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The dissipative dynamics of an expanding massless gas with constant cross section in a spatially flat
Friedmann-Lemaître-Robertson-Walker (FLRW) universe is studied. The mathematical problem of solving
the full nonlinear relativistic Boltzmann equation is recast into an infinite set of nonlinear ordinary
differential equations for the moments of the one-particle distribution function. Momentum-space
resolution is determined by the number of nonhydrodynamic modes included in the moment hierarchy,
i.e., by the truncation order. We show that in the FLRW spacetime the nonhydrodynamic modes decouple
completely from the hydrodynamic degrees of freedom. This results in the system flowing as an ideal fluid
while at the same time producing entropy. The solutions to the nonlinear Boltzmann equation exhibit
transient tails of the distribution function with nontrivial momentum dependence. The evolution of this tail
is not correctly captured by the relaxation time approximation nor by the linearized Boltzmann equation.
However, the latter probes additional high-momentum details unresolved by the relaxation time
approximation. While the expansion of the FLRW spacetime is slow enough for the system to move
towards (and not away from) local thermal equilibrium, it is not sufficiently slow for the system to actually
ever reach complete local equilibrium. Equilibration is fastest in the relaxation time approximation,
followed, in turn, by kinetic evolution with a linearized and a fully nonlinear Boltzmann collision term.
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I. INTRODUCTION

The Boltzmann equation is the main theoretical frame-
work for studying the dissipative out-of-equilibriumdynam-
ics of dilute gases. Within this approach, the transport and
thermodynamic properties of matter are understood in terms
of the one-particle distribution function whose phase-space
evolution is determined by the Boltzmann equation. The
physics and the mathematics involved in the nonrelativistic
Boltzmann equation have been thoroughly studied [1,2]
and, in certain limits, analytical solutions of this nonlinear
integro-differential equation are known.
For instance, Bobylev [3], Krook, and Wu (BKW) [4,5]

derived an exact solution of the Boltzmann equation that
describes the nonlinear relaxation of a nonexpanding,
nonrelativistic homogeneous gas with elastic cross section
inversely proportional to the relative speed. For this case it
was shown that a generic solution to the Boltzmann
equation can be obtained in terms of the moments of
the distribution function whose temporal evolution is
dictated by a coupled set of nonlinear ordinary differential
equations. A remarkable feature of the BKW solution is
the formation of transient high energy tails due to the
nonlinear mode-by-mode coupling among different
moments of the distribution function. These high energy
tails show how high energy moments of the distribution are
populated over time, a process that directly affects the

relaxation of the distribution function towards global
equilibrium.
The relativistic generalization of the Boltzmann equation

is an active topic of research that has applications in
different areas of physics, ranging from thermal field
theory [6–12] to high-energy nuclear collisions [13–24],
cosmology [25–30] and astrophysics [31–34]. A major
topic of interest in relativistic kinetic theory is to quantify
the role of nonlinear effects in rapidly expanding plasmas,
which requires a careful analysis of the type of interactions
between the constituent particles of the system that defines
the collision kernel. In practice, this kinetic equation is
solved numerically, although it is possible to find exact
solutions of the relativistic Boltzmann equation for highly
symmetric systems using the relaxation time approximation
as a model for the collision term [27,35–40] that describes
the relaxation of the system to its equilibrium state with a
single microscopic time scale. These exact solutions have
been extremely useful to understand certain features of
the thermalization process in relativistic gases while also
providing nontrivial ways to test the accuracy and precision
of numerical algorithms for solving the Boltzmann equa-
tion and macroscopic hydrodynamic approximations to the
microscopic kinetic evolution [36,37,40–43].
However, a complete understanding of the dissipative

dynamics of an expanding gas can only be achieved by
solving the full nonlinear Boltzmann equation which
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necessarily embodies an entire hierarchy of microscopic
relaxation time scales and includes mode-by-mode cou-
pling effects. For instance, it has been shown that nonlinear
effects play an important role in the hydrodynamization
process of the quark gluon plasma at weak coupling
[24,44–55] and in the reheating process of inflationary
cosmology [56–64]. While these effects have been studied
only numerically, it would be extremely useful to also
investigate the nonlinear out-of-equilibrium dynamics
of rapidly expanding systems analytically where this is
possible.
The first step towards this goal was taken in [65]

by recasting the general relativistic Boltzmann equation,
in a spatially homogeneous and isotropically expanding
Friedmann-Lemaître-Robertson-Walker (FLRW) universe,
in terms of ordinary nonlinear differential equations for the
energy moments of the distribution function. There these
moment equations were solved analytically for a very
specific far-from-equilibrium initial condition, and the
corresponding distribution function was found. This led
to a new class of analytical solutions of the relativistic
Boltzmann equation. Moreover, as observed in [65], the
symmetries of the FLRW spacetime restrict the energy
momentum tensor to ideal fluid form, whether or not the
system is in local thermal equilibrium. The macroscopic
hydrodynamic quantities (energy density, temperature, and
hydrodynamic flow) thus evolve according to the laws of
ideal fluid dynamics while the system, if initialized in a
nonequilibrium state, produces entropy. This provides an
explicit counter example to the folklore that a system
must be in local thermal equilibrium for the hydrodynamic
currents to exhibit ideal fluid behavior.
In this paper we obtain semianalytical (numerical) sol-

utions to the moment equations in FLRW spacetime for
various initial conditions, to arbitrary accuracy. These new
solutions are used to investigate the domain of applicability
of two widely used approximation schemes for the
Boltzmann equation: the linearized Boltzmann collision
term and the relaxation time approximation. Such a study
not only gives insight into the physical features neglected in
these two approximations but it also illustrates how mode-
by-mode nonlinear coupling dynamics manifests itself
within the relativistic Boltzmann equation.
This article is organized as follows: In Sec. II A we

briefly review some of the basic properties of the FLRW
metric and introduce our notation. In the rest of Sec. II
we provide a detailed derivation of the general method
that allows one to find exact solutions to the nonlinear
Boltzmann equation in the FLRW spacetime. We refer to
our previous result [65] in Sec. III where we rederive an
exact solution to the Boltzmann equation valid for a
specific far-from-equilibrium initial condition. We discuss
the entropy production of this system in Sec. IV.
Results from numerical studies involving the different
evolution schemes for the distribution function and the

mode-by-mode coupling effects are shown in Sec. V. A
summary of our findings and some general conclusions
are presented in Sec. VI. Some technical details of the
calculations can be found in the Appendixes.

II. EXACT SOLUTION OF THE BOLTZMANN
EQUATION IN AN FLRW SPACETIME

The existence and uniqueness of a solution to the
relativistic Boltzmann equation in the spatially flat FLRW
spacetime has been demonstrated in Refs. [66,67]. However,
until Ref. [65], no explicit analytical solution was known.
Building on the work performed in Ref. [65], we here
continue to study nonlinear effects in the Boltzmann
equation for an expanding gas of massless particles. Our
starting point is the Boltzmann equation for a relativistic
massless gas that expands isotropically and homogeneously
in a FLRW spacetime. We replace the Boltzmann equation
by an infinite hierarchy of equations for its moments—a set
of coupled ordinary differential equations for moments of
the distribution function. This hierarchy can then be solved,
for any initial condition and to an arbitrary precision, by
truncation at an appropriate order. Finally, the distribution
function may be reconstructed from the moments.

A. Notation and some properties
of FLRW spacetime

The FLRW metric is a solution to Einstein’s equations
describing a spatially homogeneous and isotropically
expanding universe [25,26,28,68]. For a spatially flat
universe the FLRW metric reads

ds2 ¼ dt2 − a2ðtÞγijdxidxj ð1Þ

where i; j ∈ f1; 2; 3g, γij is the spatial metric of the
three-dimensional space, and aðtÞ is a dimensionless scale
factor accounting for the expansion that is determined by
solving Einstein’s equations. The general form of γij
depends on the choice of coordinates; in this work, we
use spatial Cartesian coordinates, γij ¼ δij.

1 The determi-
nant of this metric is g≡ detðgμνÞ ¼ −a6ðtÞ such thatffiffiffiffiffiffi−gp ¼ a3ðtÞ.
The FLRW metric (1) is invariant under the following

transformation:

xi → xi=λ; aðtÞ → λaðtÞ; ð2Þ

1The FLRW metric (1) is not the most general metric for a
maximally symmetric space. For instance, in a spatially curved
3-space with constant Gaussian curvature K the line element of
FLRW spacetime is given in polar coordinates by

ds2 ¼ dt2 − a2ðtÞ
�

dr2

1 − Kr2
þ r2dΩ2

�
:
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and, due to this scaling symmetry, one can set aðt0Þ ¼ 1 at
the initial time t0 (which we choose as t0 ¼ 0). This will be
our boundary condition for the scaling factor.
We denote the scalar product between 4-vectors, aμ, bμ,

as a · b≡ aμbμ. For massless particles with 4-momentum

kμ, the on shell condition, k · k ¼ 0, yields k0¼
aðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1Þ2þðk2Þ2þðk3Þ2

p
where ðk1;k2;k3Þ≡ðkx;ky;kzÞ

is the usual 3-momentum, given by the spatial contra-
variant components of the 4-vector kμ. Following [69,70]
we find it convenient to express this instead in terms of
the magnitude k of a 3-vector k≡ ðk1; k2; k3Þ constructed
from the covariant spatial components ki of the
4-momentum, k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þ k23

p
. In terms of k the on

shell condition for massless particles reads

k0 ¼ k=aðtÞ: ð3Þ

This way of expressing k0 is rather convenient since, as we
shall see in the following section, the factor aðtÞ in Eq. (3)
will cancel in the exponent of the equilibrium Boltzmann
distribution function.
Furthermore, the Lorentz-invariant momentum space

integration measure in curved spacetime is [69,70]

ffiffiffiffiffiffi
−g

p
d4k≡ ffiffiffiffiffiffi

−g
p

dk0dk1dk2dk3 ¼ dk0dk1dk2dk3ffiffiffiffiffiffi−gp ; ð4Þ

while the Lorentz-covariant 3-momentum integration mea-
sure over on shell distributions can be written as

Z
k
≡

ffiffiffiffiffiffi−gp
ð2πÞ3

Z
2θðk0Þδðk · k −m2Þdk0dk1dk2dk3

¼
Z

dk1dk2dk3
ð2πÞ3k0 ffiffiffiffiffiffi−gp ≡ 1

ð2πaðtÞÞ3
Z

d3k
k0

; ð5Þ

where the last equality defines our notation d3k≡
dk1dk2dk3 in terms of the covariant spatial components
of the momentum four-vector. Using spherical coordinates,
this reduces for massless particles toZ

k
¼ 1

ð2πÞ3
Z

∞

0

kdk
a2ðtÞ

Z
dΩk; ð6Þ

with k as defined above.

