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In Molnér et al. Phys. Rev. D 93, 114025 (2016) the equations of anisotropic dissipative fluid dynamics
were obtained from the moments of the Boltzmann equation based on an expansion around an arbitrary
anisotropic single-particle distribution function. In this paper we make a particular choice for this
distribution function and consider the boost-invariant expansion of a fluid in one dimension. In order to
close the conservation equations, we need to choose an additional moment of the Boltzmann equation.
We discuss the influence of the choice of this moment on the time evolution of fluid-dynamical variables
and identify the moment that provides the best match of anisotropic fluid dynamics to the solution of the

Boltzmann equation in the relaxation-time approximation.
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I. INTRODUCTION

Relativistic fluid dynamics has been successfully applied
to understand a wide variety of phenomena in the fields of
astrophysics, cosmology, cold atoms, and heavy-ion colli-
sions [1-4]. In particular, relativistic dissipative fluid
dynamics has become one of the main tools in under-
standing the dynamics and properties of strongly interact-
ing matter formed in ultrarelativistic heavy-ion collisions at
BNL’s Relativistic Heavy Ion Collider and at CERN’s
Large Hadron Collider. Such investigations have led to
tremendous progress in our understanding of the properties
of such matter, e.g. its equation of state and transport
coefficients [5-10]. A necessary prerequisite for these
investigations is, however, to know the regime of appli-
cability and limitations of relativistic fluid dynamics.

The applicability of traditional dissipative fluid-
dynamical theories is restricted to the vicinity of local
thermodynamical equilibrium. This implies that the devia-
tions of the single-particle distribution function from its
form in local thermodynamical equilibrium are small.
However, the system formed in relativistic heavy-ion
collisions is not macroscopically large and it undergoes
rapid expansion. Such conditions are challenging for fluid
dynamics, as this can create situations where momentum-
space anisotropies are of major significance. In particular,
this is true in the very early stages of heavy-ion collisions.

To overcome such limitations of fluid-dynamical
theories, in the late 1980s Barz et al. [11] proposed an
energy-momentum tensor which incorporated the momen-
tum anisotropy in terms of a spacelike four-vector //. Quite
recently, two research groups aimed at including a large
momentum-space anisotropy into the fluid-dynamical
framework for ultrarelativistic heavy-ion collisions.
Florkowski and Ryblewski [12—-16] and Martinez and
Strickland [17-19] effectively rediscovered anisotropic
fluid dynamics and initiated a new line of research,
cf. Refs. [20-23].
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Their approach is based on a single-particle distribution
function in momentum space, termed ]ACOk in the following,
which is a deformed ellipsoid in the local rest (LR) frame of
matter [24]. The momentum-space anisotropy is controlled
by a single parameter &, such that 1im§_,0f‘0k = fok, Where
fok 1s the single-particle distribution function in local
thermodynamical equilibrium, which is isotropic in the
LR frame. In anisotropic fluid dynamics the momentum-
space anisotropy can, in principle, be arbitrarily large,
which is in contrast to conventional dissipative fluid
dynamics, which is based on the assumption of small
deviations from local equilibrium.

The particle-number four-current N* and energy-
momentum tensor 7% are given by the first and second

moments of fo. The difference compared to an ideal fluid,
where f is the single-particle distribution function, is that
now the conserved quantities are functions of the param-
eters £ and [/, in addition to temperature 7, chemical
potential u, and fluid four-velocity ¥, which specify fy.
Therefore, the conservation equations and the equation of
state no longer form a closed set of equations, and addi-
tional equations determining £ and /¥ are needed. Usually,
[ is fixed by the requirement that it is orthogonal to u*,
u,l' =0, and normalized, [,/* = —1. For the sake of
simplicity it may be chosen to have no components in
the plane transverse to the beam (z—) direction, such that
" =y.(v,0,0,1), where y, = (1 —v2)~'/2. Thus, only
one additional equation is needed, which determines the
time evolution of &.

If the particle number (or, in the relativistic context, net
charge) is conserved, the zeroth moment of the Boltzmann
equation provides the corresponding conservation
equation. However, in situations where particle number
(or net charge) is not conserved (for instance, when
particles are produced or annihilated), the zeroth moment
of the collision term does not vanish. The zeroth moment of
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the Boltzmann equation can then be used to determine the
momentum-space anisotropy. However, due to fact that
there is an infinite hierarchy of moment equations, also
higher moments of the Boltzmann equation could be used
to provide closure of the equations of motion. This strategy
was employed in Refs. [25-28], where specific projections
of the second moment of the Boltzmann equation were
used.

In principle, the ambiguity in the choice of moment can
be resolved by comparing the fluid-dynamical solution to
that of the Boltzmann equation. This is the purpose of
the present paper. We study several possible choices for the
moment that closes the equations of motion, both in the
case with and without particle-number conservation.

The paper is organized as follows. In Sec. II we recall the
tensor decomposition and the equations of motion in the case
of an arbitrary anisotropic distribution function from
Ref. [29]. In Sec. III we apply this formalism to a specific
example, the so-called Romatschke-Strickland (RS) distri-
bution function, and provide the Landau matching conditions
to calculate temperature and, in the case of particle-number
conservation, chemical potential. Assuming 0+ 1-
dimensional Bjorken flow [30] and the relaxation-time
approximation (RTA) for the collision term [31,32], we
present the conservation equations and the various choices
for the moment equation which is used to provide closure. In
Sec. IV we systematically study these choices and compare
them to the solution of the Boltzmann equation. We conclude
this work in Sec. V with a summary and an outlook.
Technical details are relegated to the appendixes.

We adopt natural units, 7 = ¢ = kg = 1, throughout this
work. The elementary projection operator orthogonal to u/
is denoted by AM =g —u'u’, where ¢ =g, =
diag(1,—-1,—1,—1) is the Minkowski metric tensor
of flat space-time. The four-momentum of particles,
ki = (ko, ky. ky, k), is normalized to the rest mass m, of
the particles, k*k, = m% and can be decomposed into two
parts, k* = Ey,u* + k%), where Ey, = k‘u, is the (rela-
tivistic on-shell) energy, while k%) = A#k, is the particle
momentum orthogonal to the flow velocity. For an arbitrary
anisotropy the projection tensor orthogonal to both u*
and /¥ is denoted by = = ¢" — utu? + MY = AW + FIY
[33-36]. Thus, the four-momentum of particles can be
decomposed as k* = Ey,u* + Eyl* + k*}, where Ey, =
—k"1, is the particle momentum in the direction of the

anisotropy and k#} = Z#k, are the components of the
momentum orthogonal to both »* and [*.

