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N ¼ 1 SUðNÞ super-Yang-Mills theory on R3 × S1 is believed to have a smooth dependence on the
circle size L. Making L small leads to calculable nonperturbative color confinement, mass gap, and string
tensions. For finite N, the small-L low-energy dynamics is described by a three-dimensional effective
theory. The large-N limit, however, reveals surprises: the infrared dual description is in terms of a theory
with an emergent fourth dimension, curiously reminiscent of T-duality in string theory. Here, however, the
emergent dimension is a lattice, with momenta related to the S1-winding of the gauge field holonomy,
which takes values in ZN . Furthermore, the low-energy description is given by a nontrivial gapless theory,
with a space-like z ¼ 2 Lifshitz scale invariance and operators that pick up anomalous dimensions as L is
increased. Supersymmetry-breaking deformations leave the long-distance theory scale-invariant, but
change the Lifshitz scaling exponent to z ¼ 1, and lead to an emergent Lorentz symmetry at small L.
Adding a small number of fundamental fermion fields leads to matter localized on three-dimensional branes
in the emergent four-dimensional theory.

DOI: 10.1103/PhysRevD.94.125008

I. INTRODUCTION AND SUMMARY

In this paper we explore the large-N dynamics of pure
SUðNÞ N ¼ 1 super-Yang-Mills (SYM) theory, a close
cousin of Yang-Mills theory and QCD. When compactified
on R3 × S1 with periodic boundary conditions for fer-
mions, this theory has the beautiful feature that color
confinement, the mass gap, string tensions, and chiral
symmetry breaking can be studied analytically using semi-
classical methods [1–7]. The calculable regime is obtained
if η ¼ LNΛ is small, where Λ is the strong scale. We thus
study the large N limit with η ≪ 1 held fixed.
Usually, if a 4D theory with a mass gap lives on a circle,

and the circle-dependence is smooth, the low-energy
dynamics for small L is described by a 3D effective field
theory (EFT) with a gap. This is certainly the case for order-
one values of N for N ¼ 1 SYM. At large N and small η,
however, we find two surprising features. First, the long-
distance physics is described by a 4D EFT. The fourth
dimension emerges from the nonperturbative dynamics, via
a mechanism different from e.g. [8]. Its size ~L is para-
metrically larger than both the circle size and the inverse
strong scale: ~L ¼ LN2=η3 ¼ N=ðΛη2Þ, and its emergence
resembles T-duality in string theory, at least superficially.
Second, the light glueball masses become parametrically
separated by N2η−3=2 from the scale of the 3D string
tension, and at large N the 4D “infrared dual” theory
becomes a generically nontrivial gapless theory, with a
spatial z ¼ 2 Lifshitz scaling symmetry.

We also study some supersymmetry-breaking deforma-
tions ofN ¼ 1 SYM, such as the addition of a gluino mass
term or extra adjoint and fundamental fermion fields. The
resulting theories are in the universality class of YM theory
and QCD. The surprising phenomena we found in SYM
theory survive these deformations, with some interesting
modifications. A gluino mass term changes the Lifshitz
parameter z of the low-energy theory from z ¼ 2 to z ¼ 1.
Adding Nf ≪ N fundamental fermions leads to fields
living on 3D branes in the emergent 4D bulk.

II. PHASE STRUCTURE AND WEAK COUPLING

We now review some standard features of SYM theory.
Readers interested in our main results may proceed
to Eq. (2).
It is believed thatN ¼ 1 SYM compactified on R3 × S1

has a smooth dependence on the circle size L so long as
fermions have periodic boundary conditions on S1. Indeed,
at small L the theory becomes weakly coupled, and one

finds [1–3] a Wilson loop trΣ ¼ trPei
R
S1

A3 expectation
value hΣi ∼ diagð1;ω;…;ωN−1Þ, ω≡ e2πi=N . This means
that htrΣni ¼ 0, ∀n < N, signaling the preservation of the
ZN center symmetry and confinement even at small L, as
expected from continuity in L. It can also be checked that
hψψi ≠ 0 at small L, so that the discrete chiral symmetry is
spontaneously broken, Z2N → Z2, also as expected from
continuity.
Thanks to the small-L form of Σ, we find hA3i ≠ 0,

leading to a compact adjoint Higgs mechanism breaking
the gauge group SUðNÞ → Uð1ÞN−1. So, at low energies
compared to the lightest W-boson mass, mW ≡ 2π=ðNLÞ,
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the physics is described by an Abelian theory. This is the
reason why the small-η physics is weakly coupled: all
charged matter is at least as heavy as mW , and the ’t Hooft
coupling λ≡ g2N stops running at the scale mW ≫ Λ,
giving the weak-coupling condition η ≪ 1.
The key point is that staying in the weak-coupling

regime while making N large requires an unusual scaling
for the circle size, L ∼ Λ−1=N. The physical reason such
small values of L are needed is that, for any L ∼OðN0Þ,
N ¼ 1 SYM theory [9,10] enjoys large-N volume inde-
pendence [11] and hence is strongly coupled.

