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One-loop thermodynamic potential of charged massive particles
in a constant homogeneous magnetic field at high temperatures
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The explicit expressions for the high-temperature expansions of the one-loop corrections to the
thermodynamic potential coming from charged scalar and Dirac particles and, separately, from antiparticles
in a constant homogeneous magnetic field are derived. The explicit expressions for the nonperturbative
corrections to the effective action at finite temperature and density are obtained. Thermodynamic properties
of a gas of charged scalars in a constant homogeneous magnetic field are analyzed in the one-loop
approximation. It turns out that, in this approximation, the system suffers a first-order phase transition
from the diamagnetic to the superconducting state at sufficiently high densities. The improvement of the
one-loop result by summing the ring diagrams is investigated. This improvement leads to a drastic change
in thermodynamic properties of the system. The gas of charged scalars passes to the ferromagnetic state
rather than the superconducting one at high densities and sufficiently low temperatures, in the high-

temperature regime.
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I. INTRODUCTION

We revisit the classical problem of thermodynamic
behavior of a gas of charged particles in a strong constant
homogeneous magnetic field at the one-loop level [1-16].
In the case of scalars, there are many controversies in the
literature regarding the properties of such a gas at high
temperatures and densities. In [1], it was shown using the
naive one-loop approximation that a gas of charged scalars
passes to the superconducting state at sufficiently high
densities. Later, this result was confirmed in many papers
both in the nonrelativistic and relativistic domains
[11,13,15,17-23]. However, it is astonishing that the order
of this phase transition remains unknown. In some papers
[15,17-19,21], the authors suggested that this is the
“diffusive” type of the phase transition (crossover) without
the critical temperature. In other papers, there are claims
that, in a three-dimensional space, a gas of charged scalars
does not condense (in the sense of the existence of
phase transition) at any temperature and density provided
the magnetic field is not zero [16,20,22,23], no matter
how small it is. In Ref. [13], it was shown that (using
the terminology of [13]), in any finite local magnetic
field, B # 0, the Bose-Einstein condensation of a relativ-
istic boson gas does not happen, but this Bose gas can
condense in the nonzero external magnetic field, H # 0.
Nevertheless, the critical temperature and the order of this
phase transition were not found in [13]. There is another
group of papers [24,25] where the authors suggested that
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such a gas can condense if one goes beyond the naive one-
loop approximation and takes into account the infrared
enhanced contribution of the so-called ring diagrams
[2,3,26,27].

As for the naive one-loop approximation, the conclu-
sions following from our study in this paper mainly agree
with those given in [13]. However, we establish that, in this
approximation, such a gas of bosons behaves at high
temperatures and densities as the usual superconductor
of the first type. The phase transition from the normal to
superconducting state is first order with the definite critical
temperature, which we also find. If one considers the
relativistic Ginzburg-Landau model in the state where the
gauge symmetry is not spontaneously broken and takes into
account the contribution of the ring diagrams to the
thermodynamic potential, then the ferromagnetic phase,
rather than the superconducting state, arises at high temper-
atures and densities. The phase transition to the ferromag-
netic state is first order, and we derive the formula for the
Curie temperature in this model. This behavior takes place
for any positive self-interaction coupling constant, when
the perturbation theory makes sense, and for the physical
value of the fine-structure constant. Thus, we may infer that
the high-temperature superconductivity discussed in
[11,13,15,17-21] is just an artifact of the naive one-loop
approximation.

As a byproduct of our investigation, we verify the
general formulas for the high-temperature expansion
derived in [28,29]. Furthermore, these general formulas
allow us to obtain the high-temperature expansions of the
one-loop corrections to the thermodynamic potential from
particles and antiparticles separately, i.e., to generalize the
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results of [11,30]. Such formulas are necessary, for
example, in considering the number of particles created
by heating of the system (see, e.g., [31]), the total charge of
the system being maintained constant. These expressions
provide the leading (one-loop) approximation to the aver-
age number of particles in the system at finite temperature
and density [Eq. (91)]. We derive such high-temperature
expansions for both charged scalars and charged Dirac
fermions in a constant homogeneous magnetic field. The
explicit formulas for the nonperturbative corrections to the
effective action at finite temperature are also obtained.
These corrections are nonanalytic in the coupling constant
and cannot be reproduced by a straightforward summation
of Feynman diagrams. Their form resembles the instanton
contributions to the effective action (see, for review, [32]).

We start in Sec. II with a brief review of the general
formulas for the high-temperature expansion derived in
[28,29]. In Sec. 111, we derive the explicit expression for the
heat kernel associated with the Klein-Gordon equation in a
constant homogeneous electromagnetic field at finite tem-
perature and density. In spite of the fact that the main
subject of the paper is related to the homogeneous magnetic
field only, the general formulas obtained in Sec. III lay
down the basis for further investigations both in the one-
loop and higher-loop calculations, where off-diagonal
elements of the heat kernel are necessary. In Sec. IV, we
apply the general formulas and derive the explicit expres-
sions for all the elements of the high-temperature expansion
for scalar and Dirac particles. In particular, we obtain there
the strong and weak field expansions of the one-loop
thermodynamic potential including the nonperturbative
corrections. The explicit formulas for the high-temperature
expansions are collected in Sec. V. As is known (see, e.g.,
[33]), the zero-temperature contribution to the effective
action can be found from the high-temperature expansion
because

E, E,
;eﬂo’fwrlﬂ;o;?’ M

where f; must be regarded as some cutoff parameter.
Therefore, we also find the zero-temperature effective
action—the particular case of the Heisenberg-Euler effec-
tive action—in this section.

Section VI is devoted to the analysis of thermodynamic
properties of a gas of charged bosons in a constant
homogeneous magnetic field at high temperatures in the
naive one-loop approximation. We describe the isochoric
and adiabatic processes in the normal (diamagnetic) phase.
As for superconductivity, we establish the main properties
of the phase transition from the normal to the super-
conducting phase. In particular, we find numerically the
dependence H(B) and the equilibrium curve of the dia-
magnetic and superconducting phases. The approximate
formulas for the main characteristics of the phase transition
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are also obtained. In Sec. VII, we take into account the self-
interaction of charged bosons and photons by means of the
ring diagrams and improve the one-loop approximation
considered in the previous section. The ring diagrams are
taken into account with the aid of the gap equa-
tion [2,5,26,34] on the temperature-dependent effective
masses. Then it turns out that, instead of the Landau
diamagnetism, the particles (photons and scalars) effec-
tively possess the paramagnetic properties. Hence, at high
densities, it is energetically favorable for the system to
increase the magnetic field rather than to expulse it.
Numerical analysis reveals that, at high densities and
sufficiently low temperatures (but in the high-temperature
limit), the system passes to the ferromagnetic state." We
describe numerically the dependence H(B), which displays
the typical hysteresis loop, and the dependence of the
spontaneous magnetization on temperature. The approxi-
mate formula for the Curie temperature is also derived. We
show numerically that the ferromagnetic state can be
reached adiabatically by increasing the temperature pro-
vided the entropy per unit charge is not very large.

II. GENERAL FORMULAS FOR THE
HIGH-TEMPERATURE EXPANSION

The one-loop correction to the thermodynamic potential
of quantum particles is defined in the standard way,

+)

T BQ, = Zln (1 £ e~Pler”-n))

—iﬁ/ Tro(H(w))

eﬂ o-u) 4 1°
o\t > (2)

where the upper sign corresponds to fermions f, the lower

sign is for bosons b, and a)k ) is the energy of particles. The
contribution from antiparticles has the form (2) with the
replacements y — —u and a),(f) - a),(:>, where a);{_) > 0is
the energy spectrum of antiparticles. The high-temperature
expansion of (2) in d-dimensional space takes the form
[28,29]

—Q(u) = Y (1= 22+k=d)P(d + 1 = 2w — k)
k,n=0
xZ_,’(d—l—l—Zv—k—n)%
= + (_1)ZC(_Z)
+ ;(1 -2 Wﬁi(ﬂ)ﬁl7
v—0, (3)

'Notice that the ferromagnetism of the gas of vector bosons at
low temperatures was predicted in [15,18,35,36].
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—Qu(u) = Y T(d+1-2w—-k¢(d+1-2w—k—n)

k,n=0
V(B) S (—1)E(-1
i+ Y G e
v—0, (4)

up to the terms exponentially suppressed at f — +O0.
The following notation was introduced in (3) and (4).
Let us define the function

d v—1
(L (v,w) = / T Tre
c

—tH(w) 5
27i ’ (5)

where the contour C goes downwards parallel to the
imaginary axis and slightly to the left of it. The operator
H(w) is the Fourier transform with respect to time of the
wave operator. It is the Laplace-type operator, and the
common sign is chosen such that its spectrum is bounded
from above for “good” background fields. In the case when
the spectral density of H(w) does not possess nonintegrable
singularities, {,(v,®) is an entire function of v for
Rev < 1. For other v € C, the function ¢, (v, ) is defined
by the analytical continuation. The functions o (u) are
defined as

o) = [ dofw-w'c. w.0) (6)
It follows from the derivation of (3) and (4) [29] that the
integration contours in the @ plane can be rotated a little bit
and a proper domain of variable v in the complex plane can
be chosen in order to provide a convergence of the integrals
in (6). The coefficients {;(v) are the coefficients of the
asymptotic expansion

o0

Livw) = G|l o™,

k=0

weR, (7)

which is obtained when one employs in (5) the standard
heat kernel expansion of Tre~"(®) near 7 = 0 and eval-
uates the integral over 7 (see for details [28,29] and below).

