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Previous analytical studies of quantum electrodynamics in 2 4+ 1 dimensions (QED3) have shown the
existence of a critical number of fermions for onset of chiral symmetry breaking, the most known being the
value N, ~ 3.28 obtained by Nash to 1/N? order in the 1/N expansion [D. Nash, Phys. Rev. Lett. 62, 3024
(1989)]. This analysis is reconsidered by solving the Dyson-Schwinger equations for the fermion
propagator and the vertex to show that the more accurate gauge-independent value is N, ~ 2.85, which
means that the chiral symmetry is dynamically broken for integer values N < 2, while for N > 3 the system
is in a chirally symmetric phase. An estimate for the value of chiral condensate (yy) is given for N = 2.
Knowing precise N, would be important for comparison between continuum studies and lattice simulations

of QED3.
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I. INTRODUCTION

Quantum electrodynamics in 2 + 1 dimensions (QED3)
has attracted much interest over the last three decades. Its
parity-invariant version with N flavors of massless four-
component Dirac fermions [1] was extensively used as a
test bed for strongly coupled gauge theories as it shares
many important features with quantum chromodynamics
(QCD) such as confinement and chiral symmetry breaking.
Similar to QCD, in the absence of a bare fermion mass, the
model possesses the U(2N) chiral symmetry which may be
broken spontaneously, leading to the dynamical generation
of a fermion mass. The main question that has been debated
for a long time is whether chiral symmetry is broken for all
values of fermion flavors N or there exists a critical value
N, separating the chiral-symmetric and the chiral-sym-
metry-broken phases. While at present the majority of
works agree on the existence of N, its precise value
remains a matter of debate.

It is remarkable that QED3 has found many applications
in condensed matter physics, in particular, in high-T,
superconductivity [2,3], planar antiferromagnets [4], and
graphene [5] where quasiparticle excitations have a linear
dispersion at low energies and are described by the
massless Dirac equation in 2 4- 1 dimensions (for graphene,
see reviews in Ref. [6]).

Genuine QED3 is ultraviolet finite and has a built-in
intrinsic mass scale @ = ¢>N/8 given by the dimensionful
gauge coupling e, which plays a role similar to the Agcp
scale parameter in QCD. In the leading order in the 1/N
expansion, the effective dimensionless coupling,

p=1\/p*

(1.1)
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gives rise to the renormalization-group f function
da N
pla)=p ap) _ —5{(1 —g&),

which has the ultraviolet stable fixed point @ =0 at
p — oo (asymptotic freedom) and the infrared (IR) stable
fixed point @ =8/N at p = 0. The first study of the
Dyson-Schwinger (DS) equation for the running fermion
self-energy in leading order in the 1/N expansion has
shown [7] that a phase transition takes place when
the infrared fixed point coupling exceeds some critical
value (8/N > z*/4). Below the critical number N, =
32/7* =3.24 the chiral symmetry is broken and a
fermion dynamical mass is generated, and above N, the
fermions remain massless. Hence, the critical number N,
separates the chiral symmetry broken (CSB) phase from
the so-called (quasi)conformal phase describing interact-
ing massless fermions and a photon, and the phase
transition at N = N, is supposed to be of infinite order

because of the form of the dynamical mass mgy, ~

e?exp (=2n/+/N./N — 1) for N close to N, [7-9]. This
is similar to what happens in quenched strongly coupled
QED4 [10,11], where the gauge coupling must exceed a
critical value for the dynamical mass generation to occur
(note, however, that, in contrast to QED3, the vacuum
polarization effects in QED4 change the infinite order
phase transition to the second order one [12]).

The presence of a critical N in QED3 is tempting because
of possible existence of an analogous critical fermion
number Ny = N, in (3 + 1)-dimensional SU(N,) gauge
theories with N, fermion flavors [13]. Also, a nontrivial IR
fixed point in QED3 may be related to nonperturbative
dynamics in condensed matter, in particular, dynamics of
non-Fermi liquid behavior [3,14,15].

(1.2)
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The analytical approach to study dynamical symmetry
breaking in QED3 is based on the self-consistent solution
of truncated Dyson-Schwinger equations for the fermion
propagator. Numerous papers using this approach gave
the results for the value of N, in the range 2 < N. <5
[7,16-20]. Renormalization group studies give the critical
value N. approximately in the same range [21,22] with
possible existence of a third intermediate phase for N, <
N < N2 where NI is the “conformal-critical” flavor
number above which the theory is in the quasiconformal
phase [22]. An argument based on a thermodynamic
inequality fir < fyuy, where f is the thermodynamic free
energy estimated in infrared and ultraviolet regimes, yields
the prediction N. < 3/2 [23], and the most recent bound is
N. <44 [24].

Numerical lattice calculations meet larger uncertainty
in determining the critical fermion number 1 < N, < 10
[25]. Recent paper [26] did not find the chiral condensate
for N =1, 2, 3, 4 in contradiction with some previous
lattice studies [25]. On the other hand, a numerical study
of the quenched (N = 0) case has shown that chiral
symmetry is broken [27] in accordance with theoretical
arguments (see, for example, Ref. [28]). One of the major
problems in studying dynamical symmetry breaking using
lattice simulations is the exponential smallness of the
order parameter for N close to N, and the presence of a
massless photon since finite size effects play a nontrivial
role in this case. The presence of an infrared cutoff has
been shown to reduce the value of the critical number of
fermions [29].

The determination of the precise value of N, is an
important task since for many condensed matter systems
the number of four-component Dirac fermions turns out to
be N = 2, and the system’s phase state depends on whether
N, is above or below two. In the literature, the most cited
critical value is N, = 3.28 obtained by Nash [16] by
analyzing the gap equation in the leading and next-to-
leading orders of the 1/N expansion. Recent paper [30]
found the critical value N, = 3.29, that is only slighter
larger than Nash’s value. Studies in these two papers were
performed in different gauges, the nonlocal gauge with the
gauge parameter £ = 1 (Feynman-like gauge) in Ref. [16],
and the Landau gauge in Ref. [30]. As we will show, both
these results suffer from gauge dependence of N, though
for different reasons.

