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We investigate, in the context of a real massless scalar field in 1þ 1 dimensions, models of partially
reflecting mirrors simulated by Dirac δ − δ0 point interactions. In the literature, these models do not exhibit
full transparency at high frequencies. In order to provide a more realistic feature for these models, we
propose a modified δ − δ0 point interaction that enables full transparency in the limit of high frequencies.
Taking this modified δ − δ0 model into account, we investigate the Casimir force, comparing our results
with those found in the literature.
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I. INTRODUCTION

In 1948, Casimir predicted an attractive force exerted by
the vacuum fluctuations of the electromagnetic field
between two neutral, parallel and perfectly conducting
plates [1]. This phenomenon is denominated the Casimir
effect, and it was observed experimentally [2]. The problem
of the electromagnetic field in the presence of a perfectly
conducting plate can be divided essentially in two boun-
dary condition (BC) problems: the vector potentials rep-
resenting the transverse electric and transverse magnetic
polarizations are associated, respectively, to the well-
known Dirichlet and Neumann conditions. Recently, these
conditions have also been considered in the literature
related to the Casimir effect in the context of scalar
fields [3]. In this case, the Casimir force is attractive if
both plates impose the Dirichlet or Neumann BCs to the
field, but it is repulsive if one mirror imposes the Dirichlet
and the other imposes the Neumann condition [4]. A
continuous interpolation of the Dirichlet and Neumann
conditions is accomplished with the aid of the Robin BC,
and the Casimir force between two parallel plates imposing
the Robin BC to a scalar field can be repulsive, attractive or
null [5]. A generalized Robin BC, which includes a term
with a second-order time derivative of the field, has been
recently considered in the investigation of the Casimir
effect [6]. The Robin BC also appears, for instance, in
classical mechanics in the problem of a string vibrating
with small amplitudes when one of its extremities is tied to
a massless ring (which slides with no friction along a
vertical rod) coupled to a spring [6,7].
Dirichlet, Neumann and Robin BCs are related to perfect

mirrors. On the other hand, real mirrors are naturally
transparent at high frequencies [1,8]. A way to model
partially reflecting mirrors is via Dirac δ potentials [9,10].
This idea has been used in the investigation of the Casimir

effect and dynamical Casimir effect [6,9–20]. Specifically,
for a real massless scalar field Φ in 1þ 1 dimensions, the
mirror, located at x ¼ 0, can be modeled by the Lagrangian
[9,10] (hereafter, c ¼ ℏ ¼ 1),

L ¼ L0 − μδðxÞΦ2ðt; xÞ; ð1Þ
where L0 ¼ ð1=2Þ½ð∂tΦÞ2 − ð∂xΦÞ2� and μ ≥ 0 is the
coupling constant between the field and the mirror. The
reflection and transmission coefficients are given, respec-
tively, by [9]

r�ðωÞ ¼ −
iμ

ωþ iμ
; s�ðωÞ ¼

ω

ωþ iμ
; ð2Þ

where the labelsþ and − indicate the scattering to the right
and to the left of the mirror, respectively. Note that, in this
case, sþðωÞ ¼ s−ðωÞ and rþðωÞ ¼ r−ðωÞ. From Eq. (2),
one can see that the parameter μ controls the transparency
of the mirror. In the limit μ → ∞, the mirror becomes
perfectly reflecting, jr�ðωÞj ¼ 1, and the δ mirror imposes
the Dirichlet BC to the field in both sides, namely

Φþðt; 0þÞ ¼ 0 and Φ−ðt; 0−Þ ¼ 0; ð3Þ
where Φþðt; xÞ and Φ−ðt; xÞ represent the field in the right
and left sides of the mirror, respectively. Note that the δ
mirror is naturally transparent at high frequencies,

lim
ω→∞

s�ðωÞ ¼ 1: ð4Þ

The use of δ − δ0 potentials in the investigation of the
Casimir effect was also considered in the literature (see
Ref. [19]). A single δ − δ0 mirror is described by the
Lagrangian density

L ¼ L0 − ½μδðxÞ þ λδ0ðxÞ�Φ2ðt; xÞ; ð5Þ

where μ ≥ 0 and λ ∈ R are the coupling constants. The
reflection and transmission coefficients are given, respec-
tively, by [19]
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r�ðωÞ ¼
�2ωλ − iμ

