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We study a generalization of the loosely bound Skyrme model which consists of the Skyrme model with
a sixth-order derivative term—motivated by its fluidlike properties—and the second-order loosely bound
potential—motivated by lowering the classical binding energies of higher-charged Skyrmions. We use the
rational map approximation for the Skyrmion of topological charge B ¼ 4, calculate the binding energy of
the latter, and estimate the systematic error in using this approximation. In the parameter space that we can
explore within the rational map approximation, we find classical binding energies as low as 1.8%, and once
taking into account the contribution from spin-isospin quantization, we obtain binding energies as low as
5.3%. We also calculate the contribution from the sixth-order derivative term to the electric charge density
and axial coupling.
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I. INTRODUCTION

The Skyrme model was proposed as a toy model for
baryons in a low-energy effective theory of pions [1,2]. The
baryon in this theory is identified with the soliton of the
theory—the Skyrmion. In the large-Nc limit of QCD, this
identification is shown by Witten to be exact [3,4]. Soon
after many properties of the nucleon were calculated in the
framework of the (standard) Skyrme model, see, e.g.,
Refs. [5,6]. It took a while, however, before progress was
made on higher baryon numbers, and the breakthrough
camewith an approximation using a rational map [7–9]. The
Skyrmion is a map from point-compactified 3-space, which
is topologically equal to a 3-sphere, to the isospin SU(2),
which is also a 3-sphere. The rational map approximation1 is
an assumption that the 3-sphere can be factorized into a
radial direction (Rþ) times a 2-sphere. The latter 2-sphere is
then mapped to a 2-sphere in the target space using the
rational map, being a map between Riemann spheres of
degree B. The total configuration also has topological
degree B, and B is identified with the baryon number.
This approximation turned out to be a good approximation
for a range of baryons from B ¼ 1 through B ¼ 22—in the
case of massless pions—producing fullerenelike structures.
Turning on a physically reasonable pion mass, however,

turned out to induce some alterations [10–12]; namely, the

fullerenes are no longer the global minimizers of the
energy, and the Skyrmions prefer to organize them selves
in a crystal made of cubic 4-Skyrmions [13]. This
revelation of the 4-Skyrmion—which is also the alpha
particle in the model due to unbroken isospin symmetry—
playing an important role in composing nuclei, turned out
to be a welcome feature in the light of nuclear clustering
[14]. The identification of the cluster states in carbon-12
within the Skyrme model framework [15] is one of our
main motivations for using and improving the Skyrme
model.
Many properties of nuclei can be studied after this

ground work has been carried out and new nuclear clusters
can be studied. However, one notorious problem remains;
namely, the binding energies of the multi-Skyrmions turn
out to be about 1 order of magnitude too large, compared
with experimental data. This has motivated a line of
research trying to modify the Skyrme model so as to
produce much smaller binding energies. The experimental
fact that the binding energies are almost vanishing led
theorists to think that a (deformed) BPS-type model would
be a good candidate for reproducing the low values of the
binding energies. The first direction was inspired exactly by
this and started off with a selfdual Yang-Mills theory in five
dimensions, yielding the Skyrme model in four dimensions
with an infinite tower of vector mesons [16,17]. Another
proposal came with the discovery of a BPS subsector in the
Skyrme model that is saturable [18–20], unlike the Skyrme-
Faddeev bound of the standard Skyrme model [1,2,21] for
which no solutions saturate it in flat space [22].2This BPS
subsector consists of the baryon current squared and a
potential; thus, no standard kinetic terms are present in this
theory. However, this sector is integrable, and the theory
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1Throughout the paper, we will call it the rational map

approximation as opposed to the misleading term rational map
ansatz sometimes used in the literature. It is not an ansatz in the
sense that the functions of the ansatz do not provide a solution to
the field equations. It is an approximation—and a rather good one
for massless pions—in that it reproduces approximate solutions
with only about 1%–2% higher energy than the true solutions.

2A solution saturating the energy bound exists on a 3-sphere of
a certain radius [22]; this is not so useful for nuclei though.
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possesses an infinite amount of symmetries corresponding
to volume-preserving diffeomorphisms. It also has the
advantage of modeling a perfect fluid, which is a welcomed
feature in nuclear matter and neutron stars [23–26]. It is by
now called the BPS-Skyrme model. The problem of
perturbing this model is that its near-BPS regime yields
parametrically large field gradients that obviously are very
hard to tackle in numerical calculations using the finite
difference method [27,28]. Our motivation for including
this term is its fluidlike properties and that it allows for a
limit where the binding energies are small.
In this paper, we follow a third path, inspired by an

energy bound valid for a certain potential [29], which is
basically the standard Skyrme model with a repulsive
potential of fourth-order in σ ¼ Tr½U�=2,

V ¼ 1

4
m2

4ð1 − σÞ4;

where U is the field in the usual chiral Lagrangian [27].
This model was dubbed the lightly bound Skyrme model.
Soon after a better potential was found in Ref. [30], which
is of same type but only second order in σ

V ¼ 1

2
m2

2ð1 − σÞ2:

By better, we mean that it can produce lower binding
energies for the multi-Skyrmions without breaking the
platonic symmetries of the low baryon numbers; in par-
ticular, without breaking the cubic symmetry of the
4-Skyrmion responsible for clustering in the Skyrme model
[30]. We call this model: the loosely bound Skyrme model
and correspondingly, the potential: the loosely bound
potential. In Ref. [31], we have explored the most general
potential up to second order in σ and varied the value of the
pion mass in order to find the optimal point in the minimal
loosely bound Skyrme model. In terms of low binding
energies, the model prefers a large pion mass and a large
value of the coefficient of the loosely bound potential.
In order to improve the remaining issue of too-large

binding energies, we will in this paper include the BPS-
Skyrme term. The various regimes of the parameter space
are sketched in Fig. 1.
As explained in the figure caption, in region A, the BPS-

