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We consider an asymptotically free vectorial gauge theory, with gauge group G and Nf fermions in a
representation R of G, having an infrared (IR) zero in the beta function at αIR. We present general formulas
for scheme-independent series expansions of quantities, evaluated at αIR, as powers of an Nf-dependent
expansion parameter, Δf. First, we apply these to calculate the derivative dβ=dα evaluated at αIR, denoted

β0IR, which is equivalent to the anomalous dimension of the TrðFμνFμνÞ operator, to order Δ4
f for general

G and R, and to order Δ5
f for G ¼ SUð3Þ and fermions in the fundamental representation. Second, we

calculate the scheme-independent expansions of the anomalous dimension of the flavor-nonsinglet and
flavor-singlet bilinear fermion antisymmetric Dirac tensor operators up to order Δ3

f. The results are

compared with rigorous upper bounds on anomalous dimensions of operators in conformally invariant
theories. Our other results include an analysis of the limitNc → ∞,Nf → ∞withNf=Nc fixed, calculation
and analysis of Padé approximants, and comparison with conventional higher-loop calculations of β0IR and
anomalous dimensions as power series in α.
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I. INTRODUCTION

The evolution of an asymptotically free gauge theory
from the ultraviolet (UV) to the infrared is of fundamental
importance. The evolution of the running gauge coupling
g ¼ gðμÞ, as a function of the Euclidean momentum scale,
μ, is described by the renormalization-group (RG) beta
function [1], βg ¼ dg=dt or equivalently,

β ¼ dα
dt

¼ g
2π

βg; ð1:1Þ

where αðμÞ ¼ gðμÞ2=ð4πÞ and dt ¼ d ln μ (the argument μ
will often be suppressed in the notation). Here we consider
an asymptotically free (AF) vectorial gauge theory with
non-Abelian, Yang-Mills gauge group G and Nf copies
(flavors) of fermions ψ j, j ¼ 1;…; Nf transforming
according to the representation R of G. We take the
fermions to be massless, since a massive fermion with
mass m0 would be integrated out of the effective field
theory at scales μ < m0 [2] and hence would not affect the
infrared limit μ → 0 that we study here.
In an asymptotically free theory with sufficiently large

fermion content, the beta function has an infrared zero at
αIR that controls the UV to IR evolution. Here we consider
vectorial theories of this type. As the scale μ decreases from
large values in the UV to small values in the IR, αðμÞ
approaches αIR as μ → 0. The properties of the theory at
this IR zero of the beta function are of considerable interest.
If this IR zero of the beta function occurs at sufficiently

weak coupling so that the gauge interaction does not
produce any spontaneous chiral symmetry breaking
(SχSB), then it is an exact IR fixed point (IRFP) of the
renormalization group. The theory thus exhibits scale
invariance with anomalous dimensions for various
(gauge-invariant) operators. In this infrared limit, the theory
is in a chirally symmetric, deconfined, non-Abelian
Coulomb phase (NACP). If, on the other hand, as μ
decreases and αðμÞ increases toward αIR, there is a scale
μ ¼ Λ at which αðμÞ exceeds a critical value, denoted αcr,
then the gauge interaction produces a nonzero chiral
condensate, with associated spontaneous chiral symmetry
breaking and dynamical mass generation for the fermions.
These fermions are thus integrated out of the low-energy
effective field theory that is operative for μ < Λ. In this
case, αIR is only an approximate IRFP. We define Nf;cr to
be the critical value of Nf such that if Nf > Nf;cr, then the
(asymptotically free) theory does not undergo spontaneous
chiral symmetry breaking. At the two-loop (2l) level,
αIR;2l ¼ −4πb1=b2, where bl denotes the l-loop coeffi-
cient in the beta function [see Eqs. (2.1) and (2.5) below],
and since b1 [3] and b2 [4] are independent of the scheme
used for regularization and renormalization of the theory
[5], it follows that αIR;2l is also scheme-independent.
Physical quantities evaluated at an infrared fixed point of

the renormalization group at α ¼ αIR are of basic interest.
Since these are physical, their exact values must be scheme-
independent. In conventional computations of these quan-
tities, first, one expresses them as series expansions in
powers of α, calculated to n-loop order; second, one
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computes the IR zero of the beta function, denoted αIR;n, to
the same n-loop order; and third, one sets α ¼ αIR;n in the
series expansion for the given quantity to obtain its value at
the IR zero of the beta function to this n-loop order.
However, these conventional series expansions in powers
of α, calculated to a finite order, are scheme-dependent
beyond the leading one or two terms. Specifically, the terms
in the beta function are scheme-dependent at loop order
l ≥ 3 and the terms in an anomalous dimension are
scheme-dependent at loop order l ≥ 2. Indeed, as is well
known, the presence of scheme-dependence in higher-order
perturbative calculations is a general property in quantum
field theory.
Clearly, it would be very valuable to have a calculational

framework in which these physical quantities evaluated at
α ¼ αIR are expressed as a series expansion such that
at every order in this expansion the result is scheme-
independent. A key point that was noted early on [3,4,6] is
that αIR becomes small as the number Nf of fermions
increases toward the value Nf;b1z [given below in Eq. (2.4)]
at which the one-loop term in the beta function, b1, passes
through zero. At the two-loop level, αIR ∝ Δf, where

Δf ¼ Nf;b1z − Nf: ð1:2Þ

Indeed, in a theory with G ¼ SUðNcÞ and fermions in the
fundamental representation, in the limit Nc → ∞ and
Nf → ∞ with Nf=Nc fixed, αIR can be made arbitrarily
small. Hence, one can envision reliable perturbative cal-
culations of series expansions for physical quantities at this
IRFP [4,6] and, in particular, series expansions of these
quantities in powers of Δf for reasonably small Δf [7].
Because Δf is obviously scheme-independent, it follows
that this perturbative series expansion in powers of Δf is
scheme-independent. Some early work on this was reported
in [7,8]. Recently, in [9], a procedure for calculating the
coefficients of this scheme-independent expansion was
given for the anomalous dimension of the (gauge-invariant)
fermion bilinear at the IR zero of the beta function, and the
coefficients in this expansion were calculated up to order
Δ3

f in a vectorial asymptotically free gauge theory with
gauge group G and Nf fermions in a representation R. This
work also presented an analogous calculation for a theory
with N ¼ 1 supersymmetry to order Δ2

f. The results were
then evaluated in the case of SU(Nc) with fermions in the
fundamental (F) representation, R ¼ F, with Young
tableau □. In [10], for G ¼ SUð3Þ and R ¼ F, we
calculated the n-loop value of the squared coupling,
αIR;nl and the resultant value of γψ̄ψ to five-loop order,
and in [11] we calculated the scheme-independent expan-
sion of γψ̄ψ for the representations R is theory to order Δ4

f,
using five-loop inputs, and performed an extrapolation to
infinite order in Δf to estimate the exact value of γψ̄ψ as a
function of Nf. The improvement in the knowledge of the

anomalous dimension γψ̄ψ obtained from the scheme-
independent series expansions in [9,11] is valuable not
only for general field-theoretic purposes, but also because
theories with large anomalous dimensions of fermion
bilinears may be relevant for ultraviolet completions of
the Standard Model. Indeed, there has been considerable
interest in theories that might produce large γψ̄ψ ∼Oð1Þ
associated with an IR zero of the beta function and resultant
quasi-conformal behavior [12]. In [11] we also compared
our results with recent lattice measurements of γψ̄ψ .
In this paper we report a number of new results on

scheme-independent series expansions in powers of Δf. As
noted, we consider an asymptotically free vectorial gauge
theory with gauge group G and Nf fermions in the
representation R. First, we present general formulas for
coefficients in the scheme-independent expansion in
powers of Δf of an arbitrary (gauge-invariant) physical
quantity evaluated at αIR. We calculate the scheme-
independent expansion of the derivative of the beta func-
tion, β0¼dβ=dα, evaluated at αIR, denoted β0IR, to order Δ4

f.
As a consequence of the trace anomaly relation, in a theory
with massless fermions, β0IR is equivalent to γF2;IR, the
anomalous dimension, evaluated at αIR, of the operator
TrðFμνFμνÞ, where Fa

μν is the non-Abelian YangMills field-
strength tensor. For the special case where the gauge group
is SU(3) and the fermions are in the fundamental (triplet)
representation, we compute this expansion to order Δ5

f.
This SU(3) theory corresponds to quantum chromodynam-
ics (QCD) with Nf massless quarks. For general G and R,
we calculate the scheme-independent expansion coeffi-
cients to order Δ3

f for the anomalous dimension, evaluated
at αIR, of the flavor-nonsinglet and flavor-singlet fermion
bilinear Dirac tensor operators. Since the Δf expansion
starts at the upper end of the non-Abelian Coulomb phase
(NACP) at Δf ¼ 0, i.e., Nf ¼ Nf;b1z, and extends down-
ward in Nf with increasing Δf, we focus mainly on the
infrared behavior in the NACP. We show that our scheme-
independent calculations of the anomalous dimensions of
TrðFμνFμνÞ and fermion bilinear operators in the non-
Abelian Coulomb phase obey respective rigorous upper
bounds for conformally invariant theories. As part of our
analysis, we compare results for various quantities calcu-
lated via the scheme-independent expansion with results
calculated via a conventional higher-loop scheme-depen-
dent expansion. Further, for the case withG ¼ SUðNcÞ and
fermions in the fundamental representation, we discuss the
limit Nc → ∞ and Nf → ∞ with Nf=Nc fixed and finite.
From ratios of scheme-independent expansion coefficients
for β0IR, γψ̄ψ ;IR and the anomalous dimension of the fermion
bilinear antisymmetric Dirac tensor operator, we show, in
agreement with, and extending [9], that the scheme-
independent Δf expansion should be reasonably accurate
in the non-Abelian Coulomb phase. As with our earlier
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work, the present study is motivated by the value of the new
results for a basic understanding of the renormalization-
group evolution of asymptotically free gauge theories, and
also may be relevant to ultraviolet completions of the
Standard Model.
The paper is organized as follows. Some relevant

background and methods are discussed in Sec. II. In
Sec. III we present explicit formulas for the calculations
of certain coefficients [an and kn in Eqs. (3.1) and (3.3)]
that are needed for the rest of our work. General scheme-
independent expansion formulas for anomalous dimensions
of operators are given in Sec. IV. In this section we also
discuss rigorous upper bounds on anomalous dimensions in
a conformally invariant theory and their application here.
We give our new results on scheme-independent calcula-
tions of β0IR in Sec. V. In Sec. VI we extend the analysis
of the scheme-independent expansion of the anomalous
dimension for the m ¼ 0 fermion bilinear previously
studied in [9] and [11] with several new results. These
include calculations for the limit Nc → ∞, Nf → ∞ with
Nf=Nc fixed and analyses of Padé approximants, with
comparison to scheme-dependent higher-loop conventional
calculations. Section VII presents scheme-independent
calculations of the anomalous dimension for the fermion
bilinear (flavor-nonsinglet and flavor-singlet) antisymmet-
ric rank-2 Dirac tensor operator. Our conclusions are given
in Sec. VIII and some auxiliary formulas are listed in
Appendix.

II. BACKGROUND AND METHODS

The beta function of this theory has the series expansion

β ¼ −2α
X∞
l¼1

blal ¼ −2α
X∞
l¼1

b̄lαl; ð2:1Þ

where

a ¼ g2

16π2
¼ α

4π
; ð2:2Þ

bl is the l-loop coefficient, b̄l ¼ bl=ð4πÞl, and we extract
a minus sign for convenience, so b1 > 0 for asymptotic
freedom. For analysis of an IR zero of β, it is convenient to
extract the α2 factor that gives rise to the UV zero at α ¼ 0
and define a reduced (r) beta function

βr ¼
β

ð− α2b1
2π Þ

¼ 1þ 1

b1

X∞
l¼2

blal−1: ð2:3Þ

The n-loop (nl) beta function, denoted βnl and reduced
beta function, denoted βr;nl are obtained from the respec-
tive Eqs. (2.1) and (2.3) by changing the upper limit on the
l-loop summation from∞ to n. As noted above, b1 and b2
are scheme-independent (SI), while the bl with l ≥ 3 are

scheme-dependent (SD) [5]. For a general gauge group G
and fermion representation R, the coefficients b1 and b2
were calculated in [3] and [4], and b3 and b4 were
calculated in [13] and [14] (and checked in [15]) in the
commonly used mass-independent MS scheme [16].
Recently, for G ¼ SUð3Þ and R ¼ F, b5 was calculated
in [17]. For reference and to show our normalizations
explicitly, b1 and b2 are listed in Appendix. As Nf

increases, b1 decreases through positive values and van-
ishes with sign reversal at Nf ¼ Nf;b1z, where

Nf;b1z ¼
11CA

4Tf
ð2:4Þ

(the subscript b1z means “b1 zero”), where CA and Tf are
group-theoretic invariants [18,19]. The asymptotic freedom
condition therefore implies the upper bound Nf < Nf;b1z.
We denote the interval 0 ≤ Nf < Nf;b1z as IAF.
For Nf close to, but less than, Nf;b1z, b2 < 0, so the two-

loop beta function has an IR zero, at the value

αIR;2l ¼ −
b̄1
b̄2

¼ −
4πb1
b2

: ð2:5Þ

In general, the n-loop beta function has a double UV zero at
α ¼ 0 and n − 1 zeros away from the origin. Among the
latter, the smallest (real, positive) zero, if such a zero
occurs, is the physical IR zero, denoted αIR;nl. As Nf

decreases from Nf;b1z, b2 passes through zero to positive
values as Nf passes through the value