The paper is organized as follows. In Sec. II, we
formulate our approach for solving the gap equation for
the dynamical mass function. In Secs. III and IV, we
calculate the critical value of fermion flavors in the
leading and next-to-leading approximations in 1/N
expansion and show that our value of N, is gauge
independent. The derived expression for the fermion
anomalous mass dimension is in complete agreement
with the one obtained by Gracey [31] in the 1/N? order.
The numerical estimate of chiral condensate (pwy) is
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obtained in Sec. V. The results are summarized and
discussed in Sec. VI. Three Appendixes are for details
of solving the Dyson-Schwinger equation for the vertex
function in three-gamma approximation, perturbative
calculation of the fermion wave-function renormalization,
and the Landau-Khalatnikov-Fradkin transformation for
the fermion propagator.

II. DYSON-SCHWINGER EQUATIONS

We consider QED in three dimensions with N four-
component fermion flavors whose Lagrangian is governed
(in Euclidean formulation) by the action

1
S = / d*x |:l/7i7/ﬂDﬂl//,- +-F2 (2.1)

4= M
where the covariant derivative D” = 8” - ieA”, i=1,
2,...,N, and Euclidean gamma matrices satisfy y; =Y
{ru-7.} = 26,,. The Dyson-Schwinger equations (DSE)

for the photon and fermion propagators are given by
(see Fig. 1)

3
$(0)= 55" (p) +¢* [ (5558 4. P)Dula =),

(2.2)
_ o d*q
D) (p) = Dg,,(p) = Nez/w
x trly,S(@)l(q.p —9)S(p—q)),  (2.3)

where S(p) and D,,(p) are full (dressed) fermion and
photon propagators, respectively, and T',(g, p) is the full
vertex. The vertex I',(g,p) satisfies its own Dyson-
Schwinger [or Bethe-Salpeter (BS)] equation with the
fermion-antifermion scattering kernel (see Fig. 1). The
general form of the dressed fermion propagator S(p) and
the photon propagator D,,(p) is given by

-1 —1

—_—0—>— = —_— — 4)-5\—/:,—\;%—»
-1 —1

ANNNN = AN\N\NN\NN —

FIG. 1. The Dyson-Schwinger equations for the dressed fer-

mion and photon propagators and the dressed vertex.
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W)= A + B 24
) 1
Dulr) = (30— 19 28) Lo 29

where the scalar functions A(p), B(p), I1(p) depend on

p= \/[? . In the above equations & is the gauge parameter
in a class of covariant nonlocal gauges introduced in
Ref. [16], with £ =0 giving the Landau gauge. The
functions A(p), B(p) depend on the gauge parameter ¢,
on the other hand, the vacuum polarization TI(p) is
independent of &.

In what follows, instead of solving DSE for the photon
propagator, we will approximate the vacuum polarization IT
by its two leading terms of the 1/N expansion with
massless fermions:

NC 184
e, C=l4
8p zr

(p) =
(2.6)

For derivation of second term in the constant C see
Ref. [19]. This expression is valid for momenta
p <a=e*N/8. The mass scale a is kept fixed as
N — oo and all diagrams are rapidly damped for momenta
p > a, which is a reflection of superrenormalizability of
QED3. The effective dimensionless coupling given by
expression (1.1) tends to the infrared fixed point 8/NC,
thus the dressed photon propagator will be taken precisely
at this nontrivial critical point:

8 9.4
=———P,(q), P,lg)=06,— (1=~
ezNC‘q| }IU(Q) H (q) H ( 5) q2

(2.7)

D,.(q)

In order to solve the DSE for the fermion propagator one
needs to know the fermion-photon vertex I',(gq, p). In
general the vertex satisfies its own DSE which contains
an unknown four-point function, the fermion-antifermion
scattering kernel. To avoid complications with solving DSE
for the vertex one usually chooses an appropriate approxi-
mation for it, for example the simplest one is the replace-
ment of the full vertex by the bare vertex y, (the ladder
approximation). The more sophisticated way is to use some
ansatz for the vertex consistent with the Ward-Takahashi
identity

i(g=p)Lup.g)=5"(p) =5 (q) (28)
and satisfying several other requirements. The Ball-Chiu
[32] and the Curtis-Pennington [33] are most known among
them. For example, in a paper [20] these ansatze were used
to solve a coupled system of DSE for the photon and
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fermion propagators and to get an estimate for a critical
number N, for chiral symmetry breaking in QEDS3.
Although such an approach reproduces the value N, = 4
close to the value N, found in leading order of the 1/N
expansion [16—18], it cannot be considered as a reliable one
since the approach does not permit to identify the ansatz
with a class of Feynman diagrams. Also one cannot
estimate corrections terms to results obtained in this
approach.

Taking this into account, in what follows we choose more
direct (and standard) way of solving DSE for the fermion
mass function. However, instead of solving the equation for
the mass function which follows from Eq. (2.2) with one full
vertex we will get an equivalent equation written in terms of
the fermion-antifermion forward scattering kernel which is
represented by the set of (amputated) two-particle irreducible
(2PI) diagrams. This is similar to the approach used earlier in
Refs. [11,34-36].