III. SMALL-L EFFECTIVE FIELD THEORY

When L is small and η ≪ 1, the long-distance physics
can be described by fields which carry zero momentum on
S1. Furthermore, the fields that do not get a mass from the
adjoint Higgs mechanism are the Cartan 3D gluons Fμν

k
(k ¼ 1;…; N − 1, μ, ν ¼ 0, 1, 2), Cartan gluinos ψα

k
(α ¼ 1, 2), and Cartan scalars ϕk, from fluctuations of
A3 (or Σ). These fields have gauge-invariant representations
such as

Fμν
k ¼ 1

N

XN−1

p¼0

ω−kptrðΣpFμνÞ; ð1Þ

so that the “Cartan” index k can be interpreted as the
discrete Fourier transform of the winding number for the
holonomy Σ. So even though the fields Fμν

k , ψα
k , ϕk carry no

S1 momentum, they do carry information about the wind-
ing modes on S1. The fields Fμν

k , ψα
k , ϕk all sit within a

single supermultiplet, and are the fields that appear in the
long-distance l ≫ m−1

W EFT.
We will work with the Abelian dual representation

of the gluons Fk
μν ¼ g2=ð2πLÞϵμνα∂ασk, and take an N-

component basis for the co-root vectors ~α�i of the suðNÞ
algebra satisfying ~α�i · ~e0 ¼ 0, ∀i with ~e0 ≡ ð1; 1; 1;…; 1Þ.
We package the fields into N-component ~σ, ~ϕ, ~ψ vectors,
whose e.g. ~σ · ~e0 components are unphysical. For brevity,

we focus on the ~σ-field Lagrangian, omitting the ~ϕ and ~ψ
fields in Eqs. (2)–(4); the full superspace expressions are
in [6].
In perturbation theory, ~σ has a shift symmetry coming

from the current conservation law due to the absence of
color-magnetic monopoles. Its action can be written
as Sσ ¼

R
d3xλmWð∂μ~σÞ2.

Nonperturbatively, the R3 × S1-compactified SYM
theory has N types of Bogomol'nyi-Prasad-Sommerfield
(BPS) monopole-instanton configurations [12,13], with
ðmagnetic; topologicalÞ charges �ð~α�i ; 1=NÞ, where
i ¼ 1; ...N, and ~α�N denotes the affine (lowest) co-root.
Their actions are S0 ¼ SI=N, where SI ¼ 8π2=g2 is the
action of the Belavin-Polyakov-Schwarz-Tyupkin

instanton with charge �ð0; 1Þ. In the absence of a gaugino
mass, each monopole-instanton carries two fermion zero
modes. Thus, even though monopole-instantons carry
magnetic charge, they cannot directly generate a potential
for ~σ; instead, they generate a superpotential [14]. The
superpotential can be used to deduce the form of the
potential for ~σ [1,2,15]. One can also compute the ~σ
potential directly, which reveals that it arises from non-
BPS “molecular” events called “magnetic bions” [3], with
charges �ð~α�i − ~α�iþ1ðmod NÞ; 0Þ and action 2S0.
Taking all this into account, to leading nontrivial order in

the semiclassical expansion, the action for ~σ is

Sσ ¼
Z

d3x

�
λmWð∂μ~σÞ2

þm3
We

−2S0
XN−1

i¼0

sin2
�
1

2
ð~α�iðmod NÞ − ~α�iþ1Þ · ~σ

��
: ð2Þ

Equation (2) contains a lot of physics [3]. The fact that the ~σ
potential is nonvanishing implies that at finite N the theory
has a nonperturbative mass gap roughly of order
mWe−S0 ∼ Λη2; the latter form follows from the one-loop
relation 8π2=λðμÞ ¼ 3 logðμ=ΛÞ.