II. THE GENERAL EQUATIONS OF MOTION
OF ANISOTROPIC FLUIDS

The starting point of relativistic kinetic theory is the
Boltzmann equation [37,38],

k0, fx = CIf]. (1)
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where fi = f(x#,k*) is the single-particle distribution
function at space-time coordinate x¥, while 9, = 0/0x*
is the space-time derivative. The collision integral (for
binary collisions only) is

1
Clf) =5 [ dK'PAP Wiy
X (fpfp’}‘k]?k’ - fkfk’}p}p’)‘ (2)

Here, ]‘k =1 —afy, where a = +1 for fermions/bosons,
while a =0 corresponds to classical, indistinguishable
particles. The invariant momentum-space volume is
dK = gd’k/[(27)*k°], where g denotes the number of
internal degrees of freedom. Furthermore, Wy, pp 18
the invariant transition rate.

Following Ref. [29] we denote the anisotropic distribu-
tion function as foy (@, 3, Ex,. f1Ex;), which characterizes
an anisotropic state as a function of three scalar parameters,
a, fiu, and f)’,, as well as the on-shell energy Ey, and
the momentum component Ey; in the direction of the
anisotropy. We also demand that

lim foy (@, BuExcus BiExt) = for (& BuEr)s (3)

=0

i.e., in the limit of vanishing anisotropy parameter ,B, the
anisotropic distribution converges to the distribution
function in local thermodynamical equilibrium. This is
the so-called Jiittner distribution function [39,40],

fox (. PoExy) = lexp(—ag + foEx,) +a]™'.  (4)

where fy = 1/T and ay = up.
The moments of tensor rank n of the anisotropic
distribution function j‘Ok are defined as

T = (Bl Bk -+ k), 5
where ()5 = [dK(: f0k These moments are
expanded as

[n/2] n—2q
:Z—/l-ljlm”n Z Z nrq l+]+n Jj+r.q
q=0 r=0

X _:(lllﬂz o EHog-1Hog Mgt L [Hogtr gl L u,un)7

(6)

where n, r, and ¢ are natural numbers and [n/2] denotes
the integer part of n/2. The number of permutations
of indices that lead to distinct tensors Z(---[---u) is
byq = n!(2q —1)!'/[(2q)!r!(n —2¢g = r)!]. The double
factorials of even and odd numbers are defined as (2¢)!! =
24g! and (2 — 1)!! = (29)!/(29q!), respectively. Finally,
the generalized thermodynamic integrals are defined as
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i DT e g vy
Inrq*W<Eku 2E ( kykb) >0' (7)

Note that in analogy to Eq. (5) we define the generalized
moments of f, as

hml’#l Hn _Iﬂl Hn
ﬁ1—>0

— <Ei'wE{;ka M (8)

where (---)g = [dK(---)fox. The thermodynamic inte-
grals in equilibrium are thus given by

Inrq hmlnrtp (9)

p1—0

ie., they are given by Eq.
(Y = (- Yo-

Using the expansion (6), we readily obtain the conserved
quantities N* = 7%, and 7" =74 decomposed with
respect to u, [¥, and =,

(7) upon replacing

Nt = (k) = nu” + iyl*, (10)

™ = (k) = P =

(11)

The coefficients of the various tensor structures can be
expressed in terms of generalized thermodynamic integrals
or, equivalently, by different projections of the tensor
moments (5),

euru’ + 2Mu 1Y) + Pyr1 —

n= A””y:iIOOZjIOv (12)
flzf—ﬁ’”lﬂ:jno:jm, (13)
e= A’w”ﬂuu = 7200 = j20, (14)
ME—A”DMMlu:jzlozju, (15)
Py =T1"1,1, =T = 1. (16)

P = —% 2, = Ly = ;(mozoo —Too+Zno).

(17)

The particle density is 71, and 7; is the part of the particle
diffusion current that points into the /¥ direction. The
energy density is &, while M is the part of the energy
diffusion current along the /¥ direction. The pressure
component in the direction of the momentum anisotropy
is P;, while the pressure in the direction transverse to [ is
P,. The isotropic pressure is defined as

PHYSICAL REVIEW D 94, 125003 (2016)

. 1. 1, . A
P=- §TWA 3(P1+2Pl). (18)
Therefore, the particle four-current and energy-

momentum tensor defined in Eqs. (10) and (11) contain
nine unknowns: the four-vector #* with three indepen-
dent components and six scalars, 7, e, 7y, M, f’l, and
P . (We assume that /# is already fixed as described in
Sec. 1.) However, since these latter quantities are

A

functions of three independent scalars @, ﬁu, and ﬁl,
only three of the above six scalar variables are
independent.

One still needs to assign a physical meaning to the fluid
four-velocity, i.e., one needs to determine which physical
quantity is actually at rest in the LR frame. Eckart’s choice
[41] is the flow of particles,

NH
VIR,
This implies that there is no particle diffusion, i.e., i7; = 0.

Landau and Lifshitz [42] choose to define the LR frame in
terms of the flow of energy,

ut =

(19)

e
W=t , (20)

\/ M}LT&/{T(I/}M/)’

which leads to a vanishing energy diffusion current,
ie, M=0.

However, neither of these choices removes one of the
six unknowns u*, a, ﬁu, and ﬁl. The conservation
equations, G”N” =0 and G”T " =0, provide only five
constraints for these six independent variables; hence we
need an additional equation for the remaining variable.
Naturally, in kinetic theory this can be provided by
choosing an equation from the infinite hierarchy of
moment equations of the Boltzmann equation. For an
anisotropic distribution function these equations have the
following form,

0,260 = Cop ™ (1)

where the collision integral is defined as
Cltn = / dKE} EL k" - K Clfo].  (22)

Contracting Eq. (21) with projection tensors built from
ut, ¥, and =* leads to the following tensor equations,

TR e

Uy = U by L B 02
— it j 1A Sy -y
=y, Uyl l”x+/_'ﬂ’+]+l wCoo " (23)
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where =J! 0" are irreducible projection operators

constructed from the =Z**’s, such that for any n > 2 they
are symmetric, traceless, and orthogonal to both u#
and /.

In Ref. [29] we derived the equations of motion for the
irreducible moments p;"* of 5k = fx — fox. Although
we only wrote them down explicitly up to tensor rank
n =2, they follow from a tensor equation similar to
Eq. (23). The latter is then simply the special case of that
tensor equation obtained by setting 5} " = 0. Ultimately,
we can take the equation for the scalar moment, Eq. (110)
of Ref. [29], and put all irreducible moments f)f’]' " =0to
obtain

ZC{”} = V” (m%I,»_Lj

in1j = ~Zipj+Zisjea) =

[mOJIl] |~ jj—i+2,j—1 +(+ z)jinEnga + [m§(i -
l)jz-kl]]‘—‘llD " +<
_j-i,jJrl +Ii—2.j+3)lav u” —j(mo ij—1 _Zi+2,j—1 +Ii,j+1)lav”ua' (25)

= [mg(j + NI i1 —(J+

—(i=1)(m

i
0Lizj41

Here, D = u*d, denotes the comoving derivative and D; =
—1"0, is the derivative in the direction of the anisotropy.
The spatial gradient in the directions orthogonal to both u#

and /# is V = E,,0", while the expansion scalars are
defined as 6 = V u" and 0, = Vﬂl”.