As a rule, the coefficients of the heat kernel expansion
and, consequently, the coefficients (7) can be easily found.
The first six coefficients of the heat kernel expansion for an
arbitrary background are given in [37] (for their adaptation
to the derivation of (7) see [28]). The nontrivial problem in
deducing the explicit expression for the high-temperature
expansions (3) and (4) is to find the nonperturbative
expression for the diagonal of the heat kernel and to
calculate the integrals in (6). As for the contribution from
antiparticles to the one-loop thermodynamic potential, the
formulas (3), (4), and (6) are modified in an obvious
way [29].
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The high-temperature expansion of the one-loop correc-
tion to the thermodynamic potential of fermions allows one
to obtain the one-loop correction to the effective action at
zero temperature and both at zero and nonzero chemical
potential. The contribution of one bosonic degree of free-
dom to the nonrenormalized one-loop effective action at
zero temperature is written as (see, e.g., [33,38])

W
0y /T = ﬁl_lffoaﬂ(ﬁgf)FO

“o)fp [~ o)

eﬂw +1 :|/)'—>+0’
where 7 is a time interval. The nonrenormalized thermo-
dynamic potential of Dirac fermions at zero temperature
and p # 0 with the vacuum contribution takes the form

(8)

o Tro(H(—w))
Q) =29 [ﬂ/ dwsgn(w) ———— ,
/j —u ( ) eﬂ(u +1 /}—>+O

ueR. (9)

Recall that the Lagrangian of the effective action
L{}) = -, In particular, it follows from (8) and (9)
that, in the high-temperature expansion of the total one-
loop thermodynamic potential, the vacuum contribution is
canceled out by the analogous term in the thermodynamic
potential coming from real particles (for fermions in QED
see [39] and for the general case see [28,29,33]).
The following stability conditions are assumed in for-
mulas (2), (8), and (9):
(1) The spectrum of H(w) does not contain non-
negative eigenvalues at w = 0.
(2) The spectral density sgn(w)d,Tr0(H(w)) is a non-
negative function of w.
The last condition is satisfied under rather general assump-
tions about the form of the background fields both for
bosons and fermions (see [40], Secs. 17 and 19).

III. HEAT KERNEL

Let us derive the exact expression for the heat kernel
entering into (5) in the case of a charged massive scalar
field on a constant homogeneous electromagnetic back-
ground (see also [6,9,10,12,30,41,42]). The heat kernel is
an evolution operator

G(w, s;x,y) = (x]e SCH@]y), (10)

taken at the imaginary time s = iz, of some quantum-
mechanical system with the “Hamiltonian” —H (w). In the
case at hand

H = —n"(0, —iA,)(0, —iA,) — m?>=(p—A)? —m?,
ﬂ”U:diag(l,—l,—l,—l), (11)
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where the charge e is included into the definition of the
electromagnetic potential. Therefore,

H(w) = —(p—A)? —m? + (0 — Ap)>. (12)

We expand the electromagnetic field into a series

Au(x) = A4,(0) + 9,4, (0)x" + 3 L 9.0,4,(0)xix + -

(13)

use the Fock gauge A;(x)x’ = 0, and keep only the linear
part in x,
Ag(x)~Ag—Ex'.  (14)
All the quantities on the right-hand side are taken at the
point x = 0. The potential (14) corresponds to the constant
electromagnetic field. The constant Ay(0) can be always
included into the definition of the chemical potential (see,
e.g., [5]) conjugate to the total electric charge of the system.
Henceforth, we set Ay(0) = 0.

The Hamiltonian (12) with the field (14) is quadratic. Let

1 .
Ai(x) zixlei,

1 . 2
Ho(w) = -H(w) = (i~ 3F)
—2wEx' — E;Eix'x) —w* + m?. (15)

The exact expression for the evolution operator generated
by the quadratic Hamiltonian is known,

2

G(w, s;x,y) = |(—2zi)~ det 8‘ S ]/zeis(“’~5;X’Y) (16)
K b 9 axlayj b

where S is the Hamilton-Jacobi action,

s .
5= [ arlpiit - Ho(a), (17)
evaluated on the trajectory satisfying the boundary con-
ditions x(0) =y, x(s) = x. The immediate derivation of
the action S encounters the computational problems related
to the necessity to solve the equations of motion

¥ — 2F i/

In the case of the constant electromagnetic field of a general
configuration, the answer is very cumbersome. Therefore,
we find, at first, the action for the four-dimensional
problem S,,;, which can be readily calculated, and relate
it to the action (17).

Let us introduce

Saals: 24(0). x4(s)) = / Cde(pi — Hy),  (19)
where

Hyy=—(p—A(x))* + m>. (20)
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The solution to the equations of motion in the four-
dimensional problem with the boundary conditions
x(s) = x, x(0) = y takes the simple matrix form

(x— y)- (1)

—2F7: _
x(z) =y + o—2Fs _

We have for the action

1 . s
S4d = xH (—ZXM + Aﬂ)
0

;/ dt(Fq + 20,A4,)x"X* —m?s.  (22)

Ha

The action (22) in the gauge A), = lF xX° 18 written as

1 1
Shy = —Z(x—y)Fcotth(x—y) —ExFy—mzs. (23)
In order to obtain the action (19) in the gauge (14), we
perform the gauge transformation

Ay = A//t - aﬂ¢7 S4d - 4d ¢|O’ (24)

where ¢ = 1 Fgx%x’. Then

1
(x —y)F cothsF(x —y)

‘ o1
- ExlFijy] ) (x* =)

X Foi(x! + y) — m?s. (25)

S4d(s§x0 —yo’xd’) = -

— A

Now we find the action (17). Since A,(x) does not
depend on time in the gauge (14), p, is an integral of
motion of the model (19). So, we set py = @ = const.
It follows from the Hamilton equations for (19) that

F F
po=w=|—=——=cothFs | (x—y)"—=Fgy)", (26)

2 2 Ov
whence

F -1 F . .
xo—yo—_<_cotth> {w—i— <—cotth> (x" =)

2 00 2 0i

1 S
+§F0i(xl +yl)} (27)

In virtue of the fact that on the solutions to the equations of
motion

Su= [ deloi® 4 piit = Hofw) =0 =y) 45, (29
0
we deduce

S(w, 55%,y) = Saa(s32° =30, %,y) —w(x* =)°), (29
where, on the right-hand side, x” — y* must be replaced by

(27). Finally, we have
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1 | . NI , A .
S=(FcothsF)y, {w—l—E(FcothsF)Oi(xl —y‘)—&-EFO,-(x’—I—y‘)] —Z(x’ —y‘)(FcothsF)U(xf—y/)—ix’FUy/—m%.

In order to find the Van Vleck determinant, we employ the formula for the determinant of the block matrix

2 F F F F F \-l/F F
detﬂ =det|( —cothsF——) —[—=cothsF—— —cothsF — — —cothsF — —
ox' 0y’ 2 2/, 2 2)0\2 2/ 00 \2 2/,

F F\-! F F
= | —cothsF — — det| —cothsF —— | .
2 2 /0 2 2 aw

Taking all together, we obtain the heat kernel (16)

1 det(5 coth sF —£)
(=2xi)3/? (Ecoth sF)y

G(w,s;X,y) =

x e't

In particular, on the diagonal (for the Dirac fields see [12,39])

F .y .
G(a), S$IX, X) _ 1 \/det(z coth sF 2)ei[(Fcoth sF)g) (0+Ex")>—m?s)

(=27i)3/? (£ coth sF)y,

The heat kernel in the case Ay(0) # O is obtained by the substitution @ — @ — Ay(0) in (32) and (33).
The expression (32) can be derived in a different way. Let us define the four-dimensional kernel

1 %840 117,
Gralsx.) = {(-2;;1')4 aet axl‘gjl’] e

1/2 . . -
= —1 |:det (E coth sF — E>:| / e il§(x=y)F coth sF (x=y) 43 F iy +5(x" =y ) E; (x +y7) +-m?s]
2

(2r)? 2

The Fourier transform of (32) over @ gives precisely Gy,

o (] .
/ Tweza)(xo—yo)G(w, 5 X, y) = G4d(S;X, )’)-
oo 27

The integral over w is Gaussian and is easily evaluated.
In the expression (32), the following matrix:

(FcothsF)y, (FcothsF)y 0 0
FcothsF F cothsF 0 0
Footnsr) | FEOMIFN (Feomsr)y
s 0 0 (FcothsF),, (FcothsF),,
0 0 (FcothsF)y, (FcothsF)s,

and the determinant,

F 2
det{ —coth sF — £y - _ PP )
2 2 4sinsp_sinhsp,

appear. Here
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(p% = E?)p_cot(sp_) + (p~ + E*)p, coth(sp.)