Skyrme term is relatively small and the normal Skyrme
model terms are still sizable; this is the regimewewill study
in this paper. B is the region of parameter space where m2

can be larger due to the presence of a medium-sized value
of c6; this is of course just our expectation and the
exploration of this regime (if it exists) requires full partial
differential equation (PDE) calculations. Finally, in regime
C both the BPS-Skyrme term and the potential are huge
such that the kinetic term and the normal Skyrme term are
mere perturbations of the BPS-Skyrme model. This regime
is highly nontrivial due to technical problems in the

numerical calculations, as mentioned above. The region
of parameter space to the right of the diagonal dashed line
in the diagram corresponds to very large values of m2 and
leads to Skyrmions that lose the symmetries of platonic
solids; in particular, the 4-Skyrmion loses its cubic sym-
metry which then becomes tetrahedral [27] and the model
in turn loses its properties of nuclear clustering. The
tendencies that we explore here in region A will make
the motivations for studying region B in the future; as we
will see in the affirmative.
Let us comment on the relation of the higher-order

derivative terms with respect to the underlying QCD. As
QCD at low energies is strongly coupled, a rigorous explicit
derivation is extremely difficult to carry out. Nevertheless,
the Skyrme term has been derived from the QCD
Lagrangian using partial bosonization where only the
phases of the fermions are bosonized [32]; this is done
by gauging the flavor symmetry, however, this gauging
does not survive quantization. A crucial point in this
derivation is the claim that the quantum average of the
fermion bilinear in QCD is the same as the quantum
average in the partially bosonized action. The Skyrme
term has been derived in Ref. [32] using this procedure and
in principle higher-order terms can also be considered this
way; in particular, the BPS-Skyrme term. This is, however,
beyond the scope of the present paper. From a more
phenomenologically point of view, the Skyrme term has
been derived from an effective Lagrangian of vector
mesons by integrating out the ρ meson [33]. The
Skyrme action has also been derived as the low-energy
effective action for the pions in the framework of the
Sakai-Sugimoto model [34]; this model is however based

FIG. 1. Parameter space in the loosely bound Skyrme model
with the BPS-Skyrme term. c6 is the BPS-Skyrme term coef-
ficient and m2 is the coefficient of the loosely bound potential.
The region A corresponds to a small BPS-Skyrme term and the
region of parameter space that we will study in this paper. B
corresponds to a large m2 and medium-sized value of c6. Finally,
C corresponds to the near-BPS regime of the BPS-Skyrme model;
in this regime, the kinetic term and the Skyrme term are small
perturbations of the BPS-Skyrme model.
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on string theory and is not directly related to QCD. The
BPS-Skyrme term corresponds physically to integrating out
the ωmeson [35,36] due to the interaction giving rise to the
ω → πþπ−π0 decay. To the best of our knowledge, there is
no derivation of the loosely bound (quadratic) potential
from QCD as of yet; it is included due to its ability to lower
the classical binding energies.
The paper is organized as follows. In Sec. II, we present

the model and units that we will be using in this paper. In
Sec. III, we calculate all the observables that we will
evaluate. Section IV shows the results of the numerical
calculations and evaluation of the observables. Finally,
Sec. V concludes with a discussion of the results found.

II. THE MODEL

The model under consideration is a generalized
Skyrme model and the Lagrangian density in physical
units reads

L ¼ f2π
4
L2 þ

1

e2
L4 þ

4c2c6
c24f

2
πe4

L6 −
~m2
πf2π

4m2
1

V; ð1Þ

where the kinetic (Dirichlet) term, Skyrme term [1,2], and
BPS-Skyrme [18,19] term are given by

L2¼
1

4
TrðLμLμÞ; L4¼

1

32
Trð½Lμ;Lν�½Lμ;Lν�Þ;

L6¼
1

144
ημμ0 ðϵμνρσTr½LνLρLσ�Þðϵμ0ν0ρ0σ0Tr½Lν0Lρ0Lσ0 �Þ; ð2Þ

and the left-invariant current is

Lμ ≡U†∂μU; Rμ ≡ ∂μUU†; ð3Þ

for later convenience, we also defined the right-invariant
current Rμ. The constants are the following: fπ is the pion
decay constant having units of energy (MeV), e > 0 is
the dimensionless Skyrme-term coefficient, c6 > 0 is the
dimensionless BPS-Skyrme term coefficient, ~mπ is the pion
mass (in MeV), and, finally, m1 is the dimensionless pion
mass parameter. c2 and c4 are dimensionless constants that
can be chosen arbitrarily; we will fix them shortly.
μ, ν, ρ, σ ¼ 0, 1, 2, 3 are spacetime indices, we are using
the mostly positive metric signature and U is the Skyrme
field which is related to the pions as

U ¼ 12σ þ iτaπa; ð4Þ

with detU ¼ 1 being the nonlinear sigma model constraint,
which is equivalent to σ2 þ πaπa ¼ 1 and τa are the Pauli
matrices.
We will now rescale the theory and work in (dimension-

less) Skyrme units, following Ref. [31]. The lengths are
rescaled as ~xi ¼ μxi, where both ~xi and μ have units of
inverse energy (MeV−1), and similarly, the energy is

rescaled as ~E ¼ λE, where ~E and λ have units of energy
(MeV). Finally, we get the dimensionless Lagrangian
density

L ¼ c2L2 þ c4L4 þ c6L6 − V; ð5Þ

where c2 > 0 and c4 > 0 are positive definite real constants
and c6 ≥ 0 is a positive semidefinite real constant and the
rescaling parameters are determined as

λ ¼ fπ
2e

ffiffiffiffiffiffiffiffiffi
c2c4

p ; μ ¼
ffiffiffiffiffi
c2
c4

r
2

efπ
; ð6Þ

whereas the pion mass in physical units (MeV) is given by

~mπ ¼
ffiffiffiffiffi
c4

p
2c2

efπm1: ð7Þ

We have assumed in the above expression that the part of
the potential V contributing to the pion mass is normalized
to m1 in dimensionless units.
A comment about the normalization chosen for the BPS-