ωð1þ λ2Þ þ iμ
; s�ðωÞ ¼

ωð1 − λ2Þ
ωð1þ λ2Þ þ iμ

:

ð6Þ

In this case, differently from the pure δ one [Eq. (1)],
rþðωÞ ≠ r−ðωÞ. Moreover, for λ ¼ 1, we get a perfectly
reflecting mirror imposing the BCs

μΦþðt; 0þÞ þ 2∂xΦþðt; 0þÞ ¼ 0; ð7Þ
Φ−ðt; 0−Þ ¼ 0; ð8Þ

which are identified as the Robin and Dirichlet BCs,
respectively. Furthermore, another remarkable difference
between δ and δ − δ0 mirrors is that the latter is not naturally
transparent at high frequencies, namely

lim
ω→∞

s�ðωÞ ¼
1 − λ2

1þ λ2
< 1; ðλ ≠ 0Þ: ð9Þ

However, for sufficiently high frequencies, a real mirror
does not act as an obstacle to the field [1,8,21], i.e.
limω→∞js�ðωÞj ¼ 1, and models with perfectly reflecting
mirrors can lead to unphysical predictions (see, for in-
stance, Refs. [22,23]). Moreover, for μ ¼ 0, the scattering
coefficients (6) are independent of the frequency. These
behaviors suggest that the model (5), which leads to (9),
lacks adjustments to become more realistic.
In the present paper, in order to provide more realistic

features for δ − δ0 models, we propose a Lagrangian density
that describes δ − δ0 mirrors with full transparency in the
limit of high frequencies. Specifically, we do this in the
context of a real massless scalar field in 1þ 1 dimensions.
Taking this modified model into account, we investigate the
Casimir force between two δ − δ0 mirrors transparent at
high frequencies. As we shall discuss, the transparency at
high frequencies prevents spurious contributions, coming
from the high-frequency modes, to be computed in the
Casimir force, especially in the case of small distances
between the mirrors.
The paper is organized as follows. In Sec. II, we outline

the essential aspects of the scattering matrix for a cavity
with generic scattering coefficients and the Casimir force
[21]. In Sec. III, we present our model for δ − δ0 mirrors
transparent at high frequencies and obtain the correspond-
ing scattering coefficients. In Sec. IV, we compute the
Casimir force and compare our results with those found in
the literature. The final remarks are presented in Sec. V.

II. GENERIC SEMITRANSPARENT CAVITY

Let us consider a general cavity formed by two mirrors,
one of them labeled by the index j ¼ 1 and the other by the

index j ¼ 2, having scattering coefficients given by rðjÞ� ðωÞ
and sðjÞ� ðωÞ. These scattering coefficients are the elements
of the scattering matrix [21],

SðjÞðωÞ ¼
�

sðjÞþ ðωÞ rðjÞþ ðωÞe−2iωxj
rðjÞ− ðωÞe2iωxj sðjÞ− ðωÞ

�
; ð10Þ

where x1 ¼ 0 and x2 ¼ q > 0 are the locations of the
mirrors. We request that the elements of the scattering
matrix SðjÞðωÞ obey the following conditions:
(1) Since the field is real [21],

rðjÞ� ð−ωÞ ¼ rðjÞ�
�ðωÞ; ð11Þ

sðjÞ� ð−ωÞ ¼ sðjÞ�
�ðωÞ: ð12Þ

(2) Provided that the scattering matrix for each mirror is
unitary [21],

jsðjÞ� ðωÞj2 þ jrðjÞ� ðωÞj2 ¼ 1; ð13Þ

sðjÞ� ðωÞrðjÞ∓
�ðωÞ þ rðjÞ� ðωÞsðjÞ∓

�ðωÞ ¼ 0: ð14Þ

(3) Once the scattering is causal, which means that

sðjÞ� ðωÞ and rðjÞ� ðωÞ vanish in the time domain for
t < 0 [21,24],

sðjÞ� ðωÞ
rðjÞ� ðωÞ

)
are analytic for ImðωÞ > 0: ð15Þ

(4) Requiring that the mirrors are transparent at high
frequencies [1,8,21],

jsðjÞ� ðωÞj ¼ 1

jrðjÞ� ðωÞj ¼ 0

)
for ω → ∞: ð16Þ

The coefficients rðjÞ� ðωÞ are used in the formula for the
Casimir force between two partially reflecting mirrors in
1þ 1 dimensions, which can be computed as the difference
between the outer and inner radiation pressures upon the
mirrors, namely