IV. EMERGENT EXTRA DIMENSION

We now discuss the quadratic actions for σ, ϕ, λ around
one of the N ground states more carefully, with a focus on
the N-dependence. The 3D EFT has N chiral symmetry
breaking vacua h~σi ¼ 2πk~ρ

N , where k ¼ 0; 1;…; N − 1, ~ρ ¼P
N−1
a¼1 ~wa is the Weyl vector, and ~wa are the fundamental

weights, obeying ~α�a · ~wb ¼ δab. Expanding around any
given vacuum h~σi, we find the same quadratic action

Sσ ¼
Z

d3x
XN
i¼1

�
ð∂μ ~σiÞ2 þ

M2

16
ð2~σi − ~σi−1 − ~σiþ1Þ2

�
;

ð3Þ

where ~σ represents fluctuations around h~σi, and we used the
identity ð~α�i − ~α�iþ1Þ · ~σ ¼ 2σi − σi−1 − σiþ1, with all indi-
ces (mod N). So our results below apply to all N chiral-
symmetry-breaking vacua. Omitting factors of order unity
and nonexponential dependence on λ, the mass scale M is
of order

a−1 ≔ M ∼mWe−S0 ∼ Λη2 ð4Þ

where the “lattice spacing” a ¼ 1=M has been defined for
future use. Parallel results hold for the quadratic actions
for ϕ and ψ . The quadratic action, with all superpartners
included, can be diagonalized by a discrete Fourier
transform, fFp; Sp;Ψpg ¼ N−1=2 PN

n¼1 ω
npf ~ϕn; ~σn; ~ψng

leading to

ALEKSEY CHERMAN and ERICH POPPITZ PHYSICAL REVIEW D 94, 125008 (2016)

125008-2



SEFT ¼
Z

d3x
XN
p¼1

�
j∂μΦpj2 þM2sin4

�
πp
N

�
jΦpj2

þ Ψ̄p∂Ψp þ
M
2
sin2

�
πp
N

�
ðΨN−pΨp þ H:c:Þ

�
;

ð5Þ

where Φp ¼ Fp þ iSp. Neglecting the fictitious p ¼ N
modes, the EFT spectrum is

mp ¼ Msin2
�
πp
N

�
; p ¼ 1;…; N − 1: ð6Þ

This spectrum somewhat resembles the spectrum of some
integrable 2D field theories [16]. A physical interpretation
of the index p is given below in a discussion of T-duality.
The large-N limit of the expressions above contains

surprises. First, the mass gap vanishes at large N, since the
lightest mode has massm1 ∼ Λη2=N2. Second, the states in
Eq. (6) with p ∼ N0 are quadratically-spaced, mp ∼m1p2.
Indeed, we recognize Eq. (3) as the position-space action
for a four-dimensional field theory with one circular spatial
direction, whose coordinate we shall denote by “y,”
discretized on a lattice of spacing a ¼ 1=M, and size
~L ¼ aN. Equation (5) is the momentum-space action with
superpartners restored. (Note in passing that there is no
fermion doubling here.)
Thus, on large distances l ≫ a the low-energy effective

theory turns into a continuum 4D theory for the fields Φ
and Ψ. The emergent dimension is compactified on a circle
of size ~L ¼ aN, and so looks noncompact on scales
l ∼OðN0Þa. Indeed, ~L is parametrically large compared
to both the physical circle size L and the inverse strong
coupling scale Λ−1: ~L=L ∼ N2η−3, ~LΛ ¼ Nη−2.
To write the continuum ~L ≫ l ≫ a limit, one might

naively try to scale lengths, times, and fields according to
the canonical 4D scaling dimensions, and replace e.g.
difference operators with derivatives as usual. This gives
continuum 4D fields Φ0 and Ψ0 with kinetic terms of the
form a2j∂2

yΦ0j2 and aΨ0∂2
yΨ0, which look technically

irrelevant. However, this isotropic assignment of scaling
dimensions is only natural in Lorentz-invariant 4D theories.
But we broke Lorentz invariance by compactifying SYM,
and our emergent 4D theory is clearly not 4D Lorentz-
invariant. Instead, the low-energy theory enjoys an aniso-
tropic “spatial Lifshitz” scale invariance [17]

x0;1;2 → Ωx0;1;2; y → Ω1=zy

Φ → Ω−ð1þ1=zÞ=2Φ; Ψ → Ω−ð2þ1=zÞ=2Ψ; ð7Þ

with z ¼ 2. With appropriately rescaled coordinates and
fields, the Lifshitz-scale-invariant continuum limit can thus
be written as

S ¼
Z

d3xdy

�
j∂μΦj2 þ j∂2

yΦj2 þ Ψ̄∂Ψ

þ 1

2
ðΨ∂2

yΨþ H:c:Þ
�
: ð8Þ

This is one of our key results. Higher order terms from the
expansion of Eq. (2) are irrelevant under the z ¼ 2 Lifshitz
scaling. Thus the long-distance large-N theory is free to
leading order in η ≪ 1. The gapless continuum theory of
Eq. (8) describes the physics on length scales l ∼OðN0Þ
satisfying l ≫ a when η ≪ 1.