Skyrme term,L6, in this paper is in store. Derrick’s theorem
[37] implies that a higher-derivative term is necessary for
stability of a soliton with finite size and energy. Skyrme
used the simplest possibility, namely, a fourth-order deriva-
tive correction to stabilize the Skyrmion, but a sixth-order
term like the BPS-Skyrme term can equally well stabilize
the Skyrmion without the presence of the standard Skyrme
term. This situation corresponds to c4 ¼ 0 and c6 > 0,
which however is not possible in our normalization and
calibration of the energy and length units. As explained in
the Introduction, in this paper, we focus on the region in
parameter space where the BPS-Skyrme term is added as a
perturbation to the loosely bound Skyrme model.
The potential we will use in this paper is composed by

the loosely bound potential [30] and the standard pion mass
term

V ¼ V1 þ V2; ð8Þ

where we have defined

Vn ≡ 1

n
m2

nð1 − σÞn: ð9Þ

This is the part of the most general potential to second order
in σ ¼ Tr½U�=2 giving the lowest binding energies [31].
The Lagrangian density (5) without a potential, pos-

sesses SUð2Þ × SUð2Þ symmetry, which is explicitly bro-
ken to the diagonal SU(2) by the potential (8). The latter
SU(2) corresponds to isospin, which wewill keep unbroken
in this paper.
The Skyrme field is a map from point-compactified

3-space R3 ∪ f∞g≃ S3 to the target space, SU(2), char-
acterized by the third homotopy group
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π3ðSUð2ÞÞ ¼ Z ∋ B; ð10Þ

where B is the topological degree, also called the baryon
number. The baryon number is the integral of the baryon
charge density

B ¼ 1

2π2

Z
d3xB0; ð11Þ

with

B0 ¼ −
1

12
ϵijkTr½LiLjLk�: ð12Þ

Throughout the paper, we will use the short-hand notation
B-Skyrmion for a Skyrmion with topological degree B.
For convenience, we allow for a generic normalization of

the terms in the model. However, once we want to calibrate
the model, we have to fix the choice of the coefficients c2
and c4. The standard choice of Skyrme units corresponds to
setting c2 ¼ c4 ¼ 2 for which energies and lengths are
given in units of fπ=ð4eÞ and 2=ðefπÞ, respectively [38]. In
this paper, we will adhere to the convention used in
Refs. [30,31], i.e.,

c2 ¼
1

4
; c4 ¼ 1; ð13Þ

for which, according to Eq. (6), energies and lengths are
given in units of fπ=e and 1=ðefπÞ, respectively. The pion
mass in physical units is

~mπ ¼
ffiffiffiffiffi
c4

p
2c2

efπ

ffiffiffiffiffiffiffiffiffiffiffi
−
∂V
∂σ

r ����
σ¼1

¼ 2efπm1; ð14Þ

where we have used the normalization (13) in the last
equality. The pion mass m ¼ 1 used in Ref. [13], corre-
sponds to m1 ¼ 1=4 and in turn, ~mπ ¼ efπ=2 in our units
and normalization.

III. OBSERVABLES

We have now defined the model, set the notation, and we
are ready to calculate the expressions for the observables
that we will determine numerically and compare to exper-
imental data. We will follow Ref. [31] and calculate
Skyrmions of baryon numbers one and four; this choice
is advantageous for several reasons: the importance of the
4-Skyrmion (B ¼ 4) as it corresponds to the alpha particle
and plays a crucial role in nuclear clustering; the ground
state of 4He is a spin-0, isospin-0 state, which means that it
is determined by the classical energy of the 4-Skyrmion,
and finally, the 1-Skyrmion represents the nucleon/proton/
neutron in the theory with unbroken isospin, and therefore,
we can use this for comparison with experimental data for
the proton.

The 1-Skyrmion is spherically symmetric and hence is
described by the hedgehog ansatz

Uð1Þ ¼ 12 cos fðrÞ þ ix̂aτa sin fðrÞ; ð15Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2

p
is the radial coordinate

and x̂a ¼ xa=r is the spatial unit 3-vector. The classical
energy for the 1-Skyrmion is given by plugging the above
ansatz into the Lagrangian (5) yielding

E1 ¼ −
Z

d3xL½Uð1Þ�

¼ 4π

Z
drr2

�
c2

�
1

2
f2r þ

1

r2
sin2f

�

þ c4
sin2f
r2

�
f2r þ

sin2f
2r2

�
þ c6

sin4ðfÞf2r
r4

þm2
1ð1 − cos fÞ þ 1

2
m2

2ð1 − cos fÞ2
�
; ð16Þ

where fr ≡ ∂rf.

A. Calibration

In this paper, we choose like in Refs. [30,31] to calibrate
the model by fitting the mass and the size of 4He to those
of the B ¼ 4 Skyrmion. Since the numerical calculations in
the B ¼ 4 sector are numerically expensive, we choose to
use the rational map approximation to estimate the mass
and size of the 4-Skyrmion. It is known that in the standard
Skyrme model, the rational map approximation provides
quick solutions within about 1% accuracy [8,9]. This will,
however, be the first time it is used in the loosely bound
Skyrme model; we will therefore check the results in the
c6 ¼ 0 sector by comparing to the full PDE solutions
of Ref. [31].
The rational map is made by performing a radial

suspension of the Skyrme field

UðRMÞ ¼ 1 cos f þ iτana sin f; ð17Þ

where na is a unit 3-vector. The suspension means choosing
fðrÞ and nðθ;ϕÞ in normal spherical coordinates. It will
however be convenient to use the complex coordinate
z ¼ eiϕ tan θ

2
on the Riemann sphere, for which the

2-sphere reads

n1¼ zþ z̄
1þjzj2 ; n2 ¼ iðz̄− zÞ

1þjzj2 ; n3 ¼ 1− jzj2
1þjzj2 : ð18Þ

The generalization to a degree B map on the Riemann
sphere is then made by using the rational map RðzÞ, which
is a holomorphic function of z and the 3-vector thus
reads [9]
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n1 ¼ RðzÞ þ R̄ðz̄Þ
1þ jRðzÞj2 ; n2 ¼ iðR̄ðz̄Þ − RðzÞÞ

1þ jRðzÞj2 ; n3 ¼ 1 − jRðzÞj2
1þ jRðzÞj2 : ð19Þ

We can now write our static Lagrangian density as [9,18,19,39]