B. The relativistic Boltzmann equation
in FLRW spacetime

The general relativistic Boltzmann equation for an on
shell single-particle distribution function fðx; kÞ is given
by [27,29,69,70]

kμðuμDþ∇μÞfðx; kÞ þ kλkμΓλ
μi
∂fðx; kÞ
∂ki ¼ C½f�; ð7Þ

where C½f� is the nonlinear collision term for binary
collisions, and Γλ

μν ¼ 1
2
gλγð∂μgγν þ ∂νgγμ − ∂γgμνÞ are the

Christoffel symbols. In (7) we have decomposed the space-
time derivative ∂μ into its temporal and spatial components
in the comoving frame, ∂μ ¼ uμDþ∇μ, with D≡ uν∂ν,
∇μ ≡ Δμν∂ν. Here, uμ ¼ ð1; 0; 0; 0Þ is the 4-velocity of the
comoving frame and Δμν ≡ gμν − uμuν the projection
operator onto the spatial components in this frame.2

The symmetries of the system restrict the number of
independent variables upon which the distribution function
can depend [35–39]. In our case, the homogeneity of the
FLRW spacetime (1) implies that, in the comoving frame,
the distribution function fðx; kÞ → fðt; kÞ is independent
of the spatial coordinates and is spherically symmetric in
momentum space [28,71]. For a general collision kernel,
we define the shorthand notation fkðtÞ≡ fðt; kÞ for the
distribution function and the Boltzmann equation in FLRW
spacetime thus reads3

ðu · kÞDfk ¼ C½f�; ð8Þ

where, in the comoving frame, u · k ¼ k0 ¼ k=aðtÞ.
For a single particle species with classical Boltzmann

statistics, the collision term C½f� takes the form [29]

C½f� ¼ 1

2

Z
k0pp0

Wkk0→pp0 ðfpfp0 − fkfk0 Þ; ð9Þ

whereWkk0→pp0 is the transition rate and
R
p is defined as in

Eq. (5) in terms of the covariant spatial components of the
momentum p in the comoving frame. The transition rate
can be written in terms of the differential cross section
σðs;ΘÞ as follows [29,69,70]:

Wkk0→pp0 ¼ sσðs;ΘsÞð2πÞ6
ffiffiffiffiffiffi
−g

p
δ4ðkþ k0 − p − p0Þ: ð10Þ

Here the total energy s and the scattering angle Θs are
given by

s ¼ ðkþ k0Þ · ðkþ k0Þ; cosΘs ¼
ðk − k0Þ · ðp − p0Þ
ðk − k0Þ · ðk − k0Þ :

ð11Þ

2Note that even though a fluid filling a FLRW universe
homogeneously is locally static, the expanding FLRW geometry
induces a nonzero fluid expansion rate θðtÞ≡ ∂μð ffiffiffiffiffiffi−gp

uμÞ=ffiffiffiffiffiffi−gp ¼ 3HðtÞ where g ¼ −a6ðtÞ is the determinant of the FLRW
metric and HðtÞ ¼ _aðtÞ=aðtÞ is the Hubble parameter.

3In the comoving frame the only nonzero Christoffel symbols
are Γ0

ij ¼ aðtÞ _aðtÞδij and Γi
0j ¼ δijHðtÞ. For the FLRW space-

time, the term in (7) involving the Christoffel symbols thus
cancels exactly:

kλkμΓλ
μi
∂fk
∂ki ¼ ðΓ0

ji þ gljΓl
0iÞk0kj

∂fk
∂ki ¼ 0:
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The transition rate Wkk0→pp0 in (10) is a Lorentz scalar
and obeys the detailed balance and crossing symmetries
Wkk0→pp0 ¼ Wpp0→kk0 ¼ Wkk0→p0p [29,72].
For simplicity we here assume isotropic scattering,

i.e., the differential cross section depends only on s.
Then we can express the transition rate through the
total cross section σTðsÞ≡π

R
dΘssinΘsσðs;ΘsÞ,4 and the

Boltzmann equation in the FLRW spacetime (8) can be
written as

ðu · kÞDfk ¼ Cgain − Closs; ð12Þ
with the gain and loss terms

Cgain ¼
ð2πÞ5
2

Z
k0pp0

sσTðsÞ
ffiffiffiffiffiffi
−g

p
δ4ðkþ k0 − p − p0Þfpfp0 ;

ð13aÞ

Closs ¼
ð2πÞ5
2

Z
k0pp0

sσTðsÞ
ffiffiffiffiffiffi
−g

p
δ4ðkþ k0 − p − p0Þfkfk0 :

ð13bÞ

In the following subsections we replace all of the physical
information contained in the Boltzmann equation (a non-
linear integro-differential equation for the distribution
function fk) by a set of equations for the energy moments
of the distribution function.

C. Normalized energy moments
and their evolution equations

We define the energy moments ρn of the distribution
function as follows5:

ρnðtÞ ¼
Z
k
ðu · kÞnþ1fk ¼

1

2π2

Z
∞

0

dkknþ2

anþ3ðtÞ fk: ð14Þ

The positivity of the distribution function implies that
ρnðtÞ ≥ 0. The number and energy densities are given by
ρ0ðtÞ and ρ1ðtÞ, respectively. The higher-order moments
ρn≥2ðtÞ do not have an intuitive macroscopic interpretation
but are needed to resolve additional microscopic details of
the system. Moments of lower order n correspond to softer
momentum modes (longer wavelengths) while moments of
higher-order probe the short wavelength structure of the
local distribution function.
The collision kernel in (9) conserves particle number,

energy, and momentum. In an FLRW spacetime the

corresponding moments ρ0ðtÞ and ρ1ðtÞ evolve by the
following equations [68]:

Dρ0ðtÞ þ 3ρ0ðtÞHðtÞ ¼ 0; ð15aÞ

Dρ1ðtÞ þ 4ρ1ðtÞHðtÞ ¼ 0: ð15bÞ

Equations (15) follow from Einstein’s equations for a
homogeneous and isotropic fluid in an FLRW metric.
They correspond to the equations of motion of an ideal
fluid, dμj

μ
μ ¼ dμTμν ¼ 0 (where dμ denotes the covariant

derivative), with particle current jμðtÞ ¼ nðtÞuμ and
energy-momentum tensor TμνðtÞ ¼ eðtÞð4

3
uμuν − 1

3
gμνÞ.

Equations (15) are solved by

ρ0ðtÞ ¼
n0

a3ðtÞ ¼
1

a3ðtÞ
λ0T3

0

π2
; ð16aÞ

ρ1ðtÞ ¼
e0

a4ðtÞ ¼
1

a4ðtÞ
3λ0T4

0

π2
; ð16bÞ

where n0 ≡ ρ0ð0Þ and e0 ≡ ρ1ð0Þ are the initial particle and
energy densities, and T0 and λ0 are the initial temperature
and fugacity assigned to the system. The temperature and
fugacity of our nonequilibrium system are obtained from
the matching conditions

ρ0ðtÞ ¼ neqðtÞ ¼ λðtÞT3ðtÞ
π2

; ð17aÞ

ρ1ðtÞ ¼ eeqðtÞ ¼ 3λðtÞT4ðtÞ
π2

: ð17bÞ

By comparing Eqs. (16) and (17) we find λ ¼ constant
and TðtÞ ¼ T0=aðtÞ, such that the local equilibrium dis-
tribution function has the following form [remember that
u · k ¼ k=aðtÞ in the comoving frame]

feqk ¼ λðtÞe−u·k=TðtÞ ¼ λe−k=T0 : ð18Þ

One sees that, when feqk is expressed in terms of the
magnitude k of the covariant spatial components of the
momentum four-vector, its dependence on aðtÞ completely
cancels (hence feqk is time independent).6 For later

4Note that, due to the indistinguishability of the two particles,
we integrate here only over half the solid angle, i.e., over 2π.

5In kinetic theory, it is usually assumed that the distribution
function fk belongs to the Hilbert space L2ð0;∞Þ, i.e., the space
of square-integrable functions defined in the interval k ∈ ð0;∞Þ
[3,29,73]. In this case, it is then guaranteed that the moments ρn
(14) are finite.

6The physics of this is the following [26,68]: A comoving
observer defines the physical 3-momentum of a massless particle
via the energy-momentum relation k0 ¼ Ephys ¼ jkphysj. The
discussion in Sec. II A shows that this physical 3-momentum
kphys is related to the covariant spatial components of the
momentum 4-vector by kphys ¼ k=aðtÞ, and its magnitude
kphys is related to the magnitude k of the covariant components
of the momentum four-vector by kphys ¼ k=aðtÞ. Hence k=T0 ¼
kphys=TðtÞ ¼ Ephys=TðtÞ where TðtÞ ¼ T0=aðtÞ is the cosmologi-
cally redshifted temperature of the expanding FLRW universe as
seen by the comoving observer.
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convenience we also introduce the energy moments of the
equilibrium distribution function

ρeqn ðtÞ≡
Z
k
ðu · kÞnþ1feqk ðtÞ ¼

ðnþ 2Þ!
2π2

λTnþ3ðtÞ: ð19Þ

We now use the Boltzmann equation to derive the set of
equations of motion satisfied by the energy moments
ρnðtÞ. To this end we apply the comoving time derivative
D to the definition of ρn and substitute the resulting time
derivative of the distribution function Dfk from Eq. (12).
This results in the following evolution equation for the
moments ρn:

DρnðtÞ þ ð3þ nÞHðtÞρnðtÞ ¼ CðnÞgainðtÞ − CðnÞlossðtÞ; ð20Þ

where the nth moments of the loss and gain terms, CðnÞloss

and CðnÞgain, respectively, are given by the following
expressions:

CðnÞloss ¼
ð2πÞ5
2

Z
kk0pp0

sσTðsÞðu · kÞn

×
ffiffiffiffiffiffi
−g

p
δ4ðkþ k0 − p − p0Þfkfk0 ; ð21aÞ

CðnÞgain ¼
ð2πÞ5
2

Z
kk0pp0

sσTðsÞðu · pÞn

×
ffiffiffiffiffiffi
−g

p
δ4ðkþ k0 − p − p0Þfkfk0 : ð21bÞ

For an energy independent total cross section σTðsÞ ¼
const (“hard sphere approximation”) the integrals in
Eq. (21) can be done analytically (see Appendix A),
with the result

CðnÞlossðtÞ ¼ σTρnðtÞρ0ðtÞ; ð22aÞ

CðnÞgainðtÞ ¼ 2σT
Xn
m¼0

ðnþ 2Þn!
ðmþ 2Þ!ðn −mþ 2Þ! ρn−mðtÞρmðtÞ:

ð22bÞ

Substituting these results in Eq. (20) one obtains the
following set of coupled evolution equations for themoments
ρn, which is equivalent to the Boltzmann equation:

DρnðtÞ þ ð3þ nÞHðtÞρnðtÞ þ σTρ0ðtÞρnðtÞ

¼ 2σT
Xn
m¼0

ðnþ 2Þn!
ðmþ 2Þ!ðn −mþ 2Þ! ρn−mðtÞρmðtÞ: ð23Þ

The conservation laws (15) are recovered by setting n ¼ 0
and n ¼ 1, respectively.