Nf;b2z ¼
17C2

A

2Tfð5CA þ 3CfÞ
: ð2:6Þ

Hence, with Nf formally extended from nonnegative
integers to nonnegative real numbers [19], β2l has an IR
zero (IRZ) for Nf in the interval

IIRZ∶ Nf;b2z < Nf < Nf;b1z: ð2:7Þ

We denote this interval as IIRZ.
As Nf decreases in this interval, αIR;2l increases toward

strong coupling. Hence, to study the IR zero for Nf toward
the middle and lower part of IIRZ with reasonable accuracy,
one requires higher-loop calculations. These were per-
formed in [20–27] for αIR;nl and for the anomalous
dimension of the fermion bilinear operator. Clearly, a
perturbative calculation of the IR zero of βnl is only
reliable if the resultant αIR;nl is not excessively large.
Moreover, since the bl with l ≥ 3 are scheme-dependent, it
is also incumbent upon one to ascertain the degree of
sensitivity of the value obtained for αIR;nl for n ≥ 3 to the
scheme used for the calculation. This task was carried out
in [28–31]. One way to do this is to perform the calculation
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of αIR;nl in one scheme, say MS, apply a scheme trans-
formation to obtain the value of αIR;nl in another scheme,
and compare how close the two values are. As we discussed
in [28,29], an acceptable scheme transformation function
must satisfy a set of conditions, and although these are
automatically satisfied in the local vicinity of the origin,
α ¼ 0 (as in optimized schemes for perturbative QCD
calculations), they are not automatically satisfied, and
indeed, are quite restrictive conditions, when one applies
the scheme transformation at an IR zero away from the
origin. Anomalous dimensions of composite fermion oper-
ators for G ¼ SUð3Þ have been calculated in [32].
The one-loop coefficient b1 is a polynomial of degree 1

in Nf and the higher-loop coefficients bl with l ≥ 2 are
polynomials of degree l − 1 in Nf. Let us define

bð0Þl ¼ bljNf¼Nf;b1z
ð2:8Þ

and, for r ≥ 1,

bðrÞl ¼ drbl
ðdNfÞr

jNf¼Nf;b1z
¼ ð−1Þr drbl

ðdΔfÞr
����
Δf¼0

: ð2:9Þ

Then one has the scheme-independent results

bð0Þ1 ¼ 0 ð2:10Þ

(which is equivalent to the definition of Nf;b1z),

bð1Þ1 ¼ 4Tf

3
; ð2:11Þ

bð0Þ2 ¼ −CAð7CA þ 11CfÞ≡ −CAD; ð2:12Þ

where

D ¼ 7CA þ 11Cf; ð2:13Þ

and

bð1Þ2 ¼ −
4

3
ð5CA þ 3CfÞTf: ð2:14Þ

It is convenient to introduce the definition (2.13), since
powers of D occur in the denominators of the scheme-
independent expansion coefficients of anomalous dimen-
sions of bilinear fermion Dirac tensor operators and of
dβ=dα evaluated at the IR zero of the beta function.
Thus, one has the finite Taylor series expansions

b1 ¼ bð1Þ1 ðNf − Nf;b1zÞ ¼ −bð1Þ1 Δf ð2:15Þ

and, for l ≥ 2,

bl ¼
Xl−1
r¼0

1

r!
bðrÞl ðNf − Nf;b1zÞr

¼
Xl−1
r¼0

ð−1Þr
r!

bðrÞl Δr
f: ð2:16Þ

We write Eqs. (2.15) and (2.16) in a unified manner as

bl ¼
XrmaxðlÞ

r¼0

ð−1Þr
r!

bðrÞl Δr
f; ð2:17Þ

where rmaxð1Þ ¼ 1 and rmaxðlÞ ¼ l − 1 if l ≥ 2.
It will also be useful to recall some basic properties

of the theory regarding global flavor symmetries. Because
the Nf fermions are massless, the Lagrangian is invariant
under the classical global chiral flavor (fl) symmetry
Gfl;cl ¼ UðNfÞL ⊗ UðNfÞR, or equivalently,

Gfl;cl ¼ SUðNfÞL ⊗ SUðNfÞR ⊗Uð1ÞV ⊗Uð1ÞA ð2:18Þ

(where V and A denote vector and axial-vector). The Uð1ÞV
represents fermion number, which is conserved by the
bilinear operators that we consider. The Uð1ÞA symmetry is
broken by instantons, so the actual nonanomalous global
flavor symmetry is

Gfl ¼ SUðNfÞL ⊗ SUðNfÞR ⊗ Uð1ÞV: ð2:19Þ

This Gfl symmetry is respected in the (deconfined) non-
AbelianCoulombphase, since there is no spontaneous chiral
symmetry in this phase. As noted before, we focus on this
phase in the present work, since the (scheme-independent)
Δf expansion starts from the upper end of the interval IIRZ in
this phasewhereαIR → 0 asΔf → 0. In contrast, in thephase
with confinement and spontaneous chiral symmetry break-
ing, the gauge interaction produces a bilinear fermion

condensate, which can be written as
PNf

j¼1 ψ̄ jψ j, and this
breaks Gfl to SUðNfÞV ⊗ Uð1ÞV .

III. CALCULATION OF THE SERIES
EXPANSION COEFFICIENTS kn AND an

We know that the exact αIR (and also the n-loop
approximation to this exact αIR) vanishes (linearly) as a
function of Δf and that it is analytic at Δf ¼ 0, so we can
expand it, or equivalently, aIR ¼ αIR=ð4πÞ, as a series
expansion in this variable, Δf. We write

aIR ¼
X∞
j¼1

ajΔ
j
f: ð3:1Þ

[Note that aj as defined here is equal to aj=2 in terms of the
aj in Eq. (8) of [9].]
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One calculates the coefficients aj in two steps. First, one
evaluates βr in Eq. (2.3) at α ¼ αIR, where it vanishes.
Since the prefactor −8πa2IR in Eq. (2.1) is nonzero in
general (although it does vanish at Δf ¼ 0), it follows that

X∞
l¼1

blðaIRÞl−1 ¼ 0: ð3:2Þ

One then substitutes the finite Taylor series expansions for
bl, and aIR, Eqs. (2.15), (2.17), and (3.1), in Eq. (3.2) and
thereby obtains the equation

βrjα¼αIR
¼ 0 ¼

X∞
l¼1

�� XrmaxðlÞ

r¼0

bðrÞl Δr
f

��X∞
j¼1

ajΔ
j
f

�
l
�

¼
X∞
n¼1

knΔn
f: ð3:3Þ

The results for the first three kn were given in [9] and are

k1 ¼ a1b
ð0Þ
2 − bð1Þ1 ; ð3:4Þ

k2 ¼ a2b
ð0Þ
2 þ a21b

ð0Þ
3 − a1b

ð1Þ
2 ; ð3:5Þ

and

k3 ¼ a3b
ð0Þ
2 þ 2a1a2b

ð0Þ
3 þ a31b

ð0Þ
4 − a2b

ð1Þ
2 − a21b

ð1Þ
3 :

ð3:6Þ
From Eq. (3.3), it follows that the coefficient an occurs

linearly in the expression for kn, in the single term anb
ð0Þ
2

[9]. To further show the structural forms of the kn, we give
k4 and k5 here:

k4 ¼ a4b
ð0Þ
2 þ ða22 þ 2a1a3Þbð0Þ3 þ 3a21a2b

ð0Þ
4 þ a41b

ð0Þ
5

− a3b
ð1Þ
2 − 2a1a2b

ð1Þ
3 − a31b

ð1Þ
4 þ 1

2
a21b

ð2Þ
3 ð3:7Þ

k5 ¼ a5b
ð0Þ
2 þ 2ða1a4 þ a2a3Þbð0Þ3 þ 3a1ða22 þ a1a3Þbð0Þ4

þ 4a31a2b
ð0Þ
5 þ a51b

ð0Þ
6 − a4b

ð1Þ
2 − ða22 þ 2a1a3Þbð1Þ3

− 3a21a2b
ð1Þ
4 − a41b

ð1Þ
5 þ a1a2b

ð2Þ
3 þ 1

2
a31b

ð2Þ
4 : ð3:8Þ

In addition to the property that kn contains a term anb
ð0Þ
2 ,

we remark on two other general properties of the kn: (i) kn
contains a term an1b

ð0Þ
nþ1 [which coincides with the term

anb
ð0Þ
2 if n ¼ 1] and (ii) if n ≥ 2, then kn contains a term

−an−1b
ð1Þ
2 .

Next, one observes that in Eq. (3.3), since Δf is variable,
this implies that the coefficients kn of each power Δn

f must
vanish individually. One can solve the equations kn ¼ 0 for
the an. The solutions are unique because of the property

that an occurs linearly in kn. The solutions for the an with
with 1 ≤ n ≤ 3 were given in [9]. Thus, the equation
k1 ¼ 0 yields

a1 ¼
bð1Þ1

bð0Þ2

: ð3:9Þ

One then substitutes this into the equation k2 ¼ 0 and
solves for a2, obtaining

a2 ¼
bð1Þ1

ðbð0Þ2 Þ3
ðbð0Þ2 bð1Þ2 − bð1Þ1 bð0Þ3 Þ: ð3:10Þ

One then proceeds iteratively in the manner, substituting
the solutions for the ak with 1 ≤ k ≤ n − 1 in the equation
kn ¼ 0 and solving for an. For a3, this yields

a3 ¼
bð1Þ1

ðbð0Þ2 Þ5
½ðbð0Þ2 bð1Þ2 Þ2 − 3bð1Þ1 bð0Þ2 bð1Þ2 bð0Þ3 þ 2ðbð1Þ1 bð0Þ3 Þ2

þ bð1Þ1 ðbð0Þ2 Þ2bð1Þ3 − ðbð1Þ1 Þ2bð0Þ2 bð0Þ4 �: ð3:11Þ

In general, an depends on the bl coefficients for
1 ≤ l ≤ nþ 1. The an with 1 ≤ n ≤ 3 were all the coef-
ficients of this type that were needed in [9] since the bl
have only been computed for a general gauge group G and
fermion representation R up to l ¼ 4 loop order. These an
have a factorized structure with a prefactor

an ∝
bð1Þ1

ðbð0Þ2 Þ2n−1
: ð3:12Þ

In [11] we also calculated and presented the result for a4 for
the specific case G ¼ SUð3Þ and fermion representation
R ¼ F, since we were using the recent calculation of the
five-loop coefficient b5 for this case in [17]. Here we give
the general result for a4 for arbitrary gauge group G and
fermion representation R:

a4 ¼
bð1Þ1

ðbð0Þ2 Þ7
½ðbð0Þ2 bð1Þ2 Þ3 − 1

2
bð1Þ1 ðbð0Þ2 Þ4bð2Þ3

þ ðbð1Þ1 Þ2ðbð0Þ2 Þ3bð1Þ4 − 4ðbð1Þ1 bð0Þ2 Þ2ðbð1Þ2 bð0Þ4 þ bð0Þ3 bð1Þ3 Þ
þ 3bð1Þ1 ðbð0Þ2 Þ2bð1Þ2 ðbð0Þ2 bð1Þ3 − 2bð1Þ2 bð0Þ3 Þ
þ 10ðbð1Þ1 Þ2bð0Þ2 bð1Þ2 ðbð0Þ3 Þ2

þ 5ðbð1Þ1 Þ3bð0Þ3 ðbð0Þ2 bð0Þ4 − ðbð0Þ3 Þ2Þ
− ðbð1Þ1 Þ3ðbð0Þ2 Þ2bð0Þ5 �: ð3:13Þ

In the same manner, we have calculated a5 by substitut-
ing our solutions for the ak with 1 ≤ k ≤ 4 in Eq. (3.8), and
so forth for higher ak.
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IV. SCHEME-INDEPENDENT SERIES EXPANSION
FOR ANOMALOUS DIMENSIONS AT αIR

Let us consider a (gauge-invariant) operator O. Because
of the interactions, the full scaling dimension of this
operator, denoted DO, differs from its free-field value,
DO;free:

DO ¼ DO;free − γO; ð4:1Þ

where γO is the anomalous dimension of the operator [33].
Since γO arises from the gauge interaction, it can be
expressed as a power series about a ¼ 0:

γO ¼
X∞
l¼1

cO;lal; ð4:2Þ

where cO;l is the l-loop coefficient.
The exact anomalous dimension γO evaluated at a zero of

the exact beta function, denoted γO;IR, is a physical quantity
and hence is scheme-independent. This was shown for-
mally for the fermion bilinear operator O ¼ ψ̄ψ in [5], and
the proof given there can be straightforwardly extended to
other (gauge-invariant) operators O. However, this scheme
independence is not preserved in a finite-order perturbative
calculation, owing to the scheme dependence of the bl for
l ≥ 3 and of the cO;l for l ≥ 2.
As mentioned above, a method for calculating γψ̄ψ ;IR

as a perturbative series expansion in powers of Δf was
presented in [9], with the important property that at each
order of the expansion the resulting approximation to γψ̄ψ ;IR
is scheme-independent. We can calculate a scheme-
independent series expansion in powers of Δf for the
anomalous dimension γO of a general (gauge-invariant)
operator O, evaluated at αIR by taking the series (4.2) and
inserting the expansions of cO;l and aIR as functions of Δf.
An advantage of this type of series expansion is that since
Δf is scheme-independent, so is the expansion for γO, in
contrast to the expression of γO as a series in powers
of αIR;nl.
We proceed to give a generalization of the results of [9]

for the anomalous dimension of an arbitrary (gauge-
invariant) operator O in an asymptotically free gauge
theory with gauge group G and Nf fermions in the
representation R, evaluated at αIR. We denote this anoma-
lous dimension as γO;IR. Specifically, we present a general
method for calculating a series expansion of γO;IR in powers
of Δf.
We begin with the series expansion (4.2) and substitute

the series expansions for the cO;l and for aIR. Let

cð0ÞO;l ¼ cO;ljNf¼Nf;b1z
ð4:3Þ

and, for r ≥ 1,

cðrÞO;l ¼ drcO;l

ðdNfÞr
����
Nf¼Nf;b1z

¼ ð−1Þr d
rcO;l

ðdΔfÞr
����
Δf¼0

ð4:4Þ

Then

γO;IR ¼
X∞
l¼1

��X
r

cðrÞO;lΔ
r
f

��X∞
j¼1

ajΔ
j
f

�
l
�

¼
X∞
n¼1

κO;nΔn
f: ð4:5Þ

We denote the value of γO;IR obtained from this series
calculated to order OðΔp

f Þ, i.e., from the last line of
Eq. (5.7) with the upper limit of the summand changed
from ∞ to p, as γO;IR;Δp

f
.