−L½UðRMÞ� ¼ c2

�
1

2
f2r þ

sin2f
r2

ð1þ jzj2Þ2
ð1þ jRj2Þ2 jRzj2

�
þ c4

sin2f
r2

�
f2r

ð1þ jzj2Þ2
ð1þ jRj2Þ2 jRzj2 þ

sin2f
2r2

ð1þ jzj2Þ4
ð1þ jRj2Þ4 jRzj4

�

þ c6
sin4ðfÞf2r

r4
ð1þ jzj2Þ4
ð1þ jRj2Þ4 jRzj4 þm2

1ð1 − cos fÞ þ 1

2
m2

2ð1 − cos fÞ2; ð20Þ

which by integration over 3-space gives

EðRMÞ
B ¼ −

Z
d3xL½UðRMÞ�

¼ 4π

Z
dr

�
c2

�
1

2
r2f2r þ Bsin2f

�

þ c4sin2f

�
Bf2r þ I

sin2f
2r2

�
þ c6I

sin4ðfÞf2r
r2

þm2
1ð1 − cos fÞ þ 1

2
m2

2ð1 − cos fÞ2
�
; ð21Þ

where

I ≡ 1

4π

Z
2idz∧dz̄
ð1þ jzj2Þ2

�
1þ jzj2
1þ jRj2 Rz

�
4

: ð22Þ

For the 4-Skyrmion, the minimizing rational map has the
form [8]

RðzÞ ¼ z4 þ i2
ffiffiffi
3

p
z2 þ 1

z4 − i2
ffiffiffi
3

p
z2 þ 1

; ð23Þ

which upon integration gives I4 ≃ 20.6496.
With the (rational map) approximated solution for the

cubic 4-Skyrmion, we can now perform the calibration by
calculating the mass and size of the solution. Since, as we
mentioned already, the ground state of 4He is a spin-0,
isospin-0 state, the mass does not receive a contribution
from spin-isospin quantization and is thus given by the
classical static energy (21). The electric charge density is
given by ρE ¼ 1

2
1
2π2

B0 þ I3 [5], but since the isospin-0
state does not contribute to the charge density, the charge
radius is determined only from the baryon charge density

B0 ¼ −
Bsin2ðfÞfr

r2
; ð24Þ

which yields the baryon charge and electric charge radii
(squared)

r24 ¼ r2E;4 ¼ −
2

π

Z
drr2sin2ðfÞfr; ð25Þ

where f is a minimizer of the energy (21) with the rational
map (23), and we have normalized the integral by dividing
with B=2.
We can finally determine the parameters of the model as

fπ ¼ 2
ffiffiffiffiffi
c2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rE;4M4He

r4HeE4

s
; e ¼ 1ffiffiffiffiffi

c4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rE;4E4

r4HeM4He

s
; ð26Þ

which simplifies with the convention (13) to

fπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rE;4M4He

r4HeE4

s
; e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rE;4E4

r4HeM4He

s
; ð27Þ

where it is understood that rE;4 ¼
ffiffiffiffiffiffiffiffi
r2E;4

q
and the values of

the experimental data used are M4He ¼ 3727 MeV and
r4He ¼ 8.492 × 10−3 MeV−1.

B. Mass spectrum

We are now ready to calculate the mass spectrum; the
first mass we need is the mass of the nucleon. It has two
contributions: the (classical) soliton mass, E1 [see
Eq. (16)], and that coming from spin-isospin quantization,
ϵ1 which we will now calculate.
The quantum contribution from spin-isospin quantiza-

tion can be calculated from the kinetic part of the
Lagrangian (5), as follows:

T ¼ 1

2
aiUijaj ¼ ΛTr½ _A _A†�; ai ≡ −iTrðτiA† _AÞ: ð28Þ

Because of spherical symmetry of the nucleon, we get
Uij ¼ Λδij with [5,40,41]

Λ¼ 8π

3

Z
drr2sin2f

�
c2þc4f2r þ

c4
r2
sin2fþ2c6sin2ðfÞf2r

r2

�
:

ð29Þ

GENERALIZED SKYRME MODEL WITH THE LOOSELY … PHYSICAL REVIEW D 94, 125004 (2016)

125004-5



Since Tr½ _A _A†� is the kinetic term on the 3-sphere, the
quantization thereof yields

T ¼ 1

8Λ
lðlþ 2Þ ¼ 1

2Λ
JðJ þ 1Þ; ð30Þ

where J ¼ l=2 is the spin quantum number. Finally, the
spin contribution for the spin-1=2 ground state of the
nucleon reads

T1=2 ¼
1

2Λ
3

4
; ð31Þ

and in physical units

~mN ¼ ~E1 þ ~ϵ1 ¼
fπ
e
E1 þ

3e3fπ
8Λ

: ð32Þ

Now we can quickly get the mass of the Delta resonance,
by setting J ¼ 3=2, and hence, we get

~mΔ ¼ ~E1 þ 5~ϵ1: ð33Þ

The final mass that we will calculate and compare to data
in this paper is the pion mass, which is given in physical
units in Eq. (14).

C. Binding energy

One of the prime observables in this paper is the
binding energy. The classical and total binding energies
are defined as

ΔB ¼BE1 −EB; Δtot
B ¼BðE1þ ϵ1Þ−EB − ϵB; ð34Þ

and the relative classical and total binding energies in turn
read

δB ¼ 1 −
EB

BE1

; δtotB ¼ 1 −
EB þ ϵB

BðE1 þ ϵ1Þ
; ð35Þ

respectively. Notice that the quantum contribution to the
B-Skyrmion, ϵB, lowers the total binding energy, whereas

the quantum contribution to the 1-Skyrmion raises the total
binding energy. In particular, for the 4-Skyrmion, the
ground state is a spin-0, isospin-0 state, and thus
the quantum contribution vanishes, i.e., ϵ4 ¼ 0, yielding
the relative total binding energy

δtot4 ¼ 1 −
E4

BðE1 þ ϵ1Þ
: ð36Þ

This means that for the 4-Skyrmion, the spin-isospin
quantization only exacerbates the problem of the binding
energy being too large.