V. SYMMETRIES AND CORRECTIONS

Equation (2), which led to Eq. (8), contains only the
leading terms in the η ≪ 1 semiclassical expansion. We
now argue that higher-order corrections cannot produce a
large-N mass gap. The possibility of describing the infrared
(IR) fixed point in terms of a scale-invariant local free-field
theory, as in Eq. (8), turns out to be tied to the symmetries
of the long distance theory, along with the weak coupling
limit η ≪ 1. Our central observations also apply to non-
supersymmetric theories.
First, consider the mass gap. Due to charge quantization,

~σ is a compact variable living in the unit cell generated by
the N − 1 fundamental weights ~wk of suðNÞ. Thus the
effective action must be periodic under ~σ → ~σ þ 2π ~wk, ∀k,
and the ~σ potential must be a function of ei~α

�
i ·~σ, since

~α�i · ~wj ¼ δij. Further, the action must be invariant under
the ZN center symmetry, acting [18] as σi → σiþ1ðmod NÞ, or
as ~α�i · ~σ → ~α�iþ1ðmod NÞ · ~σ. Finally, the ZN subgroup of the

discrete chiral symmetry acts ei~α
�
i ·~σ → ei

2π
N ei~α

�
i ·~σ . These

chiral shifts become continuous at N ¼ ∞, but domain
wall tensions stay large [19] and there is no light η0 mode.
Remarkably, the ~σ-periodicity condition, together with

~α�i · ~σ ¼ σi − σiþ1, implies that corrections to the ~σ poten-
tial can only ever produce terms which look like discretized
derivatives in the y-coordinate. The role of large N is to
allow a continuum limit in which the theory acts as if it lives
on a large circle of size ~L ∼ N. Thus the lowest emergent
Kaluza-Klein (KK) momentum goes to zero with N. At the
same time, a mass term

R
d3x

P
N
i¼1 σ

2
i ∼

R
d3xdyΦ†Φ, can

never be generated either perturbatively or nonperturba-
tively in η, or perturbatively or nonperturbatively in the
1=N expansion. The microscopic reason for this is that such
a mass term is forbidden by the discrete gauge symmetry
which imposes compactness of the ~σ variable. So, in the
domain smoothly connected to η → 0, that is, for some
range η ∈ ð0; ηc > 0Þ, our results imply that no mass gap
can be generated at large N. It is important to note that the
arguments above are completely independent of supersym-
metry: they hold so long as center symmetry is preserved.
Next, consider the scale invariance and locality of the

action Eq. (8). In a scale-invariant theory, the availability of

EMERGENT DIMENSIONS AND BRANES FROM LARGE-N … PHYSICAL REVIEW D 94, 125008 (2016)

125008-3



a local Lagrangian description is tied to whether the theory
is free. We now show that the IR fixed point becomes free
as η → 0, but is in general nontrivial.
First, note that no local (in y) Lifshitz-breaking inter-

actions, such as ð∂yΦÞ2, can be induced either perturba-
tively or nonperturbatively. This is due to masslessness
of the gauginos and the consequent discrete ZN chiral
symmetry, which forbids monopole-instantons from
directly generating a bosonic potential. (The discrete chiral
symmetry, along with Lifshitz scaling, is broken when a
SUSY breaking mass is added, see further discussion
below.) One may worry that the chiral and center
symmetries would permit nonlocal in y terms like ReP

ke
i~α�k·~σe−i~α

�
kþN=2·~σ, but such terms do not arise at small η.

In SYM, potential terms come from the superpotential,
determined by symmetries and holomorphy to be

W ¼ Λ2ηei
2πk
N

XN
l¼1

e~α
�
l ·
~X; ð9Þ

where ~X is a chiral superfield whose lowest component is
~ϕþ i~σ. (This is the superpotential from [1,2], but with ~X
defined with its expectation value in the kth vacuum

subtracted, so that ð∂W=∂ ~XÞj~X¼0
¼ 0.) The superpotential

Eq. (9) is not renormalized and, with the canonical Kähler

potential K ∼ ~X† · ~X, gives rise to Eq. (2). Expanding
Eq. (9) to quadratic order in the fields allows us to cast
W as an integral over the extra dimension