We calculate

κO;1 ¼ a1c
ð0Þ
O;1; ð4:6Þ

κO;2 ¼ a2c
ð0Þ
O;1 þ a21c

ð0Þ
O;2; ð4:7Þ

κO;3 ¼ a3c
ð0Þ
O;1 þ 2a1a2c

ð0Þ
O;2 þ a31c

ð0Þ
O;3 þ a21c

ð1Þ
O;2; ð4:8Þ

κO;4 ¼ a4c
ð0Þ
O;1 þ ð2a1a3 þ a22Þcð0ÞO;2 þ 3a21a2c

ð0Þ
O;3

þ a41c
ð0Þ
O;4 þ 2a1a2c

ð1Þ
O;2 þ a31c

ð1Þ
O;3; ð4:9Þ

etc. for κO;n with n ≥ 5. To calculate κO;n, one needs to
know the aj and cj for 1 ≤ j ≤ n. These κO;n have the
following general properties: (i) κO;n contains the term

anc
ð0Þ
O;1 and (ii) κO;n contains the term an1c

ð0Þ
O;n (which

coincides with (i) if n ¼ 1).
A relevant question concerns the range of applicability of

the scheme-independent series expansion (4.5). We address
this question here. As noted above, our analysis in this
paper is focused on the non-Abelian Coulomb phase,
since there is no spontaneous symmetry breaking in this
phase, and hence a zero of the beta function is an exact
IR fixed point of the renormalization group. This means
that the theory at this fixed point is scale-invariant. A
number of studies have concluded that in this case of
an exact IRFP in this asymptotically free gauge theory,
scale invariance implies the larger symmetry of conformal
invariance [34,35].
We will use several methods to assess the range of

validity of the (scheme-independent) small-Δf expansion.
A general comment is that the properties of the theory
change qualitatively as Nf decreases through the value
Nf;cr and spontaneous chiral symmetry breaking occurs
and the fermions gain dynamical masses. The (chirally
symmetric) non-Abelian Coulomb phase with Nf;cr <
Nf < Nf;b1z is clearly qualitatively different from the
confined phase with spontaneous chiral symmetry breaking
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at smaller Nf below Nf;cr. Therefore, one does not, in
general, expect the small-Δf series expansion to hold below
Nf;cr. Estimating the range of applicability of this expan-
sion is thus connected with estimating the value of Nf;cr.
For this purpose, as in our previous work [9,22,24], we

can apply a rigorous upper bound on the anomalous
dimension of an operator from the unitarity of a conformal
field theory. If the approximate calculation of the anoma-
lous dimension of a given quantity at a fixed value of Δf,
computed up to order Δp

f , yields a value that exceeds this
upper bound, then we can infer that the calculation is not
applicable at this value of Δf or equivalently, Nf. In
particular, this can give information on the extent of the
non-Abelian Coulomb phase and the value of Nf;cr. This
bound is applicable whether or not the coefficients κO;n are
all of the same sign, but it is most useful if these coefficients
do have the same sign, since in this case for a fixed Δf the
anomalous dimension is a monotonic function of the order
to which the small-Δf series expansion is calculated.
A second method that we shall use to estimate the range

of applicability of the series expansions in powers of Δf is
the ratio test. If a function fðzÞ has a Taylor series
fðzÞ ¼ P∞

n¼1 snz
n, then the ratio test states that the series

is (absolutely) convergent if jzj < z0, where

z0 ¼ lim
n→∞

jsnj
jsnþ1j

: ð4:10Þ

Our application of the ratio test here is only intended to give
a rough estimate of this range of applicability of the Δf

series expansion since (i) we do not assume that the Δf

expansion is a Taylor series expansion, and (ii) with only a
few terms in the series for a given quantity, we can compute
only a few ratios of adjacent coefficients.
Finally, a third method that we shall use is to calculate

½p; q� Padé approximants to the Δf series expansions. As
rational functions of Δf, the approximants with q ≥ 1 have
poles, and the nearest poles to the origin give one estimate
of the range of validity of the expansions.

A. Upper bound on anomalous dimensions

We now state and apply the upper bound on the
anomalous dimension of an operator in a theory with scale
invariance or conformal invariance. Recall that a (finite-
dimensional) representation of the Lorentz group is speci-
fied by the set ðj1; j2Þ, where j1 and j2 take on nonnegative
integral or half-integral values [36]. A Lorentz scalar
operator thus transforms as (0,0), a Lorentz vector as
ð1=2; 1=2Þ, an antisymmetric tensor like the field-strength
tensor Fa

μν as ð1; 0Þ ⊕ ð0; 1Þ, etc. Then the requirement of
unitarity in a scale-invariant theory (in four spacetime
dimensions) requires that the full dimension DO of an
operator (other than the identity) must satisfy the lower
bound [35]

DO ≥ j1 þ j2 þ 1: ð4:11Þ

With the definition (4.1), this is equivalent to the upper
bound on the anomalous dimension

γO ≤ DO;free − ðj1 þ j2 þ 1Þ: ð4:12Þ

The case ðj1; j2Þ ¼ ð0; 0Þ includes the Lorentz scalar
operators Fa

μνFaμν, and the flavor-nonsinglet and flavor-
singlet fermion bilinear operators ψ̄Tbψ and ψ̄ψ , where
here Tb is an element of the Lie algebra of the global flavor
symmetry group SUðNfÞ. Hence, first, sinceDF2;free ¼ 4, it
follows from (4.12) that the anomalous dimension of the
Fa
μνFaμν, evaluated at αIR, must satisfy

γF2;IR ≤ 3: ð4:13Þ

Second, (4.12) implies that the (equal) anomalous dimen-
sions of the flavor-nonsinglet and flavor-singlet fermion
bilinear operators ψ̄Tbψ and ψ̄ψ evaluated at αIR, denoted
γψ̄ψ ;IR, must satisfy

γψ̄ψ ;IR ≤ 2: ð4:14Þ

The flavor-nonsinglet and flavor-singlet fermion bilinear
antisymmetric rank-2 Dirac tensor operators proportional to
ψ̄Tbσμνψ and ψ̄σμνψ to be analyzed below correspond to
the case ðj1; j2Þ ¼ ð1; 0Þ ⊕ ð0; 1Þ (as is clear from the fact
that they can couple to the non-Abelian field-strength
tensor to form a Lorentz scalar). Hence, with j1þ j2 ¼ 1
for ðj1; j2Þ ¼ ð1; 0Þ or (0,1), the bound (4.12) implies that
the (equal) anomalous dimensions of these operators
evaluated at αIR, denoted γT;IR, must satisfy

γT;IR ≤ 1: ð4:15Þ

We have applied the upper bound (4.14) in our previous
calculations of γψ̄ψ ;IR;nl at the n-loop level, up to n ¼ 4
loops [9–11,22,26,27]. We have also applied a correspond-
ing upper bound in [9,24,27] on the anomalous dimension
of the (gauge-invariant) bilinear chiral superfield operator
Φ ~Φ in a vectorial asymptotically free gauge theory with
gauge group G, N ¼ 1 supersymmetry, and Nf pairs of

chiral superfields Φj and ~Φj, 1 ≤ j ≤ Nf, transforming
according to the representations R and R̄ of G [24,27]. A
theory of particular interest is the case R ¼ F; here,
Nf;b1z ¼ 3Nc and the lower end of the conformal phase
is known, namely Nf;cr ¼ ð3=2ÞNc [37,38] (which is
integral and hence physical if Nc is even). This theory
corresponds to supersymmetric QCD with massless matter
fields, and is often denoted SQCD. In this case, the upper
bound is γψ̄ψ ≤ 1, and this is saturated at the lower end of
the non-Abelian Coulomb phase. The scheme-independent
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expansion in [9] exhibited excellent agreement with this
exact result.

V. SCHEME-INDEPENDENT
CALCULATION OF β0IR

A. Calculation to order Δ4
f for general G and R

An important property of an asymptotically free theory at
an IR zero of the beta function (IRFP of the renormalization
group) is the derivative of this beta function evaluated at
α ¼ αIR,

β0IR ¼ dβ
dα

����
α¼αIR

: ð5:1Þ

This is scheme-independent, as was proved in [5] [39].
In a theory with massless fermions, as considered here, the
trace of the energy-momentum tensor, Tμ

μ, satisfies the
relation [40]

Tμ
μ ¼ β

4α
Fa
μνFaμν; ð5:2Þ

where Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gcabcAb

μAc
ν is the gluon field

strength tensor [41]. Since the energy-momentum tensor is
conserved, its anomalous dimension is zero, and its full
dimension is equal to its free-field dimension, 4.
Consequently, the full scaling dimension of the rescaled
operator Fa

μνFaμν, denoted DF2 , satisfies

DF2 ¼ 4þ β0 − 2β

α
; ð5:3Þ

where we use the shorthand notation F2 ≡ Fa
μνFaμν [42,43].

We denote the anomalous dimension of the operator
Fa
μνFaμν as γF2 and its evaluation at αIR as γF2;IR. From

Eq. (5.3), it follows that at a zero of the beta function away
from the origin, in particular, the IR zero of an asymptoti-
cally free gauge theory of interest here at α ¼ αIR, the
derivative β0IR is equivalent to the anomalous dimension
[33] of the operator Fa

μνFaμν:

β0IR ¼ −γF2;IR: ð5:4Þ

From Eq. (2.1), one obtains the conventional series
expansion for β0IR in powers of α, or equivalently, a:

β0IR ¼ −2
X∞
l¼1

ðlþ 1ÞblalIR: ð5:5Þ

We denote β0IR;nl as the n-loop truncation of this infinite
series. The two-loop value is scheme-independent [26]:

β0IR;2l ¼ −
2b21
b2

¼ ð11CA − 4TfNfÞ2
3½2ð5CA þ 3CfÞTfNf − 17C2

A�
; ð5:6Þ

which is positive for Nf ∈ IIRZ. However, at the level of
n ≥ 3 loops, the quantity β0IR;nl is scheme-dependent. This
quantity was calculated up to the four-loop level in [26,27],
using b3 and b4 computed in the MS scheme from [13,14]
(for SU(3), see also the four-loop study [44]).
Here we calculate a scheme-independent expansion of

β0IR in powers of Δf to order Δ4
f for general G and R and to

the five-loop level, i.e., order Δ5
f, for SU(3). For general G

and R, we substitute the expansions of bl and aIR, as series
in Δf, in Eq. (5.5) to obtain

β0IR ¼ −2
X∞
l¼1

ðlþ 1Þ
�� XrmaxðlÞ

r¼0

bðrÞl Δr
f

��X∞
j¼1

ajΔ
j
f

�
l
�

¼
X∞
n¼1

dnΔn
f: ð5:7Þ

We denote the value of β0IR obtained from this series
calculated to order Δp

f as β0IR;Δp
f
. The calculation of dn

contains explicit dependence on the bl for 1 ≤ l ≤ n and
on the aj for 1 ≤ j ≤ n − 1; since aj depends on bl for
1 ≤ l ≤ jþ 1, it follows that the calculation of dn requires
knowledge of bl for 1 ≤ l ≤ n. Since the bl have been
calculated for general gauge group G and fermion repre-
sentation R up to four-loop level, we can thus calculate
explicit expressions for the dn up to n ¼ 4. For our
calculation, in addition to the scheme-independent results
for b1 and b2 [3,4], we have used the expressions for b3 and
b4 calculated in the MS scheme in [13,14]. However, we
stress that it does not matter which scheme we use for b3
and b4, because the resulting series expansion for β0IR in
powers of Δf is scheme-independent.
Substituting the bðrÞl and aj into these equations, we find

the following results. First,

d1 ¼ 0; ð5:8Þ

so that β0IR vanishes quadratically with Δf as Δf → 0, i.e.,
as Nf → Nf;b1z. For n ≥ 2, with the denominator factor
D ¼ 7CA þ 11Cf as defined in Eq. (2.13), we calculate

d2 ¼
25T2

f

32CAD
; ð5:9Þ

d3 ¼
27T3

fð5CA þ 3CfÞ
33C2

AD
2

; ð5:10Þ
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and

d4 ¼ −
23T2

f

36C4
AD

5

�
C5
AT

2
fð−412335þ 1241856ζ3Þ þ C4

AT
2
fCfð−310800þ 2661120ζ3Þ

þ C3
AT

2
fC

2
fð−217848 − 836352ζ3Þ þ C3

A
dabcdR dabcdR

dA
ð−2385152þ 5203968ζ3Þ þ C2

AT
2
fC

3
fð−2855424 − 3066624ζ3Þ

þ C2
ATf

dabcdR dabcdA

dA
ð630784 − 6150144ζ3Þ þ C2

ACf
dabcdR dabcdR

dA
ð−3748096þ 8177664ζ3Þ

þ 191664CAT2
fC

4
f þ CAT2

f
dabcdA dabcdA

dA
ð−35840þ 946176ζ3Þ þ CATfCf

dabcdR dabcdA

dA
ð991232 − 9664512ζ3Þ

þ T2
fCf

dabcdA dabcdA

dA
ð−56320þ 1486848ζ3Þ

�
: ð5:11Þ

Here,

ζs ¼
X∞
n¼1

1

ns
ð5:12Þ

is the Riemann zeta function, the quantities CA, Cf, Tf are
group invariants, and the contractions dabcdA dabcdA ,
dabcdR dabcdA , dabcdR dabcdR are additional group-theoretic quan-
tities given in [14], and dA is the dimension of the adjoint
representation of G. These calculations thus determine the
quantity β0IR to order Δ4

f for an arbitrary gauge groupG and
fermion representation R. We have also calculated d5, but
the expression is sufficiently lengthy that we do not include
it here; however, we shall use it below.
We note a general result on the signs of the first two

nonzero coefficients in the scheme-independent expansion
for β0IR:

dn > 0 for n ¼ 2; 3 and arbitrary G;R: ð5:13Þ

These positivity results are clear from Eqs. (5.9) and (5.10).
In contrast, there are terms of both signs in the large square
bracket in the expression for d4, Eq. (5.11); for example, in
the large square bracket in Eq. (5.11), the coefficients of the
C5
AT