First, we write the BS equation for the axial-vector vertex
r us [37],

[FﬂS(p’ q)]a/} = (}/ﬂyS)aﬂ
&k
—— Ky .5, (k - k. k—
+ / (2”)3 ﬂa,ﬂa( +qg—-p.K, P)
< SOOTs(k -+ g = p)S(k -+ = p)],
(2.9)

The DSE for I',5 is similar to that one for the vertex I', (see
Fig. 1) except for the inhomogeneous term being y,ys
instead of y,. Multiplying the above equation by i(q — p),
and using the axial-vector WTI

i(g=p)Lus(p.q) =S (p)rs +7sS'(q),  (2.10)
we get in the limit p — ¢,
3
(190usB(0) = [ s Ktk =)
X [S(K)rsB(k)S(K)]wps (2.11)

or, in terms of the mass function X(p) = B(p)/A(p) the
last equation can be written as

o 2
Z(p) —A MK(pvk)-

00 (2.12)

Here we introduced the notation for the kernel K(p, k):

1 o,
K(00) = 537775 | Tam 05l

X K[i’a/;ﬁa(k’ k k- p)(YS)a’ﬂ” (213)
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FIG. 2. Skeleton expansion of the fermion-antifermion kernel.

where [ d€ denotes the integration over the angles. The
kernel Ky .54(k, k. k — p) possesses the skeleton expan-
sion with dressed photon and fermion propagators and full
vertices (see Fig. 2). For example, in the lowest order it is
given by the diagram with exchange of one photon

2 .
K/(i’o)/;ﬂa(k’ k,k—p)= (le)zrﬂaa/(p, kyp—k)
X Fui’ﬁ(kv P k— p)D;w(p - k)
(2.14)

The useful feature of Eq. (2.12) for the mass function is
that it does not contain overlapping diagrams and is
multiplicatively renormalizable in contrast to Eq. (2.2).
Eq. (2.12) is homogeneous in a mass function X, and as
such always has the trivial solution X = 0. Our main
objective is to find a bifurcation point N, where a nontrivial
solution bifurcates from the trivial one. Bifurcation theory
was first applied to the problem of dynamical mass
generation by Atkinson [38], and it remains one of the
main methods used to locate the critical number N, in
QED3 or critical coupling constant in QED4 and QCD
(see, for example, Refs. [7,16,35,36,39]).

According to the bifurcation method, in order to find the
critical value N, for the onset of chiral symmetry breaking
we neglect in the kernel of Eq. (2.12) all terms that are
quadratic or higher in the mass function. Thus we write
Eq. (2.12) in the form

a dkk*(k
Z(P):A ﬁzz((k))lf(p,k),

(2.15)
where now the kernel K(p, k) is calculated in the massless
theory. The integral equation (2.12) is rapidly damped for
momenta p > « and the main contribution comes from the
region p < a. In the latter region we keep only the lowest-
order terms in p/a, and put an ultraviolet cutoff . Note that
in the massless theory the third and the fourth diagrams in
Fig. 2 do not contribute.

It is clear by construction that the kernel K(p,k) is
symmetric under exchange p <> k. Next, it can be shown
that the quantity K(p, k) = (pk)'/>K(p. k) is a function of
the ratio p/k. Indeed, in general when external momenta
are scaled by /, an amputated fermion n-point function gets
an anomalous scaling factor /=7 where y is the anomalous
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dimension of the fermion field. Because we included the
factor [A(p)A(k)]~! into the definition of K (p, k) and A(p)
scales as [7%, the anomalous scaling cancels out so that
K(p, k) scales according to its canonical dimension —1:
K(Ip,lk) = I"'K(p, k). Since K(p, k) is a dimensionless
function, it must be a function of k/p, K(p,k) = F(k/p).
It is evident that described symmetry property of K (p, k) is
independent of the choice of gauge. On the other hand, it is
essentially based on the fact that the kernel is considered
precisely at the infrared conformal fixed point where the
dressed photon propagator behaves according to its canoni-
cal scaling e?D(p) ~ 1/p (this is valid at least in 1/N?
order of 1/N expansion [19]).

Equation (2.15) is scale invariant except the upper
limit of integration. To study the onset of chiral symmetry
breaking we look for a powerlike solution p~” of Eq. (2.15)
with infinite upper limit of integration and neglecting the
term X2 in the denominator, i.e.,

- dk

VPE(P) = / TXWFEp). @16

It must be emphasized that this is not an approximation but
a precise manner to locate the critical point by applying
bifurcation theory [39]: chiral symmetry breaking occurs
when b becomes complex, which determines the critical
value N, so that the symmetry is broken for N < N..
Equation (2.16) leads to the following equation for the
exponent b:

o (]
1 :/ _x(xb—1/2+x1/2—b)F(x)’
1 X

(2.17)

where we used the symmetry property of the function F:
F(x) = F(1/x). For convergence of the integral in
Eq. (2.17), the function F(x) should decrease at large x
as F(x) « x™° with ¢ > 0. For example, the order 1/N?
calculation of the kernel in Ref. [16] gives 6 = 1/2 + 2y,
hence we should assume 1/2 + 2y > |b—1/2]| for con-
vergence of the integral. Clearly, the critical N. depends on
the level of truncation of the kernel.

III. THE CRITICAL N, IN THE LEADING ORDER

Let us see how the above formulae work in case of the
simplest approximation (the first diagram in the skeleton
expansion in Fig. 2). In this case it is sufficient to use the
Landau approximation for the full vertex [40] [i.e.,
L, (p.k;q) =y,A(max(k, p))] in Eq. (2.14) and the equa-
tion for X(p) takes the form

A*(max(k, p))

)= [ AATR)

where 1 = 4(2 + &£)/2*N. For the wave-function renorm-
alization, we take in the leading order the expression

Z(k)
max(k, p)

(3.1)
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=1 ,8) )"

where the anomalous dimension y = 2(3¢& —2)/(37°N).
The chosen form for the A(p) function is in agreement with
the perturbative calculation in 1/N, Eq. (A2), and trans-
forms correctly under the Landau-Khalatnikov-Fradkin
(LKF) [41,42] transformation between different covariant
gauges [43] (see Appendix B). The latter property is crucial
for a critical N to be gauge invariant. Thus, we have that

(3.2)

(kp)'/> A*(max(k, p))
max(k, p)  A(p)A(k)

— [G) o —k) + (%) ok — p)} .