The particle- number conservation equation follows from
Eq. (24) by choosing i = 1 and j = 0. Using Eqgs. (12)—(17)
we obtain

0 = 8//,[\\/” = Dfl - Dlﬁ[ + flé+fllél
+ ﬁlﬂDlM” - ﬁllﬂDu", (26)
where due to particle-number conservation @00 =0

The energy-conservation equation follows from Eq. (24)
by choosing i =2 and j =0,

0 = u,d,1" = Dé — DM + (& + P )0 + M0,
+ (& + P)1,Dyu* — 2M1,Du*, (27)

while the conservation equation for the momentum in the #
direction can be obtained for i =1 and j =1,

0= lDaMTm/E —DM‘FD[PI—Mé‘i‘(Pl _Pl)él
—2M1,Du" + (& + P))l,Du, (28)

where Cjp =0 and Cyp; =0 vanish due to energy and
momentum conservation, respectively.

The conservation equation for the momentum transverse
to [# can be obtained from Eq. (25) for i =1 and j = 0.

Using C{#) = 0 we obtain

[m%ifi—l,j -
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éi—l.j:Djij_(iAIi—l.jJrlJrjjiJrlj 1)l Du”
DIy ji+(i—DIija+(j+ DI,

1Zi2,42)60

]l D[l/t

1 . A . A .
—E[m(%(z— DZin =i+ 1)L+ (-

1

+_

3 [m%jji—l,j—l _jj—i+1,j—l + (.j"'z)j—i—l,j—&-l]él-

(24)

Similarly, taking Eq. (111) of Ref. [29] and setting all
irreducible moments [)f’j‘"'”f = 0 we obtain the equation for
the vector moment,

(i+2)Zi41) + i1 j42)ZaDu”
DZiaji1 — (i + 1)Z; 1y |ZaDuc
NI, 2 j+3ZaDu® — (j + 3)Z; 1j+2ZaDl*

[
0= :gaﬂT’”’ = (¢ + P,)(Du® + 1°l,Du")

— V PJ_ + (PJ_ - Pl)(Dlla + MalDDlMD)
+ M(DI* + u®l,Du*) — M(Du® + [*I,Du*).  (29)

In order to close the five conservation equations in
terms of fluid-dynamical quantities we need to supply
Egs. (26)—(29) with an additional equation of motion. To
this end, it is natural to select the equation of motion for 7;
or M (depending on the choice of the LR frame), or P,
However, as we have already discussed in the introduction,
alternatively we may use any higher moment of the
Boltzmann equation to close the conservation equations.
The choice of closure is the main question that we further
investigate in the following sections.

III. APPLICATIONS
A. The Romatschke-Strickland distribution
function and properties

As a simple, and at the same time relevant, example
we take the anisotropic distribution function introduced
by RS [24],

. -1
frs = [exp (_aRS + Prsy/ k””%w) + a} , (30)

where
QW — whu + EIMTY, (31)

Here, £ denotes the so-called anisotropy parameter. For
£ <0, ]ACRS is a prolate spheroid and for £ > 0 it is an oblate
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spheroid with respect to the z axis in momentum space and
in the LR frame.

Comparing to Eq. (3) we identify & = ags, B, = Brss
and ,Bz = PrsV/E. Furthermore, in order to calculate the
fluid-dynamical quantities using the RS distribution func-
tion, we introduce a new set of thermodynamic integrals,

Iff,q(aRS,ﬁRS &), which correspond to the replacement

fox = frs in Eq. (7),

(_1>q n—r=2q -r (—uy ~
Iﬁfq = (261)” dKEku qul(:‘} k/tku)quS' (32)

These integrals are most easily evaluated for a massless
Boltzmann gas, i.e., my =0 and a =0. As shown in

Ref. [17] assuming m, = 0 leads to factorization of the
&-dependent part,

iﬁfq(“R& ﬁRS’ ‘f) = Inq(aRS’ ﬁRS)Rnrq(g)’ (33)

where the standard thermodynamic integrals are

(=17

n—2 a
[ E (B "(Akkp)®) o (34)

Inq(a()vﬂ()) =

Considering the tensor decomposition of the first
and the second moment of the equilibrium distribution
function, Njy=1,gu* =1Igou* and Tf' = Lou'u* — I A" =
Lot u” 4150 IM 1Y — 1,01 EM, respectively, the particle den-
sity is ng = Nqu, = I,09 = I, the energy density is
eo = T u,u, = Igo = I, and the thermodynamic pres-
sure is Py = —1T;°A,,,. The latter is necessarily isotropic,
such that POI = Tﬂyl l = 1220 and POL = ——Tl(l)b:/w =
Lo, are identical, Py = Py = Py, . Furthermore, in equi-
librium nog = _Ngl,u :IHO =0 and MO = Tgylt#ll/ 21210 =0.

The first and second moments of the RS distribution
function are

Nbg = (35)
T = euru” + P Ml — P =, (36)

where the quantities defined in Egs. (12)—-(17) can be
written with the help of Eq. (33) as

it =175 = nolags, Brs)Rioo(€), (37)
& =155 = eolags. Brs)Rano (), (38)
Py =15 = eg(ags. Prs)Razo(£), (39)
Py =15 = Polags. Brs)Raon (€)- (40)

The isotropic pressure, Eq. (18), leads to the well-known
massless ideal gas relation,

PHYSICAL REVIEW D 94, 125003 (2016)

P(“R&/)’Rs, &) = Po(ags: Prs)Rao0(§)

_ e(ags, Prs» &) (41)
==

This is similar to

n()(“R&ﬁRS) _ e()(aRSuBRS)
Prs 3 ’

Po(ags, Prs) (42)

which is obtained from Eq. (34). All thermodynamic
integrals and ratios R,,, are listed in Appendix A. Note
that, for the RS distribution function, i, = I, = 0 and
M= 210 = 0. This means that the fluid-dynamical flow
velocity does not depend on our choice of LR frame.
Since chemical potential and temperature are quantities
defined exclusively in thermodynamical equilibrium, the
parameters of the anisotropic distribution function, agg,
Prs, and &, have no real physical meaning. However, one
can relate them to chemical potential and temperature, or
equivalently o, and f, of a “fictitious” equilibrium state by
imposing the so-called Landau matching conditions

(Nhs — Ni)u, = 0 and (T’ — T4 )u,u, = 0, or
(ags: Prs: &) = no(ao, Po), (43)
e(ags, Prs &) = eo(ao. Po)- (44)

