 ¼ π;

L2 ¼ −
1

2
ð∇πÞ2;

L3 ¼ −
1

2
ð∇πÞ2□π;

L4 ¼ −
1

2
ð∇πÞ2

�
ð□πÞ2 −∇μ∇νπ∇μ∇νπ −

R
4
ð∇πÞ2

�
;

L5 ¼ −
1

2
ð∇πÞ2½ð□πÞ3 − 3□π∇μ∇νπ∇μ∇νπ

þ 2∇μ∇νπ∇ν∇απ∇α∇μπ − 6Gμ
ν∇μπ∇απ∇α∇νπ�;

ðA2Þ

where R is the Ricci scalar and Gμν is the Einstein tensor.
These have second-order equations of motion for both π
and gμν.

3. Conformal Galileons

The conformal Galileons [18,33,48] arise from a deriva-
tive expansion of the conformal DBI Galileons, which
come from taking a flat brane in an AdS bulk. Their
Lagrangians are given by

L1 ¼ −
1

4
e−4π;

L2 ¼ −
1

2
e−2πð∂πÞ2;

L3 ¼ −
1

2

�
ð∂πÞ2□π −

1

2
ð∂πÞ4

�
;

L4 ¼ −
1

2
e2πð∂πÞ2

�
½Π�2 − ½Π2� þ 2

5
ðð∂πÞ2□π − ½π3�Þ

þ 3

10
ð∂πÞ4

�
;

L5 ¼ −
1

2
e4πð∂πÞ2

�
½π�3 − 3½π�½π2� þ 2½π3�

þ 3ð∂πÞ2ð½π�2 − ½π2�Þ

þ 30

7
ð∂πÞ2ðð∂πÞ2½π� − ½π3�Þ − 3

28
ð∂πÞ6

�
: ðA3Þ

Note that these live on flat space.

4. (A)dS Galileons

The de Sitter and anti–de Sitter Galileons can be con-
structed by taking the small-field limit of the dS and AdS
DBIGalileons,which arise froma dSbrane (in anybulk) and
anAdS brane (in anAdS bulk), respectively. Both the dS and
the AdS Galileons, as well as the standard flat-space
Galileons, can be combined in the single set of Lagrangians

L1 ¼
ffiffiffiffiffiffi
−g

p
π;

L2 ¼ −
1

2

ffiffiffiffiffiffi
−g

p �
ð∂πÞ2 −R

3
π2
�
;

L3 ¼ −
1

2

ffiffiffiffiffiffi
−g

p �
ð∂πÞ2□πþR

2
πð∂πÞ2 −R2

18
π3
�
;

L4 ¼ −
1

2

ffiffiffiffiffiffi
−g

p �
ð∂πÞ2

�
½Π�2 − ½Π2� þ R

24
ð∂πÞ2

þR
2
π□πþR2

8
π2
�
−

R3

144
π4
�
;

L5 ¼ −
1

2

ffiffiffiffiffiffi
−g

p ��
ð∂πÞ2 þ R

60
π2
�
ð½Π�3 − 3½Π�½Π2� þ 2½Π3�Þ

þ 2R
5
πð∂πÞ2

�
½Π�2 − ½Π2� þ 3R

16
π□πþ 5R2

144
π2
�

−
R4

2160
π5
�
; ðA4Þ

where R is the scalar curvature of the background space.
This links the standard and (A)dS Galileons through R,
which vanishes in flat space and is positive (negative) for
(anti–)de Sitter. We remind the reader that the metric used
to raise and lower indices, to define covariant derivatives,
and which appears in

ffiffiffiffiffiffi−gp
is the metric of (four-dimen-

sional) flat space or (anti–)de Sitter space, depending on the
value of R.
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