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Casimir force between § — 6’ mirrors transparent at high frequencies
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We investigate, in the context of a real massless scalar field in 1 4+ 1 dimensions, models of partially
reflecting mirrors simulated by Dirac § — & point interactions. In the literature, these models do not exhibit
full transparency at high frequencies. In order to provide a more realistic feature for these models, we

propose a modified § — & point interaction that enables full transparency in the limit of high frequencies.
Taking this modified § — & model into account, we investigate the Casimir force, comparing our results

with those found in the literature.
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I. INTRODUCTION

In 1948, Casimir predicted an attractive force exerted by
the vacuum fluctuations of the electromagnetic field
between two neutral, parallel and perfectly conducting
plates [1]. This phenomenon is denominated the Casimir
effect, and it was observed experimentally [2]. The problem
of the electromagnetic field in the presence of a perfectly
conducting plate can be divided essentially in two boun-
dary condition (BC) problems: the vector potentials rep-
resenting the transverse electric and transverse magnetic
polarizations are associated, respectively, to the well-
known Dirichlet and Neumann conditions. Recently, these
conditions have also been considered in the literature
related to the Casimir effect in the context of scalar
fields [3]. In this case, the Casimir force is attractive if
both plates impose the Dirichlet or Neumann BCs to the
field, but it is repulsive if one mirror imposes the Dirichlet
and the other imposes the Neumann condition [4]. A
continuous interpolation of the Dirichlet and Neumann
conditions is accomplished with the aid of the Robin BC,
and the Casimir force between two parallel plates imposing
the Robin BC to a scalar field can be repulsive, attractive or
null [5]. A generalized Robin BC, which includes a term
with a second-order time derivative of the field, has been
recently considered in the investigation of the Casimir
effect [6]. The Robin BC also appears, for instance, in
classical mechanics in the problem of a string vibrating
with small amplitudes when one of its extremities is tied to
a massless ring (which slides with no friction along a
vertical rod) coupled to a spring [6,7].

Dirichlet, Neumann and Robin BCs are related to perfect
mirrors. On the other hand, real mirrors are naturally
transparent at high frequencies [1,8]. A way to model
partially reflecting mirrors is via Dirac ¢ potentials [9,10].
This idea has been used in the investigation of the Casimir
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effect and dynamical Casimir effect [6,9-20]. Specifically,
for a real massless scalar field ® in 1 + 1 dimensions, the
mirror, located at x = 0, can be modeled by the Lagrangian
[9,10] (hereafter, c = h = 1),

L = Lo— pus(x)2%(t. x). (1)

where Ly = (1/2)[(0,®)* — (0,9)%] and u >0 is the
coupling constant between the field and the mirror. The
reflection and transmission coefficients are given, respec-
tively, by [9]

iu (@) 0]
- 5 N @) = B
@+ iy * W+ ip

re(w) = (2)
where the labels + and — indicate the scattering to the right
and to the left of the mirror, respectively. Note that, in this
case, s (w) = s_(w) and r, (w) = r_(w). From Eq. (2),
one can see that the parameter 4 controls the transparency
of the mirror. In the limit 4 — oo, the mirror becomes
perfectly reflecting, |r.(@)| = 1, and the § mirror imposes
the Dirichlet BC to the field in both sides, namely

O, (1,07)=0 and ®_(£,07) =0, (3)

where ®_ (¢, x) and ®_(¢, x) represent the field in the right
and left sides of the mirror, respectively. Note that the &
mirror is naturally transparent at high frequencies,

lim s, (@) = 1. (4)
w— 00
The use of § — § potentials in the investigation of the
Casimir effect was also considered in the literature (see
Ref. [19]). A single 6 —¢& mirror is described by the
Lagrangian density

L= Ly— [us(x) + A8 (x)]®*(t, x), (5)
where ¢ >0 and 1 € R are the coupling constants. The

reflection and transmission coefficients are given, respec-
tively, by [19]
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2wl — iu
ri(w)

(1 — 22
e TR

(1 +22) +ip
(6)