(3.3)

F(k,p) =

Then Eq. (2.17) gives the equation for the exponent b:

1\2 | > 1 3

b—=) = a1 +dp) + (2 +27) =~ -2

< 2) AL+ 7)+(2+ 7) 173N
(3.4)

where we kept only terms up to 1/N order. Note that the
dependence on the gauge parameter £ has dropped out in
the last equation. The exponent b becomes complex for
N < N, = 128/37% = 4.32 and the onset for complexity
determines N.. We recall that according to the operator
product expansion [44], the parameter b is related to the
mass anomalous dimension y,, as b =1—y,, and y,, is a
gauge independent quantity; it governs the ultraviolet
asymptotic behavior of the fermion dynamical mass func-
tion related to spontaneous chiral symmetry breaking:
=(p) ~ pro-.

Corrections of the order of 1/N? to the equation for the
exponent b in the Feynman-like gauge £ = 1 were derived
in Ref. [16], which can be written as (our b differs in sign
from b used by Nash)

N 1 32
b—=) =-— 1 -
( 2> 4 3712N(

[Nash’s numerical factor @ = 0.706 should be given by our
constant a = 0.7052 defined in Eq. (2.6)]. The critical N . is
determined from the condition when two roots of this
equation become equal, this happens for N, = 3.28. For
values N < N, the roots become complex, indicating that
oscillatory behavior of the gap function takes over from
nonoscillatory one.

Note, however, that Nash’s equation (3.5) was derived
with an error: the number 341 must be replaced with 277,
which yields N, = 3.52 instead of the claimed N, = 3.28.

341 4 48a
487EN

) , a =0.706

(3.5)
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Besides, the anomalous dimension of a fermion field in the
Feynman-like gauge was calculated with an error in the
order 1/N?. This motivated us to reconsider the derivation
of the equation for the exponent b in order 1/N2.

IV. THE CRITICAL N, IN THE
NEXT-TO-LEADING ORDER

We now reconsider the analysis of the fermion gap
equation in the order 1/N? performed by Nash following
the approach described above. First, we note that in the
regime when the momentum of one fermion p is larger (or
smaller) than the momentum k of another fermion the
asymptotic form of the vertex I',(p, k) is given by

Fu(p k) =T(p.0) = F(p)ra + 9(p) (yﬂ - M)
P

p>k, (4.1)
which contains only two scalar functions f(p) and g(p).
These functions can be found solving the DSE for the
vertex in the so-called three-gamma approximation [40]
(see Fig. 3). In Appendix C we derived a coupled system
of equations for the functions f(p) and g(p) in the
above approximation and found the following solutions
at order 1/N:

1) =)= (14500 ) (2) 7 @

8

D=-— .
372N

9(p) = DA(p),

(4.3)

In the order 1/N?, the kernel K(p, k) includes also the
second diagram in Fig. 2 [see Eq. (4.18) below] and its
general structure in considered approximation can be
written in the form

_ A%(max(p. k))

K(p-K) ==, 5 K(p.k),

(4.4)

where anomalous scaling functions A’s are factored out
explicitly. The function A(p) scales as p~%, thus we need
to know the anomalous dimension at order 1/N? which can
be obtained by calculating the massless fermion self-energy
at two-loop level (see Fig. 4) using the photon propagator

e

FIG. 3. The Dyson-Schwinger equation for the vertex in three-
gamma approximation.
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FIG. 4. Diagrams contributing to order 1/N? in the function

A(p).

(2.7). The anomalous fermion dimension y at 1/N? can be
extracted from the Gracey’s work [31]:

2(2-38) 4

r=- 37EN +97I4N2

(64— 6727 +E(97* —92)].  (4.5)

(2y in our notations corresponds to # in Ref. [31] and —4 in
Ref. [16]). In the gauges £ =0 and £ = 1 we have

4 8

y(E=0) = 371'2N o N2 (32 - 372 ), (4.6)
oy 2 2 _

yE=1)= 32N + o N2 (37~ - 28), (4.7)

respectively. As follows from Eq. (4.5), the anomalous
fermion dimension vanishes in the gauge

2 8
—Z(1-——),
¢ 3( 9ﬂ'2N>

which is a generalization of the Nash’s gauge £ =2/3 to
the next order in 1/N expansion. This gauge is an analogue

(4.8)
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of a special gauge depending on the charge, &(eg), in four-
dimensional QED in which the renormalization constant Z,
is finite [45].

The Gracey’s expression for y respects the Landau-
Khalatnikov-Fradkin (LKF) [41,42] transformation.
Indeed, the transformation from the gauge £ =0 to a
gauge with arbitrary £ in Eq. (2.5) is given by

1 — eirx
1+T(p)]]
(4.9)

S(nd) = Ste.6 = 0)exp [~ [ 2L L

Calculating the integral in Eq. (4.9) and performing the
Fourier transform back to the momentum space (see
Appendix B), we find that at the order 1/N? the anomalous
fermion dimension y transforms as

28
1E=0)~7(Q) =r(e=0)+ 1z (4.10)
with the constant C defined in Eq. (2.6). We note that the
expression for 4 = =2y (£ = 1) presented in Eq. (13) of
Ref. [16] does not agree with the expression (4.7) while the
expressions (4.6) and (4.7) are in agreement with LKF
transformation.