Now, using Egs. (37) and (38) together with Eqs. (A3) and
(A10) we obtain

L, Rygo(8)
ﬁ() — ﬂRS Rzoo(f) ’ (45)
[R100(§>]4
ho =S (o @F (40

where Ao =expay = exp (uffy) and Ags =expagg =
exp (ursPrs) denote the corresponding fugacities. Thus,
using Eq. (33) together with these results we obtain the
following general relation between the thermodynamic
integrals:

[Raoo(£)]'™"
[R100(&)]*™"
However, in case the particle number is not conserved,

i.e., & = agg = 0, the inverse temperature inferred from the
Landau matching condition (44) is

iﬁfq(aRS’ ﬂRSv 'f) = Inq(aO’ ﬂO)Rnrq(‘f) (47)

Prs

Po = R (T

(48)

Thus, similarly to Eq. (47) we now obtain
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Rnrq(é)

s _ Hale)
[R200 (:)] (nt2)/4

nrq(ﬁRS’ é:) = Inq(ﬁO) (49)
This result was also obtained e.g. in Refs. [13-16] and
Refs. [17-19].

After applying the matching conditions we can calculate
the equilibrium pressure, Py = Py(ag,fy), and hence
define the bulk viscous pressure,

1

A”DAMD = P(“RS’ﬂRSv 'f) - PO(aO’ﬂO)’ (50)

Q| =

which vanishes for a massless ideal gas, lim,, oIl = 0.

B. 0 + 1-dimensional boost-invariant expansion

We now investigate how the solution of the fluid-
dynamical equations of motion is influenced by the choice
of moment to close them. We study this for a very simple
case only, the 0 4 1-dimensional boost-invariant expansion
of matter, known as Bjorken flow [30]. To this end, it is
advantageous to transform the usual space-time coordinates
(t,7) to proper time 7 = V1> — 7> and space-time rapidity
ny =3In== The inverse transformation then reads
t = tcosh, and z = zsinh 7. In Bjorken flow, the veloc-
ity of matter is given by v, = z/t = tanhy,, such that

t
ut = <—,0,0,§) = (coshz,,0,0,sinhz,), (51)
T T

t
I = <Z,o,o,> = (sinh#,,0,0,coshy,).  (52)
T T

Then, D =u#0, = % D, =-1"0, = —%, and Dut =

DI =0, D = 11", DI = —Lu, while 0 =6, =0.
Inserting Eq. (6) into Eq. (24), and using the fact that in

Bjorken flow all thermodynamic quantities are independent
of 5y, we obtain

Mijjo 1, s s A
T” + . [+ Dligjjo+ (i = D) jia0l = Cicy e
(53)

We also assume that the collision term is given by the
RTA [31], ie., C[f] = —Es (o — fox). This means that

Teq

the anisotropic distribution function j‘Ok is assumed to
approach the equilibrium distribution f, on a time scale
set by 74 Thus, in RTA the rhs of Eq. (53) reads

1 .
- <1i+j,j,0 - Ii+j,j,0)‘ (54)
Teq

Cioij=

For 7., we either use a constant value or parametrize it

using the relation between 7., and shear viscosity [43,44],

PHYSICAL REVIEW D 94, 125003 (2016)
n
Teq(T) = SﬂO(T)E’ (55)

where #/s denotes the ratio of shear viscosity to entropy
density, which we assume to take a constant value.

In order to obtain the fluid-dynamical equations of
motion for the RS distribution function we substitute
1,,, = IR in Egs. (53) and (54). Furthermore, using the
matching conditions Egs. (43) and (44), the conservation
equations for particle number (26) and energy (27) read

0 N 1
W*‘;no(aovﬁo) =0, (56)

and

deg(ao, o)

1 A
or +;[€0<(Xo,ﬂ0> + Pl(aRS9ﬂRS’ é)] =0. (57)

The conservation of momentum in the direction of the
anisotropy, Eq. (28), leads to DM = —2M/z, but since
M = 0 for the RS distribution function, this equation does
not provide any additional information. Likewise, the
conservation of momentum in the direction transverse to

the anisotropy, Eq. (29), gives VP, =0, which also
contains no additional information since the system is
homogeneous in the transverse direction.

Now we discuss various choices to close the conserva-
tion equations (56) and (57). As mentioned above, in
principle, there are infinitely many equations that can be
selected from the hierarchy of balance equations (21) to
serve this purpose. Here we restrict ourselves to a few
representative examples. These follow from Egs. (53) and
(54) by choosing particular values for the indices i and ;.

(i) i =0, j=2: This choice gives the time-evolution

equation for the longitudinal pressure f’,(aRS,

ﬂRS’f)’
oP, 1 . . 1 .
a—rl+;(3pl—1§fo):—jq(P1—P0)- (58)

Here we can explicitly express P, and 155, via

Eq. (47),
- B Ry (&)
P(ags. Prs. &) = eO(aO’ﬂO)RZOO(f)’ (59)
o R
Igfo(aRs,ﬂRs,f) = eq(ag, o) 20(S) (60)

RZOO(g) ’

where the R, are listed in Egs. (A13), (A15), and
(A17). Note that Egs. (59) and (60) are formally
unchanged when expressing P; and i§450 through
Eq. (49). This means that the dynamical equation
for f’l is a very special choice for closure of the
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conservation equations, since Eq. (58) is formally
independent of whether we conserve particle num-
ber or not. Furthermore, as it should be, in the limit
of small deviations from local thermodynamical
equilibrium, i.e., £ < 1, Eqs. (57) and (58) lead
precisely to the equations of motion of second-order
fluid dynamics as obtained in Refs. [45-48]; for
more details see Appendix B.

(i) i=1, j=0: This choice was made e.g. in
Refs. [17-19]. It is possible only if particle number
is not conserved (such that the chemical potential is
always 0),

on 1, 1.

5, T = - (7 — ng). (61)

(iii) i =3, j = 0: This choice is analogous to that of
Israel and Stewart [49], which use the second
moment of the Boltzmann equation to close the
conservation equations,

o155
or

1 .
o) =——50—Isw).  (62)
Teq

(iv) i=1, j=2: This choice is analogous to the
previous one, in the sense that it also results from
the second moment of the Boltzmann equation,

hy S _ _ IRS
ot T 320 Teq ( 320

—Is).  (63)

Note that according to Eq. (23) the cases (iii) and
(iv) follow from different projections of 8,1158'1 = C .
Also note that the choice i =2, j=1 is trivial smce
5, =o.

Finally, we also tested the following choices:

) i=0,j=0:

OIRS 1 AR AR 1

8(;00 + = (153 — I§%) = Teq — (I8 — Too). ~ (64)
Vi) i=0, =4

81440 1 jRS

1 .
:—_(1550_1440)’ (65)

(51 240 — T160)
or -

Vi) i=1, j =4

oIRs 5., 1
85:0 _Igfo = Teq (Igfo 1540>‘ (66)
IV. RESULTS AND DISCUSSIONS

In this section, we solve the conservation equations (56)
and (57) and study the impact of different ways to close
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them, i.e., choosing one of the moment equations (58),
(61), (62), (63), (64), (65), or (66). We also compare the
fluid-dynamical solutions to the solution of the Boltzmann
equation, in order to identify which one of the moment
equations gives the best agreement with the latter.