W ∼ Λ2ηei
2πk
N

XN
i¼1

ð∇þXiÞ2 → Λei
2πk
N

η

Z
dyð∂yXÞ2; ð10Þ

where∇þXi ¼ Xiþ1 − Xi and we took the same continuum
limit that led to Eq. (8).
As usual, none of the symmetries forbid the generation

of a nontrivial Kähler potential, which has the effect of
changing the 3D kinetic terms for ~σ from

P
ið∂μσiÞ2 →P

i;jG
−1
ij ∂μσ

i∂μσj. The inverse Kähler metric Gij is deter-
mined by the moduli space metric of the electric theory
after a linear-chiral duality transformation [6]; at the center
symmetric point, it is a function of η and N only. The
leading-order correction to the flat Kähler metric comes
from threshold corrections due to loops of e.g. massive
W-bosons. The explicit calculation [6] shows that the
large N form of Gij is

Gij ¼ δij
1

cλ
þ 1 − δij

ji − jj ; ð11Þ

where c ¼ 3=16π2 and λ is the ’t Hooft coupling at
the scale mW ¼ 2π=LN. The continuum-limit two-point
function of the field Φ then becomes

Z
d4xeipMxMhΦ†ðxMÞΦð0Þi ∼

1

p2cλ
y

�
p2
μ þ p4½1−cλ�

y

	 ; ð12Þ

where M ¼ 0, 1, 2, y. This amounts to an L-dependent
anomalous dimension for the Φ field, because λ ∼ 1=
logð1=ηÞ. So N ¼ 1 SYM on R × S1 flows to a four-
dimensional nontrivial scale-invariant fixed point in the IR
at large N within the regime smoothly connected to η ∼ 0.
The IR fixed point develops a local free-field representation
as η → 0, where the scale symmetry is the z ¼ 2 Lifshitz
invariance of Eq. (8).

VI. STRING THEORY VERSUS GAUGE THEORY

Confining gauge theories with adjoint matter are
believed to be weakly coupled closed string theories with
gs ∼ 1=N in the usual large N limit. In contrast, here we
study a large N limit with small η, where the gauge theory
itself is weakly coupled. Thus any dual string description
it may have is bound to be quite distinct from e.g. the
standard gauge-gravity duality [20]. Nevertheless, our
theory has several tantalizing features that make a string
theory connection worthy of a further look.
String theory on a small circle L is usually equivalent to

another string theory on an “emergent” large circle ~L, with
L ~L ∼ α0, where α0 is the inverse string tension. Here, we
study a gauge theory on a tiny circle L, where it continues
to confine, and find that at large N it looks like another
quantum field theory (QFT) on a large circle ~L. Could this
be some shadow of T-duality? If so, at least two features
ought to be present. First, the emergent Kaluza-Klein (KK)
momentum should have an interpretation as a winding
number. Second, it should be the case that L ~L ∼ α0 where
1=α0 is the confining string tension.
Indeed, the emergent KK momentum p in Eq. (6) is in

one-to-one correspondence to the winding number p of the
holonomy Σ from Eq. (1). To see this, note that the discrete
Fourier transform leading to Eq. (5) is the inverse of the
transform in Eq. (1). The emergent KK momentum is
discretized, in contrast to the T-duality story for funda-
mental strings. Some insight into why this happens comes
from recalling that fundamental strings have winding
numbers w taking values in Z, while gauge field holonomy
winding numbers take values in ZN . This is because
h1N trΣNi ¼ 1 regardless of the phase of the theory, since
N quarks can make a colorless state, a baryon, and widely
separated baryons and anti-baryons do not interact via a
color flux tube.
Despite the pleasing resonance with T-duality intuition

explained above, we do not know how to understand the
fact that the emergent dimension is a Lifshitz one from this
perspective. The issue is that in SYM we find the scaling
ðenergy ∼ w2Þ, while all the weakly-coupled string models
we are aware of give the scaling ðenergy ∼ wÞ. However,
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as explained in the next section, once SUSY is broken by
e.g. a gaugino mass term, we find an emergent 4D Lorentz
invariance at long distances, corresponding to the naively
expected stringy scaling of ðenergy ∼ wÞ.
We now comment on the relation of the size of the

emergent dimension to the string tension. Even at small η,
the string tension in SYM for generic N is only known from
the estimates of [3,6,7]. These estimates naively suggest two
different string tensions in SYM on R3 × S1. One of them,
1=α03D ∼ Λ2η, is for strings stretched alongR3, and the other,
1=α0S1 ∼ Λ2η=N, is for strings winding around the S1. The
R3 strings can be made arbitrarily long compared to their
width, so the definition of their string tension is unambigu-
ous. Amusingly, we indeed see that L ~L ∼ α03D. The proper
definition of the string tension for strings winding S1 is less
obvious, because they cannot be made arbitrarily long.
References [3,6,7] defined αS1 from the scale of the
exponential in the Polyakov-loop correlator, but how seri-
ously one can take this definition is not clear. Taking the
definition at face valuewe get L ~L ∼ Nα0S1 , which is not what
one would expect from a T-duality picture.
To summarize the story, it is not yet obvious that there