In order to write down an equation for the mass function
%(p) we need to calculate the first two diagrams in Fig. 2.
For the contribution of the first diagram, we obtain from

Eq. (2.14)

4 1
0 K) = o AT | 2+ () -+ dglmax (. 0) (. )+ 247 (max (. )

min(p?, k2

- % (1-¢) Wg(maxm k))[2f (max(p. k)) + g(max(p. k))]|. (4.11)

The diagram with crossed photon lines,
3
K ok kk = p) = (i )4/ (233 Ci(p.k+gq:p —q—k)S(k+ @)l (k + q.k: @) o
x [Ce(k, p = qsk+q=p)S(p = @)Tu(p = 4. Ps=9) P (@) Dis(p — g = k), (4.12)

gives the following contribution to the kernel:

)]

W o aQ, [ & A2

K900 = a3 ] o] o Talr —aPla P g
x(p=q),=2(p—q),Pu(@)Pu(p—q-k)(g+k),+2(p-

(p—aq)(g+k)2P,(q)

x(p—q),(q+k),Py(p—q—k) +

_ o,
= A(p)AR) / @

{_Z(Q + k)ﬂPﬂD(Q)PM(P —-q9- k)

Q)y(q + k)pPﬂl/(q)PM(p —-q - k) + 2P;4;4(Q)
Pﬂﬂ(‘])Pu(p —4q- k)”

(4.13)

P(p—q—k -
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where we set C =1, A(k+ q) = A(max(k,q)), A(p —
k) = A(max(p, k)) and used the Landau approximation
for the vertex

L, (k+q.k) =y,A(max(k, q)),
L,(p—q.p)=r,Almax(p,q)),
Lu(p.k+q) =T,(k, p—q) =r,A(max(p, k, q)).

Using the symmetry K*)(p, k) = K®(k, p), we evalu-
ate it for the case p >k only and then restore
p — max(p, k), k> min(p,k) in the final result. The

PHYSICAL REVIEW D 94, 125009 (2016)

integrals in Eq. (4.13) are rather difficult to calculate
exactly, thus we will approximate the ¢ integration by
splitting it into two regions, ¢ < k and ¢ > k, and
putting the minimal momenta in each of regions equal
to zero. The used approximation retains only the
dominant asymptotics of the two-loop integral which
is sufficient at order 1/N? as we show below. For the
first region, we find

(4.14) b ,
16(4 A
97*N-p
and for the second region
|
3, A2 _ 2
[k ~ 645(4+€)/ dq A[max(p.q)l(p —q)g _ _ 32(4+8) A(p) (4.16)

N? (2r)3

lqP|p - q?

N> (1 +4y) p

where we integrated over the angles and then over ¢ using the explicit expression (3.2) for the function A(p). It is interesting
that this contribution vanishes in the Landau gauge £ = 0. Thus the diagram with crossed photon lines gives

16£(4 +¢)

8(4 + 8& + 3&%) min(p?, k?)

1 A?[max(p, k)]

K(4>(p, k) = [_ *N?(1 + 4y)

or* N2

(4.17)

max(p?, sz max(p, k) A(p)A(k)

Combining Eq. (4.17) with the contribution of first diagram in Fig. 2 we finally find the expression for the kernel:

8(20 — 8¢ + 3&%) min(p2, k?)

K(p.k) = [4(72[2;5) (1 —#) +

97t N2

1 A%max(p. )k)] (4.18)

max(p?, kz)] max(p, k) A(p)A(k

with the constant ¢ = a + [12E(4 + &) + 32]/3(2 + £). In the above expression we kept only terms of order 1/N?. In the
gauge £ =1, ¢ = a + 92/9 which is different from the value ¢ = (80 4 6a)/9 given in Ref. [16].
Equation (2.17) then yields the following equation for the exponent b:

42 +¢)

8(20 — 8¢ + 3£%) 5+4y

| c 1+ 4y
Y 72N ) b(1 = b) +2y(1 +2y)

or, keeping only the terms up to the order 1/N?,

b(1-b)

B 32 64(37r2 —44) B 32 3 9.59
322N or* N2 © 3x2N 7N/’
(4.20)

Note that the second term in Eq. (4.19), which origi-
nates from the terms proportional to min(p?, k?)/
max(p?, k?) in the kernel K(p,k), does not contribute
to Eq. (4.20) in the order 1/N2. It is remarkable that the
dependence on the gauge parameter £ has completely
cancelled out so that the exponent b is indeed gauge
independent. From the equation for b we find the
critical N. = 2.85 which should be contrasted to the
value N, = 3.28 found by Nash. We can compute from

(4.19)

9t N? b(1-Db)+2(y+1)3+2y)°

[

Eq. (4.20) the mass anomalous dimension y,, = 1 — b in
1/N expansion,

32 64(3z% - 128)
372N or*NZ

Ym (4.21)

which coincides with that found by Gracey [31] (our
definition of y,, has the sign opposite to Gracey’s 7,,).

V. ESTIMATE OF THE CHIRAL CONDENSATE

To get an estimate of the chiral condensate, which is a
gauge independent quantity, we now turn to studying
Eq. (2.15) and consider it in a gauge where the anomalous
dimension y vanishes; i.e., we take the gauge parameter ¢ as
given in Eq. (4.8). Then Eq. (2.15) considerably simplifies
and takes the form

125009-7
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o dkICE(K) 1
X(p)=41 ,
(p) A k* 4+ X2 (k) max(p, k)
32 6432 —44)
- 32°N 974 N?

A

(5.1)

(since the region k < X(k) gives a negligible contribution
to the integral, see e.g. Ref. [16], one can still use the kernel
K(p,k) calculated in the massless theory). The above
integral equation is equivalent to the following differential
equation

P*Z(p)

(P*Z(p)) = —ﬂm7 (5.2)

with the IR and ultraviolet (UV) boundary conditions

PZ(P)po=0.  (PE(P))|p=a =0. (5.3)

For the chiral condensate we get

) = _4/(d3p x(p)  _ _%[)“ dpp*<(p)

27)% p? + 32(p) Ju P’ +22(p)
207 2a
= mzl(pﬂpza = _ﬁz(p = a), (54)

where in the last two equalities we used the differential
equation (5.2) and the UV boundary condition (5.3). Note
that we do not include the factor N (summation over
flavors) in the definition of the condensate. The mass
function has the following asymptotics for momenta
p > 2

23/2 v D
X(p)=A in|=(Inz4+0d||, =V4i-1,
n=mggnls(ng o)) v

(5.3)
with X, being the overall scale of the solution Z(p), A,
some constant of order one and ¢ is a phase.

