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In Molnár et al. Phys. Rev. D 93, 114025 (2016) the equations of anisotropic dissipative fluid dynamics
were obtained from the moments of the Boltzmann equation based on an expansion around an arbitrary
anisotropic single-particle distribution function. In this paper we make a particular choice for this
distribution function and consider the boost-invariant expansion of a fluid in one dimension. In order to
close the conservation equations, we need to choose an additional moment of the Boltzmann equation.
We discuss the influence of the choice of this moment on the time evolution of fluid-dynamical variables
and identify the moment that provides the best match of anisotropic fluid dynamics to the solution of the
Boltzmann equation in the relaxation-time approximation.
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I. INTRODUCTION

Relativistic fluid dynamics has been successfully applied
to understand a wide variety of phenomena in the fields of
astrophysics, cosmology, cold atoms, and heavy-ion colli-
sions [1–4]. In particular, relativistic dissipative fluid
dynamics has become one of the main tools in under-
standing the dynamics and properties of strongly interact-
ing matter formed in ultrarelativistic heavy-ion collisions at
BNL’s Relativistic Heavy Ion Collider and at CERN’s
Large Hadron Collider. Such investigations have led to
tremendous progress in our understanding of the properties
of such matter, e.g. its equation of state and transport
coefficients [5–10]. A necessary prerequisite for these
investigations is, however, to know the regime of appli-
cability and limitations of relativistic fluid dynamics.
The applicability of traditional dissipative fluid-

dynamical theories is restricted to the vicinity of local
thermodynamical equilibrium. This implies that the devia-
tions of the single-particle distribution function from its
form in local thermodynamical equilibrium are small.
However, the system formed in relativistic heavy-ion
collisions is not macroscopically large and it undergoes
rapid expansion. Such conditions are challenging for fluid
dynamics, as this can create situations where momentum-
space anisotropies are of major significance. In particular,
this is true in the very early stages of heavy-ion collisions.
To overcome such limitations of fluid-dynamical

theories, in the late 1980s Barz et al. [11] proposed an
energy-momentum tensor which incorporated the momen-
tum anisotropy in terms of a spacelike four-vector lμ. Quite
recently, two research groups aimed at including a large
momentum-space anisotropy into the fluid-dynamical
framework for ultrarelativistic heavy-ion collisions.
Florkowski and Ryblewski [12–16] and Martinez and
Strickland [17–19] effectively rediscovered anisotropic
fluid dynamics and initiated a new line of research,
cf. Refs. [20–23].

Their approach is based on a single-particle distribution
function in momentum space, termed f̂0k in the following,
which is a deformed ellipsoid in the local rest (LR) frame of
matter [24]. The momentum-space anisotropy is controlled
by a single parameter ξ, such that limξ→0f̂0k ¼ f0k, where
f0k is the single-particle distribution function in local
thermodynamical equilibrium, which is isotropic in the
LR frame. In anisotropic fluid dynamics the momentum-
space anisotropy can, in principle, be arbitrarily large,
which is in contrast to conventional dissipative fluid
dynamics, which is based on the assumption of small
deviations from local equilibrium.
The particle-number four-current N̂μ and energy-

momentum tensor T̂μν are given by the first and second
moments of f̂0k. The difference compared to an ideal fluid,
where f0k is the single-particle distribution function, is that
now the conserved quantities are functions of the param-
eters ξ and lμ, in addition to temperature T, chemical
potential μ, and fluid four-velocity uμ, which specify f0k.
Therefore, the conservation equations and the equation of
state no longer form a closed set of equations, and addi-
tional equations determining ξ and lμ are needed. Usually,
lμ is fixed by the requirement that it is orthogonal to uμ,
uμlμ ¼ 0, and normalized, lμlμ ¼ −1. For the sake of
simplicity it may be chosen to have no components in
the plane transverse to the beam (z−) direction, such that
lμ ¼ γzðvz; 0; 0; 1Þ, where γz ¼ ð1 − v2zÞ−1=2. Thus, only
one additional equation is needed, which determines the
time evolution of ξ.
If the particle number (or, in the relativistic context, net