(F COth SF)OO —

pi+pt :
2 _ E2 th 2 E2 t
(FcothsF),, = — (p% )P co (SPJ;) + (f— +E?)p_cot(sp_) ,
Dy +p2
piD-
(FcothsF)y, = m (P2 — E2)p_coth(sp,) — (p* + E)p. cot(sp_)].
+ _
(p3 — E?)p? cot(sp_) = (p2 + E?)p} coth(sp, )
(FcothsF)y; =~ i + +)
(pi +p2)
(FcothsF),, — 2Ealp cothlsp.) = pcotlsp_)

pi+p2

p-cot(sp_) — p coth(sp,)

pi+pt
and
Py = (,/1%+1§i11)”2,
I =5 (B2 - BY)
I, = (EB), (38)

where E is the electric field strength and B is the
magnetic induction vector. All these expressions are
written in the system of coordinates where E =
(0,0,E;) and B = (0,B,,B3). The expression for
(Fcoth sF),, coincides with that found in [39,42] (see
also [6]).

All the singularities of the expression (32) in the
complex s plane lie on the imaginary and real axes only.
Indeed, the singularities of the heat kernel coincide with
singularities of the determinant (37) and the matrix
FcothsF, and zeros of (FcothsF)y,. The singularities
of the determinant and F coth sF are the poles lying on the
real and imaginary axes and corresponding to the solution
of the equation sinsp_sinhsp, =0. The zeros of
(F coth sF),, are determined by the condition

cot(sp_)tanh(sp,) = a, (39)
where a is some real number. Substituting s = x + iy
and taking the imaginary part of (39), we obtain that

either

sin2p_x _ sinh2p_y

= , 40
sinh2p,x sin2p,y (40)

or x or y vanish. However, equality (40) is only possible for
x =y = 0. Therefore, all the singularities of the expression
(32) lie only on the imaginary and real axes in the complex
s plane.

’

IV. CONSTANT HOMOGENEOUS
MAGNETIC FIELD

A. Charged scalar field

Further, we shall investigate thoroughly the case of the
constant homogeneous magnetic field B. In this case, the
diagonal of the heat kernel becomes

eSm’/2 B
(47272 sinh cB

G(w,it;x,x) = —o(@?=m’) (41)

where B = (0,0, B). Without loss of generality, we assume
B > 0. The zeta function is written as

v—1
(o (v,w) :/d” /de(a), IT; X, X)
c

2ri

d v—1
—vy / T G(w, it X, X). (42)
C 27l

The integrand possesses singularities at the points izn/B,
n € N, in the form of simple poles. It also has a cut along
the positive part of the real axis. Let us close the contour in
the right half-plane. Then

o) =0 =) [+ / )@

where the shorthand notation was introduced (cf. [10])

_ ,27i(v-3/2) 0 v=3/2
/ -V (1 € )B/ dr T e—‘r(wz—mz),
cut 167°/2 0 sinh zB

and
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eim/ o
= V—
/pol 8732 Z

n=1

v=3/2
« (%) (@RS -32) 4 o] (45)

(="

Hereinafter, c.c. denotes a complex conjugate expression
constructed in such a way as v would be real.

The high-temperature expansion of the partition function
for fermions (3) contains the function

ol () = / * doo(o - w)'e, (v.w)

0

1 o
— Z Cf’(—y)"l’/ dow?{, (v, ®),
p=0 0

[=0,1,2,... (46)
The bosonic expansion (4) also includes
o' = [ dotw - )¢ (0
= [T door e o). @)
p=0 0

The latter expansion is valid since the integrand vanishes

for |w| < wy, where @y is the minimal particle’s energy, and

|u| < @ for bosons. Thus, we can restrict our consideration
I

to o, = v(ﬂ - O)’

— /oo doa'l, (v, )

0

—/ doo' |:/t—|—/l:| = géuw +6£)01v’ (48)
m cu po

where [ runs over all integer numbers.

The contribution from the poles is obtained by inter-
changing the integration and summation order and sub-
sequent integration over o,

eilw

B\2-vHi[ . N (=)
_ Z(v—145 —ir
=V 162372 <;) [e o1ty an—u+z/2 e

I+1 . _
x I T,—mnm +c.c.|,

where it is supposed that Rev > 5/2, and the notation 711 =
m? /B is introduced. As for the contribution from the cut to
!, having interchanged the integration order, we arrive at

!
Gpolu

(49)

iny
e

167°/2

o [t (L (50)
0 Tsinhre 2 -

l _ 2—v+L
OCinty = B 2C0S 1Y
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The integral obtained converges in the domain

Rev >3/2 forl< -1
Rev > 1/2+2 forl> —1,

and

(51)
and, in this domain, the change of integration order in 7 and
w 1s justified.

The expressions (49) and (50) can be substantially

simplified if one introduces the lower incomplete gamma
function as

(5 em) = r () ().

The integral over the cut performed with the lower
incomplete gamma function can be represented in the form

o T2 (]4]
d Tm , ey
A Tsimnz 7 ( 2 Tm)

1 d 2
= - T "
2345 _ 1 [y sinht

@ (11
ey z,rm,

(53)
where H 1s the Hankel contour, and recall that
y(s,e*™x) = e*y(s,x). Then, supposing 7 <1, we

unfold the contour and bring it to —oco. This results in
the contributions from the poles of 1/ sinhz lying on the
imaginary axis. The contributions obtained cancel exactly
the part of o, containing y(“5*, Liznm).

As a result, we have

. el B v (141
Gpolz/ = 1677.'3/2 r 2
PRETE N Gl g
ety Z i€ T e (54)
n=1 n
and
inv -2

~] _ € 2— % l+ 1 oo T m
Ocuy = VwB v cos v’ (T) /(; dr Sinh‘[e mn,

(55)

Let us apply the same arguments to the new integrand
expression. Now the phase wrap on the lower edge of the
cut is €2~ For odd [, it equals to ¢2*(*=2_ In this
case, we unfold the contour as above and cancel the
contributions. Consequently, ¢, =0 for odd positive 1.
As for odd negative /, the considerations above do not work
due to singularities of I'(({ + 1)/2).
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1. Strong fields

To find the explicit expression for &, we develop the
exponent in (55) as a series and change the order of
summation and integration. Then, the integrals over 7 are
reduced to the Riemann zeta function

_ iry l 1
Oty =V ¢ B>cosml (;)

S 5/2
= ik l
o 21—y+l/2—k r —— 1 k
;k ) (” 2 +>
l
xc<y—§—1+k>. (56)

In 6, we also expand the exponent. The summation order
in n and k can be interchanged (see, e.g., [43]). As a result,
we deduce

i !
I s § vt 1+ 1
%pon = Vg <n> F( 2

[Se]

(zm)* =&
X kzo i cosz(y— 1+1/2-k)

x (vl

Ne(/2+2—k=v).  (57)

Making use of the Riemann functional equation for the zeta
function in 6y, we join the two contributions,

;e i xl _(1+1

O'l,—V8 S/ZB Osle—’ =
= (_m)k 1+1/2—v—k
DDt

xT(w—1/2=14+k¢v=1/2=1+k). (58)

The series obtained converges in the disc |m| < 1, i.e., for
the strong fields |B| > m?. Introducing the Hurwitz zeta
function [11],

©

FIG. 1.

PHYSICAL REVIEW D 94, 125012 (2016)
I'(s)¢(s,b+1/2)

i 25tk — D0(s + k)¢(s + k) ( kb')k ,

bl <1, s#1, (59)

we have

167°/2 2
xT(W=1/2=1)w—1/2—1,(1+m)/2).  (60)

I e 2-0+1/2 ”l [+1
=V———— (2B
61/ ( ) 2

This expression vanishes for odd positive /.

2. Weak fields
2 .
t

In order to find ¢/, in the case of weak fields |B| < m?, i
is necessary to resum the series (58). To this end, we use the
Watson method (see, e.g., [44]), rewriting the series in the
form of the contour integral

— ds
> G = [arwses. e

where the contour C is a union of circles going in the
positive direction around the poles of the function I'(s)
at the points s = 0,—1,-2, ..., and f(—s) is understood
in the sense of analytlcal continuation. For (58), the
integrand function has poles at the points s =v—
1/2 42k, k=-1,0,1,2,.... Let us deform the contour
C (see Fig. 1) so that it intersects the real axis at the
point slightly to the right of s = 0, runs parallel to the
imaginary axis, and is closed by the arc of an infinite
radius in the left half-plane. The contribution of this arc
is zero for [m| < 1. As a result, we have the integral
along the contour L converging for |argmi| < 3x/2.
Further, we bring L to the right half-plane such that it
intersects the real axis at the point s,

©® ©®
L L
X = X

The deformation of the contour C in the s plane (from left to right).
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7l

)
I/V_
ol = g 2

BZ 1/+l/21—*<l + 1) cos
2

k max

x ) r(y —é+ Zk)“‘” (2l 1)

k=-1
(=2k=1) ™ I+1 nl
B u+l/21" -
“Tk+2) 8P 2 )2
Se+ico
X/ ds F( ) (1 _ 21+£—u+s)
S.—io0 2ri
x I —£—1—s 4 —i—l—s (62)
72 72 ’

where k,,, is the pole number nearest from the left to s,.:
kmax = [S¢/2 + 1/4] (it is assumed that s. is large). The
first term in (62) gives the asymptotic expansion of o
with respect to a large mass, while the last term is the
remainder of this expansion. The remainder does not
have a singularity at v =0, hence, we can safely set
v=0 in it.