The UV boundary condition (5.3) leads to the following
solution for the scale Z,:
2tan”'y
> .

Then, for the dimensionless condensate, we get

N?Ay  (Zo) 32
S =) (57
1287242 ( a > (5.7)

2
Yy = aexp (—7”4-54- (5.6)

(pw) _ N*(Gpy)
e 6402

To get estimates of values Ay and X,/a we first use the
solution of the linearized equation (5.1) when X?(p) in
the denominator is replaced by ¥*(0) = X2. Then the
solution is

PHYSICAL REVIEW D 94, 125009 (2016)

E)
S
a
o
5=

—10L N N X X =

0.0 0.2 0.4 0.6 0.8 1.0

(pla)'”*
FIG. 5. Numerical solution of Eq. (5.1) (solid line) and an

approximate analytical solution (5.8) (dashed line) at N =2
plotted on a logarithmic scale.

B I+iv 1-iv 3 p?

Its asymptotics has the form of Eq. (5.5) with

r(+%) )}

2
5 _ — Ry e E——
P {rﬁ%r(lzw

(5.9)

(1 +%)
Stiv

Ao = 2V e |

For N = 2, we find

hy
Ag=1.12, =159, 2=217x10"7;  (5.10)
a
hence, we get the estimate for the condensate,
<"’Z’> ~ —4.64 x 10712, (5.11)
e

Solving Eq. (5.1) numerically for N = 2 (see Fig. 5), we
get

(wy)

(0
20 242 x 1077, ~—557x 10712, (5.12)
a

which is very close to the estimate (5.11). As is seen, the
condensate is very small for N = 2 in order to be extracted
from lattice simulations [25]. Also, the smallness of the
quantity X/« justifies the neglect of the terms quadratic or
higher in the mass function X(k) in the kernel (2.13).
Obviously, the smallness of both quantities, (yy)/e* and
%,/ a, is due to the proximity of the fermion number N = 2
to the critical value N.

VI. CONCLUSION

In the present paper, we reconsidered an analysis of
calculating the critical number N, in three-dimensional
QED with N four-component massless fermions. The value

125009-8
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N. marks the quantum critical point separating chiral
symmetric and chiral symmetry broken phases. While at
present the majority of works agree on the existence of N,
its precise value remains a matter of debate. Our analysis of
the Dyson-Schwinger equation for the fermion dynamical
mass uses an approach advocated by Holdom [35] and
Mahanta [36] in the case of QED4; it deviates in some
important details from Nash’s approach [16].

We obtained the critical value N = 2.85 which differs
from the value N, ~ 3.28 claimed by Nash and the value
N, ~3.29 obtained in the recent paper [30]. More impor-
tantly, we show that our N . is gauge independent in contrast
to Refs. [16,30]. Our critical N, ~ 2.85 means that the chiral
symmetry is dynamically broken for integer values N < 2,
while for N > 3 the system is in a chirally symmetric phase.
The value N = 2 is also well inside the bound N < N, =
1 + /2 ~ 2.414 obtained in a conformal QED3 [46].

The fermion mass anomalous dimension y,, calculated in
our approach turns to be also gauge independent and agrees
with the one obtained by Gracey to the order 1/N? [31].
The form used by us for the wave-function renormaliza-
tion is in agreement with perturbative calculations in the
1/N order and at the same time satisfies the Landau-
Khalatnikov-Fradkin transformation rules for the transi-
tion between different covariant gauges. Our numerical
estimate of chiral condensate gives a rather small value for
|

d*q 1

&’q* + (2= 9a*(pg) +2(1 - &)(pa)*

PHYSICAL REVIEW D 94, 125009 (2016)

N = 2, due to its proximity to the critical value N ., which
explains difficulties for extracting the condensate from
current lattice simulations.
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Note added.—Recently, Ref. [47] appeared, where the
critical value N, ~?2.89 in QED3 was obtained using a
completely different approach, namely, from a condition of
an annihilation of an infrared-stable fixed point that
describes the large-N conformal phase by another unstable
fixed point at a critical number of fermions N = N..

APPENDIX A: ONE-LOOP CALCULATION OF
THE WAVE-FUNCTION RENORMALIZATION

For the fermion wave-function renormalization A(p), we
have the following expression in the one-loop approxima-
tion in perturbation theory:

62
Alp) =1 *?/ 22 (¢ + dla))

Usually, since we are interested in 1/N expansion, we
neglect the term ¢> compared with a|q| in the denominator
of the last expression. In this case, we actually deal with
renormalizable QED3 with the photon propagator ~1/|g|.
The fermion self-energy (or the function A) becomes
linearly (superficially) divergent so that the integral over
q requires a cutoff which is taken at a. However, because of
a linear divergence of the self-energy, there is ambiguity in
the constant term. Indeed, if ¢ is the photon momentum of
integration, then

A@):Hﬂ%}v{(g—%)m%%} (A2)

2 a [ dx 2 0 1 1
A0 =1+ | rarm = 1 o a0

where

T (A1)

|
On the other hand, if ¢ is the fermion momentum of
integration, one gets

4(3¢ -2 1

(A3)
This ambiguity can be easily solved if we start from the
expression (Al) in full QED3 with the photon propagator
given by Eqgs. (2.5) and (2.6). In this case, the self-energy is
only (superficially) logarithmically divergent, and the result
does not depend on the choice of integration momentum.
Moreover, the expression for the A function turns out to be
finite after angular integration and takes the form

(A4)

(AS)

125009-9
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The integral in Eq. (A4) is convergent, and to extract its behavior at large a/ p, we first write

Aw dx<)1c_x+la/p)f(x) - Al dx()lc_x+1a/p
+ (25—‘3—‘) /lmdx(

1 1
x x+a/p)