charge) is conserved, the zeroth moment of the Boltzmann
equation provides the corresponding conservation
equation. However, in situations where particle number
(or net charge) is not conserved (for instance, when
particles are produced or annihilated), the zeroth moment
of the collision term does not vanish. The zeroth moment of
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the Boltzmann equation can then be used to determine the
momentum-space anisotropy. However, due to fact that
there is an infinite hierarchy of moment equations, also
higher moments of the Boltzmann equation could be used
to provide closure of the equations of motion. This strategy
was employed in Refs. [25–28], where specific projections
of the second moment of the Boltzmann equation were
used.
In principle, the ambiguity in the choice of moment can

be resolved by comparing the fluid-dynamical solution to
that of the Boltzmann equation. This is the purpose of
the present paper. We study several possible choices for the
moment that closes the equations of motion, both in the
case with and without particle-number conservation.
The paper is organized as follows. In Sec. II we recall the

tensor decomposition and the equations ofmotion in the case
of an arbitrary anisotropic distribution function from
Ref. [29]. In Sec. III we apply this formalism to a specific
example, the so-called Romatschke-Strickland (RS) distri-
bution function, andprovide theLandaumatching conditions
to calculate temperature and, in the case of particle-number
conservation, chemical potential. Assuming 0þ1-
dimensional Bjorken flow [30] and the relaxation-time
approximation (RTA) for the collision term [31,32], we
present the conservation equations and the various choices
for the moment equation which is used to provide closure. In
Sec. IV we systematically study these choices and compare
them to the solution of theBoltzmann equation.We conclude
this work in Sec. V with a summary and an outlook.
Technical details are relegated to the appendixes.
We adopt natural units, ℏ ¼ c ¼ kB ¼ 1, throughout this

work. The elementary projection operator orthogonal to uμ

is denoted by Δμν ¼ gμν − uμuν, where gμν ¼ gνμ ¼
diagð1;−1;−1;−1Þ is the Minkowski metric tensor
of flat space-time. The four-momentum of particles,
kμ ¼ ðk0; kx; ky; kzÞ, is normalized to the rest mass m0 of
the particles, kμkμ ¼ m2

0, and can be decomposed into two
parts, kμ ¼ Ekuuμ þ khμi, where Eku ¼ kμuμ is the (rela-
tivistic on-shell) energy, while khμi ¼ Δμνkν is the particle
momentum orthogonal to the flow velocity. For an arbitrary
anisotropy the projection tensor orthogonal to both uμ

and lμ is denoted by Ξμν ≡ gμν − uμuν þ lμlν ¼ Δμν þ lμlν

[33–36]. Thus, the four-momentum of particles can be
decomposed as kμ ¼ Ekuuμ þ Ekllμ þ kfμg, where Ekl ¼
−kμlμ is the particle momentum in the direction of the
anisotropy and kfμg ¼ Ξμνkν are the components of the
momentum orthogonal to both uμ and lμ.

II. THE GENERAL EQUATIONS OF MOTION
OF ANISOTROPIC FLUIDS

The starting point of relativistic kinetic theory is the
Boltzmann equation [37,38],

kμ∂μfk ¼ C½f�; ð1Þ

where fk ¼ fðxμ; kμÞ is the single-particle distribution
function at space-time coordinate xμ, while ∂μ ≡ ∂=∂xμ
is the space-time derivative. The collision integral (for
binary collisions only) is

C½f� ¼ 1

2

Z
dK0dPdP0Wkk0→pp0

× ðfpfp0 ~fk ~fk0 − fkfk0 ~fp ~fp0 Þ: ð2Þ

Here, ~fk ¼ 1 − afk, where a ¼ �1 for fermions/bosons,
while a ¼ 0 corresponds to classical, indistinguishable
particles. The invariant momentum-space volume is
dK ¼ gd3k=½ð2πÞ3k0�, where g denotes the number of
internal degrees of freedom. Furthermore, Wkk0→pp0 is
the invariant transition rate.
Following Ref. [29] we denote the anisotropic distribu-

tion function as f̂0kðα̂; β̂uEku; β̂lEklÞ, which characterizes
an anisotropic state as a function of three scalar parameters,
α̂, β̂u, and β̂l, as well as the on-shell energy Eku and
the momentum component Ekl in the direction of the
anisotropy. We also demand that

lim
β̂l→0

f̂0kðα̂; β̂uEku; β̂lEklÞ ¼ f0kðα̂; β̂uEkuÞ; ð3Þ

i.e., in the limit of vanishing anisotropy parameter β̂l the
anisotropic distribution converges to the distribution
function in local thermodynamical equilibrium. This is
the so-called Jüttner distribution function [39,40],