We choose s, so as to minimize the remainder and find
the explicit expression for it at 7z large. The integrand of
(62) for large s becomes

o8 Ins=%Ins—s—s In(zm)

iv2

47!/23/2 cosZ(L+1+s)

(63)

The expression in the exponent possesses the minimum
at the point s.,;, = mz. We take the point s. near s.;,
so that it does not hit the poles s =v—1/2+ 2k,
ke Z. Such s. can be always represented as
s, =mnr + 8, |6| < 1/2. Then we parameterize the con-
tour s = 5. + ix, x € R, and develop the exponent as a
series saving only the terms nonvanishing in the limit
m — 4oo0. The magnitude of the integration variable x
can be taken of the order of unity since the contributions
of large values of x are exponentially suppressed due to
the cosine in the denominator of (63). As a result, we
obtain

flns— Ins—s—sn(zm) p, S;I/Zes‘. IS ixIn’s

me m, (64)

The resulting integral now has the form

©  jdxe™” P
e VT e (-1,1),
/_oo cosj (a —ix) (=1 cosh % € ( )
kez, a=:ay + 2k. (65)
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Then, the last term in (62) becomes

B\2+/2 ]
871'5/2 (;) CoS 3
[+ 1\ e
X F<—+ ) ¢ ,
2 2m
where we neglect all the subleading contributions in the
limit 7 — +o0o0. Obviously, this contribution is non-

perturbative; i.e., it cannot be reproduced by a naive
summation of the Feynman diagrams and is suppressed

by the exponential factor e~™/5,

_D)@m2)/2)
v =L

(66)

3. Coefficients &, (v)

Apart from the functions ¢!, the high-temperature

expansion also contains the coefficients {;(v) (7), which
are obtained if one represents the trace of the heat kernel in
¢, (v, ) in the form of the standard heat kernel expansion
and formally integrates the series over z termwise. Then we
have for (41)

=) -

k=0

BT_1/2

Bk k=3/2 _
sinh 7B

Za k= %/2

(67)

where a; are the coefficients of the heat kernel expansion.
Substituting this expansion into (42) and integrating the
series over 7, we deduce from the definition (7) for the
nonvanishing coefficients

_ inv (_])kJrS akaS
Conia(t) = Ve (4r)32 sI0(5/2—v—k—3s)’

(68)

where k and s run over all the natural numbers and
Zero.

B. Dirac fermions

Let us briefly consider the high-temperature expansion
of the one-loop contribution of the Dirac fermions to the
thermodynamic potential. The trace over spinor indices of
the diagonal of the heat kernel for Dirac fermions takes the
form [12]

e37ti/2

—2(w?—m?
:WzBCOthTBe ( m)

G(w, it; X, X)

(69)

The analogues of (49) and (50) in ¢, are written as
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, v eim/ B 2—zz+7 y—1+ © e—umm +1 o
apolu = W ; E n2—l/+[/2 ,—lmTnm + c.c. s
n=1
eimx

) _ (l+1
ol =V 5 B2v*1 cos v /o drr 2 (coth 7 — 1)e™ T (% , rﬁ)

iny

+V s Boosm / doo / degv=312gmt(@ =) (70)

Further, the considerations are completely analogous to the given above in the bosonic case. The difference is only that, in
unfolding the contour, one needs to demand m < 2. As a result, we deduce

inv 2—y+L / 0 —iznm
P e B 2 + 144 e
Opoly — VW (;) F(—) [ - 2,12 y+1/2

5o —vy e BZ—D-&-i r [+1 ® d v—L-2 h e
Ocuy = P 2COS TV 5 ; Tt *(cothz — 1)e
e’ o al _[(1+1 l
“ Vg Beosy i ) vt (71)

[+ 1\ St
5 = 2-v+1/2 1—v+1/2—k
1. Strong fields Tpals V4 3/2 B F( ) Z k! ’

Substituting xT(wv—=1/2-14+k){v=-1/2-1+k)
7l
2 x [ (=1)*cos — — cos
cothz — 1 = — (72) [( Jreoss ”V}
-l ein | (1+]1
- . o +V—sym 2B o ”r( )
into o, and expanding the exponent in the integrand, we 4z 2 2
obtain xT(w—1/2-1). (75)
Glo=V el;’:z B2+ cos <l + 1) As a result, adding the two contributions 6, and &, we
4r come to
[
1—v+1/2—k _t .
XZ 2 F( 2 1+k> Iy €™ i FL (]
6,=V——=B8B cos—I'| ——
/ i 2l 4732 2 2
x{v—==1+k|=V—cmm?> 2+ Bcos— ®_ (o
C( D) ) 875/2 2 Z 21 —v+1/2— kr( 1/2 14+ k)
[+1 l = K
r'N———Ir{v——=-1]. 73
<r()r(-571) N N
. L. e 22w ”l [+1
Let us perform the same procedure with the function 6. + Vs 8 7m Bco ) T 5
The order of summation over n and k can be interchanged
according to the formula (see, e.g., [43]) xI(v—=1/2-1). (76)
® gian (ia)k _ The series obtained is convergent in the domain || < 2.
Z Pra Zé(s — k) 0 (1 —s)(ia)~te s, Introducing the Hurwitz zeta function [45],
n=1 =0 :
Res < 0, aeR. (74) % (1—a)k
F(S kZFS+k S+k)T»
Then, using the Riemann functional equation for the zeta
function, we have [1—al <1, s# 1, (77)
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we arrive at
;L e wl (141
0, = VWCOSTF<T F(l/ - l/2 - 1)
x [(2B)> ™ H2¢(v = /2 — 1,1 +m/2) + m*2**+B].
(78)
The expression (60) in the previous section can be obtained
from (78) if one observes that

T
= cothi — cothr,

7
sinh 7 (79)

and substitutes this representation into (41). This gives an
indirect check of the both expressions.

2. Weak fields

The consideration is completely equivalent to the
consideration in the previous section with the exception
that there arises an additional pole of the gamma function at
the point s = v —[/2 — 1 with the residue

el o1/ 2—1 /2y al _(1+1
_V8ﬂ'5/232 H 2t/ +]COS?F<T Fv—1/2-1).

(80)

The contribution of this pole cancels the second term in
(76). Thus we have the expansion

L €™, wl [(1+1
o)V =— o —75 B +/ cos2F<2
max —__ é*( 1)
X ___|_2k v— 2k22k+1—
P

e 2012 ml (141
+4 5/2B cos 2F >
sc+ico (s
—TI
x /s(,.—ioo 2mi
l l
xF(y—E—l—s>C(1/—E—1—s>.

(s)m—szl—&-é—v-i-s

(81)
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For large s, Res > 0, the last term in this expression
differs from the analogous term in (62) only by the
factor —2. Therefore, at m — +oo, the last term in (81)

becomes
(=1) [(zm+1/2)/2] (B) 2+1/2
T

/ _
anv/v - = 471_5/2

al _(1+ 1\ e™
—I— ) —==. 82
X c08 — < > > = (82)
This contribution is essentially nonperturbative.
3. Coefficients & (v)
Inasmuch as
2Bt cothtB = — ) 2k U= K) prgiaye
r
k=0.#1
oo
=Y a2, (83)
k=0
the nonvanishing coefficients are
) -1 k+s a m2s
Cains(v) = Ve = - (84)

(47)32 s\0(5/2—v—k—3s)’
where k and s run over all natural numbers and zero.

V. HIGH-TEMPERATURE EXPANSIONS

A. Scalar particles

As follows from the spin-statistics theorem, the scalar
particles are bosons. Thus, using the bosonic expansion (4)
and canceling the poles in the complex v plane, we derive
the complete (up to the exponentially suppressed at
p — +0 terms) high-temperature expansion in the case
of strong fields,

T(4 — 2k — 25)C (4 — 2k — 25 — n) (Bu)"

ﬂ4_2k —2s n!