In this case, differently from the pure 6 one [Eq. (1)],
r(w) # r_(w). Moreover, for 1 =1, we get a perfectly
reflecting mirror imposing the BCs

u®. (1,07) + 20,0, (1,01) =0, (7)
®_(1,07) =0, (8)

which are identified as the Robin and Dirichlet BCs,
respectively. Furthermore, another remarkable difference
between 6 and 5 — & mirrors is that the latter is not naturally
transparent at high frequencies, namely

lim s, (w) =—— <1, (A#0). (9)

w— 0
However, for sufficiently high frequencies, a real mirror
does not act as an obstacle to the field [1,8,21], i.e.
lim,,_, o |s+(@)| = 1, and models with perfectly reflecting
mirrors can lead to unphysical predictions (see, for in-
stance, Refs. [22,23]). Moreover, for 4 = 0, the scattering
coefficients (6) are independent of the frequency. These
behaviors suggest that the model (5), which leads to (9),
lacks adjustments to become more realistic.

In the present paper, in order to provide more realistic
features for 6 — & models, we propose a Lagrangian density
that describes § — & mirrors with full transparency in the
limit of high frequencies. Specifically, we do this in the
context of a real massless scalar field in 1 + 1 dimensions.
Taking this modified model into account, we investigate the
Casimir force between two & — & mirrors transparent at
high frequencies. As we shall discuss, the transparency at
high frequencies prevents spurious contributions, coming
from the high-frequency modes, to be computed in the
Casimir force, especially in the case of small distances
between the mirrors.

The paper is organized as follows. In Sec. II, we outline
the essential aspects of the scattering matrix for a cavity
with generic scattering coefficients and the Casimir force
[21]. In Sec. III, we present our model for § — § mirrors
transparent at high frequencies and obtain the correspond-
ing scattering coefficients. In Sec. IV, we compute the
Casimir force and compare our results with those found in
the literature. The final remarks are presented in Sec. V.

II. GENERIC SEMITRANSPARENT CAVITY

Let us consider a general cavity formed by two mirrors,
one of them labeled by the index j = 1 and the other by the
index j = 2, having scattering coefficients given by r(ip (w)
and sg)(a)). These scattering coefficients are the elements
of the scattering matrix [21],
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() (/) —Diwx;
S(j)(a))—< o) (e ) (10)

rU) (w)e? s (w)

where x; =0 and x, = ¢ > 0 are the locations of the
mirrors. We request that the elements of the scattering

matrix SU)(w) obey the following conditions:
(1) Since the field is real [21],

M (~w) = " (). (11)
sV () = 57" (w). (12)

(2) Provided that the scattering matrix for each mirror is
unitary [21],

s @+ @ =1 (13
sV (@) (@) + (@) (@) = 0. (14)

(3) Once the scattering is causal, which means that
sﬁ?(a)) and r(i/) (w) vanish in the time domain for
t <0 [21,24],

s(j) (o)

0 }are analytic forIm(w) > 0. (15)

rl(o)

(4) Requiring that the mirrors are transparent at high
frequencies [1,8,21],

() —

sz (@)] =1

Y (@) =0

The coefficients r(ij)(a)) are used in the formula for the

Casimir force between two partially reflecting mirrors in

1 4 1 dimensions, which can be computed as the difference

between the outer and inner radiation pressures upon the
mirrors, namely

} for @ - . (16)

Fr, =Ty — Teu, Fr =T — Tk, (17)
where F (FR) is the force exerted on the mirror in the left
(right), Ty (Tr) is the energy density in the left (right) of the
cavity, and T,, is the energy density within the cavity.
For any partially reflecting mirrors satisfying the afore-
mentioned reality, unitarity, causality and transparency
conditions, the Casimir force is given by [21]

F= 2Re/wd—w or) (@) (@) (18)
0 2me-2iog _ r(j)(a))r(z)(a})

where F' = Fr = —F|, assuming that the condition (16) is
satisfied so that
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a)rgrl)(a))r@ (w) - 0 for w — oo. (19)
The integrand of Eq. (18) vanishes for || — oo and has no
poles for Im(w) >0 since |r(w)| <1 in this region.
Therefore, using the Cauchy theorem, the integration path
can be changed from the real to the imaginary axis [21]. Itis
preferable to work in the imaginary axis because the
integrand of Eq. (18) presents a simplified profile on it.
Thereby, Eq. (18) is replaced by

- / " F(o)do, (20)
0

w rE:)(iw)r(_z)(iw)
T |e2oq — rgrl)(ia))r(f)(ia))

Fw) =

], (21)

where the integrand is a function that oscillates less than the
integrand in Eq. (18).