D. Charge radii

We will now calculate the baryon charge radius of the
nucleon and the electric charge radius of the proton. We
begin by calculating the vectorial current. The infinitesimal
transformation

U → U þ iθaV ½Qa; V�; ð37Þ

thus gives rise to the vectorial current

JμaV ¼ ic2
2

Tr½ðRμ − LμÞQa�

þ ic4
8

Tr½ð½Rν; ½Rμ; Rν�� − ½Lν; ½Lμ; Lν��ÞQa�

þ ic6
24

ηνν0ϵ
ν0ρ0σ0τ0Tr½Lρ0Lσ0Lτ0 �

× ϵνρσμTr½ðRρRσ − LρLσÞQa�; ð38Þ

whose integrated zeroth component for the hedgehog
ansatz (15), can be written asZ

d3xJ0aV ¼−
i8π
3

Z
dr½c2r2sin2fþ c4sin2fðsin2fþ r2f2rÞ

þ 2c6sin4ðfÞf2r �Tr½τa _AA†�;

from which we can construct the electric (radial) density
as [5]

Z
dΩρE ¼

Z
dΩ

�
1

2

1

2π2
B0 þ I3

�

¼ −
sin2ðfÞfr

πr2
þ c2sin2f þ c4

r2 sin
2ðsin2f þ r2f2rÞ þ 2c6

r2 sin
4ðfÞf2r

2
R
drðc2r2sin2f þ c4sin2ðsin2f þ r2f2rÞ þ 2c6sin4ðfÞf2rÞ

; ð39Þ

where we have usedQa ¼ τa=2. The above radial function is the charge density of the proton, and it integrates to unity, i.e.,R
drr2ρE ¼ 1 (as it should). We can thus construct the electric charge radius (squared) as

r2E;1 ¼
Z

drr4ρE; ð40Þ
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whereas the baryon charge radius is given by

r21 ¼ −
2

π

Z
drr2sin2ðfÞfr: ð41Þ

E. Axial coupling

In this paper, we will consider the axial coupling [5], in
addition to the ones considered in Ref. [31]. The axial
current reads

JμaA ¼ ic2
2

Tr½ðRμ þ LμÞQa�

þ ic4
8

Tr½ð½Rν; ½Rμ; Rν�� þ ½Lν; ½Lμ; Lν��ÞQa�

þ ic6
24

ηνν0ϵ
ν0ρ0σ0τ0Tr½Lρ0Lσ0Lτ0 �

× ϵνρσμTr½ðRρRσ þ LρLσÞQa�; ð42Þ

corresponding to the infinitesimal transformation

U → U þ iθaAfQa;Ug: ð43Þ

Imposing spherical symmetry and ignoring second order in
time derivatives, we can writeZ

d3xJaAi ¼
gA
2
Tr½τiA†τaA�; ð44Þ

where the axial coupling is given by3

gA ¼ −
4π

3

Z
drr

�
c2ðsin 2f þ rfrÞ

þ c4

�
sin2f sin 2f

r2
þ 2sin2ðfÞfr

r
þ sinð2fÞf2r

�

þ 2c6sin2f
r2

�
sin2ðfÞfr

r
þ sinð2fÞf2r

��
; ð45Þ

and we have used Qa ¼ τa=2. Although the axial coupling
is dimensionless, it is still in Skyrme units, and so to relate
to its experimentally observed value, we need to change the
units back to physical units

~gA ¼ gA
e2c4

¼ gA
e2

ð46Þ

by multiplying the result by λμ ¼ 1=ðe2c4Þ, and in the last
equality, we have used the convention of Eq. (13), which
sets c4 ¼ 1.

IV. RESULTS

We have now presented the loosely bound Skyrme model
with up to six orders of derivative terms and the observables
that we will compare to experimental data. Now we just
need to calculate the numerical solutions of the Skyrmion
profile functions for the 1-Skyrmion and the 4-Skyrmion,
respectively, in order to evaluate the observables presented
in Sec. III. We calculate the radial ODEs for the Skyrmion
profile functions using the relaxation method and show the
results below.

A. Binding energies

We will start by presenting the relative classical and total
binding energies in Figs. 2 and 3, respectively. In these and
the remaining figures containing contour plots in this
section, panel (a) shows the ðm2; c6Þ plane of parameter
space for fixedm1 ¼ 0.25 and (b) shows the ðm1; c6Þ plane
for m2 ¼ 0.7.
We see—as expected from Ref. [31]—that the binding

energy decreases when m2 is turned on and monotonically
decreases until m2 ¼ 0.8, which is the upper bound for
c6 ¼ 0 for which the cubic symmetry of the 4-Skyrmion is
still retained. Now we turn on the BPS-Skyrme term
(whose coefficient is c6), and we can see that for
m2 ¼ 0, it first increases the binding energy until a plateau
quickly is reached. Interestingly, however, when m2 ¼ 0.8,
the BPS-Skyrme term decreases the binding energy and
so much so that the classical binding energy in Fig. 2(a)
[Fig. 2(b)] turns negative in the top-right (top-left) corner of
the graph. We should warn the reader that since we are
using the rational map approximation for the 4-Skyrmion,
the energy is expected to be overestimated by about
1%–2%, and since the 1-Skyrmion is an exact numerical
solution, this translates into a 1%–2% underestimation of
the binding energy. Therefore, the contour line marking
δ4 ¼ 0 actually corresponds to a classical binding energy of
about 1%–2%. Shortly, we will estimate the systematic
error by making a comparison to the results of Ref. [31].
Figure 2(b) shows the ðm1; c6Þ plane of parameter space

for fixed m2 ¼ 0.7. It is a little surprising that the increase
of the pion massm1 leads to a slight increase in the binding
energy. The conclusions in both Refs. [30] and [31] were
that a larger pion mass was useful because it was possible to
reach smaller binding energies. It is perfectly consistent,
because the smaller binding energies were reached by
increasing the coefficient of the loosely bound potential,
m2, and larger values of m1 allow for larger values of m2

before the cubic symmetry of the 4-Skyrmion is lost. For
fixedm2, however, an increase in the pion mass is observed
not to help.
Taking the quantum contribution from spin-isospin

quantization into account gives us the total binding energy
of the 4-Skyrmion, i.e., δtot4 , shown in Fig. 3. Exactly the
same tendencies can be seen in the total binding energies as