FL ¼ TL − Tcav; FR ¼ Tcav − TR; ð17Þ

where FL (FR) is the force exerted on the mirror in the left
(right), TL (TR) is the energy density in the left (right) of the
cavity, and Tcav is the energy density within the cavity.
For any partially reflecting mirrors satisfying the afore-
mentioned reality, unitarity, causality and transparency
conditions, the Casimir force is given by [21]

F ¼ 2Re
Z

∞

0

dω
2π

ωrð1Þþ ðωÞrð2Þ− ðωÞ
e−2iωq − rð1Þþ ðωÞrð2Þ− ðωÞ

; ð18Þ

where F ¼ FR ¼ −FL, assuming that the condition (16) is
satisfied so that
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ωrð1Þþ ðωÞrð2Þ− ðωÞ → 0 for ω → ∞: ð19Þ

The integrand of Eq. (18) vanishes for jωj → ∞ and has no
poles for ImðωÞ ≥ 0 since jrðωÞj < 1 in this region.
Therefore, using the Cauchy theorem, the integration path
can be changed from the real to the imaginary axis [21]. It is
preferable to work in the imaginary axis because the
integrand of Eq. (18) presents a simplified profile on it.
Thereby, Eq. (18) is replaced by

F ¼
Z

∞

0

F ðωÞdω; ð20Þ

F ðωÞ ¼ −
ω

π

"
rð1Þþ ðiωÞrð2Þ− ðiωÞ

e2ωq − rð1Þþ ðiωÞrð2Þ− ðiωÞ

#
; ð21Þ

where the integrand is a function that oscillates less than the
integrand in Eq. (18).
Next, we propose a model for δ − δ0 mirrors transparent

at high frequencies, and in Sec. IV, we investigate the
correspondent Casimir force.

III. MODIFIED δ − δ0 MODEL

As mentioned in Sec. I, the δ − δ0 mirror described
by (5) presents a problematic behavior at high frequencies
[see Eq. (9)]. In order to achieve full transparency at
high frequencies, providing a more realistic description for
δ − δ0 mirrors, we start proposing the following Lagrangian
density,

L ¼ L0 − ½μδðxÞ þ λδ0ðxÞ�Φ2ðt; xÞ

− δ0ðxÞ
X∞
n¼1

ρnðΛÞ½∂n
tΦðt; xÞ�2; ð22Þ

where

ρnðΛÞ ¼ λ

Z
Λ

0

du
2π

4β

β2 þ u2
ð−1Þnu2n
ð2nÞ! ; ð23Þ

where μ ≥ 0, λ ∈ R and β ≥ 0. If Λ ¼ 0 or β ¼ 0, one
recovers the model (5) found in the literature [19]. This
Lagrangian yields the field equation

½∂2
t − ∂2

x þ 2μδðxÞ þ 2λδ0ðxÞ�Φðt; xÞ

þ δ0ðxÞ
X∞
n¼1

2ð−1ÞnρnðΛÞ∂2n
t Φðt; xÞ ¼ 0: ð24Þ

In the Fourier domain, Eq. (24) reads

½−ω2 − ∂2
x þ 2μδðxÞ þ 2λδ0ðxÞ�ϕðω; xÞ

þ 2δ0ðxÞ
X∞
n¼1

ρnðΛÞω2nϕðω; xÞ ¼ 0: ð25Þ

Since the functions ρnðΛÞ are integrable on the interval
½0;Λ�, and given the convergence

X∞
n¼1

ð−1Þnu2n
ð2nÞ! ω2n ¼ −1þ cosðuωÞ ð26Þ

on that interval, one can write [25]