2 —1 B Typ m>\ k ip p p 1
R L ) N [y 3 V] L Ay
+2 (4r)21( +1)k!< B) (1-277r (2 2" >C<2 2 * )

Q) s T
— — -1 k+s 2s
% k%;)( S am (@)% C — &
P
k.p=0 2
W (2 BB 24
87°p 3m? 8¢’ 3m
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! i/ l)pg( ))(4”)5;;?(‘ : 2)k! ( ”;2>"(1 _21+§_k)r<k— 1 —g)@(k— 1 —%)

L,p k=0

) / 1 25 — n)ﬂ2s+nﬂ m4 2k+2sak 5 C/(l _ k) 2k1n2 1
231 e LR (O SYT Cot)

k.s.n
2+,

C’(—ZS— n)
{(-2s—n)

where the primes mean that all singular terms of the series should be discarded. The last term in (85) contains by definition
only the odd powers of u save the term with n = s = 0. Therefore, the finite and divergent at § — 0 parts of the expansion
look as follows:

Qu) C() 5 (¥ g
T2 A (12 24>ﬂ

o~ ﬁ‘lBﬁﬂp m*\ ¥ L P p_1
- —— ) =27 =+ k|2 -2+ k
k_pzzo (4m)32T (5 + 1)k!< B> ( )r (2 2+ ¢ 2 2+
2 2 4 2.2 4 2 2
um 2 u B 24 U u'm m B p*Be’
- 1-=2_1)1 - - - 1
872 [( 3m2) "8 T3m2| Tas2 T 1622 \6d2  19222) " 3242
B ({(-1) 8 > (1=21")¢(k=1)
_ —1In . 86
192722 (g(—1) > 167:22 < > k(k—=1) (86)

The complete expansion in the case of weak fields reads as

-2 —2p(2s + )} (85)

Q (,u) oy s SF(4—2k—2S>§(4—2k—2S—n) (ﬂ/,t)"
— = Z <_1>k+ akm2 (4ﬂ)3/2s!l—~(§ —k— s>ﬂ4—2k—2s n!

nys i s B T(5+1 4 2k) _g_%_Zk(22k+1 _1) ((=2k=1) pm® (24 lnﬁzm2
~ (4n)*2 TE+1) \ B r(2k+2) 8P de

3m?

@ (=D)PE(=1) B2k = 8) ( B\ L ((=2k - 1)
- l;Q —1 (Iu )l p'(l - P)' (47[)3/2F(1Tp) <—> (2 ' ]) F(2k + 2)

2
k m
3 i/ (—=1)°¢(=25 — n) 2ty mé=2k+25 g,
kasn=0 167[3/2(2S>!H!F(% —5)(2—k+s)!

l(=25-n)
225 —n)

where the dots denote the exponentially suppressed terms coming from (66). In this formula, the terms are discarded by the
same rule as in (85).

The sum over p in the second term can be expressed through the hypergeometric function. The finite and divergent at
f — 0 part of the expansion takes the form

Q) _ P () L (P pr e
_ T LB) s (1m0 2N
% 90” 2 p 3m2) " e +48;; 1672

[ln(ﬂQmZ) —y(—k+s)+ w(é - s)

—2p(2s + 1)} (87)

& flmd (B O\ 22 C(=2k-1)[T2k+YH 2 3
N2 (2 22+ _ | 2 " re Lok 12
k; (4)3/2 <m2> ( ) ['(2k +2) [(1 —”—22)2’”% * 7'%m (2k+DF kA1 2" m?
m4 ﬂZ 2 2;/ 3m4 B2 Kinax B 2k (22k+1 _ 1)6(_2]( _ 1)
- - 1 = 88
<64n2 19272 ) "6 1282 T 6;#,;(,"2) k1) (88)
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The expansion derived in [11] readily follows from the
above expansions if one takes into account the con-
tribution of antiparticles to the thermodynamic poten-
tial, viz., if one adds the same expression with y — —pu.
The high-temperature expansion found in [11] is a
doubled even in u part of the expansion (85) doubled.
In particular, formulas (86) and (88) allow one to find
separately the number of particles and antiparticles in
the system [31] as

09,

and not only the total charge. For example, it follows
from (86) at y = 0 (zero total charge) that

N _¢3) B! (1 +m?/B) p*B
v P e {Bl 2r2(1+m2/23)+m2m?’
(90)

PHYSICAL REVIEW D 94, 125012 (2016)

where, as in (86), the terms vanishing in the limit § — 0
are cast out. These formulas for the number of particles
give the leading term approximation of the average,

<[\7> f eﬂQTr [Za;&ae_ﬁ(H_ﬂQ)] s
a

—PQ — Tre-PH-10), (91)

where 4, and a, are the particle creation-annihilation

operators, and H and Q are the Hamiltonian and
conserved charge operators, respectively.

B. Scalar fermions

Let us derive the explicit expressions for the fermionic
expansion (3) for scalars. This expansion can be used to
obtain the energy of zero-point fluctuations (8). From (3),
canceling the poles in the v plane, we derive in the case of
strong fields

_ i/(—l)k“ 5, T(4 =2k = 25)n(4 — 2k — 25 — n) (Pu)"

akm
(4m)%2sI0(3 -

k,s,n=0

k — s)ﬂ4—2k—25 n!

B

s (BYE( Y (=1 2 Pk~ p/2 1)k~ p/2 1)
> W’*(ﬂz) (%)

k=0

(47)32p1(1 - p)kIT(152)
{(1-k)

k.r.n=0
2+s>k

g'(=2s—n)

2 16ﬂ3/2 25 vnféf),fﬁ”l)if?’é)- g P“WB) () -

L(1—k)

41In2

2 -2k

2%In2 1 , &=
o).

(92)

2—2s—n -2 - 21//(25‘ + 1):| ’

where 7(s) := (1 —2!7%)¢(s) is the Dirichlet # function. The primes at the sums mean the same as in (85). The last term
contains by definition only the odd powers of u except the term with n = s = 0. Explicitly, the finite and divergent at f — 0

part of the high-temperature expansion reads as

Q) zw <(3)
\% 720 47?
(=1)*

16712 Z k(k

k=142

B [f(-1) 8
1022 (C(—l) _mF)'

m? 2, n2 mu’ u
3 2 _ 2 2\ -1 _
Tt <48 24)ﬂ 22 B = U+

m>\ ¥ - m* B?
(—) (1-2 )C(k—1)+<64ﬂ2—192”2) In

4

1672 4872
p*Ber
272

(93)

According to (8), the nonrenormalized energy of vacuum fluctuations of charged scalar bosons in a strong magnetic field

takes the form

Evac = Zaﬂo (ﬁOQf (0))

+ i
3272

Here f is to be understood as some cutoff parameter.

2 4
4 _ Mg (M
[120ﬁ0 2470 +<167t2

BZ

B? =
@) n(efy) — 8 ) Z

sor) "5 3 () 27|

(1-2""9)¢(k -
k(k—1)

()

k=1,#2

(94)
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In the case of weak fields, we have

. ©_, k+s st
_QJT(#) B k%::om = 2k = 2904 = 2k = 25 =R (ﬂ:') : (43:)3/2 kszr(% —k—ys)
2 n(=l)  TQ2k—s) (m\> (BN 1 _ ((=2k-1)
+“ZOkZ 4r) 3/2 (25)!1(1 = 2s)! F(%—s) <,u> (P) <m2> (@ -1) [(2k +2)

_ 2s — ”)(ﬂﬂ) (/}m)Zs 4-2k
;0 167:3/2 2s 'n!(2 e

245>k
22_,”(—2s—n) 41n2
{(=2s—n) 277 -2

—2p(2s +1)|. (95)

X {ln(ﬂznﬂ) —w(3—k+s)+ l,u(%— s

Here the notation and conventions are the same as in (85) and (92). The exponentially suppressed contributions are thrown
away. Then, the finite and divergent parts can be cast into the form
Q(u) Tr? 3(;(3) In2 m?u? 4
f - 2yg-2 L M 2 24 -1 H )2
= -2 3m* -2 -——
( u ) + 12”2( m u )t + 1622 4872

B2 o (22k+1 _ I)C(—Zk— 1) (B >2k ( m* B2 ) e’ 3m*

167° < 2k(2k + 1) m2 3272 9672 128722

(96)

m

Consequently, the nonrenormalized energy of vacuum fluctuations of charged scalar bosons in weak fields is
written as

m? m* B’ Pomer™t 3m*
Eppe =2 Q ——p? - 1 -
vae = 205, (Ao82(0)) = [uoﬂ 0" b (167:2 4871'2) 2 6472
_BSR @ - DU2k= 1) (BN ()M BV (B AV ) o7
87* &= 2k(2k + 1) m? 8x° ) \2m?