3Although the contributions to the axial coupling from the
terms up to sixth order in derivatives have been calculated in
Refs. [40,41], our expression does not agree with that of the latter
references. However, our expression agrees with that of Ref. [5]
up to fourth-order derivative terms.
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in the classical binding energies. The lowest total binding
energy in Fig. 3(a) is δtot4 ¼ 3.03% at ðm2; c6Þ ¼ ð0.8; 1Þ
and marginally less at ðm1; c6Þ ¼ ð0.1; 1Þ, see Figs. 3(a)
and 3(b), respectively. Recall however, that due to the
systematic error in using the rational map approximation,

the true total binding energy is expected to be about
1%–2% higher.
Let us now address the systematic error in the binding

energy due to the rational map approximation. We take the
binding energies calculated from the full PDE solutions in
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FIG. 3. Relative total binding energy, δtot4 , in (a) the ðm2; c6Þ plane for m1 ¼ 0.25 and (b) the ðm1; c6Þ plane for m2 ¼ 0.7.
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FIG. 2. Relative classical binding energy, δ4, in (a) the ðm2; c6Þ plane for m1 ¼ 0.25 and (b) the ðm1; c6Þ plane for m2 ¼ 0.7.
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Ref. [31] and compare them to the slice in our parameter
space where c6 ¼ 0. Using a linear function in m2, we will
fit the difference between the full PDE solutions and the
rational map approximations

δcorrected4 ¼ δ4 þ aþ bm2; ð47Þ

where the constants are determined as a ¼ 0.01538 and
b ¼ 0.01142. We also find that the dependence ofm1 of the
difference is an order of magnitude smaller than that of m2

and so we will ignore it here. Figure 4 shows the full PDE
calculation as blue circles, the rational map approximation
as the red dashed line and finally, the corrected relative
binding energy of Eq. (47) as the green solid line. The
linear fit tells us that the energy of the 4-Skyrmion is indeed
overestimated, which in turn, underestimates the binding
energy by 1.5% for m2 ¼ 0 and by 2.5% for m2 ¼ 0.8.
We used the classical binding energy to fit the correction

for the systematic error of using the rational map approxi-
mation, and as we can see in Fig. 4(a), the linear correction
works very well. Using the same correction, we can see in
Fig. 4(b), that the corrected rational map approximation
overestimates the true binding energy by a little.
Nevertheless, with the correction for the systematic error,
the relative classical binding energy matches the full PDE
calculation within 0.0042%–0.065%, whereas the relative
total binding energies only matches the PDEs within
0.18%–0.29%.
Finally, we will correct the systematic error of using the

rational map approximation based on the above fit and
show the relative total binding energy in Fig. 5.
Interestingly, we can see that the BPS-Skyrme term helps

decreasing the binding energy for large m2 and at the top-
right corner of Fig. 5(a), we have about 5.5% binding
energy and in the top-left corner of Fig. 5(b), it is about

5.3%. Compared to turning off the BPS-Skyrme term
(c6 ¼ 0), the latter two values read 6.6% and 6.1%,
respectively. With the results of Ref. [31] in mind, we
expect that instead of decreasing the pion mass, increasing
it and in the same time increasing also m2, but beyond the
values explored here, we will be able to reach even lower
binding energies.

B. Calibration

In the calculation of the quantum contribution, which is
an ingredient in the binding energies discussed above, the
calibration of the model of the 4-Skyrmion to 4He, has been
used, see Eq. (27). Although the relative binding energy
does not depend on the pion decay constant, fπ , other
observables like the pion mass do depend on it. In Fig. 6, is
shown the pion decay constant in the explored parameter
space. We can see that increasing either the pion mass, m1,
or the coefficient of the loosely bound potential, m2, with
the other one held fixed, decreases the already too small
pion decay constant. For large m2 ∼ 0.8, the pion decay
constant in the model comes out as low as 67.5 MeV,
compared to the experimental value of about 186 MeV; a
factor of 3 too low.
The next parameter is the Skyrme-term coefficient e,

which to the best of our knowledge is not experimentally
determined. The calibration determines its value, which is
shown in Fig. 7.
The general tendency of turning on the BPS-Skyrme

term is an increase in e. Let us recall that the prefactor of
the quantum correction to the energy of the 1-Skyrmion has
an e4 relative to its classical value. This naively implies that
larger e leads to larger binding energies. As we know from
Eq. (46), a larger e will also have the effect of decreasing
the axial coupling, which we will see shortly is a desired
feature.
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FIG. 4. Relative (a) classical and (b) total binding energy, δ4 and δtot4 , as functions of m2 for m1 ¼ 0.25. The blue circles are full PDE
calculations from Ref. [31], the red dashed line is the calculation using the rational map approximation, and finally, the green solid line is
the rational map approximation with a correction for systematic error, see Eq. (47).
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C. Mass spectrum

We are now ready to calculate the physical spectrum,
which we limit to the nucleon mass, the mass of the
Delta resonance, and the pion mass. The nucleon mass is
shown in Fig. 8. Recall that we calibrate the model by

setting the mass of the 4-Skyrmion equal to the mass of
helium-4.
We can see from Fig. 8(a) that increasing the loosely

bound potential, decreases the nucleon mass, but yet not
enough to reach its experimentally measured value around
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FIG. 6. Pion decay constant, fπ [MeV], in (a) the ðm2; c6Þ plane for m1 ¼ 0.25 and (b) the ðm1; c6Þ plane for m2 ¼ 0.7.
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939 MeV. Similarly to the relative binding energy, when
m2 ¼ 0 the BPS-Skyrme term initially increases the
nucleon mass until a plateau quickly is reached.
However, whenm2 is large the BPS-Skyrme term decreases
the value of the nucleon mass. It is interesting to see from
Fig. 8(b), that a smaller pion mass gives rise to a smaller

nucleon mass. The part of parameter space we considered
here generally overestimates the nucleon mass.
We now turn to the mass of the Delta resonance, which is

shown in Fig. 9. It is well-known that the Skyrme model
generally underestimates it, and our flavor of the Skyrme
model is no exception in this part of the parameter space.
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FIG. 8. Nucleon mass, ~mN [MeV], in (a) the ðm2; c6Þ plane for m1 ¼ 0.25 and (b) the ðm1; c6Þ plane for m2 ¼ 0.7.
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FIG. 7. Skyrme term coefficient, e, in (a) the ðm2; c6Þ plane for m1 ¼ 0.25 and (b) the ðm1; c6Þ plane for m2 ¼ 0.7.
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The tendency of improvement of the binding energy
and nucleon mass for larger values of the loosely bound
potential (m2) leads, however, to an exacerbation of the
mass of the Delta resonance being too small.