Next, we propose a model for § — § mirrors transparent
at high frequencies, and in Sec. IV, we investigate the
correspondent Casimir force.

III. MODIFIED 6 — & MODEL

As mentioned in Sec. I, the § —§ mirror described
by (5) presents a problematic behavior at high frequencies
[see Eq. (9)]. In order to achieve full transparency at
high frequencies, providing a more realistic description for
& — & mirrors, we start proposing the following Lagrangian
density,

L= Ly— [us(x) + 28 (x)] (¢, x)

- 5(x §:m roE P (22)

where

Adu 48 (=1)"u®

AN =2 — , 23
p) = [t (23)
where u >0, A€R and f>0. If A=0 or =0, one

recovers the model (5) found in the literature [19]. This
Lagrangian yields the field equation

[0 — 02 4 2ud(x) + 248 (x)]®(1, x)
+ 6 (x Z 2(—

In the Fourier domain, Eq. (24) reads
[—w? — 9% + 2ud(x) + 248 (x)]p(w, x)

an

MN)O?d(t,x) =0. (24)

+ 28 (x Yo' $(w, x) = 0. (25)
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Since the functions p,(A) are integrable on the interval
[0, A], and given the convergence

o] (_l)nu2n -
2 2n)

n=1

= —1+ cos(uw) (26)
on that interval, one can write [25]

n du 4p
_AA Zﬂﬁz—l—uzz

Ndu 4
:1/0 %Wﬁbﬁ[—ucos(uw)]. (27)

ln 2n

i pu(N)a?

The § — & model we are interested in is that obtained
from (22) in the limit A — oco. Taking into account that

A 4
gl_{rgo/o g—ziﬁﬁbﬂcos(uw):exp( ). (28)

the field equation can be written as

[=0%+2p5(x) + 24 exp(—p|w] )& (x)]|d(w.x) = &’ p(@. x).

(29)

Next, considering the model described by the field equa-
tion (29), we will find the corresponding matching con-
ditions and the reflection and transmission coefficients.

The field and its spatial derivative are not considered to
be continuous at x = 0, a priori. Therefore, let us consider
the following properties of the § and & functions (see, for
instance, Refs. [26,27]):

sx)p(.x) = HOLVENO) 50 a0
5/()6)(15(0), x) _ ¢(w’ 0+) 42’ gb(a),()') 5/(x)
_P@0) + @00 5y 3y

2

Substituting Egs. (30) and (31) in Eq. (29) and integrating
across x = 0, we obtain

— ¢ (@.07) + ¢/(0.07) + ulp(@.07) + ¢(w,07)]
— Aexp(=plo])[¢(,07) + ¢'(,07)] = 0. (32)

Now, integrating Eq. (29) twice, the first one from —L < 0
to x (see, for instance, Ref. [28]) resulting in
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— ¢/ (@.x) + ¢ (0, L) + p[p(0.07) + ¢ (0, 07)]|O(x)
—Aexp(=flo])[¢(@,07) + ¢/ (0, 07)]0(x)
+ Aexp(—pla))[(w,07) + ¢(w,07)]5(x)

=’ /x P(w, x)dx (33)
-L
and integrating across x = (0, we obtain

—$(®.07) + ¢(w.07)
+ Aexp(—flo|)[¢(@.07) + ¢(w.07)] = 0. (34)

Combining Egs. (32) and (34), we get the matching
conditions (see, for instance, Refs. [19,20,26,27]),

1+ Aexp(—plw|)

0.0 = 222 0 as)
/ +\ 1 _lexp(_ﬁk‘)') / _
700 = e )
2u _
Ly exp(—2ﬂ|w\)¢<w’0 ). (36)