Yoo [l

(A6)

In the first two terms in the right-hand side of the last equation, we take the limit « — oo, and while the third term is

explicitly calculated, we get

Amdxe—ﬁla/p)f(x) = [4(1—ln2) 5(1—21n2)] + [—g(l—3ln2)+é‘(l—21n2) + 5=

W |

236-2) a 8
Gl Sk /ALY
3 "t

Thus we obtain

436=2) a 16

-4 —. A8
372N np+97r2N (A8)

Alp) =1+
From the last expression we find the fermion anomalous
dimension at the 1/N order

1 dinA(p) 2(3¢-2)
S - A
Y S 32N (A9)

and at the 1/N? order it was calculated by Gracey [31] (see
Eq. (4.5)). We obtain the expression given by Eq. (A2)
which can be written approximately as

Alp) = (1 +9;—26N> (g) -

One can check that the coefficient a =1+ 16/97°N
before the power in last expression is in agreement with
corresponding findings of Gracey [31]. Note that A(p) is

|
cE-9 / (2 el

(A10)

folx), b=

where Si(z) and Ci(z) are the sine and cosine integral
functions, respectively, and y is the Euler constant (not to be
confused with the fermion anomalous dimension). We find
the following asymptotics:

d 9
S ={ 4,
b AdNog (e7'blx|),

blx| < 1,

(B3)

blx| > 1.

—Sl

d
o {10g(b|x|) +y—-1+
d e’NC
b 8

23£-2) «a
p

(A7)

not identically equal to 1 in the gauge &=12/3, the
difference is in a constant term.

APPENDIX B: LKF TRANSFORMATION

The LKF transformation relating the coordinate-space
fermion propagator in two different covariant gauges & and
& follows from Eq. (4.9),

dp 1—eP*
(27)* p*[1 +T1(p)]
(B1)

S(x.&) = S(x, &) exp [—e%: ~o) [5F
=S &)G(x,E-&).

The LKF transformation for the vertex is more complicated
and can be found in Ref. [40] (see also [48]). The DS
equations as well as WT identities are covariant under
the LKF transformation in configuration space but corre-
sponding transformations look much more complicated in
momentum space.

Using the polarization function with massless fermions
in two loops (2.6) the integral in Eq. (B1) can be evaluated
exactly,

M + —— [cos(b|x|)Si(b|x]) - sin(b|x|)Ci<bIXI)]}

bx| bll

:e(é—f’)

8 ’ (B2)

|
In the 1/N expansion, only the asymptotics at b|x| > 1 is
important, leading to the transformation rule (4.10) for the
anomalous dimension.

Performing the Fourier transform in Eq. (B1) we obtain
the transformations in momentum space relating the wave-
function renormalization and the mass function in two
different gauges:
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1 __/ d*k
A(p:&)[p* +22(p: &) p*) (2n)°

(pk) '
A(k;g’)[k2+22(k;§’)] G([)—k,tf—f), (B4)
Pk 2(k; &) Glp—k é—&) (B5)

A(p; 9l

where G(p,&—¢&) is the Fourier transform of G(
¢ —¢&). The limit lime_y G(p,&—¢&) = (27)*6%) (p) con-
firms the self-consistency of the momentum-space LKF
transform. Also, although the above considerations were
constrained to the values £ > &, the transition to the region
E < & is straightforward because the expansion in & is
analytic at &.

Clearly, if the dynamical mass X(k; &) vanishes in the &'
gauge at some critical N, then it vanishes in an arbitrary
gauge £, which means that the value N, is gauge indepen-
dent. Certainly, the covariance of the fermion propagator is
crucial for a gauge independence of N..

To evaluate the condensate

() = —trS(x = 0, ¢)
I G 2(p;)
= 4/ P AP O + 2 (p: &)

we should integrate Eq. (B5) over [ d°p/(2x)3. Using the
fact that

(B6)

d*p
| 55s6te-e) =G=0.-e) =1 (1)

(27)
we establish the gauge independence of the chiral
condensate.

For massless case, X = 0, starting from the gauge (4.8)
where the wave-function renormalization A(p) = const,
Eq. (B4) allows us to obtain A(p) in a gauge with an
arbitrary gauge parameter &:

A(p) = const <£> ,
a

where y is given by Eq. (4.5).

(B8)

APPENDIX C: THE DS EQUATION FOR THE
VERTEX IN THREE-GAMMA APPROXIMATION

The Dyson-Schwinger equation for the vertex in the
Landau (three-gamma) approximation has the form:

. d*q
Tup.kip—k) =y, + (le)Q/WFz(p,p +4:q)

xS(p+q)U,(p+qk+qp—k)
S(k+q)T,(k+ q.k;q)D;,(q). (Cl1)

(p:€) _ /
P +2(p:d)] ) QoA + (k)]

where the photon propagator D,,(g) is taken in the leading
1/N approximation (2.5) with the vacuum polarization
from Eq. (2.6).
From the DS equation (2.2) for the full fermion propa-
gator we get the equation for the function A(p):
d’q w[pr.(p+ QTP + 4. p:q)]

_H_/ (p+9)°A(p +q)
D,.(q) (C2)

Egs. (C1), (2.3), (2.2) represent the system of equations for
the vertex, the photon and fermion propagators in massless
theory truncated in 1/N approximation and should be
solved in nonperturbative way. They lead to a system of
equations for A(p) and some scalar functions before tensor
structures in I',. The gauge invariance requires the vertex to
satisfy the Ward-Takahashi identity (2.8). We will study the
equation for the vertex when one of fermion momenta is
much larger than the other, |p|>> |k|. Setting k =0 in
Eq. (C1) we obtain

& 1
Lu(p,0sp) =7, +R/ (27)* g (p + 9)*A(p + @)A(q)

xT(p.p+a:q9)(p+@Tu(p+q.q:p)

xql',(4,0:q)P;,(q). (C3)
For Fﬂ(p,O;p) we use
_ pub
(0.0:) = 10+ 0() (1= "2 ). ol 6,
(C4)

which is in agreement with the WT identity. A similar
expression is valid for I',(0, p;p). Actually, the WT
identity requires that f(p) = A(p) for massless fermions
and we will see that solutions of our system of equations
really satisfy this condition.