X∞
n¼1

ρnðΛÞω2n ¼ λ

Z
Λ

0

du
2π

4β

β2 þ u2
X∞
n¼1

ð−1Þnu2n
ð2nÞ! ω2n

¼ λ

Z
Λ

0

du
2π

4β

β2 þ u2
½−1þ cosðuωÞ�: ð27Þ

The δ − δ0 model we are interested in is that obtained
from (22) in the limit Λ → ∞. Taking into account that

lim
Λ→∞

Z
Λ

0

du
2π

4β

β2 þ u2
cosðuωÞ ¼ expð−βjωjÞ; ð28Þ

the field equation can be written as

½−∂2
xþ2μδðxÞþ2λexpð−βjωjÞδ0ðxÞ�ϕðω;xÞ¼ω2ϕðω;xÞ:

ð29Þ

Next, considering the model described by the field equa-
tion (29), we will find the corresponding matching con-
ditions and the reflection and transmission coefficients.
The field and its spatial derivative are not considered to

be continuous at x ¼ 0, a priori. Therefore, let us consider
the following properties of the δ and δ0 functions (see, for
instance, Refs. [26,27]):

δðxÞϕðω; xÞ ¼ ϕðω; 0þÞ þ ϕðω; 0−Þ
2

δðxÞ; ð30Þ

δ0ðxÞϕðω; xÞ ¼ ϕðω; 0þÞ þ ϕðω; 0−Þ
2

δ0ðxÞ

−
ϕ0ðω; 0þÞ þ ϕ0ðω; 0−Þ

2
δðxÞ: ð31Þ

Substituting Eqs. (30) and (31) in Eq. (29) and integrating
across x ¼ 0, we obtain

− ϕ0ðω; 0þÞ þ ϕ0ðω; 0−Þ þ μ½ϕðω; 0þÞ þ ϕðω; 0−Þ�
− λ expð−βjωjÞ½ϕ0ðω; 0þÞ þ ϕ0ðω; 0−Þ� ¼ 0: ð32Þ

Now, integrating Eq. (29) twice, the first one from −L < 0
to x (see, for instance, Ref. [28]) resulting in
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− ϕ0ðω; xÞ þ ϕ0ðω;−LÞ þ μ½ϕðω; 0þÞ þ ϕðω; 0−Þ�ΘðxÞ
− λ expð−βjωjÞ½ϕ0ðω; 0þÞ þ ϕ0ðω; 0−Þ�ΘðxÞ
þ λ expð−βjωjÞ½ϕðω; 0þÞ þ ϕðω; 0−Þ�δðxÞ

¼ ω2

Z
x

−L
ϕðω; xÞdx ð33Þ

and integrating across x ¼ 0, we obtain

− ϕðω; 0þÞ þ ϕðω; 0−Þ
þ λ expð−βjωjÞ½ϕðω; 0þÞ þ ϕðω; 0−Þ� ¼ 0: ð34Þ

Combining Eqs. (32) and (34), we get the matching
conditions (see, for instance, Refs. [19,20,26,27]),

ϕðω; 0þÞ ¼ 1þ λ expð−βjωjÞ
1 − λ expð−βjωjÞ ϕðω; 0

−Þ; ð35Þ

ϕ0ðω; 0þÞ ¼ 1 − λ expð−βjωjÞ
1þ λ expð−βjωjÞϕ

0ðω; 0−Þ

þ 2μ

1 − λ2 expð−2βjωjÞϕðω; 0
−Þ: ð36Þ

The solution of Eq. (24) can be written as

Φðt; xÞ ¼
X
j¼L;R

Z
∞

0

dω½ajðωÞΨjðω; xÞe−iωt þ H:c:�; ð37Þ

where

ΨRðω; xÞ ¼
1ffiffiffiffiffiffiffiffiffi
4πω

p fΘðxÞ½rþðωÞeiωx þ e−iωx�

þ Θð−xÞs−ðωÞe−iωxg; ð38Þ

ΨLðω; xÞ ¼
1ffiffiffiffiffiffiffiffiffi
4πω

p fΘð−xÞ½r−ðωÞe−iωx þ eiωx�

þ ΘðxÞsþðωÞeiωxg ð39Þ

are the right- and left-incident solutions (see, for instance,
Ref. [9]), H.c. is the Hermitian conjugate of the previous
term, and ajðωÞ (j ¼ L, R) are the annihilation operators,
obeying ½aiðωÞ; a†jðω0Þ� ¼ δðω − ω0Þδij. Equations (35)
and (36), together with Eqs. (38) and (39), lead to the
coefficients

r�ðωÞ ¼
�2ωλfðjωjÞÞ − iμ

ω½1þ λ2fðjωjÞ2� þ iμ
; ð40Þ

s�ðωÞ ¼
ω½1 − λ2fðjωjÞ2�

ω½1þ λ2fðjωjÞ2� þ iμ
; ð41Þ

Now, the conditions in Eq. (16) are satisfied, so that for
sufficiently high frequencies the mirror described by