We always initialize the system with temperature 7, =
300 MeV at initial time 7z = 1.0 fm, for three choices of
the initial anisotropy, £(z7) = & = {0, 10, 100}. We inves-
tigate separately the cases with and without particle-
number conservation. In the case with particle-number
conservation, we take an initial fugacity 4, = 1. The initial
value of the temperature and the anisotropy parameter are
shown in the headlines of the following figures. If the
particle number is conserved, the initial fugacity is also
shown. We use either a constant relaxation time 7., = 1 fm,
or the temperature-dependent one from Eq. (55) with
n/s ={1/4r,10/47,100/4x}.

For the comparison of the choice of moment in Sec. IV
A, we also solve the conservation equations for an ideal
ﬂuld 860 + = (eo =+ Po) = 0, where PO = noTO = 60/3,
together w1th df’f‘) —I—%no = 0. Note that in this case the
two conservation equations are independent from each
other; hence if the system was initially in chemical
equilibrium it will stay in chemical equilibrium.
Furthermore, in the case of an ideal fluid &(z) = 0, the
time evolution of the fugacity is simply given by A(7) = 1,
while the pressure is necessarily isotropic; hence
P,(7)/P,(z) = 1. These constant horizontal lines are
redundant and are not shown in the respective figures.

A. The choice of moment

The results shown in Fig. 1 were obtained by solving
both the particle-number conservation equation (56) and
the energy-conservation equation (57), closed by one of the
moment equations (58), (62), (63), (64), (65), or (66).
Correspondingly, the results in Fig. 2 were obtained
without particle-number conservation, i.e., we only solved
the energy-conservation equation (57) coupled to a par-
ticular moment equation. In this case, the first moment of
the Boltzmann equation, Eq. (61), can also be used to
provide closure (in addition to the previously listed
relaxation equations).

Figure 1 shows the evolution of the anisotropy parameter
&, temperature T, fugacity 4, and the ratio of longitudinal
and transverse pressure components £;/P |, as a function
of proper time z. All figures in the left column are for
&y = 0, while those in the right column are for &, = 10. In
Fig. 2, the same is presented for the case without particle-
number conservation.

Focusing on the evolution of the anisotropy parameter &
we observe that in the case in which the system was initially
isotropic (£, = 0, left column), the longitudinal expansion
drives the system out of equilibrium. This lasts for about
1-2 fm, after which the system starts to approach the
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1.0 T T T T T T T 1.0 T
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FIG. 1. From top to bottom: the evolution of the anisotropy parameter &, temperature 7', fugacity 4, and the ratio of longitudinal and

transverse pressure components f’, / P as a function of proper time 7. The thin green line in the figures in the second row represents the
temperature evolution for an ideal fluid. The other lines are the solution of the conservation equations (56) and (57) closed by different

moment equations: the dotted blue line (?goso) corresponds to Eq. (64), the dash-dotted blue line (7§0S0) to Eq. (62), the full black line (131) to
Eq. (58), the dash-dotted black line (155 to Eq. (63), the dashed red line (755) to Eq. (65), and the dotted red line (7%5)) to Eq. (66),
respectively.
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...... RS —— IR} Y 75 —— B}

7 [fm]

& =10, Ty =300MeV, Teq= 1fm
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FIG. 2.

T [fm]

Similar to Fig. 1, but for the case without particle-number conservation, such that always A(z) = 1 (and thus not explicitly

shown). The only difference to Fig. 1 is that now Eq. (61) is available to close the energy-conservation equation. The respective dashed

blue line is labeled 7.

isotropic state again, £ — 0. The approach to equilibrium
becomes much faster for a nonzero initial anisotropy
(ép = 10, right column). The late-time behavior is quite
similar in both cases, as both reach a similar value for
the anisotropy around z ~ 6-7 fm. The behavior of the
longitudinal to transverse pressure ratio, P;/P, is quite
similar to that of the anisotropy isotropy parameter. Both
the evolution of & and P, / P are similar in the cases with
and without particle-number conservation, cf. the top and
bottom rows of Figs. 1 and 2. This can be explained by the
fact that P,/P, is mainly determined by the momentum
anisotropy ¢.

The temperature, second row of Figs. 1 and 2, decreases
as the system expands, but the decrease is slower for a
nonzero initial anisotropy. This is due to the fact P,
decreases with increasing anisotropy; hence the driving
force to expand (and cool) the system is smaller for a larger
initial anisotropy. Note that for the case without particle-
number conservation, Fig. 2, the evolution of the temper-
ature is much closer to the one for an ideal fluid than for the
case with particle-number conservation. This holds for all
choices of closure of the conservation equations. Vice
versa, the spread in the curves is much larger for the case
with particle-number conservation, cf. Fig. 1. The reason is
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FIG. 3. The evolution of temperature 7, fugacity A, and the ratio of longitudinal and transverse pressure components 131 / P L asa
function of proper time z. The full black, the dashed blue, the dashed-dotted green and the dotted red lines are the solution of the

conservation equations closed by the relaxation equation for P, for Teq = 1 fm and for 7, from Eq. (55) with the three different choices
for n/s. The large dots show the corresponding solution of the Boltzmann equation.

that the deviation from chemical equilibrium parametrized
by the fugacity, third row of Fig. 1, has to be compensated
by an increase in temperature. Thus, the smaller the A(7),
the larger T'(7) has to be. This also explains why all curves

lie above the case for an ideal fluid (green lines).

These observations are generally valid for all
choices of closure for the conservation equations.
However, there are striking differences between the various
choices. The first observation is that there is a grouping
according to the power j of longitudinal momentum Ey;

appearing in the particular moment / ﬁfj, j0»cf. IRS, and 155,

(blue lines), P, = 1%5, and I%5, (black lines), as well as 153,
and jgfo (red lines). Apparently, the larger the j, the faster
the approach to isotropization. This behavior is universal
and can be observed in both Figs. 1 and 2.

We also remark that the solutions provided by 1%y

and ] 54190 stay closer to the solution provided by P; than the
ones provided by 7% 7% and, in the case without
particle-number conservation, 7. In particular, for ¢ and
P,/P |, the latter ones sometimes deviate by more than a
factor of 2 from the solution provided by P,. As we see in
the next subsection, it turns out that the solution provided
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FIG. 4. Similar to Fig. 3, but for the case without particle-number conservation [such that A(z) = 1 and thus not shown explicitly].

by P, is closest to the one of the Boltzmann equation.
Note that, in order to improve the agreement of the
fluid-dynamical solution given by 7 with the solution of
the Boltzmann equation, in some earlier works [43,44] a
rescaled relaxation time rg{f = Teq/2 was used. We
checked that also Egs. (64) and (62) with z¢;" instead of
Teq lead to results that resemble the ones for P,. We remark,
however, that one is actually not free to adjust the relaxation
time in the various moment equations, since in the RTA,
cf. Eq. (54), it is the same as the one appearing in the
Boltzmann equation.