Defining the normalized moments

MnðtÞ ¼
ρnðtÞ
ρeqn ðtÞ ; ð24Þ

and substituting them into Eq. (23) one obtains a similar
infinite nonlinear hierarchy of coupled ordinary differential
equations for the Mn moments:

a3ðt̂Þ∂ t̂Mnðt̂Þ þMnðt̂Þ ¼
1

nþ 1

Xn
m¼0

Mmðt̂ÞMn−mðt̂Þ: ð25Þ

Here we defined the dimensionless time variable t̂ ¼ t=l0

where l0 ¼ 1=ðσTn0Þ is the mean free path at t ¼ 0.
The solution of this infinite set of nonlinear coupled

differential equations (25) contains the same physical
information as the original Boltzmann equation. At the
level of moments, the nonlinear dependence of the collision
kernel on the distribution function is encoded in the mode-
by-mode coupling between moments of different order,
as seen on the rhs of Eq. (25). The conservation laws (15)
together with the matching conditions imply that the only
nonevolving moments are M0ðt̂Þ and M1ðt̂Þ

M0ðt̂Þ ¼ M1ðt̂Þ ¼ 1 for all t̂: ð26Þ

It is convenient to further express the time dependence of
the moments in terms of the variable

τðt̂Þ ¼
Z

t̂

t̂0

dt̂0

a3ðt̂0Þ ð27Þ

since it absorbs all the information about the expansion of
the Universe [i.e., the scale parameter aðt̂Þ]. In this case, the
hierarchy of moment evolution equations (25) becomes

∂τMnðτÞ þMnðτÞ ¼
1

nþ 1

Xn
m¼0

MmðτÞMn−mðτÞ: ð28Þ

Interestingly enough, this equation exactly coincides with
the moment equation originally derived by Bobylev [3],
Krook, and Wu [4,5] for a nonrelativistic, spatially homo-
geneous and isotropic, nonexpanding gas [see Eq. (35) in
Ref. [5]]. The fact that the nonequilibrium dynamics of
both physical systems is governed by the same moment
equations is intriguing since the underlying symmetries of
the two problems are quite different. BKW’s derivation is
based on Galilean invariance while ours is embedded into
general relativity. One should note, however, that the
relation between the moments Mn and the distribution
function fk differs in the two cases: Equations (14) and (24)
here are replaced in the nonrelativistic case by Eqs. (18) and
(21) in Ref. [5].
Let us mention some important properties of the moment

equations (28). First, the equation of motion (28) implies
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that if Mnð0Þ > 0 for all n [which is true for any positive
definite initial distribution function fkð0Þ] then MnðτÞ will
remain positive for τ ≥ 0. Equation (28) shows that the nth
moment couples only to moments of the same or lower
order. Therefore, for a given set of initial values for the
moments Mnð0Þ [or a given initial distribution function
fkð0Þ] we can express the solution MnðτÞ by a recursive
procedure in terms of the solutions MmðτÞ of lower order
moments m < n. This can be seen explicitly by writing the
general solution of Eq. (28) formally as

MnðτÞ ¼ Mnð0Þe−ωnτ

þ 1

nþ 1

Xn−1
m¼1

Z
τ

0

dτ0eωnðτ0−τÞMmðτ0ÞMn−mðτ0Þ;

ð29Þ

where

ωn ¼ 1 −
2

nþ 1
¼ n − 1

nþ 1
: ð30Þ

If rotational symmetry is broken, the evolution equation
for Mn includes additional couplings to moments of
order m > n, rendering a recursive solution impossible
[29,46,74–76].
At sufficiently large times τ all momentsMnðτÞ approach

unity, independently of their initial condition. This
can be seen explicitly by finding the fixed points of the
set of Eqs. (28), i.e., by studying the condition
∂τMnðτÞjτ¼τmax

¼ 0, where τmax ¼ limt̂→∞τðt̂Þ. When
imposing this condition on Eq. (28) we obtain the following
recursion relation:

MnðτmaxÞ ¼
1

n − 1

Xn−1
m¼1

MmðτmaxÞMn−mðτmaxÞ: ð31Þ

This algebraic equation can be solved recursively as
follows: the matching conditions that define temperature
and fugacity impose that M0ðτmaxÞ ¼ M1ðτmaxÞ ¼ 1. This
gives immediately M2ðτmaxÞ ¼ 1 for n ¼ 2. Induction
shows that if MmðτmaxÞ ¼ 1 for m < n then also
MnðτmaxÞ ¼ 1 and, consequently, the stationary point of
(28) is given uniquely byMnðτmaxÞ ¼ 1, for all values of n.
In an FLRW universe, the Boltzmann equilibrium distri-
bution is therefore the only fixed point of the Boltzmann
equation. This analysis does not tell us whether or not the
fixed point is an attractor; however, the validity of the
H-theorem in FLRW spacetime [28] necessarily guarantees
that the equilibrium is stable. The numerical simulations
reported below show that the equilibrium distribution is a
stable (attractive) fixed point of Eq. (12).

D. Reconstructing the distribution function
from Laguerre moments

So far, the solution of the Boltzmann equation, fkðτÞ,
has been viewed as a function of the normalized energy
moments MnðτÞ. In practice it is, however, easier to
reconstruct the distribution function from its moments
if one uses a different set of moments, defined through a
basis of orthogonal polynomials [74]. In this paper we use
the Laguerre basis [46] (see Appendix B) in which the
distribution function can be written as

fkðτÞ ¼ feqk
X∞
n¼0

cnðτÞLð2Þ
n

�
u · k
TðτÞ

�
; ð32Þ

where the Laguerre moments cnðτÞ are given by

cnðτÞ ¼
2

ðnþ 1Þðnþ 2Þ
1

ρ0ðτÞ
Z
k
ðu · kÞLð2Þ

n

�
u · k
TðτÞ

�
fk

¼
Xn
r¼0

ð−1Þr
�
n

r

�
MrðτÞ: ð33Þ

The second equality in this equation makes use of the
closed form (B1) of the Laguerre polynomials. For the
Laguerre moments the particle number and energy con-
servation laws imply that

c0ðτÞ ¼ 1; c1ðτÞ ¼ 0 for all τ ð34Þ

[see Eq. (26)]. The relation between cn and Mn can be
inverted with the help of the binomial inverse transforma-
tion identity [77]

MnðτÞ ¼
Xn
r¼0

ð−1Þr
�
n

r

�
crðτÞ: ð35Þ

In Appendix C we show that the Laguerre moments cn
obey exactly the same hierarchy of coupled ordinary
differential equations as the normalized moments Mn

∂τcnðτÞ þ cnðτÞ ¼
1

nþ 1

Xn
m¼0

cmðτÞcn−mðτÞ: ð36Þ

Only the initial conditions look different when expressed in
terms of Mn or cn.
The structure of these equations has an interesting

feature: since the right-hand side couples only to moments
of lower order, one cannot generate low-order moments
dynamically from higher-order ones. If initially all
Laguerre moments up to order nmin vanish such that
cnmin

is the lowest nonvanishing moment at τ ¼ 0, it will
remain the lowest nonvanishing moment at all times.
This is useful when reconstructing the distribution
function. Additionally, we note that the approach to thermal

BAZOW, DENICOL, HEINZ, MARTINEZ, and NORONHA PHYSICAL REVIEW D 94, 125006 (2016)

125006-6



equilibrium fk → feqk is characterized by MnðτÞ → 1 for
all n and, consequently, cnðτÞ → δn0. Also, using that
c0ðτÞ ¼ 1 and c1ðτÞ ¼ 0 one finds that (36) can be
rewritten as

∂τcnðτÞ þ ωncnðτÞ ¼
1

nþ 1

Xn−2
m¼2

cmðτÞcn−mðτÞ; ð37Þ

which will be useful in the next section when we discuss the
linearized approximation for the collision kernel.
Similar to the generic solution for the normalized energy

moments Mn (29), for n ≥ 2 Eq. (37) admits a solution
which for generic initial conditions reads as

cnðτÞ ¼ cnð0Þe−ωnτ

þ 1

nþ 1

Xn−2
m¼2

Z
τ

0

dτ0eωnðτ0−τÞcmðτ0Þcn−mðτ0Þ: ð38Þ

The first term on the rhs corresponds to the linear con-
tribution from the collision term [cf. Eq. (45) in the
following subsection] and decays exponentially with a rate
ωn that increases with n according to Eq. (30). The
nonlinear second term describes the mode-by-mode cou-
pling of cn with moments of lower order. For small
deviations from equilibrium (cn ≪ 1 for all n ≠ 0, 1) the
linear, exponentially decaying terms dominate the dynami-
cal evolution of the distribution function. For initially large
deviations from equilibrium, however, no general statement
can be made as to which of the two terms (linear or
nonlinear) controls the evolution at early times. Bounds on
the nonlinear contribution to the generic solution of the
Laguerre moments have been discussed for nonrelativistic
systems [78]. As we will see further below, at late times all
cn eventually become small, and the remaining evolution is
then controlled by the linear first term in Eq. (38), i.e., if τl
is large enough the moments cn relax for τ > τl exponen-
tially with rate ωn, cnðτ > τlÞ ≈ cnðτlÞe−ωnðτ−τlÞ.
In addition to the particle number and energy conserva-

tion laws c0ðτÞ ¼ 1 and c1ðτÞ ¼ 0, Eq. (38) yields the
following exact solutions for the lowest order Laguerre
moments (shown here up to n ¼ 5):

c2ðτÞ ¼ c2ð0Þe−ω2τ; c3ðτÞ ¼ c3ð0Þe−ω3τ;

c4ðτÞ ¼ c4ð0Þe−ω4τ þ 3c22ðτÞ½e−ðω4−2ω2Þτ − 1�;
c5ðτÞ ¼ c5ð0Þe−ω5τ þ 2c2ðτÞc3ðτÞ½e−ðω5−ω2−ω3Þτ − 1�:

ð39Þ

One can see that mode-by-mode coupling among the
Laguerre moments may start already at n ¼ 4, while for
n < 4 the moments are either linear or completely deter-
mined by conservation laws. Another interesting feature of
(36) is related to parity: if initially all the moments of fk

with odd Laguerre polynomials vanish, c2nþ1ð0Þ ¼ 0, the
recursive nature of (36) implies that this remains true at
all times: c2nþ1ðτÞ ¼ 0 ∀ t. The same does not hold for
initial conditions that have nonzero moments only with
odd Laguerre polynomials. In this case, even Laguerre
moments will in general be generated dynamically by
mode-coupling between odd Laguerre moments, e.g.
c6ðτÞ ¼ 1

2
c23ðτÞðe2τ=7 − 1Þ. This requires the full nonlinear

collision term and hence does not happen when the latter is
linearized as in the following subsection.
Finally, one sees from Eq. (32) that the distribution

function at zero momentum fðτ; 0Þ is finite at all times as
long as the sum of the Laguerre moments remains finite.
We will see later that at large times all Laguerre moments
approach zero exponentially, rendering mode-coupling
terms negligible for τ ≫ 1. However, mode-coupling
effects may be important if initial conditions are such that
nonlinear terms, such as c2ðτÞ2e−ðω4−2ω2Þτ in (39), become
of the same order as the linear contributions, in this case
∼c4ð0Þe−ω4τ. So while the moments decay exponentially at
long times, their amplitudes in general still contain infor-
mation about the nonlinear mode coupling at early times
that cannot be obtained in linearized approaches such as the
ones discussed in the next two subsections.