Eq. (29) does not act as an obstacle to the field, as expected
for realistic models. In addition, the scattering coefficients
(40) and (41) obey the conditions given in Eqs. (11)–(14).
At this point, we remark that the function ρnðΛÞ given in
Eq. (23) could in principle be replaced by other functions
which would result in

r�ðωÞ ¼
�2ωλfðωÞ − iμ

ω½1þ λ2fðωÞ2� þ iμ
; ð42Þ

s�ðωÞ ¼
ω½1 − λ2fðωÞ2�

ω½1þ λ2fðωÞ2� þ iμ
; ð43Þ

with fðωÞ given so that Eqs. (42) and (43) obey all the
conditions (11)–(16).
In Fig. 1, we show jrþðωÞj, given by Eq. (40), for several

values of the parameter β. When β ≠ 0, jrþðωÞj vanishes as
ω → ∞ (see the dashed, dot-dashed, and space-dashed line
in Fig. 1), whereas for β ¼ 0, which recovers the δ − δ0
model given by Eq. (5), jrþðωÞj becomes a nonzero
constant (see the solid line in Fig. 1), as shown in Eq. (9).
In the case of two mirrors, a Lagrangian which extends

(22) is

L ¼ L0 −
X
j

½μjδðx − xjÞ þ λjδ
0ðx − xjÞ�Φ2ðt; xÞ

−
X
j

δ0ðx − xjÞ
X∞
n¼1

ρnjðΛÞ½∂n
tΦðt; xÞ�2; ð44Þ

where j ¼ 1, 2 indicates each mirror and x1 ¼ 0 and x2 ¼
q are the locations of the mirrors. The matching conditions
for each mirror are still given by Eqs. (35) and (36), but
with μ, λ and β labeled with j and 0� replaced by x�j .
Therefore, analogously to the case of a single mirror, in the

50403020100

1.0

0.75

0.50

0.25

0

FIG. 1. jrþðωÞj (vertical axis), for μ ¼ 1, λ ¼ 3, and several
values of β. The solid line (β ¼ 0), shows the reflection
coefficient correspondent to the δ − δ0 model given by Eq. (5).
The dashed (β ¼ 0.1), dot-dashed (β ¼ 5.0), and space-dashed
(β ¼ 1.0) lines correspond to jrþðωÞj for the modified δ − δ0
model given by Eq. (22). The behavior of jr−ðωÞj is similar.
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limit Λ → ∞, we find that the coefficients associated to
(44) are

rðjÞ� ðωÞ ¼ �2ωλj expð−βjjωjÞ − iμj
ω½1þ λ2j expð−2βjjωjÞ� þ iμj

; ð45Þ

sðjÞ� ðωÞ ¼ ω½1 − λ2j expð−2βjjωjÞ�
ω½1þ λ2j expð−2βjjωjÞ� þ iμj

: ð46Þ

Next, with the aid of Eq. (45), we investigate the Casimir
force between the two mirrors described by Eq. (44).

IV. CASIMIR FORCE

To obtain the Casimir force between the two δ − δ0
mirrors modeled by the Lagrangian density (44), we
substitute Eq. (45) into (21) and get

F ðωÞ ¼ −
1

π

ω

1 − e2ωqB1ðωÞB2ðωÞ
; ð47Þ

where

BjðωÞ ¼
ω½1þ λ2j expð−2βjjωjÞ� þ μj
ð−1Þj2ω½λj expð−βjjωjÞ� þ μj

: ð48Þ

The Casimir force is obtained after integrating F ðωÞ as
shown in Eq. (20).
Due to the exponential term e2ωq in Eq. (47), one can find

a certain frequency ωq for which F ðω > ωqÞ ≈ 0, so that
one has, in a good approximation,