2
f and C4

AT
2
fCf terms are positive while the coefficient

of the C3
AT

2
fC

2
f term is negative, etc. Indeed, we will show

below in Eqs. (5.16) and (5.61) that for G ¼ SUðNcÞ, d4 is
negative if R ¼ F and positive if R ¼ adj. A summary of
the sign results for these coefficients and others is given in
Table I for the case where G ¼ SUðNcÞ.
In Table II we list the (scheme-independent) values that

we calculate for β0IR;Δp
f
with 2 ≤ p ≤ 4 for the illustrative

gauge groups G ¼ SUð2Þ, SU(3), and SU(4), as functions
of Nf in the respective intervals IIRZ given in Eq. (2.7). For
comparison, we list the n-loop values of β0IR;nl with the
2 ≤ n ≤ 4, where β0IR;3l and β0IR;4l are computed in the MS
scheme. Values that exceed β0IR ¼ 3 are marked as such. In
the case of SU(3), we also include our calculation of β0

IR;Δ5
f
.

B. Evaluation for G=SUðNcÞ and R=F

We proceed to evaluate our general formulas for the dn
coefficients for a case of particular interest, namely that in
which the gauge group isG ¼ SUðNcÞwithNf fermions in
the fundamental representation, R ¼ F. In addition to
Eq. (5.8), our general results (5.9)–(5.11) yield

d2;SUðNcÞ;F ¼ 24

32ð25N2
c − 11Þ ; ð5:14Þ

d3;SUðNcÞ;F ¼ 25ð13N2
c − 3Þ

33Ncð25N2
c − 11Þ2 ; ð5:15Þ

and

TABLE I. Signs of expansion coefficients discussed in the text
for gauge group G ¼ SUðNcÞ and fermion representation R ¼ F
(fundamental) and R ¼ adj (adjoint). Several results on signs
actually apply more generally for arbitrary G and R; see text for
details. ForG ¼ SUð3Þ, we have also calculated d5;F in Eq. (5.20)
and find that it is negative. The entry for κ4;F applies for
G ¼ SUð3Þ [see Eq. (6.14)], as calculated in [11], and this is
indicated by the ð�Þ. The entry NA means “not available,” i.e. the
coefficient has not yet been calculated.

n dn;F dn;adj κn;F κn;adj κT;n;F κT;n;adj

1 0 0 þ þ − −
2 þ þ þ þ − −
3 þ þ þ þ þ þ
4 − þ þð�Þ NA NA NA
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d4;SUðNcÞ;F ¼ −
24

35N2
cð25N2

c − 11Þ5
× ½N8

cð−366782þ 660000ζ3Þ
þ N6

cð865400 − 765600ζ3Þ
þ N4

cð−1599316þ 2241888ζ3Þ
þ N2

cð571516 − 894432ζ3Þ þ 3993�: ð5:16Þ

As is evident, the coefficients d2;SUðNcÞ;F and d3;SUðNcÞ;F
are positive-definite for all physical values of Nc. We find
that d4;SUðNcÞ;F is negative-definite for all physical values
of Nc ≥ 2.

C. Calculation to OðΔ5
f Þ for G=SUð3Þ and R=F

For the special case where the gauge group isG ¼ SUð3Þ
and the Nf fermions are in the fundamental representation,
R ¼ F, we can make use of the recent calculation of b5 in
the MS scheme in [17] to carry out the scheme-independent
calculation of β0IR to one order higher than for generalG and
R, namely to orderΔ5

f. We first give the special cases of our
results in Eqs. (5.8)–(5.11) for this theory. In addition to
d1;SUð3Þ;F ¼ 0, we find

d2;SUð3Þ;F ¼ 8

32 · 107
¼ 0.830737 × 10−2; ð5:17Þ

d3;SUð3Þ;F ¼ 304

33 · ð107Þ2 ¼ 0.983427 × 10−3; ð5:18Þ

and

d4;SUð3Þ;F ¼ 633325687

2 · 36 · ð107Þ5 −
682880

34 · ð107Þ4 ζ3
¼ −ð0.463417 × 10−4Þ: ð5:19Þ

For d5;SUð3Þ;F we calculate

d5;SUð3Þ;F ¼ −
66670528901419

2 · 39 · ð107Þ7 −
122882810048

38 · ð107Þ6 ζ3

þ 196275200

36 · ð107Þ5 ζ5
¼ −ð0.564349 × 10−5Þ: ð5:20Þ

In these equations we have indicated the simple
factorizations of the denominators that were already
evident in the general analytic expressions (5.8)–(5.11).

TABLE II. Scheme-independent values of β0IR;Δp
f
with 2 ≤ p ≤ 4 for G ¼ SUð2Þ, SU(3), and SU(4), as functions of Nf in the

respective intervals IIRZ given in Eq. (2.7) with (2.4) and (2.6). For comparison, we list the n-loop values of β0IR;nl with 2 ≤ n ≤ 4, where

β0IR;3l and β
0
IR;4l are computed in the MS scheme. Values that exceed the upper bound (4.13) are marked as such. In the case of SU(3), we

also include our calculation of β0
IR;Δ5

f
. The notation ae-n means a × 10−n. The notation − means that the entry has not been calculated.

Nc Nf β0IR;2l β0
IR;3l;MS

β0
IR;4l;MS

β0IR;Δ2
f

β0IR;Δ3
f

β0IR;Δ4
f

β0
IR;Δ5

f

2 6 >3 1.620 0.975 0.499 0.957 0.734 −
2 7 1.202 0.728 0.677 0.320 0.554 0.463 −
2 8 0.400 0.318 0.300 0.180 0.279 0.250 −
2 9 0.126 0.115 0.110 0.0799 0.109 0.1035 −
2 10 0.0245 0.0239 0.0235 0.0200 0.0236 0.0233 −
3 9 >3 1.475 1.464 0.467 0.882 0.7355 0.602
3 10 1.523 0.872 0.853 0.351 0.621 0.538 0.473
3 11 0.720 0.517 0.498 0.251 0.415 0.3725 0.344
3 12 0.360 0.2955 0.282 0.168 0.258 0.239 0.228
3 13 0.174 0.1556 0.149 0.102 0.144 0.137 0.134
3 14 0.0737 0.0699 0.678 0.0519 0.0673 0.0655 0.0649
3 15 0.0227 0.0223 0.0220 0.0187 0.0220 0.0218 0.0217
3 16 2.21e-3 2.20e-3 2.20e-3 2.08e-3 2.20e-3 2.20e-3 2.20e-3
4 11 >3 2.189 2.189 0.553 1.087 0.898 −
4 12 >3 1.430 1.429 0.457 0.858 0.729 −
4 13 1.767 0.965 0.955 0.370 0.663 0.578 −
4 14 0.984 0.655 0.639 0.292 0.498 0.445 −
4 15 0.581 0.440 0.424 0.224 0.362 0.331 −
4 16 0.348 0.288 0.276 0.1645 0.251 0.234 −
4 17 0.204 0.180 0.1725 0.114 0.164 0.156 −
4 18 0.113 0.105 0.101 0.0731 0.0988 0.0955 −
4 19 0.0558 0.0536 0.0522 0.0411 0.0520 0.0509 −
4 20 0.0222 0.0218 0.0215 0.0183 0.0215 0.0213 −
4 21 5.01e-3 4.99e-3 4.96e-3 4.57e-3 4.97e-3 4.96e-3 −

THOMAS A. RYTTOV and ROBERT SHROCK PHYSICAL REVIEW D 94, 125005 (2016)

125005-10



The numerators do not, in general, have such simple
systematic factorizations; for example, in d4;SUð3Þ;F, the
number 633325687 ¼ 227 · 311 · 8971, etc. We will also
use this factorization format, indicating the factorizations of
the denominators, in later equations. Substituting these
coefficients into Eq. (5.7), we have, to OðΔ5

fÞ,

β0IR ¼ Δ2
f½ð0.830737 × 10−2Þ þ ð0.983427 × 10−3ÞΔf

− ð0.463417 × 10−4ÞΔ2
f − ð0.564349 × 10−5ÞΔ3

f�;
ð5:21Þ

to the indicated floating-point accuracy.
In Fig. 1 we plot the values of β0IR, calculated to order Δ

p
f

with 2 ≤ p ≤ 5. In the general calculations of γψ̄ψ ;IR as a
series in powers of Δf to maximal power p ¼ 3 (i.e., order
Δ3

f) in [9] and, for G ¼ SUð3Þ and R ¼ F, to maximal
power p ¼ 4 in [11], it was found that, for a fixed value of
Nf, or equivalently, Δf, in the interval IIRZ, these anoma-
lous dimensions increased monotonically as a function of
p. This feature motivated our extrapolation to p ¼ ∞ in [9]
to obtain estimates for the exact γψ̄ψ ;IR. In contrast, here we
find that, for a fixed value of Nf, or equivalently, Δf, in
IIRZ, as a consequence of the fact that different coefficients
dn do not all have the same sign, β0IR;Δp

f
is not a monotonic

function of p. Because of this nonmonotonicity, we do not
attempt to extrapolate our series to p ¼ ∞. Lattice mea-
surements of γF2;IR or β0IR would be useful here (see also
[44]). In particular, for G ¼ SUð3Þ and fermions in the
fundamental representation, the lattice measurements of
γF2;IR could be compared with our scheme-independent
calculation of β0IR to order Δ5

f, similar to the comparison of

our scheme-independent calculation of γψ̄ψ ;IR to order Δ4
f

(which also used five-loop inputs [45]) with lattice results
that we carried out in [11].
To get a rough estimate of the range of accuracy and

applicability of the series expansion for β0IR, we can
compute ratios of coefficients, as discussed in connection
with Eq. (4.10). Thus, we have

d2;SUð3Þ;F
d3;SUð3Þ;F

¼ 8.447; ð5:22Þ

d3;SUð3Þ;F
jd4;SUð3Þ;Fj

¼ 21.221; ð5:23Þ

and

jd4;SUð3Þ;Fj
jd5;SUð3Þ;Fj

¼ 8.2115: ð5:24Þ

Since Nf;b1z ¼ 16.5 and Nf;b2z ¼ 153=19 ¼ 8.053 in this
SU(3) theory, the maximal value ofΔf in the interval IIRZ is

ðΔfÞmax ¼
321

38
¼ 8.447 for SUð3Þ; Nf ∈ IIRZ: ð5:25Þ

Therefore, these ratios suggest that the small-Δf expansion
may be reasonably reliable in most of this interval, IIRZ and
the associated non-Abelian Coulomb phase.