The value of the pion mass is shown in Fig. 10. This is
the first observable hitting spot-on the experimentally
measured value. Of course the charged pions in nature
are slightly heavier than the neutral one, but since we leave
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FIG. 9. Mass of the Δ resonance, ~mΔ [MeV], in (a) the ðm2; c6Þ plane for m1 ¼ 0.25 and (b) the ðm1; c6Þ plane for m2 ¼ 0.7.

120

130

135139.6

140

150160

170

180

190

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

m 2

c
6

(a)

75
100

125

135

139.6
150 175 200

225

250

275

0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

m1

c
6

(b)

FIG. 10. Pion mass, ~mπ [MeV], in (a) the ðm2; c6Þ plane form1 ¼ 0.25 and (b) the ðm1; c6Þ plane form2 ¼ 0.7. The two bold red lines
indicate the physical values of the pion masses.

GUDNASON, ZHANG, and MA PHYSICAL REVIEW D 94, 125004 (2016)

125004-12



chiral symmetry unbroken, all 3 pions are mass degenerate
in our model. We can see that in order to hit the right
experimental value and in the same time reduce the binding
energy by turning on the BPS-Skyrme term, we need to
reduce the value of the pion mass, m1. However, the
BPS-Skyrme term is expected to bind the constituents of
the 4-Skyrmion more tightly, whereas the loosely bound
potential repels them from each other. Therefore, we expect
that it will be possible to increase the value of m2 for
medium/large values of c6, and so the tendency of the
model matching the experimental value of the pion mass is
right on track.
Let us, however, remark that the pion decay constant is

about a factor of 3 too small compared with experiment,
and in the modern point of view in the Skyrme model, we
accept this fact as the pion decay constant in the model
being simply a renormalized value in the effective field
theory and in the baryon medium.

D. Proton charge radius

We now turn to the proton charge radius. For compari-
son, we calculate both the baryon charge radius and the
electric charge radius, following Ref. [5], but generalized to
include the BPS-Skyrme term, see Eq. (40). The baryon
charge radius, defined in Eq. (41), is shown in Fig. 11 and
the electric charge radius is shown in Fig. 12.
The model generally overestimates the proton charge

radius. If we begin with Fig. 11, we can see that the
loosely bound potential—although lowering the binding

energy—increases the baryon charge radius. This can
readily be understood as follows. The loosely bound
potential, like the mass term, decreases the size of the
4-Skyrmion. However, since it is calibrated against the
physical size of helium-4, this implies a prolongation of the
length scales. Because the 1-Skyrmion is more compact, it
does not shrink as much as the 4-Skyrmion in the presence
of the loosely bound potential, and with the prolonged
length scales, its size increases. This yields a larger proton
radius for larger values of the coefficient of the loosely
bound potential, m2. Interestingly, and counterintuitively,
an increase of the pion mass for fixed larger m2, see
Fig. 11, yields a smaller baryon charge radius. The
effect is however relatively small compared to that of
changing m2.
Since the proton is an electrically charged object, it has a

well-defined electric charge radius, which is experimentally
much more easily accessible than the baryon charge radius.
From Eq. (40), however, we can see that half of the electric
charge is given by the baryon charge, so the influence
of the latter is 50%. Nevertheless, we can see from Fig. 12
that the electric charge radius has quite a different behavior
in the parameter space than the baryon charge radius.
We can see that the electric charge radius is generally

quite a bit larger than the baryon charge radius. This is
physically reasonable. In general, it is seen that the BPS-
Skyrme term helps decreasing the electric charge radius,
but not nearly enough to reach the experimentally measured
value. We can also see that a larger value of the pion mass
again helps decreasing the radius.
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FIG. 11. Baryon charge radius of the proton, r1 [fm], in (a) the ðm2; c6Þ plane for m1 ¼ 0.25 and (b) the ðm1; c6Þ plane for m2 ¼ 0.7.

GENERALIZED SKYRME MODEL WITH THE LOOSELY … PHYSICAL REVIEW D 94, 125004 (2016)

125004-13



1.08

1.1

1.12

1.14

1.16
1.18

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

m 2

c
6

(a)

1.1

1.15

1.2

1.25

1.3

1.35

0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

m1

c
6

(b)

FIG. 12. Electric charge radius of the proton, rE;1 [fm], in (a) the ðm2; c6Þ plane form1 ¼ 0.25 and (b) the ðm1; c6Þ plane form2 ¼ 0.7.
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As an example, we illustrate the baryon and electric
charge densities in four points of the parameter space
in Fig. 13.

E. Axial coupling

The final observable that we will present in this paper is
the axial coupling, following Ref. [5], but again with the
inclusion of the contribution from the BPS-Skyrme term,
see Eq. (46). The result of the axial coupling in the chosen
parameter space is shown in Fig. 14.
Although the original calculation in Ref. [5] yielded a

value of gA almost half the size of the experimentally
measured value, our model overestimates this observable.
This can be traced back to the value of the Skyrme-term
coefficient, e, which is much smaller in our model when
calibrated against the mass and size of helium-4. Although
we overestimate the value of the axial coupling, we can see
that if we were to increasem2 beyond the chosen parameter
space for large values of c6, and possibly also increase the
pion mass, the value could conceivably decrease to the right
orders of magnitude of the experimentally measured value
of about 1.27 [42]. That part of parameter space is,
however, inaccessible in this paper because we cannot
know if the cubic symmetry of the 4-Skyrmion is retained
there or not. That requires the full PDE calculations and
will be interesting land to cover in the near future.