For other vertices we take an approximation

Ci(p,p +q:9) =Tu(p, p;0)0(p — q)
+T1,(0,9:9)0(q — p),  (C5)

Lu(p+4q.4:p) =Tu(p,0;p)0(p - q)
+T,(q.4:0)0(q — p). (C6)
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For the vertex with zero photon momentum we can use the WTI

95~ (q)

=1,A(q). (C7)

u

where we neglected the derivative of the A function which is of higher order in 1/N. Similarly, for the A function we use the
approximation A(p + ¢q) = A(max(p, q)) = A(p)0(p — q) + A(q)0(q — p). The above made approximations thus assume
that we can neglect an angular dependence in dimensionless scalar functions.

After some algebraic work we get a coupled system of equations for scalar functions f(p) and g(p):

8 g 1
10) =1+ 50 | Gt V@22 -2 + &0%a(p +0)

| A
—2pap(p + 9)9(9)10(p* = ¢*) + [*(¢)(=2p*pq — 2(pq)* + &ép*q(p + q))
—2pap(p + 9)9(q)[2f(q) + 9(9)]]0(¢* — p*)}. (C8)

2 8 [ &g 1 2 2
f(p)+§9(p) _1+R/(zn)3|q|3(p+q)2 (q){{[f(P)+9(P)]K§—§)f(4)—gg(‘])]‘Z(P‘f"])

+ %g(mf (q) (2pq +2 (I;q) (p+ q)) + gg(p)g(q) <pq + <l;q2)2>] 0(p* - q*)

+ K?: - %)fz(q) - %9(61) 2f(q) + g(q)]] q(p +9)0(q> - pz)}- (€9)

Subtracting the first equation from the second one, we see that the function g(p?) is of order 1/N, thus we can neglect in
resulting equations all functions ¢’s in the integrand, and the equations for f, g functions become decoupled:

- 8 d’q 1 2 2 2 2 2
10) =1+ 55 [ s i P @00 = )+ P90 = )
x (<20 - 224 9 | ealp +a) (c10)
- d’q 1 2 2 2 2 2
o0) = ¢ | G o V@00 = )+ 0 = 1)
X (%(pq) ;q +(IZI) ) (C11)

The angular integration can be performed by means of integrals:

aQ, 1 1 2
/—"722—111 <p—+q>, (C12)
4z (¢ +p)* 4pqg \p-—gq
dQ 1 24 2
/‘qu 2:[1—” +4 ln<p+q) ] (C13)
4z (¢ +p)? 2 4pq P—q
7/9) 2 2 2 2 2 2
/_q (pq)zzp +q [p +qln(p+q> _1} (C14)
4z (g + p) 4 4pq P—q

In the right-hand side of the last equations p = |p|, ¢ = |q|. Thus equations for f, g functions take the form

10 =1+ s [ D@0 = ) + £a)ola - p)

2 2 2
9 —p p+q > ( q* - p* )]

x - L)+e(1+42—21)], Cl15
[pz ( 4pq 4pq (C15)
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o) = e | LS P @0( =) + Pla)ola =)

32 32 2 2 _ 52 2
x {1—‘12+( A ot )L], Lzln(p+q> . (C16)
p 4pq pP—q

First, we solve an equation for f(p) which we seek in the form when f(p) is proportional to the function A(p),
f(p) = EA(p). Plugging this in Eq. (C15) and making the change of a variable ¢ = xp, we get

2E? Id ‘41 2-1
EA(p):l—l—EZNCA(p){A %[(x2—1)(1—x4x L>+€<1+x4x L)]
orde [ , _x2+1 4 B x2-1
e Y (L B )

+z<g-§) / /d—} (€17)

In the above equation, we used the explicit form (3.2) of the A(p) function. Since we need the function f(p) at the order
1/N, we can set C = 1 and take y = 0 in the second integral as well as put the upper limit of integration in the second
integral equal to infinity. Then all integrals are exactly computed,

Ldx |, , X241 x2—1 4
— - 1= L 1 L||==(1-In2 —1+2In2 C18
[ w-n(1-5E ) e(1+ 5 ) | ~2a-m2) v +2m2) (c18)
wdx [, , ¥ +1 4 -1 4
— - 1= L - -1 L)|==(-143In2 1-21In2). CI19
[ e (-5 ) e e(n e T ) | s g amy s -am). (@)
We get the following equation:
2E? 8 &£-2/3 a\ =¥
EA(p)=1+——A — 1-|— . C20
) - n*N ) {9 - /4 ( (P) ﬂ (€20)
Using expression (3.2) for A(p) in the above equation and comparing terms with and without (a/p)~%, we find
2E%k(E-2/3) 16
= =1 , C21
4 n’N : + 97N (€21)
2E? [8 &£-2/3 16E> 1 16
n*N [9 Y ] 0N Tk Toen ( ) (€22)

This is identically satisfied if we take E = 1; hence, f(p) = A(p) which is consistent with WTI up to the order 1/N?.
Plugging this into Eq. (C16) and seeking the solution in the form g(p) = DA(p), we obtain

2 [fa 2 24 N2 2
o(9) = DAp) = i [ a)0(p - ) + Ata)0(g - pil|1 =25 4 CEEE )

L|. (Cc23)

Again, using the explicit form of the A(p) function and making the change of the variable ¢ = xp, we find at order 1/N that
8

1 [edx B2+ 1)(x*=1)
D=——[ —|1-3 L| =75 24
2N A X { T 4x 322N (€24)
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