F ≈
Z

ωq

0

F ðωÞdω; ð49Þ

where ωq decreases as q increases. On the other hand, from
Eq. (48), we can see that as ω → 0, Bjjβ≠0 → Bjjβ¼0.
Therefore, as q increases, the upper limit of the integral in
Eq. (49) becomes smaller, and thus Fjβ≠0 → Fjβ¼0. This
can be visualized in Fig. 2, where we show the ratio
between the Casimir force for βj ≠ 0 and the Casimir force
for βj ¼ 0 as a function of the distance q between two
different mirrors. Notice that Fjβ≠0=Fjβ¼0 → 1 as q

FIG. 2. Fjβ≠0=Fjβ¼0 as a function of q, considering the
parameters μ1 ¼ 1, μ2 ¼ 3, λ1 ¼ 3, λ2 ¼ −2 and β1 ¼ β2 ¼ β.

FIG. 3. Casimir force as function of μ ¼ μ1 ¼ μ2 and λ ¼ λ1 ¼ λ2, considering q ¼ 1 and two different values for β ¼ β1 ¼ β2.
Figure 3a shows F with β ¼ 0 [recovering the results for the model given by Eq. (5)], and Fig. 3b exhibits F with β ¼ 1. The solid lines
are the level curves, and the dashed lines show where the Casimir force is null.
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increases. As q decreases, one may have discrepancies
between the Casimir force provided by both models.
In Fig. 3, we exhibit the Casimir force as function of

μ1 ¼ μ2 ¼ μ and λ1 ¼ λ2 ¼ λ, for a fixed distance q ¼ 1
and two different values for β1 ¼ β2 ¼ β: Fig. 3a for β ¼ 0
(recovering the case found in the literature [19]) and Fig. 3b
for β ¼ 1. By comparing Figs. 3a and 3b, we see that the β
parameter can increase or decrease the magnitude of the
Casimir force (jFj) and can also change its sign, depending
on the value of β, in comparison with the case where β ¼ 0.
For instance, considering μ ¼ 3 and λ ¼ 2 in Figs. 3a and
3b, we see that jFj when β ¼ 0 is smaller than that for
β ¼ 1, and in both cases the force is attractive. But for
μ ¼ 1 and λ ¼ 2, jFj when β ¼ 0 is greater than that
for β ¼ 1, and in both cases the force is repulsive.
In Fig. 4, we exhibit the Casimir force as a function of

β1 ¼ β2 ¼ β and λ1 ¼ λ2 ¼ λ, for a fixed distance q ¼ 1
and μ1 ¼ μ2 ¼ 2. We can see that the Casimir force tends to
an attractive behavior if β increases. In fact, if we take the
limit β → ∞ in Eqs. (40) and (41), we recover the

coefficients in Eq. (2), which describe partially reflecting
mirrors associated with a purely attractive Casimir force.

V. FINAL REMARKS

Although partially reflecting mirrors simulated by Dirac
δ point interactions [Eq. (1)] are naturally transparent at
high frequencies [Eq. (4)], the same is not valid [Eq. (9)] for
mirrors simulated by the Dirac δ − δ0 point interactions
modeled by (5). Moreover, for μ ¼ 0, the model (5) gives
scattering coefficients independent of the frequency
[Eq. (6)]. Since, for sufficiently high frequencies, a realistic
mirror is full transparent [1,8,21] and mirrors that violate
this property can, in some situations, lead to unphysical
predictions [22], in order to provide more realistic features
for δ − δ0 models, we proposed the Lagrangian given by
Eq. (22). This model (22), in the limit Λ → ∞, provides the
coefficients (40) and (41) leading to full transparency in the
limit of high frequencies [Eq. (16)] (see also Fig. 1).
Considering a cavity formed by two of these δ − δ0 mirrors
[Eq. (44)], we investigated the behavior of the Casimir
force, comparing our results with the Casimir force
between partially reflecting mirrors modeled by (5) [19];
this can be visualized in the μλ-plane shown in Fig. 3. In
this figure, we showed that the β-terms in the Lagrangian
(44) can change the sign of the Casimir force and can
increase or decrease the magnitude of the Casimir force, in
comparison with the case where β ¼ 0. As the distance
between the mirrors increases, the Casimir force for β ≠ 0
tends to the Casimir force for β ¼ 0. Conversely, for the
distance decreasing, one may have discrepancies between
the Casimir force provided by both models (see Fig. 2).
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