E. Moment evolution for a linearized
Boltzmann collision term

Systems not too far from local thermal equilibrium can
be described macroscopically using viscous hydrodynam-
ics. To derive such hydrodynamic equations from the
underlying Boltzmann equation one expands the distribu-
tion around the local equilibrium one, fk ¼ feqk þ δfk, and
linearizes the Boltzmann equation in δfk. When represent-
ing the Boltzmann equation in terms of moments, this
procedure corresponds to a linearization of the moment
equations around the equilibrium values of the moments
Mn ¼ 1 and cn ¼ δn0, respectively,

Mn ≈Mlin
n ¼ 1þ δMn; ð40Þ

cn ≈ clinn ¼ δn0 þ δcn; ð41Þ

with δM0 ¼ δM1 ¼ δc0 ¼ δc1 ¼ 0 due to particle and
energy conservation. The corresponding linearized moment
evolution equations, obtained from (28) and (37), read

∂τδMnðτÞ þ ωnδMnðτÞ ¼
2

nþ 1

Xn−1
m¼2

δMmðτÞ; ð42Þ

∂τδcn þ ωnδcn ¼ 0; ð43Þ

with ωn given by Eq. (30). It is easy to check that these
linearized equations respect the relations (33) and (35), to
linear order.
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The general solution of Eq. (42) is

δMnðτÞ¼δMnð0Þe−ωnτþ 2

nþ1

Xn−1
m¼2

Z
τ

0

dτ0eωnðτ0−τÞδMmðτ0Þ;

ð44Þ

while Eq. (43) is simply solved by

δcnðτÞ ¼ e−ωnτcnð0Þ: ð45Þ

These equations apply to moments with n ≥ 2. One sees
that, in contrast to the linearized energy moments, the
equations of motion for the linearized Laguerre moments
decouple, i.e., the moments δcn are eigenfunctions of the
linearized collision operator with eigenvalues (decay
rates) ωn. The mode with the longest lifetime is the first
nonhydrodynamic7 mode, n ¼ 2, with τ2 ¼ 1=ω2 ¼ 3. As
already noted, the decay rates increase with n, approaching
unity for n → ∞.
We can combine Eq. (45) with Eq. (35) to obtain the

following alternate solution of the linearized energy
moments (44):

δMnðτÞ ¼
Xn
r¼2

ð−1Þr
�
n

r

�
crð0Þe−ωrτ: ð46Þ

This form shows that, at asymptotically long times, the
exponential decay of allMn moments is controlled by cnmin

,
i.e., by the lowest initially nonvanishing Laguerre moment
which has the smallest damping rate ωnmin

.
With the solution (45) of the linearized moment equa-

tions one finds the solution of the linearized Boltzmann
equation8 for the distribution function as follows [see
Eq. (32)]:

flink ðτÞ ¼ feqk

�
1þ

X∞
m¼2

cmð0Þe−ωmτLð2Þ
m

�
k
T0

��
: ð47Þ

F. Moment evolution in the relaxation
time approximation

Due to its simplicity, one of the most widely employed
models for the collision term is the relaxation time
approximation (RTA) [79]. For our relativistic system it
reads [80]

C½f� ¼ −
u · k
τrelðtÞ

½fkðtÞ − feqk �; ð48Þ

where τrel is the scale at which the distribution function
relaxes to its local equilibrium state. For the FLRW
universe, the RTA Boltzmann equation is [27,28]

∂tfkðtÞ ¼ −
fkðtÞ − feqk

τrelðtÞ
; ð49Þ

where according to Eq. (18), feqk is time independent.
In general, the expression for the relaxation time τrel

varies according with the physical process one wants to
investigate. For instance, the typical time scale for energy
and momentum transport in the shear and bulk channels of
relativistic fluids are in general different (this is the case in
weak coupling QCD [81]). A physical prescription must be
given in order to meaningfully compare results compared
within RTA and other evolution schemes. In this paper we
choose to define τrel in such a way that the shear viscosity
to entropy density ratio of the gas, η=s, computed within
RTA agrees with the result found using the full Boltzmann
equation for massless particles with constant cross sec-
tion [46]. This condition fixes

τrelðt̂Þ ¼ αa3ðt̂Þl0 ð50Þ

with α ¼ 1.58375.9 In this case, RTA Boltzmann equation
becomes

α∂τfkðτÞ ¼ feqk − fkðτÞ; ð52Þ

which is easily solved analytically

fRTAk ðτÞ ¼ feqk þ e−τ=αðfkð0Þ − feqk Þ; ð53Þ

where fkð0Þ is the distribution function at τ ¼ 0.
Substituting this solution into the expression for the
energy and Laguerre moments of the distribution function,
we obtain the following analytic expressions for these
quantities:

cRTAn ðτÞ ¼ cnð0Þe−τ=α; ð54Þ

MRTA
n ðτÞ ¼ 1þ e−τ=αðMnð0Þ − 1Þ: ð55Þ

As before, we have MRTA
0 ¼ MRTA

1 ¼ cRTA0 ð0Þ ¼ 1 and
cRTA1 ¼ 0 for all τ, due to the conservation laws.

7A nonhydrodynamic mode relaxes within a time scale that
remains finite in homogeneous systems, in contrast to hydro-
dynamic modes such as sound waves.

8In practice, in numerical calculations one truncates the infinite
sums by defining a maximum number of terms nmax.

9The relaxation time was calculated from the Boltzmann
equation for massless particles interacting with constant isotropic
cross section in Refs. [46,82]

τrel ¼
5

4

η

ρeq0 ðtÞTðtÞ
: ð51Þ

Here η ¼ 1.267T=σT is the shear viscosity. Eq. (50) is obtained
by using this value of η together with ρeq0 ðtÞ ¼ n0=a3ðtÞ in (51).
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Whereas for the linearized collision term studied in the
preceding subsection each moment cn relaxes with its
own decay rate ωn ¼ ðn − 1Þ=ðnþ 1Þ, we see that the
RTA collision term causes all of them to relax at the same
decay rate 1=α. Since in the RTA the collision term is
characterized by the single time scale τrel, this is perhaps
not unexpected. On the other hand, linearizing the full
Boltzmann collision term still leaves us with an infinite
hierarchy of collision time scales, causing each of the
Laguerre moments δcn (45) to decay at its own rate ωn.
One sees that by requiring η=s computed in RTA to match
the result from the full Boltzmann equation, the decay
rate in RTA 1=α ∼ 0.631413 comes to lie in between ω4

and ω5.
We will show numerical comparisons between the

solutions of the full nonlinear Boltzmann equation, its
linearized form, and the RTA later in Sec. V. In the
following section, however, we first use the methods
developed in this section to rederive the exact analytical
solution of the nonlinear Boltzmann equation presented in a
previous publication [65].

III. AN EXACT ANALYTIC SOLUTION OF THE
BOLTZMANN EQUATION WITH NONLINEAR

COLLISION KERNEL

A. τ-evolution of the distribution function
and its moments

One can see by inspection that Eq. (28) admits the
following analytic solution of BKW type, valid for all
n ≥ 0 and τ ≥ 0 [65]:

MnðτÞ ¼ nKn−1ðτÞ − ðn − 1ÞKnðτÞ; ð56Þ

KðτÞ ¼ 1 −
1

4
e−τ=6: ð57Þ

Inserting the moments above into Eq. (33) gives the
corresponding analytic solution of Eq. (36) for the
Laguerre moments,10

cnðτÞ ¼ ð1 − nÞð1 −KðτÞÞn ¼ cnð0Þe−nτ=6; ð59Þ

where the initial values for the Laguerre moments are

cnð0Þ ¼
1 − n
4n

; ð60Þ

which can be obtained from the initial condition for the
energy moments in (56)

Mnð0Þ ¼
�
3

4

�
n
�
1þ n

3

�
: ð61Þ

In Ref. [65] we noted that the Fourier transform of the
distribution function can be expressed in terms of the
normalized energy moments and used this to construct
the corresponding exact analytic solution for the distri-
bution function from Mn as given in (56). This method is
generalizable to any solution of the Boltzmann equation
whose Fourier transform exists. Here we rederive the
same analytic solution for fk from the Laguerre moments,
using the orthogonality and completeness of the Laguerre
polynomials. Inserting the analytic solution (59) for the
Laguerre moments into the decomposition (32) and using
the relations (B3) and (B4) listed in Appendix B we
obtain

fkðτÞ ¼ feqk
X∞
n¼0

ð1 − nÞð1 −KðτÞÞnLð2Þ
n ðk=T0Þ

¼ λe−k=ðKðτÞT0Þ

K4ðτÞ
�
4KðτÞ − 3þ k

KðτÞT0

ð1 −KðτÞÞ
�
:

ð62Þ

This agrees with Eq. (22) in [65]. This analytic solution
of the nonlinear Boltzmann equation is obtained for the
following far-from-equilibrium initial conditions for the
distribution function (with energy and Laguerre moments
given in (60), (61):

fkð0Þ ¼ λ
256

243

�
k
T0

�
exp

�
−
4

3

k
T0

�
; ð63Þ

The out-of-equilibrium initial condition in (63) gives the
opportunity to study how different approximations for
the collision kernel affect the behavior of the Laguerre
moments in an analytical manner. While all the evolution
schemes correctly give exponentially decaying cn’s, for
the RTA solution in (55) all the moments decay with the
same scale 1=α (given by the choice for the relaxation
time). In the solution for the Laguerre moments obtained
by linearizing the collision kernel in (45) each moment
decays exponentially at a distinct rate given by the
eigenvalues of the collision operator, which should be
in general a much better approximation to the multi time
scale solution of the full nonlinear case in Eq. (59). We
note, however, that for the exact solution studied in this
section, the linearized collision kernel approach consid-
erably underestimates the decay rates of the moments in
which n is large. This occurs because for the linearized
moments (45) one finds limn→∞cnðτÞ=cnð0Þ ¼ e−τ while

10This makes use of the combinatorial identityXn
r¼0

ð−1Þr
�
n
r

�
½rxr−1 − ðr − 1Þxr� ¼ ð1 − nÞð1 − xÞn: ð58Þ
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taking the same large n limit in (59) gives
limn→∞cnðτÞ=cnð0Þ ¼ limn→∞e−nτ=6 → 0.11

In Fig. 1 we show the evolution of the normalized
moments Mn (56) (left panel) and the Laguerre moments
cn (59) (right panel) as a function of the dimensionless
variable τ. At τ ¼ 0 the normalized momentsMn decrease
monotonically with increasing n. This means that the
softest modes of the system are initially more strongly
populated than the harder ones, albeit not thermally
equilibrated (i.e., they are < 1). The initial values for
the Laguerre moments cn (59) are negative and increase
(i.e., their magnitude decreases) with increasing n. Both
Mn and cn are seen to increase monotonically with time
τ (i.e., the magnitudes of cn decrease monotonically),
approaching their equilibrium values 1 and 0, respec-
tively, at τ → ∞.
This is more clearly seen in Fig. 2 where we plot the ratio

Fðτ; k=T0Þ ¼ fkðτÞ=feqk between the out-of-equilibrium
solution (62) and its equilibrium value as a function of
k=T0 for different values of τ. This ratio measures the
deviation of the system from local equilibrium. At τ ¼ 0
moderately soft modes with momenta 1.5≲ k=T0 ≲ 5 are
overpopulated while the longest and shortest wavelength
modes k=T0 < 1.5 and k=T0 > 5 are underpopulated.
As time proceeds the distribution function approaches

equilibrium: the initial overpopulation at intermediate
momenta quickly decreases, filling in first the “hole” at
small momenta and only later the strong initial depletion at

large momenta. At τ ¼ 12 the distribution function is
seen to be essentially thermalized up to k≳ 5T0, with
a residual depletion of the high-momentum tail that
increases with k.
Thermalization of the high-momentum modes appears to

require transporting energy from low to high momenta,
similar to the “bottom-up” scenario in QCD [83] where
interactions between the hard modes and the thermal bath
created by the soft modes allows the system to eventually
reach global thermal equilibrium asymptotically. The main
difference between the QCD case and the one at hand is that
in the former the high-momentum modes are initially
overoccupied whereas here the initial conditions of the
analytic solution imply an initial underpopulation at high
momenta. We will see in Sec. V that the relatively slow
thermalization of the high-momentum part of the distribu-
tion function arises from mode-by-mode-coupling effects
characteristic of the nonlinear Boltzmann collision term
with its broad spectrum of microscopic relaxation time
scales. This feature is not shared by the relaxation time

(a) (b)

FIG. 1. Evolution of the normalized moments Mn (56) [panel (a)] and the Laguerre moments cn (59) [panel (b)] as a function of the
dimensionless time variable τ.