is a sharp connection between the emergent dimension
phenomenon we have uncovered in gauge theory to
T-duality. But there are enough parallels that make the
issue worthy of further study.
Another property which is interesting to observe is that

when η ≪ 1 there is a large parametric separation
ffiffiffiffiffiffiffiffiffiffiffiffi
1=α03D

p
m1

∼ N2η−3=2 ð13Þ

between the light “glueball” masses and the 3D string
tension. Parametric scale separations between glueball and
string tensions scales are known to occur for gauge theories
with supergravity duals in AdS/CFT [20], where the
separation is governed by the strong ’t Hooft coupling
[21]. It is intriguing to see the scale separation in a
QCD-like theory, where it is controlled by the weak ’t
Hooft coupling—the η−3=2 factor in Eq. (13)—along with
an N-dependent factor absent in holographic constructions.
As will be clear below, this scale separation also persists
after SUSY-breaking deformations.

VII. SUSY BREAKING AND EMERGENT
LORENTZ SYMMETRY

We now discuss the effects of supersymmetry breaking.
Turning on a gaugino mass term Nmψ

λ trψψ breaks SUSY
and puts the theory in the universality class of pure YM
theory. As shown in [4], for mψ ≲m1, see Eq. (6), the
spectra of σ, ϕ, and ψ become split from each other due to
the breaking of SUSY (for example, the ϕ fields become
lighter, since increasing mψ at fixed η eventually leads to a
first-order center-symmetry breaking phase transition).

To get a confining regime for a wider range of mψ , we
add an extra periodic adjoint fermion χ, with mass mχ , to
the SYM theory with gaugino mass mψ . This stabilizes
center symmetry at small η even ifmχ ∼mψ ∼mW [22–24].
The fermion fields and ~ϕ decouple at long distances, and
the long-distance EFT only contains σi. The σi potential is
now different because monopole-instantons can directly
contribute to it, because there are no fermion zero modes
with massive fermions. This gives [22] the long distance
effective action

Sσ;dYM ¼
Z

d3x

�
λmWð∂μ~σÞ2

þm2
Wmψe−S0

XN−1

i¼0

sin2
�
1

2
~α�i · ~σ

�
þ � � �

�
ð14Þ

where � � � represents higher order semiclassical contribu-
tions. The quadratic action now includes ðσi − σiþ1Þ2,
and the spectrum takes the form m2

p ∼M�2 sin2ðπp=NÞ,
where M ∼

ffiffiffiffiffiffiffiffiffiffiffi
Mmψ

p
≕ a−1� .

Thus, on large distances l satisfying a� ≪ l ≪ ~L�,
where ~L� ¼ Na�, the EFT is now a single gapless scalar
field S propagating in four dimensions with a kinetic term
of the form ð∂ySÞ2 rather than ða�Þ2ð∂2

ySÞ2. The natural
scale invariance is the conventional z ¼ 1 isotropic 4D
scaling x0;1;2 → Ωx0;1;2; y → Ωy0;1;2. So, at long distances,
with broken SUSY the largeN IR theory becomes a gapless
Lorentz-invariant 4D scalar field for η ≪ 1. Of course, just
as in the SUSY case, we expect W-boson loops to generate
small (when η ≪ 1) non-Lorentz-invariant anomalous
dimensions in the two-point function of S. In any case,
we see that even when SUSY is broken, at large N the long-
distance EFT is still a 4D scale-invariant QFT.

VIII. FUNDAMENTAL FERMIONS AND BRANES

We now consider adding Nf fundamental fermions to
N ¼ 1 SYM. To keep center symmetry at small η after
this deformation, we again need to add an extra periodic
massive adjoint fermion χ with mχ ≲mW [4,24]. The ϕk

modes then get masses mϕk
∼mW and decouple in the IR.