B. Comparisons to the exact solution

In this section we compare the solution of the con-
servation equations closed by Eq. (58) for P, to the solution
of the Boltzmann equation in the RTA. The numerical
method to solve the Boltzmann equation is discussed in
detail in Refs. [43,44] as well as in Appendix C. In analogy
to Eq. (7) we introduce the moments of the solution f of
the Boltzmann equation,

F,o— D / dKE!"MEr (BMk k) f (67)

nrq (261)” ku ki\—=" "ufv k-
On the other hand, the moments 75;2, cf. Eq. (32), can be
computed from solving the fluid-dynamical equations,
which provide «a, f), and & required to compute these

moments according to Egs. (47) or (49). We then compare
Fopq to if,sq in order to estimate how much the anisotropic

distribution function JACR s deviates from the full solution of
the Boltzmann equation.

In order to compare with the results of Refs. [43,44] we
have also used the temperature-dependent relaxation time
from Eq. (55). The solution of the Boltzmann equation is
obtained choosing the RS distribution function as the initial
condition at propertime 7o = 1.0 fm, i.e., fi (7o) = frs(70)-

In Figs. 3 and 4 the fluid-dynamical solution for a
constant relaxation time is shown by the black lines. For
&y = 0 (left columns of these figures) these are identical to
the black lines in the left columns of Figs. 1 and 2. The
other curves in Figs. 3 and 4 correspond to relaxation times
chosen according to Eq. (55).

For all quantities shown, the fluid-dynamical solution
agrees very well with the exact solution, even for very large
n/s = 100/4z, and very large initial anisotropy &, = 100.
This is a strong indication that the conservation equations
closed by the relaxation equation for P, provide the best
match to the Boltzmann equation, at least for quantities
which appear in the energy-momentum tensor.

Now that we have identified the apparent best match for
closure we investigate how well the other moments of the
Boltzmann equation are reproduced using this particular
choice for closure. This comparison is shown in Figs. 5
and 6. As can be seen, the very good agreement is not
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FIG. 5. The ratio of the exact solution F,(z) to the corresponding fluid-dynamical solution 755 (7), obtained from Egs. (56)—(58).
The choice of moment to close the equations is indicated in brackets, [131} , behind the label on the ordinate. The various lines are similar

to Figs. 3 and 4.

necessarily inherited by other moments. In Fig. 5 we show
the ratio of the exact moment F3,q to the fluid-dynamical
solution 7%5, in the case of conserved particle number, and
in Fig. 6 the ratio of the exact number density n = Fq to
i = IR in the case without particle-number conservation.
As can be seen, the deviations between the fluid-dynamical
and exact solutions can be as large as 50%, even if the
agreement between the primary fluid-dynamical quantities,
i.e., the quantities that appear in the energy-momentum
tensor itself, is almost perfect, cf. Figs. 3 and 4.

C. Matching to the solution of the Boltzmann equation

In general, a given functional form of the anisotropic
distribution function, e.g. frg, does not agree exactly with
the solution f) of the Boltzmann equation. Thus, there is
also no reason to expect that all moments 1 fffq of ]A”R ¢ agree
with all moments F,,, of fi. In other words, computing the
parameters «q, /o, and & that determine f g from matching
a certain subset of the moments 7,’52, to the moments F,,,

& =0, Ty=300MeV

1.05 . . . . . . . .
1.00

<

< 0.95

<« .

=090 e[ — g 1m

B3 === 4nn/s=1
085+ == 4xn/s=10

4rn /s =100 |

0.80 — : : :

7 [fm]

of the exact solution does not necessarily lead to a good
agreement for all other moments. In this subsection, we
provide evidence for this observation through an explicit
calculation.

First, however, let us make a few remarks (for the sake of
simplicity we discuss only the case with particle-number
conservation).

(i) The anisotropic distribution function is character-
ized by three parameters, a, iy, and £. Correspond-
ingly, three matching conditions are required to
determine these parameters.

(i) The matching conditions can in general be chosen
from Eq. (47), for any values of n, r, and gq.

(iii) In the RTA the usual Landau matching conditions
(43) and (44) are not only convenient, but also
necessary to ensure the conservation of energy,
momentum, and particle number. These correspond
to matching with (n, r,g) = (2,0,0) and (n, r, q) =
(1,0,0). The third matching condition can be
provided by any other choice for (n, r, ).

& =100, Ty =300MeV
1.05 — : : : : : : :

1.00
0.95
0.90
= (0.85
0.80
0.75
0.70
0.65
0.60

— Teq=1fm

--- 4nn/s=1
—= 47n/s=10

FIG. 6. Similar to Fig. 5, but without particle-number conservation. Here n(z) = F(,(7) represents the solution of the Boltzmann
equation while 71(z) = 185 (7) is computed from the solution of Eqs. (57) and (58). The choice of moment to close the equations is

indicated in brackets, [f’,], behind the label on the ordinate.
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FIG. 7. The ratio of the exact solution Fu(z) to 18w (@0: f220. E220:7), Where g, Bang, and &y were obtained by matching to

F1y0(7). See the text for more details.

(iv) When we choose a particular moment equation to
close the conservation equations, at the same time
we also choose a specific matching condition. For
example, closing the system by using Eq. (58) also
implies that @, fy, and & are matched to P = 1220
Alternatively, choosmg Eq. (62) implies that they are
matched to 1%5. Note that in general different
choices lead to different values of «, fj, and &.

(v) Once the matching conditions are fixed, any other
moment can be calculated according to the rhs of
Eq. (47).

To further investigate the importance of the matching
conditions, we match ay(7), fy(7), and &(7) to a particular
moment of the solution of the Boltzmann equation, instead
of its fluid-dynamical approximation (53). .

In Fig. 7 we use P; = Fpo = 1220(0‘2207ﬁ220, &) = P
as a matching condition, and plot the ratio of the exact
solution Fy to the moment 785 (a0, a20, E220) Obtained
through such a choice of matching [the rhs of Eq. (47)].

In Fig. 8 we show the opposite scenario, i.e., the ratio of
Fao 10 155 (e300, fa00, €300) obtained by matching asgp,
P00, and &3 to always reproduce the exact moment F'5.
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<
~
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FIG. 8.
matching to Fsp(z). See the text for more details.