FIG. 2. Ratio between the out-of-equilibrium solution (62) and
the equilibrium distribution as a function of k=T0.

11Note that Eq. (59) implies that for this exact analytical
solution all modes with n > 6 decay faster than any of the
eigenmodes ωn of the linearized collision operator, even at
late times when all deviations from equilibrium cn (n ≥ 2) are
small. This exemplifies to the extreme the consequences of
nonlinear mode-coupling effects in the full Boltzmann
collision operator. By linearizing the collision operator one loses
essential information that is needed to describe correctly the
dynamical evolution of the Laguerre moments for the exact
solution (59), (60).
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approximation where collisions are controlled by a single,
common, relaxation time.

B. A finite τ-horizon caused by cosmic expansion

In the previous sections it was convenient to use the
dimensionless variable τ [defined in Eq. (27)] as a
timelike parameter in the evolution equations for the
moments Mn and cn. This was a key ingredient in
demonstrating the relation between our approach and
the BKW solution. In this subsection we translate the
results obtained so far back into the original coordinate
system, using the time variable t.
The dynamics of the cosmic expansion is encoded in the

scale factor aðtÞ of the FLRW metric (1). Its functional
form is determined from Friedmann’s equation and
depends on the equation of state [25,26,28]. For a con-
formal equation of state consistent with our study of
massless particles, the exact solution for the scale factor
aðtÞ defined in Eq. (1) reads [25,26]

aðt̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ brt̂

p
; br ¼ 2H0

ffiffiffiffiffiffi
Ωr

p
; ð64Þ

where H0 is the Hubble parameter evaluated at the initial
time t̂0 ¼ 0 and Ωr is the dimensionless density parameter
associated with radiation. Equation (27) then relates τ
with t as follows:

τ ¼ 2

br
ð1 − ðbrt̂þ 1Þ−1

2Þ: ð65Þ

This implies that the infinite t interval 0 ≤ t̂ < ∞ is
mapped on a finite τ interval 0 ≤ τ ≤ τmax where

τmax ¼ lim
t̂→∞

τðt̂Þ ¼ 2

br
: ð66Þ

Consequently, the limit of perfect local thermalization of
the distribution function at τ → ∞ is never reached: while
(in contrast to the Gubser expansion studied in the context
of relativistic heavy-ion collisions [36,37,84]) a massless
gas in equilibrium in FLRW spacetime would remain so
despite the expansion of the Universe, its cosmic expansion
is not slow enough to allow the system to ever reach
complete local thermal equilibrium if it is initially out of
equilibrium, fkð0Þ ≠ feqk . Instead, the system approaches a
quasistationary off-equilibrium state characterized by the
distribution

lim
t̂→∞

fkðt̂Þ ¼ fkðτmaxÞ

¼ λe−k=T lim

K4
max

�
4Kmax − 3þ k

T lim
ð1 −KmaxÞ

�
:

ð67Þ

Here we defined the “limiting temperature” T lim ¼ KmaxT0,
withKmax ¼ 1 − 1

4
exp ½−τmax=6�.12 Figure 2 shows that this

spectrum is suppressed at high momenta relative to the
asymptotic thermal distribution λ expð−k=T0Þ. The large-k
tail of the distribution is essentially exponential, with
inverse slope parameter starting at 3

4
T0 at time t̂ ¼ 0 and

increasing with time until it reaches T lim ¼ KmaxT0 at time
t̂ → ∞:Kmax approaches 1 as the initial Hubble constant
(initial cosmic expansion rate) H0 approaches zero.

IV. ENTROPY PRODUCTION BY
NONHYDRODYNAMIC MODES

The entropy density current Sμ defined in terms of the
single particle distribution function in FLRW

Sμ ≡ −
Z
k
kμfkðln fk − 1Þ ð68Þ

obeys Boltzmann’s H-theorem [28], i.e., dμSμ ≥ 0, with the
equality only being satisfied in equilibrium. Because of the
symmetries of FLRW, one can write Sμ ¼ suμ with

s ¼ −
Z
k
ðu · kÞfkðln fk − 1Þ ð69Þ

being the entropy density. Defining S ¼ a3s and noticing
that a6dμSμ ¼ ∂τS, we find [using the decomposition (32)]

∂τS ¼ −
n0
2

X∞
n¼2

hnðτÞ∂τcnðτÞ; ð70Þ

where

hnðτÞ ¼
Z

∞

0

dxx2e−xLð2Þ
n ðxÞ ln

�
1þ

X∞
m¼2

cmðτÞLð2Þ
m ðxÞ

�
:

ð71Þ
Equation (70) shows that entropy production only ceases

when the Laguerre moments become time independent,
i.e., when equilibrium is reached. The lowest order
moments c0 and c1, associated with hydrodynamic modes,
do not participate in the entropy production which is
entirely given by the nonhydrodynamic degrees of freedom
cn≥2. In FLRW spacetime, local equilibrium is an attractor
of the Boltzmann equation, i.e., a system initially prepared
in local equilibrium will remain in local equilibrium (in
spite of the cosmological expansion) while an initially
nonequilibrated system will evolve towards local

12Recall that in terms of the physical momentum kphys seen by
a comoving observer we have k ¼ aðtÞkphys such that k=T lim ¼
kphys=T limðtÞ where T limðtÞ≡ T lim=aðtÞ is the time-dependent
(cosmologically redshifted) “limiting temperature” seen by that
observer. Since the temperature seen by the comoving observer
keeps redshifting we characterize the state (67) as quasistationary.
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equilibrium, producing entropy along the way. What is
different from other situations is that the evolution of the
macroscopic hydrodynamic observables such as the energy
and particle number densities follows the laws of ideal fluid
dynamics even if the system is out of equilibrium. This
happens because, in the present situation which has an
exceptional degree of symmetry, the nonhydrodynamic
modes completely decouple from the energy momentum
tensor, thereby preserving its ideal fluid form. Similar
systems were studied before in [38,39].
In dissipative fluid dynamics entropy production is

expressed in terms of the nonequilibrium corrections to the
energy-momentum tensor and particle 4-current. For exam-
ple, in the widely used Israel-Stewart formulation of dis-
sipative fluid dynamics [75], entropy production is expressed
in terms of the shear stress tensor πμν as dμSμ ¼
πμνπμν=ð2ηTÞ, where η is the shear viscosity. The shear
stress tensor reflects the excitation of nonhydrodynamic
modes of the Boltzmann equation [46,82], and such a
formulation is expected to work if the system is sufficiently
close to thermodynamic equilibrium. However, the entropy
production derived in (70) can obviously never be expressed
in a hydrodynamic form even if the system is close to
equilibrium. Therefore, the type of system discussed here
gives an example in which the symmetries of the system
always forbid the description of dissipative processes (such as
entropy production) in terms of the laws of fluid dynamics.
Based on the discussion above, one can use (37) to find

another expression for the entropy production

∂τS ¼ n0
2

�X∞
n¼2

ωnhncn −
X∞
n¼2

hn
nþ 1

Xn−2
m¼2

cn−mcm

�
: ð72Þ

This expression shows that, at late times when the Laguerre
moments cn are small, entropy production in the full
nonlinear case [in which the moments follow (37)] should
be very well approximated by the corresponding expression
computed in the linearized Boltzmann collision approxi-
mation. In fact, one can expand the logarithm in (71) to
linear order to find

hnðτÞ ¼ ðnþ 1Þðnþ 2ÞcnðτÞ þOðc2nÞ ð73Þ

and, thus,

∂τS ¼ n0
2

X∞
n¼2

ðnþ 1Þðnþ 2Þωnc2nðτÞ þOðc3nÞ: ð74Þ

In this limit the fact that entropy increases with time is
manifest, and each moment is seen to contribute to entropy
production an amount proportional to its decay rate. If the
higher order corrections in Eq. (74) are small (as they are
for the initial conditions studied in this work), one expects
that the linearized Boltzmann collision approximation

should give an accurate description of the entropy produced
in the full nonlinear problem. This is confirmed in the
numerical studies performed in Sec. V C. Also, using (73)
one finds that

SðτÞ ¼ Seq −
n0
4

X∞
n¼2

ðnþ 1Þðnþ 2Þc2nðτÞ þ… ð75Þ

where Seq is the corresponding equilibrium expression.
This shows explicitly that the maximum entropy value is
achieved in equilibrium.
Equation (72) expresses the entropy production in terms

of the time evolution of the Laguerre moments of the
distribution function. In Sec. II we studied their evolution
for the full nonlinear Boltzmann collision terms as well
as for a linearized version and for the relaxation time
approximated collision term. In the next section we will
show numerical results for these different types of micro-
scopic evolution. Following the production of entropy in
each of these three cases will yield valuable insights into
the dynamics that underlies the thermalization processes in
the Boltzmann equation.

V. NUMERICAL RESULTS

In this section we compare the solutions to the full
nonlinear Boltzmann equation (32), its linearized version
(47) and the RTA (49). For simplicity we assume that the
fugacity is λ ¼ 1. We consider the following initial con-
ditions of the distribution function fkð0Þ, the Laguerre
moments cnð0Þ, and the normalized moments Mnð0Þ:

(i) The exact solution initial condition (ES-IC) already
given in Eqs. (59)–(61)

fkð0Þ ¼ λ
256

243

�
k
T0

�
e−

4
3
k
T0 ; ð76aÞ

cnð0Þ ¼
1 − n
4n

; ð76bÞ

Mnð0Þ ¼
�
3

4

�
n
�
1þ n

3

�
: ð76cÞ

(ii) The one mode initial condition (1M-IC)

fkð0Þ ¼ λe−
k
T0

�
1þ 3

10
Lð2Þ
2

�
k
T0

��
; ð77aÞ

cnð0Þ ¼ δn0 þ
3

10
δn2 ð77bÞ

Mnð0Þ ¼ 1þ 3

10

�
n

2

�
: ð77cÞ
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(iii) The two-mode initial condition (2M-IC)

fkð0Þ ¼ λe−
k
T0

�
1 −

1

10
Lð2Þ
3

�
k
T0

�
ð78aÞ

þ 1

20
Lð2Þ
4

�
k
T0

��
; ð78bÞ

cnð0Þ ¼ δn0 −
1

10
δn3 þ

1

20
δn4; ð78cÞ

Mnð0Þ ¼ 1þ 1

10

�
n

3

�
þ 1

20

�
n

4

�
: ð78dÞ

All of these initial conditions satisfy the requirement
Mnð0Þ ≥ 0 for all n, which ensures positivity of the
distribution function fk. Notice also that for 1M-IC (77)
and 2M-IC (78) the normalized moments Mnð0Þ diverge
when n → ∞, which should be contrasted with the ES-IC
case (63) where Mnð0Þ vanishes in this limit.
In this section we will compare for each of these initial

conditions the evolution of the moments of the distribution
function, the phase-space evolution of the distribution
function reconstructed from the Laguerre moments, and
the amount of entropy produced in the evolution, for the
evolution schemes defined by the full nonlinear Boltzmann
collision kernel, its linearized version, and also the relax-
ation time approximation.