Suppose Nf ¼ 1 and call the fundamental fermion q,
with boundary condition qðx3 þ LÞ ¼ eiαqðx3Þ. In the
center-symmetric background with α ¼ 0, only one color
component of q remains massless, say q1. Index theorems
[25,26] imply that q1 couples to a single monopole-
instanton, so the q-part of the low-energy EFT is, sche-
matically,

Sq ¼L
Z

d3x

�
q̄1

�
Dþ iα

L

�
q1þm−2

W e−S0ei~α
�
1
·~σψ1ψ2q̄1q1

�
:

ð15Þ
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Here Dμ ¼ ∂μ þ igA1;μ since the quark has color-electric
charge, and α plays the role of a real mass. This 3D QED
theory coupled to a fermion q remains weakly coupled so
long as λ=N ≲ α ≲ 1=N.
The main point of Eq. (15) is that fundamental fermions

do not propagate into the emergent fourth dimension.
From the point of view of the low-energy EFT, adding
Nf fundamental fermions gives rise to matter localized
on Nf three-dimensional branes in the emergent four-
dimensional bulk. Flavor-dependent boundary conditions
can be used to separate the branes by dialing which
monopole-instantons pick up the fundamental quark zero
modes, as explained in [27], and the flavor branes become
coincident when the boundary conditions are identical. We
illustrate the situation in Fig. 1.

IX. OUTLOOK AND IMPLICATIONS

We have explored the large N behavior of a systemati-
cally calculable regime of confining gauge theories, defined
by η ¼ NLΛ ≪ 1, and found several surprises concerning
N ¼ 1 SYM theory and some of its nonsupersymmetric
deformations.
First, the low-energy EFT description of SYM theory on

R3 × S1 becomes four-dimensional at large N, even though
the original QFT is in the small-circle limit. The fourth
dimension is invisible in perturbation theory, and is an
emergent large-N consequence of the non-perturbative
confining dynamics. The second surprise is that the field
content of this EFT is gapless at large N. Indeed, we find
that within the domain of validity of the semiclassical

small-η expansion, symmetry considerations imply that at
large N, a mass gap for the lightest fields σi cannot be
generated either perturbatively or nonperturbatively. So
the large N theory is gapless for η ∈ ð0; ηcÞ with some
ηc > 0. In particular, for small η and large N, we find that
the long-distance dynamics ofN ¼ 1 SYM is described by
a nontrivial four-dimensional scale-invariant field theory
with z ¼ 2 Lifshitz scale invariance. This IR fixed point
gets a free-field description as η → 0, but in general the
fields have nonvanishing anomalous dimensions at the
fixed point. The scale-invariant long-distance description is
valid for distances l which are big compared to η−2Λ−1 and
small compared to the scale Nη−2Λ−1. These surprises
motivate further careful lattice studies of SYM theory,
along the lines of e.g. [28].
For comparison, we note that an Abelian large-N limit of

softly-broken Seiberg-Witten (SW) theory similar to one
considered here was studied in [29]. In the infinite-N limit,
[29] also found a gapless spectrum, but with two major
differences compared to our large-N results for SYM on
R3 × S1. First, in SW theory, the spectrum has no known
local extra-dimensional interpretation, due to the lack of an
unbroken zero-form [30] center symmetry. Second, the
string tensions and mass gap vanish simultaneously in SW
theory, while in SYM the string tensions stay finite at
large N.
We now comment on the obvious questions raised by our

results:
(Q1) What are the implications and origin of the extra

dimension?
(Q2) Why is the long-distance theory is gapless?
(Q3) Is ηc finite, for instance ηc ∼ 1, or is it infinite?
Concerning Q1, the emergence of the extra dimension

clearly has consequences for e.g. the thermodynamics and
transport properties at large N. In SYM, for instance, the
emergence of nontrivial Lifshitz scaling means that the
thermodynamic and transport properties will be “anoma-
lous”, serving as an illustration of some of the ideas in [31]
in a simple context. In particular, the thermodynamics and
transport will not be that of a typical 3D QFT even in the
small S1 limit.
The conceptual origin of the extra dimension is not yet

clear. There are some striking, but at present superficial,
parallels between our story and T-duality in string theory.
From another perspective, in some ways our extra dimen-
sion seems like a small-η shadow of the complete large N
volume dependence that emerges for η ≫ 1 via a working
version of Eguchi-Kawai reduction [9,11]. But in other
ways the story appears to be very different.
To appreciate this, first recall that in the absence of

center-symmetry-breaking phase transitions (which are not
expected in e.g. N ¼ 1 SYM theory on a spatial circle),
large N volume independence is expected to set in
smoothly as η becomes large, and does not just emerge
suddenly at η ¼ ∞. This is because, as shown in [32],