The renormalization of the one-loop contribution is performed in the standard way (see, e.g., [46]). The counterterms are
added to the initial action of the theory. They have the mass dimension less than or equal to 4 (without taking into account
the dimension of /), must cancel all the divergencies, and set the coupling constants to their physical values. In our case,
the counterterms that should be added to the initial Lagrangian have the form

2 4 2 r+1 4
> m' B I Pome 3 3m 08
T - 3l +<167z2 487:2) TTE T e ©8)

120

This corresponds to the choice of the value of the fine-structure constant « that is observed in low-energy experiments in the
absence of the external fields. As a result, the renormalized vacuum contribution in the limit of weak fields is

e—]rmz/}.?7 (99)

Bt _ B _ B g8 (20 - De(-2% - 1) (5) (e (5) ( B )1/2
T

v Vv T 8 2k(2k + 1) m? 872 2m?

k=1

which coincides exactly with formula (1.34) of [47] for the effective Lagrangian without the exponentially suppressed
contribution. In the case of strong fields, we have

E E B? °°1—21'< k—1 2\ 4 2m*> 3

vie _ Bue o —Z C< L S LS B

v v 87* = B 327? B 2
BmZ 2 m2
2 24— (In——12¢(-1) ), 100
1622 " +96n2<“43 d )> (100)

which coincides exactly with formula (1.62) of [47] for the effective Lagrangian.
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C. Dirac particles

As for Dirac particles, we use the fermionic expansion, which in the case of strong fields and after the pole cancellation in
the v plane becomes

*©_, n _1)k+sm2sa
= (4 — 2k — 25)n(4 — 2k — 25 — myp-ta—220) PR ( ¢
kan: ( it s=np n! (4n)3/2s!1—‘(% —k—y)

= B p(=)2M(k—s = )e(k—s—1),  (B\*( m?\k
+,Z 4;:)*/2 (29)1(1 = 25)KIT(L — 5) (Bw) <M2>( B)

0

-~

(_1)k (- )Bﬂl 1=2k+2 5,2k Be
+ Z 4ﬂ)3/2kv(2k )1 =2k+2)I0G - k) [ln”mz +y(k+ 1)]

—2s —n) (Bu)" (pm)* 4-2
- n;o 167:3/2 2 k+ Hri—s) a2 a
X [In(ZﬁzB) + l//(% - s) - 2% —2p(2s+1)— % —y(k) — %} . (101)

Here the same notation and conventions are implied as in (85). The finite and divergent parts of the high-temperature
expansion read as

Qr(u) 5(3) m? ln2 m* u? u?
e A A S 3 o -2 4 — 2 _ M
% 360ﬁ 2 M2 ﬂ 2 w ™3
B & {(k=1) m4 B2 2/32367 B? m*B _ Be
-z I 120(=1) +7 -1+ 22w 2% (102
4n2k3( 23) =) TG Tase) Mt 120 Ay - gain Tl (102)

The contribution of charged Dirac fermions to the nonrenormalized energy of vacuum fluctuations takes the form

2

Evaci aﬂ(ﬂgf(o))i s m? — m* B B & C(k—l) m*\k
Vo oy Tt 2ﬁ°2_< S )ln(eﬁ(’) ﬁzk(k—1)<_ﬁ>

=3
m* B? 2Be’  B? m?’B_ Be
- - 12 (- —1]——1 103
(16752+24n2) N T 1Dyl =i s (103)
In the case of weak fields, we have
Q(u) O~ (Bu)* (=) Sm>a
_Ref _ _ _ _ M —(4—2k=2s) k
% k;;or(zl 2k —2s)n(4 — 2k — 25 — n)p 0 @) s TG k=)
S B A Tk (B () )
50 = (471')3/2 (2s)!(l —-25)! T3 —s) \m? U C(2k+2)
_ Z —2s — n) (ﬂﬂ)n(ﬁm)zs 2%
= 16;:*/2 2 k+s)'F(——s) n!(2s)! k
245>k
1 {'(=2s —n) 4In2
In(p?m? ——s5| =2 - -2y (2 1) - —k 104
gy 4 (3-5) 2§ R sk -y k). (108

without taking into account the nonperturbative corrections. The finite and divergent parts are written as
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Qr(p)  Tn* 35() In2 W\ . W IS
A = +<24 12)ﬁ2 (7 ?)“ﬁ1+@<”’2‘?>

B\2@a((=2k—1) (2B\* [ m* FPm2e¥  3m*
— - | — | - . 105
i (27:) ;2k(2k+ 1) (mz) - (327r 4872 ) ! 71'2 647> (105)
In particular, the density of electrons at u = 0 is given by (see, e.g., [31], Chap. 6)
N 303) ,;
B - 106
1% 272 p ( )
up to the terms vanishing at f — 0. The nonrenormalized vacuum contribution of charged Dirac fermions is
E,pc D5(L4(0)) 771 m* B2 pomer ™t 3m*
v v FORET ﬂo g2 1222) " 2 3
B> &8 ((=2k — 1) (2B\2%*  (—1)l/2B] /g\2/ B \1/2
B M(_» L (BB o (o7
277 &= 2k(2k + 1) \m 4z w) \2m
The counterterms to the initial Lagrangian are chosen by using the same rules as in (98),
Tn? m*  B? Pomertt 3m*
t=——p*+ | . 108
¢ 600 T ﬂo ( T )n 32 (108)
Therefore, in the weak-field limit, the renormalized vacuum contribution takes the form
Eren E B2 Kimax 2% — 1 2% -1 [wm?/2B] B\2/ B 1/2
vac _ TVac 4 — — M =] + % =) (5= e~ /B, (109)
| v 27% 4= 2k(2k + 1) A n) \2m

which coincides exactly with formula (1.19) of [47] for the effective Lagrangian without the nonperturbative contribution.
As for the strong fields, we deduce

E{/ea% Evac Z C(k - ] m2 k n m* n B2 I m> n mZB1 am? L m* 3
= —c.t —+—|Ih—+—Ihh—+—=(y—=
% 1622 24722) "2B 822 T B 162 \! T2
m?B B2
52 T2z 1 12(=1), (110)

[
the ring diagrams. These factors will be taken into account
in the next section.

In the high-temperature limit, the leading contribution to
the pressure can be cast in the form

which coincides exactly with formula (1.53) of [47] for the
effective Lagrangian.

VI. CHARGED BOSONS IN THE
MAGNETIC FIELD

) ) 2 2 2
Now we employ the high-temperature expansions P=-Q/Vx—T*"+ (’“ _ > T2
45

obtained to analyze the main thermodynamic properties 6 12
of a charged scalar boson gas in a constant homogeneous u: —m?
magnetic field at finite temperature and nonzero chemical +TB?® (B)’
potential. So, we assume

{(=1/2.(1 -x)/2)

O(x) = — , 112
pm<1,  PIBl<1,  plu <l (111) ) V2n (112)
In this section, we neglect the contribution of photons to the ~ where T := ~!, the contributions of particles and anti-

thermodynamic potential. We also neglect the change of the
effective masses of particles due to the contributions of

particles are taken into account, and the formulas (86) and
(59) have been used. In the limit considered, the vacuum
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contribution can be neglected. The function ®(x) is real for
x < 1 and possesses the square-root branch point at x = 1,

$B/2) Vi-x

d(x) = WP >

+0(x=1). (113)

The condition x < 1 is equivalent to |u| < @, = Vm? + B.
The chemical potential is found from the equation

oP  uT?
= uTB 2 (),

-2 s 114
o~ 3 (114)

p

where x := (4> —m?)/B < 1 and p = Q/V is the charge
density. The last term in (114) can dominate in the region
(111) provided x — 1. It is in this parameter domain where
one ought to expect the phase transition. The higher terms
of the high-temperature expansion discarded in (112) and
(114) are regular in this limit and for other values of the
chemical potential. Hence, they can be safely neglected.

The magnetic induction B in the gas is determined by the
equation

P
H:B—ezg—B(ﬂ,T,B)

= B - ’TB'/? Bcb(x) - x@’(x)} . (115)

where H is the magnetic intensity vector. Recall that the
electric charge e is included in the definition of the
electromagnetic field strength, and we work in the system
of units where ¢? = 4za, with « being the fine-structure
constant. Without loss of generality, we also assume B > 0
and bear in mind that

P(u,T,B)=P(u,T,-B), (116)
in virtue of the time reversal symmetry. This relation is
nonperturbative and valid in any order of the perturbation
theory. In particular, H(B) = —H(-B).

It is interesting to consider the behavior of the
chemical potential for the isochoric p = const and adiabatic
s :=§/Q = const processes. In the first case, it approx-
imately follows from (114) that

uR3pp, p<wgl?/3;
B*T1?
~ 1- ,
H=®0 872 (p — wyT?/3)?
B?T?
< 1. (117)

872 (p — woT?/3)?

In order to find the adiabatic curve, it is necessary to
express u = pu(T,P,B) from (112). Then the adiabatic
equation becomes
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0
s = ——’u(T,P,B) = const.

o (118)

Differentiating (112) with respect to 7, we obtain the
adiabatic equation

4 2
o 25uB 29 (x) = 0.