The solution of Eq. (24) can be written as

d(t,x) = Z /Ooo dwla;(w)¥;(w, x)e™™ +H.cl], (37)
where
W, x) = \/4171—0) [O()[r, (@)e™ + e
+ O(—x)s_(w)e~@*}, (38)
¥,(0,) = Ol (w)e " + ]
+O(x)s, (@)} (39)

are the right- and left-incident solutions (see, for instance,
Ref. [9]), H.c. is the Hermitian conjugate of the previous
term, and a;(w) (j = L, R) are the annihilation operators,
obeying [ai(a)),a;(a)/)] = 6(w — @')6;;. Equations (35)
and (36), together with Eqgs. (38) and (39), lead to the
coefficients

s () 200 l0]) ~ in
SO G 2l T+ i

(40)

s (a)) _ a){l _)“Zf(|w‘)2]
ST e+ 2 f (o) + i

(41)

Now, the conditions in Eq. (16) are satisfied, so that for
sufficiently high frequencies the mirror described by
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Eq. (29) does not act as an obstacle to the field, as expected
for realistic models. In addition, the scattering coefficients
(40) and (41) obey the conditions given in Egs. (11)—(14).
At this point, we remark that the function p,(A) given in
Eq. (23) could in principle be replaced by other functions
which would result in

re(w) = 20if (w) — i

o[l + A2f(0)?] +iu’ (42)

s (w) _ w[l _/12f(w)2]
* o[l + P f(0)?] +iu’

with f(w) given so that Egs. (42) and (43) obey all the
conditions (11)—(16).

In Fig. 1, we show |r, (w)], given by Eq. (40), for several
values of the parameter . When 8 # 0, |r,(w)]| vanishes as
@ — oo (see the dashed, dot-dashed, and space-dashed line
in Fig. 1), whereas for # = 0, which recovers the § — &
model given by Eq. (5), |r,.(®)| becomes a nonzero
constant (see the solid line in Fig. 1), as shown in Eq. (9).

In the case of two mirrors, a Lagrangian which extends
(22) is

L="Ly— Zws(x —x;) + 4;8 (x — x;)]®(1, x)

(43)

=) pMBRRCOR ()

where j = 1, 2 indicates each mirror and x; = 0 and x, =
q are the locations of the mirrors. The matching conditions
for each mirror are still given by Egs. (35) and (36), but
with u, A and f labeled with j and 0* replaced by xf.
Therefore, analogously to the case of a single mirror, in the

1.0 an =

4 27N =
"/( v/ \ A=00
"il'- 4 \ ——-p=01
0.75 ) /‘\/ \\ —— =05
7 ----B=10
t‘. \ \ £
- \
4 0
050 . N
L \
I‘ \ \
o N
0.25 o N
A\ N -
NS ~
Q\\ ~ —
07 T T T-__ —T U
0 10 20 30 40 50
w
FIG. 1. |r (w)| (vertical axis), for u = 1, A = 3, and several

values of . The solid line (f =0), shows the reflection
coefficient correspondent to the 5§ — & model given by Eq. (5).
The dashed (# = 0.1), dot-dashed (# = 5.0), and space-dashed
(f = 1.0) lines correspond to |r, (w)| for the modified 6 — &
model given by Eq. (22). The behavior of |r_(w)| is similar.
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limit A — oo, we find that the coefficients associated to
(44) are

L) = 2o ol +in, )
_ )2 —_24.
sg‘f)(w) B o[l A7 exp(—2p;|w|)] (46)

o[l + 2 exp(=2p;|o])] + in;

Next, with the aid of Eq. (45), we investigate the Casimir
force between the two mirrors described by Eq. (44).

e
NS _ __ '/:,- o
N7 /‘
0.5+ /’
/
0.0 s, 1
. /!
.‘\_\ /
-0.5 -_‘ .\‘ ./' :' _ ﬁ =00
N/ ——-p=
1.0 N/ 'Z 851
154 [ B=10
2.0
: : T T T T T
0 2 6 8

4
q
FIG. 2. Flg.0/F|s—o as a function of ¢, considering the
parameters pu; =1, yp =3, 41 =3, 1, =2 and f; =, = .

0.05

-0.10

FIG. 3.
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IV. CASIMIR FORCE

To obtain the Casimir force between the two & — &
mirrors modeled by the Lagrangian density (44), we
substitute Eq. (45) into (21) and get

1 0]
Fo) == i e )
where
B,(w) w1 —}—ﬂjz- exp(=2p;|w|)] + u; (48)

~ (~1)720[; exp(=Blo])] + u;°

The Casimir force is obtained after integrating F(w) as
shown in Eq. (20).