A. Evolution of the moments

The infinite set of differential equations (28) for the
normalized moments Mn is truncated at a finite nmax and
then solved numerically. The evolution of the linearized
moments Mlin

n ¼ 1þ δMn is obtained by solving the
differential equations (42) for δMn, with initial conditions
fixed by δMnð0Þ ¼ Mnð0Þ − 1. Within the RTA the evo-
lution of the moments MRTA

n is determined by Eq. (55).
Figure 3 shows the numerical solutions for the moments

M10 (left column) and M20 (right column) as functions of
the dimensionless variable τ for the three initial conditions
listed above. We observe that the difference between the
values of the moments Mn, Mlin

n , and MRTA
n gets larger as

one increases the order n of the moment. Since higher-order
moments are more strongly weighted at higher momenta,
these differences indicate that the RTA and the linear
approximation of the Boltzmann collision term provide
descriptions of the microscopic dynamics that degrade at
short distance scales.
At large times, all Mn moments relax exponentially to

their equilibrium value of 1. In the insets in Fig. 3 we plot
the difference between MnðτÞ and their asymptotic value
on a logarithmic scale, in order to visualize the rate of
approach to equilibrium of each moment. We see that in
RTA the moments MRTA

n relax much faster to their

asymptotic value than for both the full and linearized
Boltzmann collision terms. In RTA all modes relax expo-
nentially at the same rate ω ¼ 1=α (defined by our choice
for the relaxation time) while for both the full and
linearized Boltzmann collision term the energy moments
Mn mix Laguerre moments of different orders that decay
with different rates ωn < 1. At large times τ, their decay is
dominated by the moment with the smallest decay rate,
namely the first nonvanishing nonhydrodynamic mode
nmin. For ES-IC and 1M-IC, the lowest nonvanishing
nonhydrodynamic mode is c2, and correspondingly for
both the full and linearized Boltzmann collision terms
the Mn modes decay asymptotically with ω2 ¼ 1=3. For
2M-IC the lowest nonvanishing nonhydrodynamic mode is
c3, and correspondingly for both the full and linearized
Boltzmann collision terms the Mn modes decay asymp-
totically somewhat faster, with ω3 ¼ 1=2. We also note that
at large times the deviations of the moments from their
asymptotic values become small, and the time evolutions of
the linearized and full moments converge.
At early times the faster relaxation of theMRTA

n moments
to their equilibrium values compared to their relaxation
for the full and linearized collision term is most evident.
However, Fig. 3 also shows that for some of the initial
conditions the early-time evolution of the Mn moments
exhibits dramatic differences even between the full and
linearized collision terms. These differences arise from
mode coupling effects which are generically large as long
as the momentsMn deviate strongly from their equilibrium
values.
We point out that for the initial condition ES-IC the

moment Mlin
20 becomes negative at early times, specifically

in the interval 0≲ τ ≲ 7 [see panel (b) in Fig. 3].13 From
their definition it is clear that this cannot happen for a
distribution function that is positive definite. This dynami-
cal behavior resulting from the linearization of the
moments around their thermal equilibrium values is thus
unphysical. We will see later that, for the initial conditions
of the exact solution discussed in Sec. III, this unphysical
dynamics causes the distribution function to turn negative
at large momenta as time proceeds, somewhat reminiscent
of a similar phenomenon observed for the exact solution of
the RTA Boltzmann equation in a system undergoing
Gubser expansion [36,85].
In Fig. 4 we present the logarithm of the magnitude of

the Laguerre moments jcnj as a function of n for a set of
fixed τ values, τ ¼ f0.5; 4; 8g for the left, middle and right
column, respectively, and for the initial conditions men-
tioned above. As shown in Eqs. (39), the solutions for
the moments with n ≤ 3 are the same in the nonlinear case
as in the linearized Boltzmann approximation, and this is
observed in Fig. 4. For the ES-IC at early times there is

13We have checked numerically that for 20 ≤ n ≤ 100 all the
moments Mlin

n turn negative somewhere in the interval τ ∈ ð0; 7Þ.

NONLINEAR DYNAMICS FROM THE RELATIVISTIC … PHYSICAL REVIEW D 94, 125006 (2016)

125006-13



basically no distinction among the different evolution
schemes (since the initial cn are already all nonzero while
nonlinear mode-coupling effects have not yet had a chance
to manifest themselves). As time evolves the cn’s with large
n quickly distinguish nonlinear evolution (red circles) from
linear evolution schemes (denoted by the blue triangles and
green squares); however, only at late times can clearly
distinguish (especially at large n) between the results from
the RTA and the linearized Boltzmann approach.
For the 1M-IC only c0 and c2 are initially nonzero (parity

even), and one can see that c2nþ1ðτÞ ¼ 0 for all τ, as
explained in Sec. II D. Also, this case clearly shows the
effect of mode-by-mode coupling responsible for exciting
for τ > 0modes with n > 2 even though they were initially
zero,. This should be contrasted with the linear evolution
schemes that give cn>2ðτÞ ¼ 0 for all τ. The difference in
the decay rate for c2 between the RTA and the nonlinear
(and linearized) case is evident in panel f of Fig. 4.

Since c2ð0Þ ¼ 0 for 2M-IC, Eq. (39) implies that
c4ðτÞ obtained in the nonlinear evolution is identical to
the result computed within the linearized Boltzmann
approximation, i.e., c4ðτÞ ¼ c4ð0Þe−ω4τ. This can be
seen in Figs. 4(g), 4(h), and 4(i). Once again mode-
by-mode coupling in the full nonlinear evolution is
responsible for exciting for 2M-IC moments with n > 4
which become nonzero already after a short time
τ ¼ 0.5. The higher moments can only be excited by
nonlinear coupling with lower modes which is an effect
not included in either the RTA or the linear Boltzmann
approximation.
The Laguerre moments fcng contain all the informa-

tion about the solutions of the Boltzmann equation.
However, the way fcng encodes this information is not
at all trivial. For instance, in the deep infrared
fðτ; k → 0Þ ¼ feqk

P∞
n¼0 cnðτÞ. Also, the complicated

time evolution of the analytical solution in Eq. (62) is

(a)

(c)

(e) (f)

(d)

(b)

FIG. 3. Evolution of the momentsM10 (left column) andM20 (right column) as a function of the dimensionless time τ according to the
nonlinear evolution equation (28), its linearized version (42), and within the RTA (55) for the ES-IC (76) [panels (a)–(b)], 1M-IC (77)
[panels (c)–(d)], and 2M-IC (78) [panels (e)–(f)]. See text for further details.
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translated into a simple exponential decay of the Laguerre
modes described by (59).

B. Evolution of the distribution function

The recursive structure of the evolution equations (36),
(45) and (55) for the Laguerre moments of the distribution
function makes it easy to systematically improve the
description of the distribution function by increasing the
truncation order nmax (the total number of moments) until
convergence is achieved.14

1. Evolution of nonthermal energy tails

In Sec. III we saw for the exact analytical solution (62) of
the full Boltzmann equation that, while it approaches
equilibrium at large τ, hard momenta are being occupied
very slowly and large deviations from equilibrium persist
for high values of k=T0 at very large τ. Here we study
numerically how fkðτÞ evolves towards equilibrium with
the full nonlinear Boltzmann collision term for the two
other initial conditions listed at the beginning of this section
and compare it with the evolution of the ES-IC initial
condition for which we have an exact analytic result.
Figure 5 shows that the other initial conditions corre-

spond to initial distribution functions which deviate from
equilibrium even more strongly than the one corresponding
to the exact solution, albeit in different momentum regions.
In these initial conditions hard modes are separated from
soft modes by a “kink” (located, e.g. near k=T0 ¼ 9 for
2M-IC) that is more distinct in the 2M-IC case than in the
1M-IC (where it also occurs at a lower value of k=T0).
Taking all three panels of the figure together one observes
that the low-momentum region k=T0 ≲ 5 relaxes to

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 4. Evolution of the Laguerre moments as a function of n according to the nonlinear Boltzmann equation (red circle), linear
approximation (blue triangle) and RTA (green square) for fixed values of τ ¼ f0.5; 4; 8g (left, middle and right column respectively).
For the initial conditions of the distribution function we use the ES-IC (76) [panels (a),(b),(c)], 1M-IC (77) [panels (d),(e),(f)], and
2M-IC (78) [panels (g),(h),(i)].

14For the initial conditions studied in this work we were able to
ensure convergence of the series (32) at all times with a small
number nmax of associated Laguerre polynomials. However, for
other (still well-behaved) initial conditions (e.g. a Gaussian bump
added to a thermal distribution) the polynomials Lð2Þ

n are not well-
adapted to describe the high-momentum tail of the distribution
function, and we found it necessary to include a very large
number nmax of these polynomials to ensure convergence of the
series for fkðτÞ.
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equilibrium very quickly, reducing deviations from equi-
librium occupancy to below 20% already at τ ∼ 2 while at
k=T0 > 20 deviations from equilibrium by up to a factor of
5 persist up to τ ∼ 10. The Boltzmann collision terms thus
thermalizes the system differentially: first the system
reaches approximate equilibrium at thermal length scales
whereas thermalization at subthermal length scales takes
much longer.

2. Comparing the evolution of the distribution function
for different approximations of the collision kernel

In Figs. 6 and 7 we compare numerical results for the
phase-space evolution of the distribution function for the
full nonlinear solution to the Boltzmann equation (32), its
linear approximation (47), and the RTA (53) for all three
sets of initial conditions. In Fig. 6 we plot the logarithm of

(a) (b) (c)

FIG. 5. Snapshots of the full nonlinear distribution function as a function of k=T0 at different values of τ ¼ f0; 2; 4; 8g (with fugacity
λ ¼ 1). For the initial conditions of the distribution function we use the ES-IC (76) [panel (a)], 1M-IC (77) [panel (b)], and 2M-IC (78)
[panel (c)].