F. Summary of the results

The loosely bound potential decreases the classical and
total binding energies [30,31], and in this paper, we have

shown that the BPS-Skyrme term with an order-one
coefficient can help decreasing it further. In particular,
for m2 ¼ 0.8: increasing c6 to c6 ¼ 1, decreases the bind-
ing energy by 0.9% (after taking the calibration into
account), and it worsens the values of the nucleon mass,
axial charge and spin contribution to the nucleon; it
improves the value of the proton charge radius; has no
effect on the Δ mass and pion decay constant; and it
overshoots the value of the pion mass. The tendencies seen
in our results in this section, indicate that enlarging the
parameter space using full PDE calculations, one may find
solutions with lower and more realistic binding energies
than found in this paper.

V. DISCUSSION

In this paper, we have studied the most accessible part of
the parameter space of the loosely bound Skyrme model
with the BPS-Skyrme term and the second-order potential
providing the lowest binding energies. For the first time, we
have used the rational map approximation for the Skyrme
model quite far outside of its common range; that is, we
have turned on both the loosely bound potential and the
BPS-Skyrme term.4 Interestingly, the same function of the
rational map applies to the BPS-Skyrme term as appeared
already in the normal Skyrme term. For the loosely bound
potential, we could compare our results to those of
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FIG. 14. Axial coupling, gA, in (a) the ðm2; c6Þ plane for m1 ¼ 0.25 and (b) the ðm1; c6Þ plane for m2 ¼ 0.7.

4The rational map is often used in the (pure) BPS-Skyrme
model [18,19], where it is not an approximation due to volume-
preserving diffeomorphism invariance.

GENERALIZED SKYRME MODEL WITH THE LOOSELY … PHYSICAL REVIEW D 94, 125004 (2016)

125004-15



Ref. [31] and calculate the systematic error by using the
rational map approximation: about 1.5%–2.5%, with an
approximate linear increase as function of the coefficient of
the loosely bound potential, m2. We have found the
classical binding energy as low as 1.8% and total binding
energy down to about 5.3%, in the covered part of
parameter space. With the results of Ref. [31] in mind,
we expect that in the part of parameter space where the pion
mass is large, the coefficient of the loosely bound potential
is allowed to be larger than covered here and then turning
on a sizable BPS-Skyrme term will result in even lower
binding energies.
Another result that we have calculated in this paper is the

contribution from the BPS-Skyrme term to the axial
coupling. It generally increases the value of the coupling,
which is a wanted feature in light of the original results [5];
however, with our calibration the coupling turns out to be
slightly too large compared with its experimental value.
Fortunately, the tendency of the results in this paper points
in the direction that the region of parameter space where we
may lower the binding energy further than what we have
covered in this paper may lead to a lower and perhaps quite
reasonable value of the axial coupling.
If we pick the vanilla point in our covered parameter

space—based entirely on the binding energy—we get a
total binding energy of 5.3%, the pion decay constant at
71 MeV, e ∼ 4.5, the nucleon mass at 960 MeV, the mass of
the Delta resonance at 1095 MeV, the pion mass at 75 MeV,
the proton charge radius at 1.25 fm, and finally, the axial
coupling at 1.53. A comparably good point in parameter
space gives us instead, a total binding energy of 5.5%, the
pion decay constant at 65 MeV, e ∼ 4.6, the nucleon mass
at 960 MeV, the mass of the delta at 1100 MeV, the pion
mass at 150 MeV, the proton charge radius at 1.15 fm, and
finally, the axial coupling at 1.46.
The first thing that can be done from now is to explore

the parameter space of the loosely bound Skyrme model
with the BPS-Skyrme term turned on using full PDE
calculations. This will first of all confirm our results here
(we expect 1%–2% error and perhaps less after correcting
for the systematic error at the c6 ¼ 0 slice of parameter
space), but it will also allow one to go farther into
unexplored regions of parameter space, which are expected
to contain solutions with even lower binding energies than
found in this paper. There are two directions to explore.
The first is towards the near-BPS regime of the BPS-
Skyrme model which in our language means very large

values of c6 and m2. The problem with this approach is the
technically difficult numerical calculations that need to be
tackled. The other direction to search in, is to take a large
pion mass; crank upm2 to the boundary of where the cubic
symmetry of the 4-Skyrmion is lost and then increase c6
(the BPS-Skyrme term) and again increase m2 as much as
possible. Continue this loop until the binding energy is of
the right order of magnitude (or until a technical problem
occurs).
Another interesting future direction would be to consider

the derivation of the BPS-Skyrme term in the framework of
partially bosonized QCD at large Nc, along the lines
of Ref. [32].
Let us mention an obstacle that we have not mentioned

so far. We are pursuing the lowest possible binding energies
in a generalization of the Skyrme model in order to match
experimental data. However, even if we can reduce the
classical binding energy arbitrarily, say down to ε, then the
tendency is that the method of adding the quantized spin-
isospin contribution to the classical mass by itself yields
about 2%–3% binding energy. Thus to reach agreement
with experiments, we need a classical binding energy of
about −ð1%–2%Þ, which means that the classical solutions
are unbound and thus impossible. It is plausible that
vibrational modes could play a role in this problem (like
for 7Li and 16O in Refs. [43–45]), so that the 4-Skyrmion
would receive a nonrotational quantum contribution and
thus lower its binding energy. This issue of the large size of
the spin-isospin contribution to the 1-Skyrmion has been
addressed recently in Ref. [46], where it was suggested by
an indirect argument of relating the spin contribution to the
nucleon mass and the moment of inertia of the nucleon, that
the spin contribution should actually be more than twice as
large as the standard Skyrme model (direct) argument
suggests. The spin contribution to the mass of the nucleon
needed should, by comparing the nucleon to helium-4, be
as low as 7.2 MeV. However, by the indirect argument of
Ref. [46], it could be as large as 16 MeV, reducing a lot of
tension in the Skyrme model. For consistency, however,
this requires some quantum contribution to the 4-Skyrmion.
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