As can be seen from the figures, if we choose the P,
matching, then 755 (@20, 220, €220) is a good approxima-
tion to F3q, but the opposite is not true: matching to F5
does not give the correct P; = Fayo # P;(at300: f300- E300)-

We note that when we solve anisotropic fluid dynamics
by choosing Eq. (62), we implicitly use the latter matching.
In other words, the values for «, ffy, and & are obtained by
matching to 185, eo, and n,. However, as can be seen from
Fig. 8, the values for P, obtained in this way can deviate by
more than 50% from the exact solution. Since P, appears
explicitly in the energy-conservation equation, this deviation
in P, also leads to deviations from the exact solution.

On the other hand, closing the conservation equations
with Eq. (58), which corresponds to matching with P,,
gives an overall good agreement with the exact solution.
The comparison of Figs. 7 and 8 indicates why this is the
case: the matching to P, directly leads to the correct
driving force in the energy-conservation equation. It is
then obvious that this choice gives the best agreement
with the Boltzmann equation, as well as smaller deviations
from the exact solution for all other moments.

. £y=100, Ty =300MeV, Ao =1
2 1.0
u(p
s 0.9
<& 0.8
g 07 Hn _
Z 0.6 {7 — — %= lm
(N ° - - =
S 4nn/s=1
= —= 47n/s=10
g 04 4nn /s = 100 |]
&

0.3

Similar to Fig. 7. The ratio of the exact solution Fy(7) to 155, (300, f300- E3005 7)» Where a3, 300, and &gy were obtained by
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We note that for the (0 4 1)-dimensional expansion this
choice corresponds to the one proposed in Ref. [50], where
the anisotropy parameters were matched to the components
of T, and the equations of motion were closed by using
the exact equations of motion for the dissipative quantities,
e.g. for the shear-stress tensor z#*. This approach was
originally proposed in Ref. [51] for conventional fluid
dynamics.

V. CONCLUSIONS

Starting from the relativistic Boltzmann equation, we
have derived the equations of motion for a fluid which has a
certain anisotropic single-particle distribution function f
in momentum space in the LR frame. Choosing as an
example j”Ok = f‘RS we have solved these equations in a
simple O + 1-dimensional boost-invariant expansion sce-
nario. We have pointed out the importance of the choice of
moment equation to close the conservation equations. The
solution of the Boltzmann equation is most accurately
reproduced by the equations of anisotropic fluid dynamics
when the latter are closed using the relaxation equation for
the longitudinal pressure P,, i.e., a quantity which also
appears in the energy-momentum tensor. Other choices for
the moments to close the conservation equations lead to a
less good agreement with the solution of the Boltzmann
equation. In the future, one should extend the present study
to more realistic geometries (with nontrivial transverse and
longitudinal dynamics) and include corrections to j”Ok,
using the framework developed in Ref. [29].
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APPENDIX A: THERMODYNAMIC INTEGRALS
IN THE MASSLESS BOLTZMANN LIMIT

Here we evaluate the thermodynamic integrals assuming
Boltzmann statistics in the massless limit. In the LR frame,
where u}, = (1,0,0,0), Eq. (4) reads

fox = exp (ag — foEx,) = Ao exp (‘ﬂo\/ mé + kz)’

(A1)
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where the fugacity is Ag =expay and Ey,;r = k.
Similarly, the RS distribution function (30) reads in the
LR frame

frs = exp (aRS — Prsy/ Ef, + fEi1>
— Jgs €XD (—ﬁ,m [m2 + 12 + gkg), (A2)

where the fugacity is Agg = expagg and Ey;; p = k..

Using these distribution functions the different thermo-
dynamic integrals appearing in Eqs. (32) and (34) are
evaluated in spherical coordinates, where k = |K|, k, =
kcos@sin®, k, = ksingsin®, k, = kcos6. Therefore,
dK = Ay Lk = Ay dk sin 0d0dyp, where 0 € [0,1], ¢ €
[0,27), k € [0,0), and Ay = g/(27). Furthermore, we
also need the LR frame values of —(A%k,ks),, = k?
and —(2k,k,), o = k3 = ki + kj = k* sin 6.

In the massless limit, i.e., lim,, _g \/m% + k% = |k|, we
obtain the following result for Eq. (34),

. B (—1)2‘147on oo -
m Tng = 0" Ty, R exp (k)
|
-y M (A3)

R 2g + 1

Here we list some of these integrals explicitly,

4rA
Loo(ao, Bo) = Tooo = 4o 2()’ (A4)
b
87A
Lo, Bo) = Thoo :/10—30:’10, (AS)
P
247A
Lo (@, fo) = Tnoo = /10—40 = €y, (A6)
o
L (0. Bo) = Ino1 = Inz0 = Py, (A7)
where Py = ny/p, = ey/3, and
967A
I3o(ag, fo) = I300 = /10—50, (A8)
I
Lo (g, p
I31 (a0, fo) = Tz01 = Izp0 = M- (A9)

The RS distribution function leads to the following
thermodynamical integral in the massless limit,
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—1)2927A 7
(=1)7274 (; >'7'r 0/ dOcos” Osin?4t1 9
q):: 0

x / " dkk™ exp [~Brsk /1 + Ecos? 6]
0

27Z'A0(n + 1)' T
RS n
Prs*2a)!t Jo

RS —

lim nrq = /1RS

my—0

cos” Osin29t! g
(14 Ecos? )
(A10)

Therefore, the ratio between the RS and equilibrium
thermodynamical integrals defined in Eq. (33) reads

(2g + 1)1

cos” @ sin24tl g
n+2 ;

COSOSIT T (Al
(1 + &Ecos?0) 7

hence the values that correspond to Eqs. (37)—(40) are

1

Rip0(&) = T (A12)

Ropo (&) =;<1 iﬁmtj;@), (A13)

Ry01 (&) :23(: [11_% - (1= 5)&00(5)} (Al14)
1 1

Ry (&) = TF L—‘Ff— 200(5)]' (A15)

Note that these results were obtained previously by
Martinez and Strickland, see for example Ref. [18], such
that RlOO = RO and Rzoo = R, R201 = RT» while the last
term differs from the results of Ref. [18] by a factor of
/15y =3 since they calculated 155,/15; = 3Ry50(&),
i.e., R220 = RL/3

Furthermore, for the other moment equations (58)
and (62)—(66) we also need the following R, (&) ratios:

Rouo(©) = k) = LR g
Roul®) =5 [1 1o 3Ran(@)]. (A1)

Rl =30 Rw®=R(@.  (A19
Ranl®) = 3 (A19)
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1 (154 25¢+ 8¢
Rt =5 (s ) 4
1
Rsy(§) = ST (A22)

Note that, for any odd r, T f,sq =0.