45 3 (119)

Of course, one can solve exactly this equation with respect
to T. However, we give here only the asymptotes for
sufficiently small and large temperatures. If x is not close to
unity such that the last term in (119) can be neglected, then

4x?
~—T. 120
ST (120)
If x is close to unity, then
455B \ 2 455B \2
2w}l = (—ams | |, — ] <1 121
# a)o{ <8ﬂ3T2> } <8ﬂ3T2> (121)

It is clear that |u| < @y as it should be. In both the first and
second cases

V3T ~ const, PV*3 ~ const (122)
on the adiabatic curve.

The plot of H(B) is given in Fig. 2 for the different
temperatures. One can see from this plot that, at the
sufficiently low temperature [but in the high-temperature
limit (111)], the system suffers the usual first-order phase
transition, and the gas of charged bosons in the external
magnetic field goes to the superconducting state. The
dependence H(B) shown in Fig. 2 is typical for the
superconductors of the first type (see [48], Sec. 56).
Thus we see that, at the nonvanishing external magnetic
field, H # 0, the Bose-Einstein condensation of charged
scalar bosons without self-interaction is possible [1]. Then,
the magnetic field is expulsed from the condensate so that
locally, i.e., in the condensate, B = 0. This is the standard
pattern of transition from the normal to the superconducting
state ([48], Sec. 57). Our conclusion is thus in agreement
with the conclusion made in [13]. We ought to add that the
configuration of the intermediate state is determined by the
minimum of u(7, P, B) with the account of the Maxwell
equations and is rather nontrivial ([48], Sec. 57). The
condensate does not fill homogeneously all the space, and
its wave function is not the ground state of the Klein-
Gordon equation in the homogeneous magnetic field.

Let us find the approximate explicit expressions for the
main characteristics of this phase transition. The value
H, = H(0) (see Fig. 2) can be readily found from (114)
and (115) at p > mT?/3 and B — 0. In this case, g — m
and [1,11]
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0.00 . .
0.00 0.02 0.04 0.06 0.08 0.10 0.12

FIG. 2. The dependence H(B) for different temperatures at the
charge density p = 1000. The critical temperature at the vanish-
ing magnetic field T, := \/3p/m ~ 54.77. The system of units is
chosen such that m = 1. The thick solid line is H(B) for
T = 54.7. In this case, H; ~0.12 and H, ~ 0.0028. The thin
solid line shows the Maxwell construction. The thin dashed line is
H(B) given in (130). The thick dot-dashed line is H(B) for
T = 55. The thick dashed line is H(B) for T = 60. The dotted
line is H = B. Inset: The dependence H,(T) at p = 1000. This
dependence can be approximately considered as the equilibrium
curve in the (H,T) plane of the diamagnetic (above the curve)
and superconducting (below the curve) phases. The solid line is
the approximation presented in (129). The dots denote the results
of the numerical simulations.

2 T2
o= 2,
2m 3
The magnitude of the magnetic induction B, corresponding
to the magnetic intensity H, [the value of H at the

extremum of the function H(B)] is found from the equation
H'(Bj) = 0, which is equivalent to

(123)

PP L [PPOPP [ OPP\?

g _p|2 (9 P=P(uT,B

ar ¢ [aﬂz oB? (a,m) } (u.T.B),
(124)

where, having differentiated, one has to put g = u(T, p, B)
taken from (114). Equation (124) can be written as

P(x) — gx@’(x) + ;—‘xzq)"(x)

4By 4By P (x) - 200" (x)?
3¢*T T+ 6By (@ (x) + 24> By @ (x)]

(125)

Solving this equation with respect to B, and substituting its
solution to (115), we obtain the dependence H, (T, p). The
numerical solution is presented in Fig. 2. If the temperature
is so high that
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4By
<1, 126
3e’T (126)
then Eq. (125) is approximately reduced to
4 / 4 2%
O(x) — §x<I> (x) + 3 " (x) = 0. (127)

The solution of this equation is xy= 0.366. Hence,
(3p/T?)* = p3 = m*> + xoBy, and

3
Co == ‘I’(X0> — XO‘I)/(X()) ~ —0.030.

5 (128)

Then, it follows from (115) that

m2 3/) 2 _12 3/) 2 1/2
H2 zx—o [(W) - 1:| - ezmTCOXO |:<W> — 1:| .
(129)

The comparison of this formula with the numerical
solution is given in Fig. 2. The curve H,(T,p) on the
plane (H,T) can be approximately regarded as the
equilibrium curve of the diamagnetic and superconducting
phases. Notice that one can reach the superconducting
state moving along the adiabat (119) towards the increase
of temperature (cf. [49]).

For the sake of completeness, we present here the
dependence H(B) in the so-called superdiamagnetic regime
[11,13,21]. One can easily deduce from (114) and (115)
that [21]

H~B+ :kﬂBlﬂ%(ﬁ— 1),

< 1.

9,2 /T4 — m?
‘u (130)

B

This formula describes quite well the dependence H(B) for
sufficiently large B, B/T? < 1.

VII. RING DIAGRAMS

In the previous section, we have investigated in detail the
one-loop thermodynamic potential of the system of charged
bosons. However, we did not take account of the fact that,
at high temperatures, the effective masses of particles are
changed considerably due to the infrared contributions of
the diagrams of higher order in the coupling constant (see,
e.g., [2,3,5,26]). In order to correctly take these infrared
contributions into account, one needs to sum an infinite
number of the so-called ring diagrams [26]. As we shall see,
the contributions of these diagrams drastically change the
behavior of the system at high densities and temperatures.
Instead of the superconducting phase, the gas of charged
bosons passes to the ferromagnetic state.
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Let us consider the system of charged scalar particles
with the self-interaction A¢* on a constant homogeneous
magnetic field background. The Lagrangian density has the
form

L= (0,—ieA,)P (D, + ieA,)® — m*|®> — 2| ®[*

1
~2FuF". 2>, (131)

where m? > 0. To take into account the infrared contribu-
tion of the infinite number of the ring diagrams, it is
convenient to seek the effective masses of the fields self-
consistently [26]. To this aim, we add and subtract the
corresponding mass terms

L= (0,—ieA,)P (0, + ieA,)® — (m* + m})|®|* - A|D*
1 1 1

(132)
The last two terms should be regarded as the interaction
vertices and are taken into account as the perturbation. The
quadratic part of the Lagrangian determining the propa-
gators is defined with the account of the effective masses.

In order to find the pressure of the system considered, we
represent the fields in the form

D) =n+r0). AL =A@ +a,l). (133)
where 7 = const € R characterizes the boson condensate.
Henceforth, we consider the system in the parameter
domain where 7 = 0. However, we shall not set =0
right away; instead, we find the pressure for the small
constant 7’s. This allows us to obtain the correction to the

effective mass mf from the self-consistency equa-

tions (134). As for A, one should take A, = (0, A), where
A is the vector potential of the constant homogeneous
magnetic field. Moreover, in quantum field theory at finite
temperature and density, the chemical potential conjugate
to the electromagnetic charge Q enters into the Lagrangian
density exactly as the zeroth component of the electro-
magnetic potential (see, e.g., [5]). Therefore, it is conven-
ienttoset A, = (u/e, A) and conduct all the calculations as
for the zero chemical potential.

The corrections to masses can be found self-consistently
as the second derivatives of the quantum correction to the
effective action (in fact, to the pressure of the system P)
with respect to the fields,

10*P(m,, m,)

4 2 6”2

e 9?P(m,,m,)
v 12
0AG

’

n=0,ezo =u

(134)

r]:O.eZO =u
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The following normalization conditions are assumed:

2 2
8140 1=0,eAy=p 8‘40 7=0,eAy=p
2.2 YY) V)
0 T 4 = g in?f — 9"m,
8A% n=0,eAy=p aA(z) 7=0,eAy=p 8’72 n=0,eAy=p
Pm?
= = 0. (135)
871 7=0,eAg=p

These conditions can always be satisfied in virtue of the
renormalization ambiguity [46]. From the physical point of
view, these normalization conditions say that the additional
terms in (132) renormalize only the masses of particles.

Let us find the propagators of the theory by isolating the
quadratic part of the Lagrangian (132) without the last two
terms,

Lwaa = (0, — ieZ,,);(*(a,, + iezﬂ);(
—iena,(O'y — y*) + e*n*a’
+2e*nA,a" (x + x*)
= (m? - m + 207 yx" = (r +1°)?

1 1 1
+§a#Da" + > mja +§(aﬂaﬂ)2. (136)

2

We shall work in the Feynman gauge. In that case, the
gauge condition and the Faddeev-Popov matrix become

f = aﬂau —+ l€71(){ _Z*>7
S.f =Ue+e*n(2n+yx +x*)e. (137)

The ghost and the gauge-fixing Lagrangian densities are
written as

Ly, = c[O+2e*n* + e*n(y + x7)]P,

1 1 , .
Ly = =5 = =5 (0a,) = iena,( ~1°)

1
Faenl -2 (138)
If the contribution of the vertex
2¢*nA,d" (x + 1) (139)

is negligible, then the photon sector completely decouples
from the scalar one [5]. The one-loop correction to the
pressure is given by the “thermal”” determinant. In the sector
of the y fields, it takes the form

&8 5%
Sr Sydy”
detD;! =
Z s 88
5){5)(* EX*Z

528 &S 528 &S
— det( 22 - det 22 . (140
© <5;(2 5;@(*) © <5)(2 " 5;@(*) (140)
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TABLE I. The spectrum of real and fictitious particles of the
model (132) in the Feynman gauge.