f0kðα0; β0EkuÞ ¼ ½expð−α0 þ β0EkuÞ þ a�−1; ð4Þ

where β0 ¼ 1=T and α0 ¼ μβ0.
The moments of tensor rank n of the anisotropic

distribution function f̂0k are defined as

Îμ1���μn
ij ¼ hEi

kuE
j
klk

μ1 � � � kμni0̂; ð5Þ
where h� � �i0̂ ¼

R
dKð� � �Þf̂0k. These moments are

expanded as

Îμ1���μn
ij ¼

X½n=2�
q¼0

Xn−2q
r¼0

ð−1ÞqbnrqÎiþjþn;jþr;q

× Ξðμ1μ2 � � �Ξμ2q−1μ2q lμ2qþ1 � � � lμ2qþruμ2qþrþ1 � � � uμnÞ;
ð6Þ

where n, r, and q are natural numbers and ½n=2� denotes
the integer part of n=2. The number of permutations
of indices that lead to distinct tensors Ξð � � � l � � �uÞ is
bnrq ¼ n!ð2q − 1Þ!!=½ð2qÞ!r!ðn − 2q − rÞ!�. The double
factorials of even and odd numbers are defined as ð2qÞ!! ¼
2qq! and ð2q − 1Þ!! ¼ ð2qÞ!=ð2qq!Þ, respectively. Finally,
the generalized thermodynamic integrals are defined as
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Înrq ¼
ð−1Þq
ð2qÞ!! hE

n−r−2q
ku Er

klðΞμνkμkνÞqi0̂: ð7Þ

Note that in analogy to Eq. (5) we define the generalized
moments of f0k as

lim
β̂l→0

Îμ1���μn
ij ≡ Iμ1���μn

ij ¼ hEi
kuE

j
klk

μ1 � � � kμni0; ð8Þ

where h� � �i0 ¼
R
dKð� � �Þf0k. The thermodynamic inte-

grals in equilibrium are thus given by

Inrq ¼ lim
β̂l→0

Înrq; ð9Þ

i.e., they are given by Eq. (7) upon replacing
h� � �i0̂ → h� � �i0.
Using the expansion (6), we readily obtain the conserved

quantities N̂μ ≡ Îμ
00 and T̂μν ≡ Îμν

00 decomposed with
respect to uμ, lν, and Ξμν,

N̂μ ≡ hkμi0̂ ¼ n̂uμ þ n̂llμ; ð10Þ

T̂μν ≡ hkμkνi0̂ ¼ êuμuν þ 2M̂uðμlνÞ þ P̂llμlν − P̂⊥Ξμν:

ð11Þ

The coefficients of the various tensor structures can be
expressed in terms of generalized thermodynamic integrals
or, equivalently, by different projections of the tensor
moments (5),

n̂≡ N̂μuμ ¼ Î100 ¼ Î10; ð12Þ

n̂l ≡ −N̂μlμ ¼ Î110 ¼ Î01; ð13Þ

ê≡ T̂μνuμuν ¼ Î200 ¼ Î20; ð14Þ

M̂ ≡ −T̂μνuμlν ¼ Î210 ¼ Î11; ð15Þ

P̂l ≡ T̂μνlμlν ¼ Î220 ¼ Î02; ð16Þ

P̂⊥ ≡ −
1

2
T̂μνΞμν ¼ Î201 ¼ −

1

2
ðm2

0Î00 − Î20 þ Î02Þ:
ð17Þ

The particle density is n̂, and n̂l is the part of the particle
diffusion current that points into the lμ direction. The
energy density is ê, while M̂ is the part of the energy
diffusion current along the lμ direction. The pressure
component in the direction of the momentum anisotropy
is P̂l, while the pressure in the direction transverse to lμ is
P̂⊥. The isotropic pressure is defined as