(a)

(d)

(g) (h) (i)

(e) (f)

(b) (c)

FIG. 6. Snapshots of the ratio Fðτ; k=T0Þ≡ fkðτÞ=feqk ðτÞ as a function of k=T0 for τ ¼ f1; 8; 15g (left, middle and right column)
according to the nonlinear Boltzmann equation (red line), linear approximation (blue dashed line) and RTA (green dotten line). For the
initial conditions of the distribution function we use the ES-IC (76) [panels (a),(b),(c)], 1M-IC (77) [panels (d),(e),(f)], and 2M-IC (78)
[panels (g),(h),(i)].
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the ratio Fðτ; k=T0Þ≡ fkðτÞ=feqk ðτÞ of the nonequilibrium
distribution function to its equilibrium value as a function
of k=T0, for a set of fixed τ values, τ ¼ f1; 8; 15g (left,
middle, and right column). In the first row, we plot the
magnitude jFj of this ratio because, for the linearized
collision term, the distribution function evolves to negative
values at large momenta as time proceeds. This behavior
was already anticipated in Sec. VAwhere we saw that some
of the energy moments Mn became unphysically negative
when evolved with the linearized evolution equations.
Figures 6(a), 6(b), and 6(c) shows that the pathological
region of negative distribution functions appears to move to
larger momenta as time proceeds. This is consistent with
the observation that at large τ the deviations from
equilibrium get smaller and the linear approximation to
the full Boltzmann collision term (which does not cause the
distribution function to become negative) thus can be

expected to work better. We note once again that with
our choice for the relaxation time the RTA evolved
distribution function reaches equilibrium much more
quickly than both the nonlinear case and the linearized
Boltzmann collision approximation; the slowest approach
to equilibrium is observed when the system is evolved with
the full nonlinear collision term. The three lower rows
of panels further show that the momentum range in which
the dynamically evolved distribution function closely
approaches equilibrium grows wider, extending to larger
momenta as time proceeds.
Figure 7 shows the time evolution of the same ratio F

plotted in 6 at two different momenta (k=T0 ¼ 10 and 20,
respectively). Similar to what we saw for the evolution
of its energy moments, one observes a rapid approach to
thermal equilibrium in the RTA evolution, compared to the
much slower thermalization found using the nonlinear

(a)

(c)

(e) (f)

(d)

(b)

FIG. 7. Evolution of the ratio Fðτ; k=T0Þ≡ fkðτÞ=feqk ðτÞ as a function of τ, for fixed values of momentum k=T0 ¼ 10 (left column)
and k=T0 ¼ 20 (right column), for the full nonlinear (red line), linear (dotted blue line) and RTA collision term (green dotten line). For
the initial conditions we use the ES-IC (76) [panels (a),(b)], 1M-IC (77) [panels (c),(d)], 2M-IC (78) [panels (e),(f)].
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collision term. At the lower of the two selected k=T0 values,
differences between the time evolution for the full and the
linearized Boltzmann collision term are hardly noticeable.
For the larger k=T0 ¼ 20, the early-time evolution differs
significantly between the full nonlinear and the linearized
collision terms for ES-IC and 1M-IC; in particular, for the
exact analytic solution the linearized time evolution leads to
unphysical negative values of the distribution function at
early times.
At late times, the difference between the value at a given

momentum of the evolving nonequilibrium distribution
function and its thermal limit decreases exponentially. The
rate of approach to equilibrium is ω ¼ 1=α in RTA, as is
expected because all its Laguerre moments decay expo-
nentially with this rate. For the full Boltzmann collision
term, the thermalization rate converges at late times to
ω2 ¼ 1=3 for ES-IC and 1M-IC and to ω3 ¼ 1=2 for
2M-IC, i.e., at large times thermalization is controlled by
the lowest (and slowest) nonvanishing nonhydrodynamic
moment (which is n ¼ 2 for ES-IC and 1M-IC and n ¼ 3
for 2M-IC). This asymptotic late-time behavior is universal
in the sense that it applies at all momenta.

C. Entropy production

We quantify the total entropy produced during the
thermalization process by the fractional increase

ΔSðτÞ ¼ SðτÞ − Sð0Þ
Sð0Þ : ð79Þ

The time evolution of ΔS is studied in Fig. 8 for the three
initial conditions for the distribution function listed at the
beginning of this section.15 All cases have the same initial
energy and particle density which evolve according to ideal
fluid dynamics to the same final equilibrium state at
τ → ∞. What is different in each case is the initial entropy
of the system. The different initial conditions correspond to
nonequilibrium configurations and, thus, their initial

entropy is lower than the equilibrium value. Since equi-
librium is a global attractor of the dynamics, the relative
difference

ΔSeq ≡ Seq − Sð0Þ
Seq

ð80Þ

gives the amount of entropy produced over all time for
each initial condition. We find ΔSeq ¼ 0.51% for ES-IC,
ΔSeq ¼ 4.7% for 1M-IC, and ΔSeq ¼ 0.74% for 2M-IC.
Thus, we see that 1M-IC is the initial condition that is the
farthest from equilibrium and, consequently, produces the
largest amount of entropy during the evolution.
As should be expected from the thermalization studies

of the distribution function and its moments in the
preceding subsections, the initial rate of entropy produc-
tion and the approach of the total entropy towards its
final equilibrated value is fastest in the relaxation time
approximation. When the kinetic evolution is controlled
by the full or linearized Boltzmann collision term, the rate
of entropy production slows down to an asymptotic
exponential approach at the rate ωnmin

¼ ðnmin − 1Þ=
ðnmin þ 1Þ, where nmin is the order of the lowest initially
nonzero Laguerre moment of fk. In Fig. 7 one can clearly
distinguish between the different rates towards thermal
equilibrium between panel (b) where initially the lowest
nonzero nonhydrodynamic moment is c2 which relaxes to
equilibrium with the rate ω2 ¼ 1=3, and panels (c) and (d)
where initially the lowest nonzero nonhydrodynamic
moment is c3, which in turn relaxes to equilibrium at a
faster rate ω3 ¼ 1=2.
As expected from the discussion in Sec. IV, there are no

noteworthy differences in the entropy production rate for
the full and the linearized Boltzmann collision term. High
momentum particles are too rare to significantly contribute
to the total entropy of the system, which means that long
before the high-momentum tails of the distribution function
become thermal the overall entropy production has already
essentially ceased. In other words, the total entropy is
dominated by particles with thermal momenta, and entropy
production essentially stops when those thermal particles
have reached an equilibrium state.

(a) (b) (c)

FIG. 8. Time evolution of the produced entropy as a fraction of its initial value, ΔSðτÞ as defined in Eq. (79), for initial conditions
(a) ES-IC (76), (b) 1M-IC (77), and (c) 2M-IC (78).

15We do not show the entropy production for the linearized
evolution of the initial conditions ES-IC, Fig. 8(a), since this
leads to negative distribution functions in part of momentum
space for which the entropy integral is not defined.
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VI. CONCLUSIONS

In this work we solved the full nonlinear Boltzmann
equation for an expanding massless gas with constant cross
section in FLRW spacetime. The problem of solving the
nonlinear Boltzmann equation is mapped onto solving
recursively a set of coupled ordinary differential equations
of moments of the distribution function. The precision of
the solution can be improved systematically to any desired
value by increasing the number of moments (which results
in better resolution of the high-momentum tail of the
distribution function). The same method can be applied
to the Boltzmann equation with a linearized collision term
or using the relaxation time approximation (RTA), which
allowed us to investigate the importance for the thermal-
ization process of non-linear mode-by-mode couplings
inherent in the Boltzmann collision term.
The cosmological expansion in FLRW spacetime was

found to be slow enough to allow the distribution function
to move towards local equilibrium for any initial condition.
Local equilibrium is reached in the asymptotic limit τ → ∞
when expressed in the dimensionless time variable τ
defined in Eq. (27). This asymptotic limit can, however,
only be reached for FLRW universes with infinitesimally
small initial values of the Hubble constant. For finite initial
expansion rates, the limit t → ∞ in physical time is reached
after a finite interval in τ, which leaves the distribution
function in a nonequilibrium final state that becomes
approximately stationary at late physical times.
Our work exhibited a characteristic difference between the

rates at which the system approaches thermal equilibrium in
RTA and for the full or linearized Boltzmann collision term.
For both the full and linearized collision terms, the asymp-
totic thermalization rate for the distribution function is
ωnmin¼ nmin−1

nminþ1
, which is the damping rate of the slowest

initially occupied nonhydrodynamic eigenmode nmin of
the Boltzmann equation. In RTA, on the other hand, if the
relaxation time is calculated with standard methods using the
same (constant) cross section as in the Boltzmann collision
term, the distribution function approaches equilibrium at the
larger rate ω ¼ 1=α which falls between ω4 and ω5.
The approach to equilibrium is fastest for typical thermal

momenta whereas the high-momentum tail of the distri-
bution function takes much longer to thermalize. As time
proceeds the window in which the distribution is well
approximated by the asymptotic equilibrium distribution
widens towards larger momenta. The late thermalization of
the high energy tails is caused by nonlinear mode-by-mode
couplings that couple higher moments to lower ones and
transport energy from low to high momenta. It is consistent
with the simple intuitive picture that high-momentum
particles require multiple collisions to thermalize whereas
soft particles thermalize already after a few collisions [5].
Although the dynamics generated by the full collision

term exhibits nonlinear mode-coupling effects, we found

only very small differences in the evolution towards
equilibrium between the full and linearized Boltzmann
collision terms as long as we restricted our attention to
the dominant thermal momentum region; significant
differences between the linear and nonlinear thermalization
dynamics were, however, observed at large momenta or
short length scales. Since high-momentum particles con-
tribute very little to the total entropy of the system, the rate
of entropy production during the thermalization process
was found to be almost indistinguishable between the
nonlinear and linearized dynamics. In RTA, however,
entropy was found to be produced at much higher rate,
leading to faster thermalization.
An interesting aspect of this model is that it combines

ideal fluid dynamical evolution with dissipation and
entropy production. This means that the rate of entropy
production cannot be expressed in the standard way
through dissipative flows (such as the shear stress tensor),
which vanish in our model exactly by symmetry.
Dissipative effects, while definitely present, do not mani-
fest themselves hydrodynamically, i.e., they do not affect
the (relatively slow) evolution of the hydrodynamic modes
whose dynamics is controlled by the conservation laws. For
a given initial particle and energy density, the amount of
entropy produced depends exclusively on the how far the
initial phase-space distribution is away from thermal
equilibrium; all initial configurations with the same particle
and energy density eventually evolve to the same equilib-
rium state at τ → ∞.
The dramatically different thermalization time scales for

the RTA and full nonlinear Boltzmann collision terms raise
the question whether one could not simply bring the
Boltzmann equation in RTA in congruence with the full
nonlinear Boltzmann equation by appropriate “renormal-
ization” of the relaxation time τrel used in the RTA.
However, this does not work: as our analysis shows, for
the full Boltzmann collision term the relaxation time
towards thermal equilibrium is not universal, but depends
on which of the nonhydrodynamic modes are initially
occupied. Thermalization happens asymptotically at the
rate ωnmin

where nmin is the order of the slowest initially
nonzero nonhydrodynamic mode. Using in RTA a relax-
ation time that depends on the initial condition for the
distribution function (i.e., on which nonhydrodynamic
Laguerre moments are initially nonzero) does not
make sense.
It will be interesting to try to extend the techniques

developed in this work to physically interesting anisotropi-
cally expanding systems. Finding an exact solution of the
full nonlinear Boltzmann equation for (0þ 1)-dimensional
Bjorken [86] and/or the (1þ 1)-dimensional Gubser [84]
flows in Minkowski space would be of particular practical
and conceptual interest for relativistic heavy-ion physics,
and in the cosmological context one would like to be able to
solve the Boltzmann equation in anisotropic spacetimes
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such as the Bianchi universes [87]. We leave these issues
for future studies.
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APPENDIX A: MOMENTS OF THE
COLLISION KERNEL

In this Appendix we describe the procedure to perform
the integrals (21) for the case of a constant cross section.

We start by calculating the term CðnÞloss (21a). We recall from
Sec. II A that we formulate all momentum integrals in
terms of the covariant components of the four-momenta.
For massless particles in FLRW spacetime we have s¼
ðkþk0Þ·ðkþk0Þ¼2ð1−cosθÞkk02 and u · k ¼ k0 ¼ k=aðtÞ.
The term CðnÞloss (21a) is calculated as follows:

CðnÞloss ¼
ð2πÞ5
2

σT

Z
kk0pp0

sðu · kÞn ffiffiffiffiffiffi
−g

p
δ4ðkþ k0 − p − p0Þfkfk0 ;

¼ σT
anþ2

Z
kk0

knþ1k0ð1 − cos θÞfkfk0

¼ σT

�
1

2π2
1

anþ3

Z
∞

0

dkknþ2fk

��
1

4π2
1

a3

Z
∞

0

dk0k02fk0
Z

1

−1
dðcos θÞð1 − cos θÞ

�
¼ σTρnρ0: ðA1Þ

In the second line we used the identityZ
pp0

ffiffiffiffiffiffi
−g

p
δ4ðkþ k0 − p − p0Þ ¼ 1

ð2πÞ5 ; ðA2Þ

and in the last equality we recalled the definition (14) of the
energy moments. This completes the computational details
of the loss term CðnÞloss (21a).