APPENDIX B: SECOND-ORDER FLUID
DYNAMICS IN THE LIMIT OF
SMALL ANISOTROPY

Here we recall the equations of second-order fluid
dynamics describing the 0+ 1-dimensional boost-invariant
expansion. Neglecting bulk viscosity we have

Oe 1
a—::_;(eO'i'PO_”)’ (B1)
or  4pg 1 r
T2 a4+ 6, ) 2, B2
TﬂaT 37,_ T <3T7[7[+ ”7Z>T ( )

where the equation for particle-number conservation is
given in Eq. (56). Here 7 = 7% — 7% enters the shear-stress
tensor 7* = T“ﬁA’;Z = diag(0,7/2,x/2,—nr), where the
corresponding symmetric, orthogonal, and traceless pro-
jection operator is ALy =3 (AGAY + ALAY) — A A .
Furthermore, the coefficients in the massless limit are,
see for example Refs. [20,45-48,52],

T, (B3)

These equations and coefficients can be derived by using
the method of moments [48], where 7#¥ = f dKkW kM) 5
and 6fy = fx — fok is the deviation from the equilibrium
distribution function.

In the present case a similar approximation leads to f, =
for + 6f1 (&) which corresponds to a series expansion
of the fluid-dynamical quantities for small £. Expanding
Egs. (59) and (60) and neglecting corrections of order
O(&%) we obtain

N 1 8

P1_60<3_E§> Py—m, (B4)
R 1 16 3
15450_@0<5 1055)_5 0~ =57 (B5)

Applying these results to Egs. (57) and (58) together with
Eq. (55) we get

38

or 4n
_7 o,
217 %

Teqa—-?’;—ﬂ'— (B6)
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which, after noting that in RTA 7., = 7, leads precisely to
Eq. (B1). In the massive case it was shown [50] that this
closure leads to the fluid-dynamical limit calculated in
Refs. [45,46], which in the massless case reduces to Eq. (B6).

APPENDIX C: NUMERICAL SOLUTION
OF THE BOLTZMANN EQUATION
IN THE RTA

For the sake of completeness we repeat the discussion
related to the numerical solution of the Boltzmann equation
based on the derivation of Refs. [43,44]. Let us first
introduce the following Lorentz-invariant variables:

0= tEy = kot =k = /W + (K +m)), (C1)

w= By = kit — kg =02~ (K +md). (C2)
The inverse transformation reads

vt+wz coshpy
k() = 72 =

(v + wtanhp), (C3)

_wt+wvz coshp

=
TZ

k

(w + vtanhp). (C4)

Using these new boost-invariant variables the Boltzmann
equation in RTA becomes a first-order linear differential
equation

%:fko_fk

C5
Ot Teq (G3)
with the formal solution
T T/
£ulD) = D) filro) + [ 7 D) o).
70 Teq(T)
(Co)
where D(z,,7;) is a so-called damping function,
o de
D) =ew (- [*505) (€D
7 Teq(T)

In order to obtain the relevant quantities we need to calculate
the moments of the solution (C6). Hence, similarly to
Eq. (6), we calculate the moments of the equilibrium and
anisotropic distribution functions. The equilibrium thermo-
dynamic integrals 7,,,, (7,7, ay(7'). fo(7')) = 1, Tead

Lo = T [ Gk =207 (20 k)9 ()
nrq — (26])” ku ki\— v kO

_ 2rAg(n+ 1)1 Ao(7)
Qg ()

where we introduced the following integral:

Hypy(7,7), (C8)
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T r@sin24t @
Hug(e.) = [ a0 0
0 [(5)*cos?O+sin* 6]

(C9)

In some cases of interest these integrals were already
calculated in Ref. [44]; hence Hyy(z,7') = H(7/7),
Hao(7.7") = H(7'/7) and Hyg (7,7') = Hr(7'/7); see
Eq. (A1) of Ref. [44]. Also note that these integrals were
calculated using boost-invariant variables and additionally
applying a second variable change, pcos@ = f(z')w/7’
and psind = (7' )k, .

Similarly, for the RS distribution function we have

ISy (2.7 ars (7). Brs (7). () = I3,

3 (_l)q n—r=2q -r (—uy
]5;?(1 = (Zq)” dKEku qul(:ﬂ kﬂkv)quS(T/)

_ 2rAg(n + 1)! Ags(7) H (r 7 )
Qa) prst(@) "IN THERD))

(C10)

where the argument of the H,,,, integral is scaled by a factor

of 1/4/1+ &(7') compared to Eq. (C8).

Now, applying the definition of the moments on both
sides of Eq. (C6) together with the formal integral from
Eq. (67),

(1)1
(29!

Fopg(z,7) = / dKEY 2 UEL (27k, k) fi (7)),

(C11)

we obtain an integral equation that can be solved for
various initial conditions,

Fnrq (T’ T) = D(T’ TO)Fnrq (Tv TO)

v dt , ,
+ : mD(T,‘F)I"m(T,T). (C12)

Assuming that the initial distribution function is of the RS
form, i.e., fy (7o, k) = frs(7o, k), leads to the following
equation for the energy density, e(z) = Fag(7, 7),

e(7) = D(z, 70)2200(7, 79)

+/T () h(e.?).  (C13)
—D(1,7 7,7).
s @) 200

However, since 7n,q depends on a different set of
parameters than 1,,, we also need to obtain agg(z) and
Prs(7) in terms of the equilibrium quantities ay(z) and
Po(z) at T =17y. This is done via the Landau matching
conditions as shown in Sec. III; hence in the case in
which that particle number is not conserved, i.e.,
2200(7,'0,7,'0) = 1200(’[0,’[0), EqS (Cg) and (C]O) lead to
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Hgo(70.70//T + &) V4

H (70, 7o)

Prs(to) = Polzo) . (Cl14)

where &, = &(79) while Hyy(7,79) =2 and so this
expression is obviously equivalent to Eq. (48).

Finally, using the Landau matching condition for the lhs
of the integral equation e(7) = Fy0(7,7) = Iy09(7,7), We

obtain the following equation for the evolution of the
temperature:

Hy(7,79//1+ &)
H (70, 70/v/T + &)

¢ dr Ha(7,7)
—|—/ — TY\D(z,7) ==L,
70 Teq<T/) ( ) ( ) H200<‘L', T)

In order to obtain the temperature as a function of proper
time we use a combination of iteration and interpolation

= T*(z)D(7. 7)

T(1)

(C15)
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technique designed to obtain numerical solutions of integral
equations [53].

Once the temperature is obtained we can calculate any
moment of the distribution function from Eq. (C12) as

27Ag(n+ 1)!
Furg(7) ST oo
x |:Tn+2(7:0 T TO) nrq(Tv TO/ V 1 + 50)
(n+2)/4 n+2)/4
2 (70, 7 )Hgog /(To,To/vlJrfo)

/
+/ 7 T"2()D(r,7)H (7. 7') | .
- Teq(T

(C16)

The method presented here can be extended to the case
where particle number is conserved.
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