P̂≡ −
1

3
T̂μνΔμν ¼

1

3
ðP̂l þ 2P̂⊥Þ: ð18Þ

Therefore, the particle four-current and energy-
momentum tensor defined in Eqs. (10) and (11) contain
nine unknowns: the four-vector uμ with three indepen-
dent components and six scalars, n̂, ê, n̂l, M̂, P̂l, and
P̂⊥. (We assume that lμ is already fixed as described in
Sec. I.) However, since these latter quantities are
functions of three independent scalars α̂, β̂u, and β̂l,
only three of the above six scalar variables are
independent.
One still needs to assign a physical meaning to the fluid

four-velocity, i.e., one needs to determine which physical
quantity is actually at rest in the LR frame. Eckart’s choice
[41] is the flow of particles,

uμ ≡ N̂μffiffiffiffiffiffiffiffiffiffiffi
N̂νN̂ν

p : ð19Þ

This implies that there is no particle diffusion, i.e., n̂l ¼ 0.
Landau and Lifshitz [42] choose to define the LR frame in
terms of the flow of energy,

uμ ≡ T̂μνuνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uλT̂αλT̂

αβuβ
q ; ð20Þ

which leads to a vanishing energy diffusion current,
i.e., M̂ ¼ 0.
However, neither of these choices removes one of the

six unknowns uμ, α̂, β̂u, and β̂l. The conservation
equations, ∂μN̂

μ ¼ 0 and ∂μT̂
μν ¼ 0, provide only five

constraints for these six independent variables; hence we
need an additional equation for the remaining variable.
Naturally, in kinetic theory this can be provided by
choosing an equation from the infinite hierarchy of
moment equations of the Boltzmann equation. For an
anisotropic distribution function these equations have the
following form,

∂λÎ
μ1���μnλ
00 ¼ Ĉμ1���μn00 ; ð21Þ

where the collision integral is defined as

Ĉμ1���μnij ¼
Z

dKEi
kuE

j
klk

μ1 � � � kμnC½f̂0k�: ð22Þ

Contracting Eq. (21) with projection tensors built from
uμ, lν, and Ξμν leads to the following tensor equations,

uμ1 � � � uμi lμiþ1
� � � lμiþj

Ξ
αiþjþ1���αn
μiþjþ1���μn∂λÎ

μ1���μnλ
00

¼ uμ1 � � � uμi lμiþ1
� � � lμiþj

Ξ
αiþjþ1���αn
μiþjþ1���μn Ĉ

μ1���μn
00 ; ð23Þ

CLOSING THE EQUATIONS OF MOTION OF … PHYSICAL REVIEW D 94, 125003 (2016)

125003-3



where Ξμ1���μn
ν1���νn are irreducible projection operators

constructed from the Ξμν’s, such that for any n ≥ 2 they
are symmetric, traceless, and orthogonal to both uμ

and lν.
In Ref. [29] we derived the equations of motion for the

irreducible moments ρ̂μ1���μlij of δf̂k ≡ fk − f̂0k. Although
we only wrote them down explicitly up to tensor rank
n ¼ 2, they follow from a tensor equation similar to
Eq. (23). The latter is then simply the special case of that
tensor equation obtained by setting ρ̂μ1���μlij ≡ 0. Ultimately,
we can take the equation for the scalar moment, Eq. (110)
of Ref. [29], and put all irreducible moments ρ̂μ1���μlij ≡ 0 to
obtain

Ĉi−1;j¼DÎ ij− ð ˆiI i−1;jþ1þ jÎ iþ1;j−1ÞlαDuα

−DlÎ i−1;jþ1þ½ði−1ÞÎ i−2;jþ2þðjþ1ÞÎ ij�lαDluα

−
1

2
½m2

0ði−1ÞÎ i−2;j− ðiþ1ÞÎ ijþði−1ÞÎ i−2;jþ2�~θ

þ1

2
½m2

0jÎ i−1;j−1− jÎ iþ1;j−1þðjþ2ÞÎ i−1;jþ1�~θl:
ð24Þ

Similarly, taking Eq. (111) of Ref. [29] and setting all
irreducible moments ρ̂μ1���μlij ≡ 0 we obtain the equation for
the vector moment,