The calculation of CðnÞgain (22a) is harder. Let us start by
rewriting Eq. (22a) as follows:

CðnÞgain ¼
ð2πÞ5
2

σT

Z
kk0

sfkfk0Pn; ðA3Þ

where we define the scalar quantity

Pn ¼
Z
pp0

ðu · pÞn ffiffiffiffiffiffi
−g

p
δ4ðkþ k0 − p − p0Þ: ðA4Þ

We calculate Pn in the center of mass frame where
kþ k0 ¼ 0, where k ¼ ðk1; k2; k3Þ is constructed from
the covariant spatial components of the 4-vector kμ. (The
same applies to all 3-vectors below, see discussion in
Sec. II A.) In this frame the total energy of the system isffiffiffi
s

p ¼ k0 þ k00. In this reference frame the fluid velocity is
not static, i.e., uμ ¼ ðu0; uiÞ has nonzero spatial compo-
nents. Pn is then calculated as follows:

Pn ¼
1

ð2πÞ6
Z

d3pffiffiffiffiffiffi−gp
p0

ðu · pÞn
Z

d3p0ffiffiffiffiffiffi−gp
p00 δ

� ffiffiffi
s

p
−

1

aðtÞ ðpþ p0Þ
�
δ3ðpþ p0Þ;

¼ 1

2ð2πÞ5
1

anþ1ðtÞ
Z

∞

0

dppnδ

� ffiffiffi
s

p
− 2

p
aðtÞ

�Z
π

0

dθ sin θ

�
u0 −

juj
aðtÞ cos θ

�
n
;

¼ 1

2nþ1ð2πÞ5
aðtÞ

ðnþ 1Þ ffiffiffi
s

p juj
��

u0
ffiffiffi
s

p þ juj ffiffiffisp
aðtÞ

�
nþ1

−
�
u0

ffiffiffi
s

p
−
juj ffiffiffisp
aðtÞ

�
nþ1
�
: ðA5Þ

The last expression can be written covariantly by introducing the total 4-momentum of the system Pμ ¼ kμ þ k0μ such that
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u0
ffiffiffi
s

p ¼ u · P; P · P≡ P2 ¼ s;
ffiffiffi
s

p juj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
su20 − s

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu · PÞ2 − P2

q
: ðA6Þ

Thus the covariant version of Eq. (A5) is

Pn ¼
1

2nþ1ð2πÞ5
aðtÞ

ðnþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu · PÞ2 − P2

p
" 

u · Pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu · PÞ2 − P2

p
aðtÞ

!
nþ1

−

 
u · P −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu · PÞ2 − P2

p
aðtÞ

!
nþ1
#
: ðA7Þ

Next we use the identity

ðxþ yÞnþ1 − ðx − yÞnþ1

y
¼ 2

Xnþ1

r¼1
rodd

�
nþ 1

r

�
xnþ1−ryr−1 ðA8Þ

to write Eq. (A7) as

Pn ¼
1

ðnþ 1Þð2πÞ52n
Xnþ1

r¼1
r∈odd

�
nþ 1

r

�
ðu · PÞnþ1−raðtÞ1−r½ðu · PÞ2 − P2�ðr−1Þ=2: ðA9Þ

In the fluid rest frame one has u · P ¼ P0 ¼ ðkþ k0Þ=aðtÞ and ðu · PÞ2 − P2 ¼ P · P ¼ ðkþ k0Þ2. Thus, the scalar Pn
finally reads

Pn ¼
1

ðnþ 1Þð2πÞ52n
1

anðtÞ
Xnþ1

r¼1
r∈odd

�
nþ 1

r

�
ðkþ k0Þnþ1−rjkþ k0jr−1: ðA10Þ

Substituting the last expression back into Eq. (A3) we obtain

CðnÞgain ¼
σT

ð2πÞ6
1

a6þnðtÞ
Z

d3kd3k0ð1 − cos θÞfkfk0
1

ðnþ 1Þ2nþ1

Xnþ1

r¼1
r∈odd

�
nþ 1

r

�
ðkþ k0Þnþ1−rjkþ k0jr−1;

¼ σT
ð2πÞ6

1

a6þnðtÞ
Z

d3kd3k0ð1 − cos θÞfkfk0

×
1

ðnþ 1Þ2nþ1

Xnþ1

r¼0

�
nþ 1

r

�
ðkþ k0Þnþ1−rðk2 þ k02 þ 2kk0 cos θÞðr−1Þ=2½1þ ð−1Þrþ1�: ðA11Þ

To perform the integration over the angular variable θ we need the following integral:

Z
1

−1
dxð1 − xÞðaþ bxÞr−12 ¼ 4

ðaþ bÞðrþ3Þ=2 − ða − bÞðrþ1Þ=2ðaþ bð2þ rÞÞ
b2ðrþ 1Þðrþ 3Þ ; ðA12Þ

valid as long as a ≥ b and b ≥ 0. Eq. (A11) then reads

CðnÞgain ¼
σT

a6þnðtÞ
1

2nþ2

Xnþ1

r¼0

�
n

r

� ½1þ ð−1Þrþ1�
ðrþ 1Þðrþ 3Þ

Z
∞

0

dk
2π2

Z
∞

0

dk0

2π2
fkfk0

× fðkþ k0Þnþ4 − jk− k0jrþ1ðkþ k0Þnþ1−r½k2 þ k02 þ 2kk0ð2þ rÞ�g;

¼ 2σT
a6þnðtÞ

1

ðnþ 1Þðnþ 3Þðnþ 4Þ
Z

∞

0

dk
2π2

Z
∞

0

dk0

2π2
fkfk0 fðkþ k0Þnþ4 − knþ4 − knþ3k0ðnþ 4Þ− k0nþ4 − k0nþ3kðnþ 4Þg

ðA13Þ

where we used the following identities:
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1

2nþ2

Xnþ1

r¼0

�
n

r

� ½1þ ð−1Þrþ1�
ðrþ 1Þðrþ 3Þ ¼

2nþ3 − n − 5

2nþ2ðnþ 1Þðnþ 3Þðnþ 4Þ ; ðA14aÞ

1

2nþ2

Xnþ1

r¼0

�
n

r

� ½1þ ð−1Þrþ1�
ðrþ 1Þðrþ 3Þ jk − k0jrþ1ðkþ k0Þnþ1−r½k2 þ k02 þ 2kk0ð2þ rÞ�

¼ 1

2nþ2ðnþ 1Þðnþ 3Þðnþ 4Þ f2
nþ3½knþ3ðkþ k0ðnþ 4ÞÞ þ k0nþ3ðkðnþ 4Þ þ k0Þ� − ðnþ 5Þðkþ k0Þnþ4g: ðA14bÞ

With the help of the binomial expansion it is now straightforward to show that

ðkþ k0Þnþ4 − knþ4 − knþ3k0ðnþ 4Þ − k0nþ4 − k0nþ3kðnþ 4Þ ¼ k2k02
Xn
m¼0

�
nþ 4

mþ 2

�
kn−mk0m: ðA15Þ

We finally obtain

CðnÞgainðtÞ ¼
2σT

a6þnðtÞ
1

ðnþ 1Þðnþ 3Þðnþ 4Þ
Z

∞

0

dk
2π2

Z
∞

0

dk0

2π2
fkfk0k2k02

Xn
m¼0

�
nþ 4

mþ 2

�
kn−mk0m

¼ 2σT
Xn
m¼0

ðnþ 2Þn!
ðmþ 2Þ!ðn −mþ 2Þ! ρn−mðtÞρmðtÞ: ðA16Þ

This expression determines the term CðnÞgainðtÞ (22a) in terms
of the moments of the distribution function.

APPENDIX B: SOME PROPERTIES OF THE
ASSOCIATED LAGUERRE POLYNOMIALS

In this Appendix we collect some useful properties of the
associated Laguerre polynomials that were used in the main
text. A broader discussion of the Laguerre polynomials can
be found in Ref. [88].
The closed form of the associated Laguerre polynomial

of degree n is

LðβÞ
n ðxÞ ¼

Xn
i¼0

ð−1Þi
�
nþ β

n − i

�
xi

i!
: ðB1Þ

These polynomials satisfy the following orthogonality
property:

Z
∞

0

dxe−xxβLðβÞ
n ðxÞLðβÞ

m ðxÞ ¼ ðnþ βÞ!
n!

δnm: ðB2Þ

The generating function of the Laguerre polynomials can
be written as

Gðz; x; βÞ≡X∞
n¼0

znLðβÞ
n ðxÞ ¼ e−xz=ð1−zÞ

ð1 − zÞβþ1
; ðB3Þ

which is valid for jzj < 1. From the previous expression it is
straightforward to show the following identity:

Gðz; x; βÞ − z
∂Gðz; x; βÞ

∂z
¼
X∞
n¼0

ð1 − nÞznLðβÞ
n ðxÞ

¼ e−xz=ð1−zÞ

ð1 − zÞβþ3
½1þ zðxþ ð2þ βÞz − 3 − βÞ�: ðB4Þ

APPENDIX C: DERIVATION OF EQ. (36)

In this Appendix we present the details of the derivation
of the Laguerre moments cn (36). From their definition (33)
we can find their evolution by taking the derivative respect
to τ

Xn
r¼0

ð−1Þr
�
n

r

�
∂τMr

¼
Xn
r¼0

ð−1Þr
�
n

r

��
−Mr þ

1

rþ 1

Xr
m¼0

MmðτÞMr−m

�
;

ðC1Þ

where we used explicitly the equation for the normalized
moments (28). The last expression can be rewritten as
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∂τcn þ cn ¼
Xn
r¼0

ð−1Þr
�
n

r

��
1

rþ 1

Xr
m¼0

MmMr−m

�
: ðC2Þ

Now all that remains to be proven is that the rhs of the previous expression corresponds exactly to the rhs of the Laguerre
moment equation (36). In order to see the equivalence we substitute the definition of the Laguerre moments (33) on the rhs
of Eq. (36)

1

nþ 1

Xn
r¼0

crcn−r ¼
1

nþ 1

Xn
r¼0

�Xr
s¼0

ð−1Þs
�
r

s

�
Ms

��Xn−r
t¼0

ð−1Þt
�
n − r

t

�
Mt

�
;

¼ 1

nþ 1

Xn
s¼0

Xn
t¼0

ð−1ÞtþsMsMt

�Xn
r¼0

�
r

s

��
n − r

t

��
;

¼
Xn
s¼0

Xn
t¼0

ð−1Þtþs n!
ðsþ tþ 1Þ!ðn − s − tÞ!MsMt ¼

Xn
q¼0

ð−1Þq
�
n

q

��
1

qþ 1

Xq
s¼0

MsMq−s

�
: ðC3Þ

This shows that the rhs of Eqs. (C2) and (C3) agree, and thus that the equation for the Laguerre moments (36) holds for any

value of n ≥ 2. In Eq. (C3) we used the fact that ð n
k
Þ ¼ 0 if k > n and the combinatorial identity

Xn
r¼0

�
r
s

��
n − r
t

�
¼
�

nþ 1

sþ tþ 1

�
ðC4Þ

which is valid if s; t ≥ 0 and sþ t ≤ n.
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