D. Calculation in the LNN limit and comparison
with conventional calculation

For theories having gauge the group G ¼ SUðNcÞ with
Nf fermions in the fundamental representation of this
group, i.e., R ¼ F, it is of interest to consider the limit

Nc → ∞; Nf → ∞

with r≡ Nf

Nc
fixed and finite

and ξðμÞ≡ αðμÞNc is a finite function of μ: ð5:26Þ

Wewill use the symbol limLNN for this limit, where “LNN”
stands for “large Nc and Nf” [with the constraints in
Eq. (5.26) imposed]. In this LNN (’t Hooft-Veneziano)
limit we define the quantities

x ¼ limLNN
g2Nc

16π2
¼ ξ

4π
; ð5:27Þ

rb1z ¼ limLNN
Nf;b1z

Nc
; ð5:28Þ

and

0

0.2

0.4

0.6

0.8

1

1.2

1.4

bp

8 10 12 14 16
Nf

FIG. 1. Plot of β0IR;Δp
f
for 2 ≤ p ≤ 5 as a function of Nf for the

SU(3) theory with Nf fermions in the fundamental representa-
tion. From bottom to top, the curves (with colors online) refer to
β0IR;Δ2

f
(red), β0

IR;Δ5
f
(black) β0IR;Δ4

f
(blue), β0IR;Δ3

f
(green).
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rb2z ¼ limLNN
Nf;b2z

Nc
; ð5:29Þ

with values

rb1z ¼
11

2
¼ 5.5 ð5:30Þ

and

rb2z ¼
34

13
¼ 2.615 ð5:31Þ

(to the indicated floating-point accuracy). With IIRZ being
Nf;b2z < Nf < Nf;b1z, the corresponding interval in the
ratio r is

IIRZ;r∶
34

13
< r <

11

2
; i:e:; 2.615 < r < 5.5: ð5:32Þ

We define the scaled scheme-independent expansion
parameter for the LNN limit

Δr ≡ Δf

Nc
¼ rb1z − r ¼ 11

2
− r ð5:33Þ

and

rc ¼ limLNN
Nf;cr

Nc
: ð5:34Þ

After these preliminaries, we now proceed to calculate
the scheme-independent expansion of β0IR in this LNN limit
(5.26), and compare with the conventional calculation of
this quantity. The beta function that is finite in this LNN
limit is

βξ ¼
dξ
dt

¼ limLNNβNc; ð5:35Þ

where ξ ¼ limLNNαNc was defined in Eq. (5.26). This has
the series expansion

βξ ≡ dξ
dt

¼ −8πx
X∞
l¼1

b̂lxl; ð5:36Þ

where

b̂l ¼ limLNN
bl
Nl

c
: ð5:37Þ

The b̂l are listed for reference in Appendix.
Since the derivative dβξ=dξ satisfies the relation

dβξ
dξ

¼ dβ
dα

≡ β0; ð5:38Þ

it follows that β0 is finite in the LNN limit (5.26). In terms
of the variable x defined in Eq. (5.27), we have

β0 ¼ −2
X∞
l¼1

ðlþ 1Þb̂lxl: ð5:39Þ

Because β0IR is scheme-invariant and is finite in the LNN
limit, one is motivated to calculate the LNN limit of the
scheme-independent expansion (5.7). For this purpose, in
addition to the rescaled quantities Δr defined in Eq. (5.33),
we define the rescaled coefficient

d̂n ¼ Nn
cdn; ð5:40Þ

which is finite in the LNN limit. Then each term

limLNNdnΔn
f ¼ ðNn

cdnÞ
�
Δf

Nc

�
n
¼ d̂nΔn

r ð5:41Þ

is finite in this limit. Thus, writing limLNNβ
0
IR as β0IR;LNN ,

we have

β0IR;LNN ¼
X∞
n¼1

dnΔn
f ¼

X∞
n¼1

d̂nΔn
r : ð5:42Þ

We denote the value of β0IR;LNN obtained from this series
calculated to order OðΔp

f Þ as β0IR;LNN;Δp
f
.

From Eqs. (5.8)–(5.11), we find that the approach to the
LNN limits for d̂n involves correction terms that vanish
like 1=N2

c. This is the same property that was found in
[26,27] and, in the same way, it means that the approach to
the LNN limit for finite Nc and Nf with fixed r ¼ Nf=Nc

is rather rapid, as discussed in [27]. We calculate d̂1 ¼ 0
and

d̂2 ¼
24

32 · 52
¼ 0.0711111; ð5:43Þ

d̂3 ¼
416

33 · 54
¼ 2.465185 × 10−2; ð5:44Þ

and

d̂4¼
5868512

35 ·510
−
5632

34 ·56
ζ3 ¼−ð2.876137×10−3Þ: ð5:45Þ

Thus, numerically

β0IR;LNN ¼ γF2;IR

¼ Δ2
r ½0.07111þ ð2.4652 × 10−2ÞΔr

− ð2.8761 × 10−3ÞΔ2
r �: ð5:46Þ

We may again calculate ratios of successive magnitudes
of these coefficients to get a rough estimate of the range
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over which the small-Δr expansion is reliable in this LNN
limit. We find

d̂2
d̂3

¼ 2.885 ð5:47Þ

and

d̂3
jd̂4j

¼ 8.571: ð5:48Þ

For r ∈ IIRZ;r, the maximal value of Δr is

ðΔrÞmax ¼
75

26
¼ 2.885 for r ∈ IIRZ;r: ð5:49Þ

Therefore, these LNN ratios suggest, in agreement with our
analysis for SU(3) and R ¼ F, that the small-Δr expansion
may be reasonably reliable over much of the interval IIRZ;r.
It is useful to compare these scheme-independent

calculations of β0IR;LNN with the results of conventional
n-loop calculations, denoted β0IR;nl;LNN . These derivatives
are computed from the n-loop truncation of the series in
Eq. (5.39). As a special case of our remark below Eq. (5.5),
we note that in calculating the n-loop truncation of the
series (5.39) at the IR zero of the beta function, for n ≥ 3,
one uses the property that

Xn
l¼1

b̂lxl−1IR;nl ¼ 0; ð5:50Þ

to eliminate the highest-loop term b̂nxn−1IR , expressing it as
b̂nxn−1IR ¼ −

P
n−2
l¼1 b̂lx

l−1
IR;nl. The two-loop result for xir is

xIR;2l ¼ 11 − 2r
13r − 34

for r ∈ IIRZ;r: ð5:51Þ

The resultant two-loop for β0IR is

β0IR;2l ¼ 2ð11 − 2rÞ2
3ð13r − 34Þ : ð5:52Þ

Both xIR;2l and β0IR;2l are scheme-independent. However,
the higher-loop expressions for these quantities at loop
level n ≥ 3 do not preserve the scheme-independence of the
exact β0IR. Let us define the polynomials (see Eqs. (3.9) and
(2.26) in [27])

C3l ¼ −52450þ 41070r − 7779r2 þ 448r3 ð5:53Þ

and

D3l ¼ −2857þ 1709r − 112r2; ð5:54Þ

both of which are positive for r ∈ IIRZ;r. The three-loop
value of the IR zero of the beta function in the LNN limit,
computed in the MS scheme, is [27]

xIR;3l ¼ 3½−3ð13r − 34Þ þ ffiffiffiffiffiffiffiffi
C3l

p �
D3l

: ð5:55Þ

We calculate the three-loop result for β0IR, or equivalently
the anomalous dimension of TrðFμνFμνÞ, in the LNN limit,
again in the MS scheme, to be

β0IR;3l ¼ 2½−3ð13r − 34Þ þ ffiffiffiffiffiffiffiffi
C3l

p �
D2

3l

× ½−52450þ 41070r − 7779r2 þ 448r3

− 3ð13r − 34Þ
ffiffiffiffiffiffiffiffi
C3l

p
�: ð5:56Þ

We compute the four-loop result β0IR;4l in this scheme in
a similar manner. In Table III we list the numerical values of
these conventional n-loop calculations in comparison with
our scheme-independent results calculated to OðΔp

f Þ for
2 ≤ n ≤ 4 and 1 ≤ p ≤ 3. We see that, especially for r
values in the upper part of the interval IIRZ;r, the results are
rather close, and, furthermore, that, as expected, for a given
r, the higher the loop level n and the truncation order p in
the respective calculations of β0IR;nl in the MS scheme and
the scheme-independent β0IR;Δp

f
, the better the agreement

between these two results. All of the entries shown in
Table III have β0IR < 3 except for the two-loop values β0IR;2l
for r ¼ 3.0 and r ¼ 2.8 which are 3.333 and 8.100,
respectively.

E. Calculation of the dn to OðΔ4
f Þ

for G=SUðNcÞ and R = adj

It is worthwhile to compare our results obtained for
G ¼ SUðNcÞ with Nf fermions in the fundamental repre-
sentation to the case in which the fermions are in the adjoint
representation, denoted as adj for short. In this case, the
general expressions for Nf;b1z and Nf;b2z are

Nf;b1z ¼
11

4
¼ 2.75 for R ¼ adj ð5:57Þ

and

Nf;b2z ¼
17

16
¼ 1.0625 for R ¼ adj; ð5:58Þ

so the interval IIRZ only contains the single integer value
Nf ¼ 2.
For this theory, our general expressions (5.9) and (5.10)

reduce to pure numbers, independent of Nc:

SCHEME-INDEPENDENT SERIES EXPANSIONS AT AN … PHYSICAL REVIEW D 94, 125005 (2016)

125005-13



d2;SUðNcÞ;adj ¼
24

34
¼ 0.19753; ð5:59Þ

d3;SUðNcÞ;adj ¼
28

37
¼ 0.11706: ð5:60Þ

For d4 we calculate

d4;SUðNcÞ;adj ¼
46871N2

c þ 85248

22 · 312N2
c

: ð5:61Þ

This coefficient d4;SUðNcÞ;adj is manifestly positive and has
the large-Nc limit

lim
Nc→∞

d4;SUðNcÞ;adj ¼
46871

22 · 312
¼ 0.022049: ð5:62Þ

In contrast to our results for the dn;SUðNcÞ;F, here all of the
coefficients dn;SUðNcÞ;adj that we have calculated, for
1 ≤ n ≤ 4, are positive. These signs are recorded in Table I.
With these coefficients, one can again compute ratios to

obtain a crude idea of the region over which the small-Δf
series expansion is reliable. We have

d2;SUðNcÞ;adj
d3;SUðNcÞ;adj

¼ 1.687 ð5:63Þ

and, taking the large-Nc limit for simplicity,

lim
Nc→∞

d3;SUðNcÞ;adj
d4;SUðNcÞ;adj

¼ 5.309: ð5:64Þ

These ratios are consistent with the inference that the small-
Δf expansion may again be reasonably accurate in the

interval IIRZ and for the corresponding value Nf ¼ 2 in this
theory.

VI. ANALYSIS OF SCHEME-INDEPENDENT
EXPANSION COEFFICIENTS FOR γψ̄ψ;IR

A. Review of calculation to OðΔ3
f Þ for general G and R

We consider the (gauge-invariant) flavor-nonsinglet
(fns) and flavor-singlet (fs) bilinear fermion operators

J0;fns ¼
XNf

j;k¼1

ψ̄ jðTbÞjkψk; ð6:1Þ

where here Tb with b ¼ 1;…; N2
f − 1 is an generator of the

global flavor group SUðNfÞ, and

J0;fs ¼
XNf

j¼1

ψ̄ jψ j: ð6:2Þ

We will often suppress the flavor indices and write
these simply as ψ̄Tbψ and ψ̄ψ . These have the same
anomalous dimension (e.g., [46]), which we denote as γψ̄ψ .
(Thus, one may simply consider the operator ψ̄ jψ j with no
sum on j, but here we shall refer to J0;fns and J0;fs.) The
operator J0;fns has the chiral decomposition ψ̄Tbψ ¼
ψ̄LTbψRþ ψ̄RTbψL. Hence, in the non-Abelian Coulomb
phase where the flavor symmetry is (2.19), one may
regard the Tb in the term ψ̄LTbψR acting to the right as
an element of SUðNfÞR and acting to the left as an element
of SUðNfÞL.
The usual series expansion of γψ̄ψ in powers of α, or

equivalently, a, is

TABLE III. Scheme-independent values of β0IR;Δp
r
for 2 ≤ p ≤ 4 in the LNN limit (5.26) as functions of r ¼ 5.5 − Δr. For comparison,

we also list the n-loop values β0IR;nl with 2 ≤ n ≤ 4, where β0IR;3l and β
0
IR;4l are computed in the MS scheme [and values that exceed the

upper bound (4.13) are marked as such]. The notation ae-n means a × 10−n.

r β0IR;2l β0
IR;3l;MS

β0
IR;4l;MS

β0IR;Δ2
r

β0IR;Δ3
r

β0IR;Δ4
r

2.8 >3 1.918 1.949 0.518 1.004 0.851
3.0 >3 1.376 1.523 0.444 0.830 0.717
3.2 1.856 1.006 1.100 0.376 0.676 0.596
3.4 1.153 0.7395 0.72985 0.314 0.542 0.486
3.6 0.752 0.542 0.528 0.257 0.426 0.388
3.8 0.500 0.393 0.378 0.2055 0.327 0.303
4.0 0.333 0.279 0.267 0.160 0.243 0.229
4.2 0.219 0.193 0.185 0.120 0.174 0.166
4.4 0.139 0.128 0.122 0.0860 0.119 0.115
4.6 0.0837 0.0792 0.0766 0.0576 0.0756 0.0737
4.8 0.0460 0.0445 0.0435 0.0348 0.0433 0.0426
5.0 0.0215 0.0212 0.0208 0.0178 0.0209 0.0207
5.2 0.714e-2 0.710e-2 0.706e-2 0.640e-2 0.707e-2 0.704e-2
5.4 0.737e-3 0.736e-3 0.7356e-3 0.7111e-3 0.7358e-3 0.7355-3
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γψ̄ψ ¼
X∞
l¼1

clal; ð6:3Þ

where cl is the l-loop coefficient. For general G and R the
coefficients cl have been calculated up to l ¼ 4 loop level
[47] (earlier work includes [48]) and for the special case
G ¼ SUð3Þ and R ¼ F, c5 has been calculated [49]. The
scheme-independent expansion of γψ̄ψ can be written as

γψ̄ψ ;IR ¼
X∞
n¼1

κnΔn
f: ð6:4Þ

We denote the truncation of this sum to maximal power
n ¼ p as γψ̄ψ ;IR;Δp

f
. For a general asymptotically free

vectorial gauge theory with gauge group G and Nf

fermions in an arbitrary representation R, the coefficients
κn were given in [9] up to order n ¼ 3, yielding the
expansion of γψ̄ψ ;IR to order Δ3

f. For reference, we display
the κn coefficients from Ref. [9] [with the denominator
factor D given in Eq. (2.13)]:

κ1 ¼
8TfCf

CAD
; ð6:5Þ

κ2 ¼
4T2

fCfð5CA þ 88CfÞð7CA þ 4CfÞ
3C2

AD
3

; ð6:6Þ

and

κ3 ¼
4TfCf

34C4
AD

5

�
−55419T2

fC
5
A þ 432012T2

fC
4
ACf þ 5632T2

fCf
dabcdA dabcdA

dA
ð−5þ 132ζ3Þ

þ 16C3
A

�
122043T2

fC
2
f þ 6776

dabcdR dabcdR

dA
ð−11þ 24ζ3Þ

�

þ 704C2
A

�
1521T2

fC
3
f þ 112Tf

dabcdR dabcdA

dA
ð4 − 39ζ3Þ þ 242Cf

dabcdR dabcdR

dA
ð−11þ 24ζ3Þ

�

þ 32TfCA

�
53361TfC4

f − 3872Cf
dabcdR dabcdA

dA
ð−4þ 39ζ3Þ þ 112Tf

dabcdA dabcdA

dA
ð−5þ 132ζ3Þ

��
: ð6:7Þ

B. Evaluation of κn for G=SUðNcÞ and R=F

For the case where the Nf fermions are in the representation R ¼ F, these results (6.5)–(6.7) from [9] take the following
forms:

κ1;SUðNcÞ;F ¼ 4ðN2
c − 1Þ

Ncð25N2
c − 11Þ ; ð6:8Þ

κ2;SUðNcÞ;F ¼ 4ðN2
c − 1Þð9N2

c − 2Þð49N2
c − 44Þ

3N2
cð25N2

c − 11Þ3 ; ð6:9Þ

and

κ3;SUðNcÞ;F ¼ 8ðN2
c − 1Þ

33N3
cð25N2

c − 11Þ5 ½274243N
8
c − 455426N6

c − 114080N4
c þ 47344N2

c þ 35574

− 4224N2
cð4N2

c − 11Þð25N2
c − 11Þζ3�: ð6:10Þ

We find that these coefficients κn;SUðNcÞ;F with 1 ≤ n ≤ 3 are positive-definite for all physical Nc ≥ 2. This is obvious for
n ¼ 1, 2, and an examination of the polynomial in square brackets in Eq. (6.10), of degree 8 in Nf, proves the result
for n ¼ 3.

C. Calculation of κn coefficients to OðΔ4
f Þ for G=SUð3Þ and R=F

For comparison with the κn with other values ofNc, we recall our calculation of the κn to order n ¼ 4, i.e., to orderOðΔ4
fÞ

in [11]. We found
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κSUð3Þ;F;1 ¼
16

3 · 107
¼ 4.9844 × 10−2; ð6:11Þ

κSUð3Þ;F;2 ¼
125452

ð3 · 107Þ3 ¼ 3.7928 × 10−3; ð6:12Þ

κSUð3Þ;F;3 ¼
972349306

ð3 · 107Þ5 −
140800

33 · ð107Þ4 ζ3
¼ 2.3747 × 10−4; ð6:13Þ

κSUð3Þ;F;4 ¼
33906710751871

22ð3 · 107Þ7 −
1684980608

35 · ð107Þ6 ζ3

þ 59840000

ð3 · 107Þ5 ζ5
¼ 3.6789 × 10−5: ð6:14Þ

In Ref. [9] the ratio test was applied to the first
three coefficients, κSUð3Þ;F;n, n ¼ 1, 2, 3 and the
excellent convergence was noted. Here, using our calcu-
lation of κSUð3Þ;F;4 in [11], we calculate the next ratio,
κSUð3Þ;F;3=κSUð3Þ;F;4. We have

κSUð3Þ;F;1
κSUð3Þ;F;2

¼ 13.142; ð6:15Þ

κSUð3Þ;F;2
κSUð3Þ;F;3

¼ 15.972; ð6:16Þ

and

κSUð3Þ;F;3
κSUð3Þ;F;4

¼ 6.455: ð6:17Þ

Since the maximal value of Δf in the interval IIRZ is 8.447
[see Eq. (5.25)], these ratios suggest, as noted in [9] and in
agreement with our earlier calculation of coefficient ratios
for β0IR, that the small-Δf expansion may be reasonably
reliable over much of the interval IIRZ.
The positivity of the κSUð3Þ;F;n for 1 ≤ n ≤ 3 is in

agreement with our more general positivity results given
above, and, as we noted in [11], we also found that
κSUð3Þ;F;4 is positive. These signs are recorded in Table I.
The positivity of all of these coefficients played an
important role in our analysis in [11] because it meant
that for a given value of Nf, or equivalently, Δf, the value
of γψ̄ψ calculated to OðΔn

fÞ, denoted γψ̄ψ ;Δn
f
, is a mono-

tonically increasing function of n over the full range
1 ≤ n ≤ 4 that we calculated. We then conjectured that
this positivity would be true for all n, i.e., we conjectured
that κn > 0 for all n ≥ 1. Assuming the validity of this
conjecture, we then computed the extrapolation to n → ∞

for an exact γψ̄ψ ;IR in the SU(3) theory with R ¼ F. A
generalization of our conjecture in [11] that is motivated
by our present results is that, in the notation of
Eqs. (6.11)–(6.14), κn;SUðNcÞ;F > 0 for all n ≥ 1 and all
Nc ≥ 2. Importantly, in [11] we noted that, if this
monotonicity property holds, then, combining it with
the upper bound γψ̄ψ ;IR < 2, one would infer that if γIR
saturates its upper bound (4.14) as Nf decreases and
passes through the value Nf;cr at the lower end of the non-
Abelian Coulomb phase, it would follow from our
extrapolated values of γψ̄ψ ;IR that 8 < Nf;cr < 9. Here
one must mention the caveat that it is not known if, in fact,
γIR saturates its upper bound in this way as Nf ↘ Nf;cr.
Indeed, the nature of the transition as Nf decreases
through Nf;cr has not been definitely established.
Analyses via Schwinger-Dyson equations suggested that,
as Nf ↗ Nf;cr from within the phase with confinement
and chiral symmetry breaking, the fermion condensate
hψ̄ψi could vanish with an essential zero [50]. Some
insight into this may be derived from the known results in
SQCD. In SQCD, as noted above, the upper bound is
γψ̄ψ ;IR < 1 and is saturated at the lower end of the non-
Abelian Coulomb phase [37,38].
In the case G ¼ SUð3Þ and R ¼ F, one of the major

values of the five-loop calculation of γψ̄ψ ;IR in [10] and the
scheme-independent calculations of γψ̄ψ ;IR to order Δ3

f in
[9] and to order Δ4

f in [11], with the additional analysis
here, is the comparison of these results with fully non-
perturbative lattice measurements of this anomalous dimen-
sion [51]. [Since our discussion here is on the operator ψ̄ψ
and the gauge group SU(3), when there is no danger of
confusion, we omit these subscripts in the ψ̄ψ anomalous
dimension.] A number of lattice groups have obtained data
and carried out analyses of these data for the SU(3) theory
with Nf ¼ 12 fermions with R ¼ F. These groups have
reported the following values: γIR ¼ 0.414� 0.016 [52],
γIR ∼ 0.35 [53], γIR ≃ 0.4 [54], γIR ¼ 0.27ð3Þ [55], γIR ≃
0.25 [56], γIR ¼ 0.235ð46Þ [57], and 0.2≲ γ ≲ 0.4 [58].
(For comparative discussions of these different results and
estimates of overall uncertainties, the reader is advised to
consult the reviews in [51] and the original papers
[52–54,57–59].) As we noted in [11], our value γIR;Δ4 ¼
0.338 and our extrapolated γIR ¼ 0.40 are consistent with
this range of lattice measurements, taking into account
the different methods of lattice data analysis used, and
are somewhat higher than the five-loop value γIR;5l ¼
0.255 from the conventional α series that we obtained in
[10]. The γIR;5l ¼ 0.255 value in [10] is in very good
agreement with the measured values of γIR reported in
[55,57,58,60–62].
There have also been lattice studies of the SU(3) theory

with Nf ¼ 10 [60] and Nf ¼ 8 [51,61,62]. For the SU(3)
theory with Nf ¼ 10 fermions, our scheme-independent
calculation presented in [11] and discussed further here
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gives γψ̄ψ ;IR;Δ4
f
¼ 0.615 and our extrapolation to infinite

order in the Δf expansion yields γψ̄ψ ;IR ¼ 0.95ð6Þ, con-
sistent with estimates that γψ̄ψ ;IR ∼ 1 from lattice studies
[51,60]. In the SU(3) theory (with Nf fermions in the
representation R ¼ F), the lower end of IIRZ occurs at
Nf;b2z ¼ 8.047, but one may still formally consider the
results of the small-Δf expansion evaluated at Nf ¼ 8. In
this case we obtain γIR;Δp

f
¼ 0.424, 0.698, 0.844, 1.04 for

1 ≤ p ≤ 4. These are again consistent with the rough
estimates γψ̄ψ ;IR ∼ 1 from lattice studies [51,61,62].
There is not yet a consensus on the value of Nf;cr from
lattice studies [51]. In this context, one should keep in mind
that for Nf < Nf;cr, there is spontaneous chiral symmetry
breaking, so the IR zero of the beta function is only
approximate, since the theory flows away from this value as
the fermions gain dynamical mass and are integrated out,
leaving a pure gluonic low-energy effective field theory.
For such a theory, the quantity extracted from either
continuum or lattice analyses as γψ̄ψ ;IR is only an effective
anomalous dimension that describes the renormalization-
group behavior as the theory is flowing near to the
approximate zero of the beta function.

D. Evaluation of κn;SUðNcÞ;R to OðΔ3
f Þ

for R= adj

In the case R ¼ adj, the general results in [9] reduce as
follows:

κ1;SUðNcÞ;adj ¼
4

32
¼ 0.4444; ð6:18Þ

κ2;SUðNcÞ;adj ¼
341

2 · 36
¼ 0.23388; ð6:19Þ

κ3;SUðNcÞ;adj ¼
61873N2

c − 42624

23 · 310N2
c

: ð6:20Þ

This is positive for all physical Nc and has the large-Nc
limit

lim
Nc→∞

κ3;SUðNcÞ;adj ¼
61873

23 · 310
¼ 0.130978: ð6:21Þ

The positive signs of these κn;SUðNcÞ;adj coefficients are
recorded in Table I.

E. Comparison of scheme-independent calculation
of γψ̄ψ;IR with conventional calculations

It is of considerable interest to compare the results
obtained in [9] for the scheme-independent expansion of
γψ̄ψ ;IR to orderOðΔ3

fÞ (using calculations of the bn to n ¼ 4

loop order and cn to n ¼ 3 loop order) with results obtained

previously with the conventional calculation of the n-loop
γψ̄ψ ;IR;nl in powers of the n-loop αIR;nl in [22] (using
calculations of the bn and cn up to n ¼ 4 loop order). Here
and below, for specific calculations we take the gauge
group to be SUðNcÞ with various values of Nc. For
notational brevity, in this section we will often leave the
subscript ψ̄ψ implicit on these and other quantities and thus
write γIR ≡ γψ̄ψ ;IR, γIR;nl ≡ γψ̄ψ ;IR;nl, κn ≡ κψ̄ψ ;n, etc. in this
and the next section. Since γIR;nl is scheme-dependent
beyond the lowest order, one must choose a scheme for this
comparison. Here we choose the widely used MS scheme,
for which b3 and b4 and cn for 2 ≤ n ≤ 4 were calculated
for a general gauge group G and fermion representation R
[13–15] [47]. In the special case of G ¼ SUð3Þ and R ¼ F,
using the recent calculations of the five-loop coefficients b5
and c5 in the MS scheme, we computed γIR;nl up to n ¼ 5

loop level [10] in this MS scheme and performed a scheme-
independent calculation up to order Δ4

f [11]. For this
special case we compared the results obtained via these
two different approaches. Here we carry out a similar
comparison for other SUðNcÞ theories. The scheme-
independent expansion of γIR has the form (6.4). We denote
the value of γIR obtained from this series calculated to order
OðΔp

f Þ as γIR;Δp
f

As discussed above, our discussion is restricted to the
interval IIRZ of values of Nf, given in Eq. (2.7), for which
the (scheme-independent) two-loop beta function has an IR
zero. Using the results for the lower and upper ends of this
interval, Nf;b2z and Nf;b1z from Eqs. (2.4) and (2.6), one
has, for ðNf;b1z; Nf;b2zÞ, the respective values (5.55,11),
(8.05,16.5), and (10.61,22) forNc ¼ 2, 3, 4 [19], and hence
the physical intervals IIRZ with integral Nf: 6 ≤ Nf ≤ 10

for SU(2), 9 ≤ Nf ≤ 16 for SU(3), and 11 ≤ Nf ≤ 21 for
SU(4). Our results for these three illustrative values of Nc
are listed in Table IV. For the special case Nc ¼ 3, we have
carried these calculations one order higher, namely to five-
loop level and to order Δ4

f in [10,11].
Since the calculation of κn and the resultant γIR;Δn

f
uses

information from the (nþ 1)-loop beta function from (2.1)
and the n-loop expansion of γ in (4.2), it is natural to
compare the (SI) γIR;Δn