2Ĉfμgi−1;j ¼ ~∇μðm2
0Î i−1;j − Î iþ1;j þ Î i−1;jþ2Þ − ½m2

0iÎ i−1;j − ðiþ 2ÞÎ iþ1;j þ iÎ i−1;jþ2�Ξμ
αDuα

þ ½m2
0jÎ i;j−1 − jÎ iþ2;j−1 þ ðjþ 2ÞÎ i;jþ1�Ξμ

αDlα þ ½m2
0ði − 1ÞÎ i−2;jþ1 − ðiþ 1ÞÎ i;jþ1�Ξμ

αDluα

− ½m2
0ðjþ 1ÞÎ i−1;j − ðjþ 1ÞÎ iþ1;j�Ξμ

αDllα þ ði − 1ÞÎ i−2;jþ3Ξ
μ
αDluα − ðjþ 3ÞÎ i−1;jþ2Ξ

μ
αDllα

− ði − 1Þðm2
0Î i−2;jþ1 − Î i;jþ1 þ Î i−2;jþ3Þlα ~∇μuα − jðm2

0Î i;j−1 − Î iþ2;j−1 þ Î i;jþ1Þlα ~∇μuα: ð25Þ

Here,D ¼ uμ∂μ denotes the comoving derivative andDl ¼
−lμ∂μ is the derivative in the direction of the anisotropy.
The spatial gradient in the directions orthogonal to both uμ

and lμ is ~∇μ ¼ Ξμν∂ν, while the expansion scalars are

defined as ~θ ¼ ~∇μuμ and ~θl ¼ ~∇μlμ.
The particle-number conservation equation follows from

Eq. (24) by choosing i ¼ 1 and j ¼ 0. Using Eqs. (12)–(17)
we obtain

0 ¼ ∂μN̂
μ ≡Dn̂ −Dln̂l þ n̂ ~θþn̂l ~θl

þ n̂lμDluμ − n̂llμDuμ; ð26Þ

where due to particle-number conservation Ĉ00 ¼ 0.
The energy-conservation equation follows from Eq. (24)

by choosing i ¼ 2 and j ¼ 0,

0 ¼ uν∂μT̂
μν ≡Dê −DlM̂ þ ðêþ P̂⊥Þ~θ þ M̂ ~θl

þ ðêþ P̂lÞlμDluμ − 2M̂lμDuμ; ð27Þ

while the conservation equation for the momentum in the lμ

direction can be obtained for i ¼ 1 and j ¼ 1,

0 ¼ lν∂μT̂
μν ≡ −DM̂ þDlP̂l − M̂ ~θþðP̂⊥ − P̂lÞ~θl

− 2M̂lμDluμ þ ðêþ P̂lÞlμDuμ; ð28Þ

where Ĉ10 ¼ 0 and Ĉ01 ¼ 0 vanish due to energy and
momentum conservation, respectively.
The conservation equation for the momentum transverse

to lμ can be obtained from Eq. (25) for i ¼ 1 and j ¼ 0.

Using Ĉfμg10 ¼ 0 we obtain

0 ¼ Ξα
ν∂μT̂

μν ≡ ðêþ P̂⊥ÞðDuα þ lαlνDuνÞ
− ~∇αP̂⊥ þ ðP̂⊥ − P̂lÞðDllα þ uαlνDluνÞ
þ M̂ðDlα þ uαlνDuνÞ − M̂ðDluα þ lαlνDluνÞ: ð29Þ

In order to close the five conservation equations in
terms of fluid-dynamical quantities we need to supply
Eqs. (26)–(29) with an additional equation of motion. To
this end, it is natural to select the equation of motion for n̂l
or M̂ (depending on the choice of the LR frame), or P̂l.
However, as we have already discussed in the introduction,
alternatively we may use any higher moment of the
Boltzmann equation to close the conservation equations.
The choice of closure is the main question that we further
investigate in the following sections.

III. APPLICATIONS

A. The Romatschke-Strickland distribution
function and properties

As a simple, and at the same time relevant, example
we take the anisotropic distribution function introduced
by RS [24],

f̂RS ≡ ½exp
�
−αRS þ βRS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kμkνΩμν

q �
þ a

i−1
; ð30Þ

where

Ωμν ¼ uμuν þ ξlμlν: ð31Þ
Here, ξ denotes the so-called anisotropy parameter. For
ξ < 0, f̂RS is a prolate spheroid and for ξ > 0 it is an oblate
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spheroid with respect to the z axis in momentum space and
in the LR frame.
Comparing to Eq. (3) we identify α̂≡ αRS, β̂u ≡ βRS,

and β̂l ≡ βRS
ffiffiffi
ξ

p
. Furthermore, in order to calculate the

fluid-dynamical quantities using the RS distribution func-
tion, we introduce a new set of thermodynamic integrals,
ÎRSnrqðαRS; βRS; ξÞ, which correspond to the replacement
f̂0k → f̂RS in Eq. (7),

ÎRSnrq ¼
ð−1Þq
ð2qÞ!!