Due to the exponential term €2®? in Eq. (47), one can find
a certain frequency w, for which 7(w > w,) = 0, so that
one has, in a good approximation,

Fa A Flw)do, (49)

where w,, decreases as g increases. On the other hand, from
Eq. (48), we can see that as @ — 0, Bl — Bjls—0-
Therefore, as g increases, the upper limit of the integral in
Eq. (49) becomes smaller, and thus F|s.o — F|s_. This
can be visualized in Fig. 2, where we show the ratio
between the Casimir force for #; # 0 and the Casimir force
for f; =0 as a function of the distance g between two
different mirrors. Notice that Fls./Fls_g = 1 as ¢

0.050

0.025

-0.025

-0.050

-0.075

-0.100

3
u
(b) B=1.

Casimir force as function of y =y =y, and 1 = 1; = 4,, considering ¢ = 1 and two different values for = f; = f,.

Figure 3a shows F with § = 0 [recovering the results for the model given by Eq. (5)], and Fig. 3b exhibits F' with # = 1. The solid lines
are the level curves, and the dashed lines show where the Casimir force is null.
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FIG. 4. Casimir force as function of A1 and S, considering
/11 :ﬂ,z:/’{,ﬂl :ﬂZZﬂvﬂ1:ﬂ2:23ndq:1-

increases. As ¢ decreases, one may have discrepancies
between the Casimir force provided by both models.

In Fig. 3, we exhibit the Casimir force as function of
Uy = pp = pu and Ay = 1, = 4, for a fixed distance g = 1
and two different values for #; = f, = f: Fig. 3afor f =0
(recovering the case found in the literature [19]) and Fig. 3b
for # = 1. By comparing Figs. 3a and 3b, we see that the j
parameter can increase or decrease the magnitude of the
Casimir force (|F|) and can also change its sign, depending
on the value of f#, in comparison with the case where = 0.
For instance, considering 4 = 3 and 4 = 2 in Figs. 3a and
3b, we see that |F| when =0 is smaller than that for
f =1, and in both cases the force is attractive. But for
u=1and 1=2, |F| when =0 is greater than that
for f =1, and in both cases the force is repulsive.

In Fig. 4, we exhibit the Casimir force as a function of
P =P, =p and 1; = 4, = 4, for a fixed distance g = 1
and u; = u, = 2. We can see that the Casimir force tends to
an attractive behavior if f increases. In fact, if we take the
limit f - o in Egs. (40) and (41), we recover the
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coefficients in Eq. (2), which describe partially reflecting
mirrors associated with a purely attractive Casimir force.

V. FINAL REMARKS

Although partially reflecting mirrors simulated by Dirac
0 point interactions [Eq. (1)] are naturally transparent at
high frequencies [Eq. (4)], the same is not valid [Eq. (9)] for
mirrors simulated by the Dirac § — & point interactions
modeled by (5). Moreover, for y = 0, the model (5) gives
scattering coefficients independent of the frequency
[Eq. (6)]. Since, for sufficiently high frequencies, a realistic
mirror is full transparent [1,8,21] and mirrors that violate
this property can, in some situations, lead to unphysical
predictions [22], in order to provide more realistic features
for 6 — & models, we proposed the Lagrangian given by
Eq. (22). This model (22), in the limit A — oo, provides the
coefficients (40) and (41) leading to full transparency in the
limit of high frequencies [Eq. (16)] (see also Fig. 1).
Considering a cavity formed by two of these § — & mirrors
[Eq. (44)], we investigated the behavior of the Casimir
force, comparing our results with the Casimir force
between partially reflecting mirrors modeled by (5) [19];
this can be visualized in the yA-plane shown in Fig. 3. In
this figure, we showed that the f-terms in the Lagrangian
(44) can change the sign of the Casimir force and can
increase or decrease the magnitude of the Casimir force, in
comparison with the case where f = 0. As the distance
between the mirrors increases, the Casimir force for f # 0
tends to the Casimir force for f = 0. Conversely, for the
distance decreasing, one may have discrepancies between
the Casimir force provided by both models (see Fig. 2).
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