f
with the (SD) γIR;n0l for n0 ¼ n and

n0 ¼ nþ 1. Since γIR;Δn
f
includes n-loop information about

γIR;nl, one would expect the closest agreement between
γIR;Δn

f
and γIR;nl, and our results confirm this expectation. In

the upper and middle part of the interval IIRZ for a givenNc,
we find that γIR;Δn

f
is slightly larger than γIR;3l, with the

difference increasing as Nf decreases below Nf;b1z, i.e., as
Δf increases.
We recall the upper bound (4.14) that applies at an IRFP

in the non-Abelian Coulomb phase, based on the scale
invariance and inferred conformal invariance in this phase.
The bound (4.14) also applies, for a different reason, in the
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phase with confinement and spontaneous chiral symmetry
breaking; in that phase it is a consequence of the physical
requirement that the momentum-dependent dynamically
generated effective fermion mass

mðkÞ ∼ Λ
�
Λ
k

�
2−γIR ð6:22Þ

must satisfy the constraint limk→∞mðkÞ ¼ 0, where k is the
Euclidean momentum. In the upper and middle parts of the
interval IIRZ in the NACP, the values of γIR;nl calculated in
the conventional series expansion in powers of αIR;nl obey
this upper bound. However, for a given Nc, toward the
lower end of the respective intervals IIRZ, the IR coupling
αIR;nl become too large for the perturbative calculations to
be applicable, and some resultant values of the anomalous
dimensions exceed the bound (4.14). This occurs for the
scheme-independent two-loop values γIR; 2l for Nf ¼ 6, 7
if Nc ¼ 2; for Nf ¼ 9, 10 if Nc ¼ 3, and for 11 ≤ Nf ≤ 14

if Nf ¼ 4. In these cases, since it is not clear that the

higher-order values γIR;nl are reliable, we leave them

unlisted (u), as we did in [22].
From these calculations and the entries in Table IV, one

of the important advances achieved by the scheme-
independent Δf expansion is evident, namely that the
values of γIR;Δp

f
with 1 ≤ p ≤ 3 (and, for SU(3) also p ¼ 4

in [11]) that we calculate via this method obey the upper
bound (4.14) throughout all of the interval IIRZ and
associated non-Abelian Coulomb phase, in contrast with
some of the values calculated via the conventional loop
expansion toward the lower end of IIRZ. In general, for all
of the Nc values considered, our results for γIR;Δp

f
here

satisfy the upper bound (4.14) and hence are consistent
with the conclusion that the Δf expansion is reasonably
reliable throughout the interval IIRZ and non-Abelian
Coulomb phase. We regard this, together with the
scheme-independence itself, as being a major advantage
of the Δf expansion.

F. LNN limit for γψ̄ψ;IR
Here we consider theories with G ¼ SUðNcÞ and Nf

copies of fermions in the representation R ¼ F in the LNN
limit ([27]). We recall that in this LNN limit, the interval
IIRZ is given by Eq. (5.32) and the scaled Δr is defined by
Eq. (5.33). We define rescaled coefficients κ̂n

κ̂n ≡ lim
Nc→∞

Nn
cκn ð6:23Þ

that are finite in this LNN limit. The anomalous dimension
γψ̄ψ ;IR is also finite in this limit and is given by

lim
LNN

γψ̄ψ ;IR ¼
X∞
n¼1

κnΔn
f ¼

X∞
n¼1

κ̂nΔn
r : ð6:24Þ

From (5.32), it follows that as r decreases from rb1z to rb2z,
Δr increases from 0 to the its maximal value

ðΔrÞmax ¼
75

26
¼ 2.8846 for r ∈ IIRZ;r: ð6:25Þ

From the results for κn, n ¼ 1, 2, 3 in [9] or the
special cases given above for G ¼ SUðNcÞ and R ¼ F
in Eqs. (6.8)–(6.10), we find

κ̂1 ¼
4

25
¼ 0.1600; ð6:26Þ

κ̂2 ¼
588

56
¼ 0.037632; ð6:27Þ

and

TABLE IV. Values of the anomalous dimension γψ̄ψ ;IR;Δp
f

calculated to order p ¼ 1, 2, 3, for G ¼ SUðNcÞ and R ¼ F,
as functions of Nc and Nf. To save space, we omit the subscript
ψ̄ψ , writing γψ̄ψ ;IR;Δp

f
≡ γIR;Δp

f
. For comparison, we also include

the (scheme-independent) γIR;2l and γIR;nl;MS, n ¼ 3, 4. γIR;4l;MS.
Values that exceed the bound γψ̄ψ ;IR < 2 in Eq. (4.14) are marked
as such; in these cases, the γIR;nl;MS are unlisted (u).

Nc Nf γIR;2l γIR;3l;MS γIR;4l;MS γIR;Δf
γIR;Δ2

f
γIR;Δ3

f

2 6 >2 u u 0.337 0.520 0.596
2 7 >2 u u 0.270 0.387 0.426
2 8 0.752 0.272 0.204 0.202 0.268 0.285
2 9 0.275 0.161 0.157 0.135 0.164 0.169
2 10 0.0910 0.0738 0.0748 0.0674 0.07475 0.07535
3 9 >2 u u 0.374 0.587 0.687
3 10 >2 u u 0.324 0.484 0.549
3 11 1.61 0.439 0.250 0.274 0.389 0.428
3 12 0.773 0.312 0.253 0.224 0.301 0.323
3 13 0.404 0.220 0.210 0.174 0.221 0.231
3 14 0.212 0.146 0.147 0.125 0.148 0.152
3 15 0.0997 0.0826 0.0836 0.0748 0.0833 0.0841
3 16 0.0272 0.0258 0.0259 0.0249 0.0259 0.0259
4 11 >2 u u 0.424 0.694 0.844
4 12 >2 u u 0.386 0.609 0.721
4 13 >2 u u 0.347 0.528 0.610
4 14 >2 u u 0.308 0.451 0.509
4 15 1.32 0.420 0.281 0.270 0.379 0.418
4 16 0.778 0.325 0.269 0.231 0.312 0.336
4 17 0.481 0.251 0.234 0.193 0.249 0.263
4 18 0.301 0.189 0.187 0.154 0.190 0.197
4 19 0.183 0.134 0.136 0.116 0.136 0.139
4 20 0.102 0.0854 0.0865 0.0771 0.0860 0.086
4 21 0.0440 0.0407 0.0409 0.0386 0.0408 0.0409
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κ̂3 ¼
2193944

33 · 510
¼ 0.83207 × 10−2; ð6:28Þ

where, as above, we indicate the factorization of the
denominators. Numerically, to order OðΔ3

rÞ,

lim
LNN

γψ̄ψ ;IR ¼ Δr½0.160000þ 0.037632Δr

þ 0.0083207Δ2
r þOðΔ3

fÞ�: ð6:29Þ

We plot the value of γψ̄ψ ;IR calculated to order Δp
r ,

denoted γψ̄ψ ;IR;Δp
r
, for 1≤p≤3, as a function of r∈ IIRZ;r

in Fig. 2. As a consequence of the positivity of the κ̂p in
Eqs. (6.26)–(6.28), for a fixed r, γψ̄ψ ;IR;Δp

r
is a monoton-

ically increasing function of the order of calculation, p.
Interestingly, as r decreases toward the lower end of the
interval IIRZ;r at r ¼ rb2z ¼ 34=13 ¼ 2.6154, the value of
γψ̄ψ ;IR calculated to the highest order in this LNN limit,
namely OðΔ3

rÞ is slightly less than 1. This is similar to the
behavior that was found for the specific cases of SU(2) and
SU(3) gauge groups and R ¼ F in [9] and for SU(3) with
γψ̄ψ ;IR calculated to the next order, OðΔ4

rÞ in [11].
As discussed above, our calculations of γψ̄ψ ;IR via the Δf

expansion, both for specific values of Nc and in the LNN
limit, have yielded results satisfying the upper bound (4.14)
throughout the interval IIRZ. These results support the
conclusion that the small-Δf series expansion is reliable
throughout this interval IIRZ and associated non-Abelian
Coulomb phase. It is also worthwhile to obtain an estimate
of the range of applicability of the small-Δf series
expansion via a different method, the aforementioned ratio
test. From the coefficients κ̂n that we have calculated with
1 ≤ n ≤ 3, we compute the ratios

κ̂1
κ̂2

¼ 4.252 ð6:30Þ

and

κ̂2
κ̂3

¼ 4.523: ð6:31Þ

Recalling that the maximal value of Δr in the interval IIRZ;r
is 2.885 [Eq. (5.49)], these ratios are again consistent with
the inference that the small-Δr series expansion may be
reasonably accurate in this interval IIRZ. Since r has a
maximal value of 5.5 in this LNN limit, the above ratios
also suggest that one could not reliably apply the small Δr
expansion down to small r (see also [63]). This is in
agreement with the fact that the properties of theory change
qualitatively as r decreases below rc in Eq. (5.34); in
particular, there is spontaneous chiral symmetry breaking at
small r

G. Analysis with Padé approximants

To get further insight into the behavior of γψ̄ψ ;IR, we shall
calculate and analyze Padé approximants (PAs) [64]. For
this purpose, we shall use a reduced function normalized to
unity at Δf ¼ 0, namely

γ̄ψ̄ψ ;IR ¼ γψ̄ψ ;IR
κ1Δr

¼ 1þ 1

κ1

X∞
n¼2

κnΔn−1
r : ð6:32Þ

The calculation of γψ̄ψ ;IR to order Δ3
r yields γ̄ψ̄ψ ;IR to order

Δ2
r . In turn, from this we can compute three PAs: ½2; 0�γ̄ψ̄ψ ;IR ,

½1; 1�γ̄ψ̄ψ ;IR , and ½0; 2�γ̄ψ̄ψ ;IR . Since the [2,0] PA is just γ̄ψ̄ψ ;IR
itself, to order Δ2

r, we focus on the [1,1] and [0,2] PAs. We
calculate

½1; 1�γ̄ψ̄ψ ;IR ¼ 1þ 34957
2480625

Δr

1 − 548486
2480625

Δr
ð6:33Þ

and

½0; 2�γ̄ψ̄ψ ;IR ¼ 1

1 − 147
625

Δr þ 34957
10546875

Δ2
r
: ð6:34Þ

The [1,1] PA has no physical zero and a pole at

ðΔrÞpole;½1;1�γ̄ψ̄ψ ;IR ¼ 2480625

548486
¼ 4.523: ð6:35Þ

Since this value is well beyond the maximum value of Δr
for r ∈ IIRZ;r, namely 2.885, it follows that the [1,1] PA is
finite for all r ∈ IIRZ;r.
The [0,2] PA obviously has no zero, and has two

poles, at

0

0.2

0.4

0.6

0.8

1
ga

m
m

a

3 3.5 4 4.5 5 5.5
r

FIG. 2. Plot of γψ̄ψ ;IR;Δp
r
for 1 ≤ p ≤ 3 as a function of r ∈ IIRZ;r

in the LNN limit (5.26). From bottom to top, the curves
(with colors online) refer to γψ̄ψ ;IR;Δr

(red), γψ̄ψ ;IR;Δ2
r
(green)

γψ̄ψ ;IR;Δ3
r
(blue).
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ðΔrÞpoles;½0;2�γ̄ψ̄ψ ;IR ¼ 1875

69914
ð1323� 17

ffiffiffiffiffiffiffiffiffiffi
4605

p
Þ

¼ 4.5425; 66.420: ð6:36Þ

The first of these, at Δr ¼ 4.5425, is well beyond
ðΔrÞmax ¼ 2.885 so that the [0,2] PA is finite for all
r ∈ IIRZ;r, and the second is also irrelevant, since it
corresponds to the value, r ¼ 72, far beyond the AF
interval, r ∈ ½0; 34=13�. The irrelevance of these poles
in the Padé approximants is in agreement with the con-
clusion that we have reached from our other methods that
the small-Δf expansion is reasonably reliable throughout
the interval IIRZ and related non-Abelian Coulomb phase.
In Table V we list our results for γψ̄ψ ;IR;Δ3

r
, ½1; 1�γ

ψ̄ψ ;IR;Δ3r
, and

½0; 2�γ
ψ̄ψ ;IR;Δ3r

, together with γψ̄ψ ;IR;nl with n ¼ 2, 3, 4 from

[27] for comparison.
We find that if r is in the upper part of the interval IIRZ;r,

then there is excellent agreement between our higher-loop
calculations of γψ̄ψ ;IR;3l;MS and γψ̄ψ ;IR;4l;MS from [22] and
the present calculations of γψ̄ψ ;IR;Δ3

r
, ½1; 1�γ

ψ̄ψ ;IR;Δ3r
, and

½0; 2�γ
ψ̄ψ ;IR;Δ3r

. As r decreases in this interval IIRZ;r, the values

of the anomalous dimension calculated in the various
different ways begin to exhibit small deviations from
each other, and, as expected, these deviations become
larger as r descends toward the lower end of the
interval IIRZ;r.