Name Mass squared No.
Vector 2e7 1
Vector 2e%n% + m% 1
Vector 262 2
Ghost 2e2;72 -2
Scalar m? + mf + 2% + e 1
Scalar m? + mf + 6117 1

The last equality holds since y and y* enter symmetrically
into S. Explicitly, we obtain

det D;' = det[(0" + ieA,)* + m* + m} + 2An*
+ e2n*] det[(9¥ + ieA,)? + m* + m?

+ 6. (141)

It is now easy to find the spectrum of particles in the
model (see Table I). This information is sufficient to
find the one-loop correction to the pressure with the
leading contribution from the ring diagrams at high
temperatures. In the one-loop approximation, the last
two terms in (132) are taken into account only at the
tree level.

In taking into account the mixing term (139), the
functional determinant (141) is multiplied by

det(1 -D,V'D,V)~1-Tr(D,V'D,V), (142)

where V denotes the second variational derivative of
(139), and D, is the photon propagator. Inasmuch as
we set # =0 in the final answer, the term (142) is
important only in calculating the temperature correction
(134) to the mass squared mf( In the high-temperature
limit, the contribution of the mixing (142) is suppressed in
comparison with the “direct” contributions of the particles
presented in Table I. This contribution contains the two
propagators, at least, and the masses of the particles
entering these propagators are proportional to T2 in the
high-temperature limit [see (145)].

According to Table I, in the high-temperature limit, the
leading contribution to the pressure comes from the two
massive photon degrees of freedom,

2 2,2 2 2.2 2
”_T4_26_’7T2, Pzzﬂ_]ﬂ_w]ﬂ’
90 24 90 24

(143)

PIZ

and from the charged scalar fields,
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2 2 2 2 2 2.2
py=" 4 (”——m oy o+ 240 +e'7>T2

90 12 24
TB3/2<I> W —m*—m2 =2 — e*n?
2 B ’
2 2 m* 4 my + 64
p,= e (T TN o
90 12 24
TB3/2 2 _ 2 —m2 = 642
= <I><” " Bml '7>, (144)

where we include again the electric charge e to the
definition of the electromagnetic field strength. The ghosts
cancel the contribution of the two additional massive
photon degrees of freedom.

Making use of Egs. (134) with the account of the
normalization conditions (135), we obtain the equations
for masses

T? 2u?
ms = eZ?—Q— 2¢’TB'Y? | @' (x) —I—%@”(x) ,
2 TBI/2

T
m}% = (84 + 5¢€?) eyl + (84 +€?) d'(x), (145)

where x := (4> —m* —m2)/B. Solving these equations,

one can find the masses as functions of 7, B, and u. Of
course, one should keep in mind that formulas (145) are
valid only in the high-temperature limit (111), where m is
the effective mass of the particle. Notice that the naive one-
loop result of the previous section is reproduced if one
formally sets e> = 1 = 0 in (144) and (145).

For = 0, the total pressure can be cast into the form

271.2 T2 m2
P="1*4+— (22 —m?—m2-—L TB32d(x).
5 +12< U —m°—my, 2) + (x)

(146)

The chemical potential 4 = (T, p, B) is obtained from the
definition of the charge density

2

oP T
=5H + 2TB'?ud’ (x).

r= d(eAy)

(147)

1n=0.eAg=p
Finally, the magnetization is written as
M _opP  T*/(,, L
S =c==—-——|m+-m
e OB n\yr 27
3 .
+ TB'/? [5 D(x) — (x+ mﬁ)@’(x)} . (148)

where the dot denotes the derivative with respect to B.

Sequentially substituting into this expression mf
m2(T.B,u) and m?=m2(T ,B,u), and then u = (T, p, B),
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0.3r ] N
6
100+ T
02FH ! B; ] normal phase P
. 2 100200 500 2000 5000
0 T 20F P Y
0.1r 48 48.2 48.4 48.6 4 /

normal phase 2
V

ferromagnet 20

10}
/ 3
0.0

ferromagnet

p 10
1000

100 104 10° 100
FIG. 3. Left panel: The dependence H(B) for A = 1/10, p = 8000, T = 48.35, and the Curie temperature 7. = 48.4. The system of
units is chosen such that m = 1. The thick solid line is the theoretical dependence H(B). It intersects the x axis at the value of the
spontaneous magnetization of the system. The filled region bounded by the two thin solid lines is a metastable region (the hysteresis
loop), where the ferromagnetic domains can form in the gas. Inset: The dependence of the spontaneous magnetization on the temperature
at p = 8000. The numerical simulations reveal that the characteristic features of these plots (the order of the phase transition, the
ferromagnetic state, etc.) do not depend on the value of the self-interaction coupling constant 0 < A < 1/10. Right panel:
The dependence of the Curie temperature on the charge density T.(p). This curve can be regarded as the equilibrium curve of the
ferromagnetic (below the curve) and the normal (above the curve) phases in the (7, p) plane. The solid, dashed, and dot-dashed lines are
T.(p) for A=1/10, A =1/6, and 1 = 1/100, respectively, given by formula (152). The marks on the curves are the results of the
numerical simulations. Of course, these curves make sense only in the region 7 2 10. Inset: The adiabats T'(p, B) atA = 1/10and B = 1
are depicted. The thick dashed, solid, and dot-dashed lines are the adiabats for the entropies per unit charge s = 33, s = 34, and s = 36,
respectively. The thin solid line is the plot of the Curie temperature (the equilibrium curve). The thick dashed and solid adiabats
terminate near the equilibrium curve, while the dot-dashed curve does not. This shows that the ferromagnetic state can be reached
adiabatically provided s is not too large.
we obtain the magnetization as the function of the variables 24 ver et \2/5
T, p, and B. The magnetic field intensity is related to the T.= (8 145 e2> {9/) {1 + <@>
induction and magpeti;atiop by. the standard formula (115). 4 3/5 o 233 1/6
The plot of H(B) is given in Fig. 3. <—2) } —m?(3p)*3 <72> } )
The numerical study shows that the main contribution to 84+ Se 84+ e

the magnetization stems from the first term in (148) (152)
proportional to 72, and

which is in rather good agreement with the numerical

calculations. The first-order phase transition to the ferro-
magnetic state can happen only if the charge density

m; <0, mz < 0. (149)

The effective magnetic moment of a particle can be defined
as ([50], Sec. 71) 8m?

et \ 2/5 24 3/571/3
Spem— e (L) (L .
PP 58 { + <64ﬂ) (8/1 n 5e2> }

(153)

Oe
~ 9B (150)

where ¢ is the particle dispersion law. In our case, The numerical simulations show that, as in the previous

section, where the ring diagrams were not taken into

) )
B % _ 2n+ 1+ ny, 7 _ % _ _ my . (151) account, one can reach the phase transition domain moving
OB 2¢, OB 2e, along the adiabatic curve from the region of low temper-

atures provided the entropy per unit charge (118) is
sufficiently small (see Fig. 3). The form of n(x) in the
ferromagnetic state has the standard domain structure
for ferromagnets as is described, for example, in Sec. 44

where n is the Landau level number. One can see from
(149) and (151) that it is advantageous for the particles
striving for a minimum energy to increase the magnetic

field. Therefore, at sufficiently high density of charged
bosons described by the model (131), the system has to
pass to the ferromagnetic state. The numerical simulations
confirm this observation. Formulas (145), (147), and (148)
allow one to deduce a rough estimate for the Curie
temperature

of [48].

VIII. CONCLUSION

Thus, we derived the explicit formulas for the high-
temperature expansion of the one-loop corrections to the
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thermodynamic potential induced by both scalar and Dirac
charged particles in a constant homogeneous magnetic
field. These formulas generalize the known ones [11,30] in
the respect that the contributions of particles and anti-
particles are treated separately, i.e., one can find from them
the number of particles and not only the total charge. Then
we employed these formulas to describe the thermody-
namic properties of a gas of charged bosons in a magnetic
field at high temperatures and nonzero charge density. Two
models were considered, with and without the contribution
of the ring diagrams. The latter model was investigated in
many papers [1,11,13,15,17-23], and our conclusions
mainly agree with those given in [13]. In addition, we
established that the system suffers the usual first-order
phase transition from the normal to the superconducting

PHYSICAL REVIEW D 94, 125012 (2016)

state and found the equilibrium curve of these two phases in
the magnetic field. As for the first model, we found that the
contributions of photons and of the ring diagrams drasti-
cally change the behavior of the system at high densities.
Instead of the superconducting phase, the system passes
into the ferromagnetic state. The main thermodynamic
properties of this system were analyzed and the approxi-
mate formula for the Curie temperature was obtained.
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