S, q1 q2

FIG. 1. Emergence of branes from largeN confinement at small
L with Nf ¼ 2. At the top, the blue dots are σi fields, green lines
indicate their interactions, and red arrows indicate fundamental
fermion zero mode couplings. On the bottom, the 4D bulk, where
the fields S and Ψ propagate, is in green, while two 3D branes,
each carrying a flavor of the fundamental fermions, are in red.
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planar perturbation theory in a theory compactified on e.g.
S1 of size L in a ZN center-symmetric background is
identical to the planar perturbation theory of a theory
compactified on a circle of size NL. So, as long as the large
LΛ limit is smooth, and the large LΛ and large N limits
commute, which is certainly expected, volume independ-
ence should set in smoothly as η is increased. In particular,
at large N and large η, the confining dynamics of a theory
compactified on R3 × S1 conspires to make it behave like a
theory on R4. A modern discussion of such phenomena in
the context of lattice gauge theory on T4 can be found [33].
But, in a sharp contrast to this 1980s story, in our small-η

situation, the fourth dimension emerges out of the non-
perturbative dynamics, and is invisible to any order in
perturbation theory. Volume-independence analogies also
give no insight into why the long-distance large N theory
should be gapless. Indeed, this motivates turning to Q2.
At large N, we have found that the gap is zero. The

symmetries of the microscopic theory forbid a mass term in
the long-distance EFT, so a large N mass gap cannot arise
perturbatively or nonperturbatively. But what is the con-
ceptual origin of the gaplessness of the IR theory? On
general grounds, a nonempty IR fixed point is natural if
either (a) there are no relevant operators which could trigger
a further RG flow or (b) there are relevant operators, but
they are charged under a global symmetry of the fixed-point
theory, so that one can naturally set them to zero. Our
theories certainly have relevant operators,

R
d3xdyΦ†Φ, orR

d3xdyS2 in the nonsupersymmetric cases, but they are
never generated by the microscopic dynamics. It is not
obvious to us how to interpret this in terms of the
symmetries of the IR fixed point. Understanding this better
is important for theoretical and phenomenological reasons,
since there are very few known ways to get naturally
gapless IR scalars out of interacting QFTs.
Finding a long-distance theory built from scalar fields

with irrelevant derivative interactions makes it tempting
to wonder if the gaplessness is due to the spontaneous
breaking of some continuous global symmetry. Such a
symmetry would have to emerge only at large N, since the
finite-N gauge theory certainly has a gap. (One candidate
might have been the ZN → Uð1Þ one-form [30] electric
center symmetry, but it is not spontaneously broken in our
theory.) Whatever this large N symmetry might be, it must
survive even without supersymmetry given our results on
SUSY-breaking deformations. The possibility that large-N
confining theories might have rich emergent symmetries
has recently been emphasized in [34].
Finally turning to Q3, we note that either a finite or an

infinite ηc would be remarkable. A finite ηc would mean
that mass gap of large N confining theories vanishes at

some circle size. Using the gap as an order parameter would
then imply a large-N phase transition in the circle-size
dependence ofN ¼ 1 SYM theory. This would be striking,
because then at large N a SUSY-preserving compactifica-
tion would not yield a smooth dependence on the circle
size, contrary to expectations.
On the other hand, if ηc is infinite, we see two possible

interpretations, either of which would be striking. It could
be that in fact ηc ∼ N. This would imply a noncommuta-
tivity of the large LΛ limit with large N limit for
observables like the mass gap, as explained in our com-
ments on volume independence. We know of no reason to
expect this. If the large LΛ and largeN limits commute, and
if ηc is infinite, then the gapless sector will survive into the
volume-independent large-circle regime. This would imply
that confining gauge theories with a gap at finite N can
develop a gapless sector at large N, even on R4.
This last option is so surprising that we add a few

comments. The reason thatN ¼ 1 SYM is believed to have
a mass gap on R4 is that it has discrete chiral symmetry
breaking and finite domain wall tensions, and is expected to
have a finite confining string tension, for instance due to
existing lattice studies [28]. It is widely expected, on
heuristic grounds, that these features have to be associated
with a theory with a finite mass gap.
Our calculations serve as an explicit counterexample to

this expectation. At large N, the small-η regime of SYM
has discrete chiral symmetry breaking, finite domain wall
tensions, and finite string tensions, and yet it has a
vanishing mass gap. The full QFT is of course not scale
invariant, and so the theory will also have massive bound
states in its spectrum. There is no obvious conflict with the
existing lattice studies [28]. The fact that our results survive
SUSY breaking raises the tantalizing possibility that these
surprising phenomena could be present in theories like YM
theory and QCD at large N. Clearly, there is still a lot left to
understand about large-N confining dynamics.
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