VII. SCHEME-INDEPENDENT
CALCULATION OF ANOMALOUS

DIMENSION γT;IR TO OðΔ3
f Þ

A. Calculation for general G and R

In this section we present a scheme-independent calcu-
lation of the anomalous dimension of the (gauge-invariant)
bilinear fermion antisymmetric rank-2 Dirac tensor oper-
ators evaluated at αIR. The flavor-nonsinglet and flavor-
singlet tensor operators of this type are

J2;fns ¼ ψ̄Tbσμνψ ð7:1Þ

and

J2;fs ¼ ψ̄σμνψ ; ð7:2Þ

where, as defined before, Tb, b ¼ 1;…; N2
f − 1, is a

generator of algebra of SUðNfÞ, and

σμν ¼
i
2
½γμ; γν� ð7:3Þ

is the usual antisymmetric rank-2 Dirac tensor. As was true
of the operators J0;fns and J0;fs, the anomalous dimensions
of J2;fns and J2;fs are equal (e.g., [46]), so we will denote
both with the single symbol γT (T for tensor) and the
evaluation at αIR as γT;IR. The usual power series expansion
for γT in powers of a is

γT ¼
X
l¼1

cT;lal: ð7:4Þ

The cT;l have been calculated up to l ¼ 3 loop order in
[46,65]. We write the scheme-independent expansion of
this anomalous dimension as

γT;IR ¼
X∞
n¼1

κT;nΔn
f ð7:5Þ

and denote the truncation of this series at maximal power
n ¼ p as γT;IR;Δp

f
.

For general gauge groupG and fermion representation R,
using the three-loop results from [46,65] together with the
four-loop beta function coefficients bl with 1 ≤ l ≤ 4
[3,4,13,14], we calculate the following coefficients in the
scheme-independent expansion of γT;IR

κT;1 ¼ −
8CfTf

3CAD
; ð7:6Þ

κT;2 ¼ −
4CfT2

fð259C2
A þ 428CACf − 528C2

fÞ
9C2

AD
3

; ð7:7Þ

TABLE V. Values of γψ̄ψ ;IR;Δ3
r
, ½1; 1�γ

ψ̄ψ ;IR;Δ3r
, and ½1; 1�γ

ψ̄ψ ;IR;Δ3r
,

together with γψ̄ψ ;IR;nl with n ¼ 2, 3, 4 from Table V of [27] for
comparison, as a function of r for r ∈ IIRZ;r and satisfying
γIR < 2. Here, Δr ¼ 5.5 − r, as in Eq. (5.33). To save space, we
omit the subscript ψ̄ψ below. Values that exceed the bound
γψ̄ψ ;IR < 2 from conformal invariance [see Eq. (4.14)] are marked
as such.

r γIR;2l γIR;3l γIR;4l γIR;Δ3
r

½1; 1�γIR;Δ3r ½0; 2�γIR;Δ3r
2.8 >2 1.708 0.1902 0.8701 1.1127 1.1102
3.0 >2 1.165 0.2254 0.7652 0.9259 0.9244
3.2 >2 0.8540 0.2637 0.6683 0.7731 0.7722
3.4 >2 0.6563 0.2933 0.5790 0.6458 0.6453
3.6 1.853 0.5201 0.3083 0.4969 0.5383 0.5380
3.8 1.178 0.4197 0.3061 0.4216 0.4463 0.4461
4.0 0.7847 0.3414 0.2877 0.3528 0.3667 0.3666
4.2 0.5366 0.2771 0.2566 0.2899 0.2973 0.2972
4.4 0.3707 0.2221 0.2173 0.2326 0.2362 0.23615
4.6 0.2543 0.1735 0.1745 0.1805 0.18205 0.18205
4.8 0.1696 0.1294 0.1313 0.1333 0.1338 0.1338
5.0 0.1057 0.08886 0.08999 0.09045 0.09058 0.09058
5.2 0.05620 0.05123 0.05156 0.05161 0.05163 0.05163
5.4 0.01682 0.01637 0.01638 0.01638 0.01638 0.01638
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κT;3 ¼
4CfTf

35C4
AD

5

�
3CAT2

ffC4
Að−11319þ 188160ζ3Þ þ C3

ACfð−337204þ 64512ζ3Þ þ C2
AC

2
fð83616 − 890112ζ3Þ

þ CAC3
fð1385472 − 354816ζ3Þ þ C4

fð−212960þ 743424ζ3Þg − 512T2
fDð−5þ 132ζ3Þ

dabcdA dabcdA

dA

− 15488C2
ADð−11þ 24ζ3Þ

dabcdR dabcdR

dA
þ 11264CATfDð−4þ 39ζ3Þ

dabcdR dabcdA

dA

�
: ð7:8Þ

We note that

κT;1 ¼ −
1

3
κ1: ð7:9Þ

B. Evalulation for G=SUðNcÞ and R=F

As we did with the κn coefficients, we exhibit the
reduction of these general formulas for the gauge group
G ¼ SUðNcÞ with Nf fermions in the representation
R ¼ F. In accordance with Eq. (7.9), we obtain

κT;1;SUðNcÞ;F ¼ −
4ðN2

c − 1Þ
3Ncð25N2

c − 11Þ : ð7:10Þ

Further,

κT;2;SUðNcÞ;F ¼−
4ðN2

c−1Þð341N4
cþ50N2

c−132Þ
32N2

cð25N2
c−11Þ3 ð7:11Þ

and

κT;3;SUðNcÞ;F ¼ 8ðN2
c − 1Þ

34N3
cð25N2

c − 11Þ5 × ½23057N8
c − 557686N6

c þ 1084692N4
c − 354200N2

c − 13310

þ 192ð25N2
c − 11Þð163N4

c − 225N2
c − 22Þζ3�: ð7:12Þ

The coefficient κT;1;SUðNcÞ;F is manifestly negative for all
Nc ≥ 2, and this is also true of κT;2;SUðNcÞ;F, while we find
that κT;3;SUðNcÞ;F is positive for all Nc ≥ 2.

C. LNN l for γT;IR
Here we evaluate the κT;n and γT;IR in the LNN limit. The

rescaled quantities that are finite in this limit are the
analogues of those that we defined and studied for
γψ̄ψ ;IR in Sec. VI F. We calculate

κ̂T;n ¼ lim
Nc→∞

Nn
cκT;n ð7:13Þ

have the values

κ̂T;1 ¼ −
4

3 · 52
¼ −0.053333; ð7:14Þ

κ̂T;2 ¼ −
1364

32 · 56
¼ −ð0.969956 × 10−2Þ; ð7:15Þ

and

κ̂T;3 ¼
184456

34 · 510
¼ 2.3319 × 10−4: ð7:16Þ

Hence, to third order in the rescaled quantity Δr defined in
Eq. (5.33), we have the following scheme-independent
expansion for γT;IR in the LNN limit:

lim
LNN

γT;IR ¼ Δr½−0.053333 − ð0.96996 × 10−2ÞΔr

þ ð2.3319 × 10−4ÞΔ2
r þOðΔ3

fÞ�: ð7:17Þ

In Fig. 3 we plot γT;IR;Δp
r
for 1 ≤ p ≤ 3 as a function of r in

the interval IIRZ;r. As a consequence of the fact that both
κ̂T;1 and κ̂T;2 are negative, for a fixed value of r, γT;IR;Δ2

p
is

negative and larger in magnitude than γT;IR;Δ2
p
. Although

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2
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m
at
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r

FIG. 3. Plot of γT;IR;Δp
r
for 1 ≤ p ≤ 3 as a function of r ∈ IIRZ;r

in the LNN limit (5.26). From bottom to top, the curves
(with colors online) refer to γT;IR;Δr

(red), γT;IR;Δ2
r
(green),, γT;IR;Δ3

r

(blue).
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κ̂T;3 is positive, it is sufficiently small that for a given r, the
value of r, γT;IR;Δ3

p
is close to the value of r, γT;IR;Δ2

p
.

D. Calculation of γT;IR to OðΔ3
f Þ

for G=SUð3Þ and R =F

As another interesting comparison, we evaluate our
general expressions for the κT;n in the special case where
the gauge group is G ¼ SUð3Þ and the fermion represen-
tation is R ¼ F. We find

κT;SUð3Þ;F;1 ¼ −
16

32 · 107
¼ −ð1.6615 × 10−2Þ; ð7:18Þ

κT;SUð3Þ;F;2 ¼ −
37252

ð3 · 107Þ3 ¼ −ð1.12625 × 10−3Þ; ð7:19Þ

and

κT;SUð3Þ;F;3 ¼ −
341234350

37 · ð107Þ5 þ 2855936

36 · ð107Þ4 ζ3
¼ 2.480155 × 10−5: ð7:20Þ

Thus, the leading two terms in the Δf expansion for J2 are
negative, with the coefficient of Δ3

f being positive but
smaller in magnitude. These results may be contrasted to
those obtained in [9] for κn ≡ κψ̄ψ ;n with 1 ≤ n ≤ 3 and in
[11] for n ¼ 4 for this SU(3) theory with R ¼ F, which are
listed above in (6.11)–(6.14). We have computed ratios of
the magnitudes of successive coefficients as before and
again infer that the small-Δf expansion can be reliable in
the interval IIRZ.

E. Evaluation for R = adj

ForG ¼ SUðNcÞ and R ¼ adj, our general results above
reduce to

κT;1;SUðNcÞ;adj ¼ −
4

33
¼ −0.05333; ð7:21Þ

κT;2;SUðNcÞ;adj ¼ −
53

2 · 37
¼ −ð1.2117 × 10−2Þ; ð7:22Þ

and

κT;3;SUðNcÞ;adj ¼
N2

cð34799 − 9216ζ3Þ þ 42624

23 · 311N2
c

: ð7:23Þ

This is positive for all physical Nc and has the large-Nc
limit

lim
Nc→∞

κT;3;SUðNcÞ;adj ¼
34799 − 9216ζ3

23 · 311

¼ 0.0167381: ð7:24Þ

Thus, the signs of the first three coefficients κT;n;SUðNcÞ;adj
are the same as those of the coefficients κT;n;SUðNcÞ;F. These
are summarized in Table I.

VIII. CONCLUSIONS

In conclusion, in this paper we have presented a number
of new results on scheme-independent calculations of
various quantities in an asymptotically free vectorial gauge
theory having an IR zero of the beta function. We consider a
theory with a (non-Abelian) gauge group G and Nf
fermions in a representation R of G. First, we have
calculated the derivative β0IR, equivalent to γF2;IR, to order
Δ4

f for general G and R, and have given explicit results for
G ¼ SUðNfÞ and fermions in the fundamental and adjoint
representations. For the case G ¼ SUð3Þ and fermions in
the fundamental representation, we have also calculated β0IR
to the next higher order, Δ5

f. It would be useful to have
lattice measurements of γF2;IR, which, in the case of SU(3),
could be compared with our calculation of this anomalous
dimension. Second, we have given more details on the
scheme-independent analysis of γψ̄ψ ;IR studied earlier in [9]
and [11], including explicit analytic results for G ¼
SUðNcÞ with fermions in the fundamental and adjoint
representations. In the former case, we have also inves-
tigated the LNN limit (5.26), calculated Padé approxim-
ants, and compared with results from the conventional
higher-loop calculation of this anomalous dimension. Our
results are useful for comparisons with lattice measure-
ments of γψ̄ψ ;IR and for the fundamental question of the
value of Nf;cr and whether γψ̄ψ ;IR saturates its upper bound
at the lower end of the conformal non-Abelian Coulomb
phase. Moreover, the type of theory considered here may be
relevant for ultraviolet extensions of the Standard Model.
Third, we have presented a scheme-independent calculation
to orderΔ3

f of the anomalous dimension γT;IR of the (flavor-
nonsinglet and flavor-singlet) bilinear fermion antisym-
metric rank-2 Dirac tensor operators. We have shown that
our scheme-independent calculations of the anomalous
dimensions of TrðFμνFμνÞ and various fermion bilinear
operators in the non-Abelian Coulomb phase obey respec-
tive rigorous upper bounds for conformally invariant
theories. This, together with other inputs including Padé
approximants indicates that the series expansions in powers
of Δf should be reasonably accurate throughout the non-
Abelian Coulomb phase. We believe that the results
presented here show the value of scheme-independent
expansions of quantities evaluated at an infrared zero of
the beta function in gauge theories.
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APPENDIX: SERIES COEFFICIENTS
FOR βξ AND γψ̄ψ IN THE LNN LIMIT

For reference, we list here the rescaled series coefficients
forβξ and γψ̄ψ in theLNN limit (5.26). First,we recall that [3]

b1 ¼
1

3
ð11CA − 4TfNfÞ ðA1Þ

and [4]

b2 ¼
1

3
½34C2

A − 4ð5CA þ 3CfÞTfNf�; ðA2Þ

where CA, Cf, and Tf are group invariants [18]. It follows
that in the LNN limit the b̂l with l ¼ 1, 2 are

b̂1 ¼
1

3
ð11 − 2rÞ ðA3Þ

and

b̂2 ¼
1

3
ð34 − 13rÞ: ðA4Þ

The coefficients b3 and b4 have been calculated in the MS
scheme [13,14]. With these inputs, one obtains [27]

b̂3 ¼
1

54
ð2857 − 1709rþ 112r2Þ ðA5Þ

and

b̂4 ¼
150473

486
−
�
485513

1944

�
rþ

�
8654

243

�
r2

þ
�
130

243

�
r3 þ 4

9
ð11 − 5rþ 21r2Þζ3: ðA6Þ

For the coefficients ĉl in Eq. (6.24), one has ([47] and
references therein)

ĉ1 ¼ 3; ðA7Þ

ĉ2 ¼
203

12
−
5

3
r; ðA8Þ

ĉ3 ¼
11413

108
−
�
1177

54
þ 12ζ3

�
r −

35

27
r2; ðA9Þ

and

ĉ4 ¼
460151

576
−
23816

81
rþ 899

162
r2 −

83

81
r3

þ
�
1157

9
−
889

3
rþ 20r2 þ 16

9
r3
�
ζ3

þ rð66 − 12rÞζ4 þ ð−220þ 160rÞζ5: ðA10Þ
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