Z
dKEn−r−2q

ku Er
klðΞμνkμkνÞqf̂RS: ð32Þ

These integrals are most easily evaluated for a massless
Boltzmann gas, i.e., m0 ¼ 0 and a ¼ 0. As shown in
Ref. [17] assuming m0 ¼ 0 leads to factorization of the
ξ-dependent part,

ÎRSnrqðαRS; βRS; ξÞ ¼ InqðαRS; βRSÞRnrqðξÞ; ð33Þ

where the standard thermodynamic integrals are

Inqðα0; β0Þ ¼
ð−1Þq

ð2qþ 1Þ!! hE
n−2q
ku ðΔαβkαkβÞqi0: ð34Þ

Considering the tensor decomposition of the first
and the second moment of the equilibrium distribution
function, Nμ

0≡I10uμ¼I100uμ and Tμν
0 ≡I20uμuν−I21Δμν¼

I200uμuνþI220lμlν−I201Ξμν, respectively, the particle den-
sity is n0 ≡ Nμ

0uμ ¼ I100 ≡ I10, the energy density is
e0 ≡ Tμν

0 uμuν ¼ I200 ≡ I20, and the thermodynamic pres-
sure is P0 ≡ − 1

3
Tμν
0 Δμν. The latter is necessarily isotropic,

such that P0l ≡ Tμν
0 lμlν ¼ I220 and P0⊥ ≡ − 1

2
Tμν
0 Ξμν ¼

I201 are identical, P0 ¼ P0l ≡ P0⊥. Furthermore, in equi-
librium n0l≡−Nμ

0lμ¼ I110¼0 andM0≡Tμν
0 uμlν¼I210¼0.

The first and second moments of the RS distribution
function are

N̂μ
RS ¼ n̂uμ; ð35Þ

T̂μν
RS ¼ êuμuν þ P̂llμlν − P̂⊥Ξμν; ð36Þ

where the quantities defined in Eqs. (12)–(17) can be
written with the help of Eq. (33) as

n̂≡ ÎRS100 ¼ n0ðαRS; βRSÞR100ðξÞ; ð37Þ

ê≡ ÎRS200 ¼ e0ðαRS; βRSÞR200ðξÞ; ð38Þ

P̂l ≡ ÎRS220 ¼ e0ðαRS; βRSÞR220ðξÞ; ð39Þ

P̂⊥ ≡ ÎRS201 ¼ P0ðαRS; βRSÞR201ðξÞ: ð40Þ

The isotropic pressure, Eq. (18), leads to the well-known
massless ideal gas relation,

P̂ðαRS; βRS; ξÞ≡ P0ðαRS; βRSÞR200ðξÞ

¼ êðαRS; βRS; ξÞ
3

: ð41Þ

This is similar to

P0ðαRS; βRSÞ≡ n0ðαRS; βRSÞ
βRS

¼ e0ðαRS; βRSÞ
3

; ð42Þ

which is obtained from Eq. (34). All thermodynamic
integrals and ratios Rnrq are listed in Appendix A. Note
that, for the RS distribution function, n̂l ≡ ÎRS110 ¼ 0 and
M̂≡ ÎRS210 ¼ 0. This means that the fluid-dynamical flow
velocity does not depend on our choice of LR frame.
Since chemical potential and temperature are quantities

defined exclusively in thermodynamical equilibrium, the
parameters of the anisotropic distribution function, αRS,
βRS, and ξ, have no real physical meaning. However, one
can relate them to chemical potential and temperature, or
equivalently α0 and β0, of a “fictitious” equilibrium state by
imposing the so-called Landau matching conditions
ðN̂μ

RS − Nμ
0Þuμ ¼ 0 and ðT̂μν

RS − Tμν
0 Þuμuν ¼ 0, or

n̂ðαRS; βRS; ξÞ ¼ n0ðα0; β0Þ; ð43Þ

êðαRS; βRS; ξÞ ¼ e0ðα0; β0Þ: ð44Þ

Now, using Eqs. (37) and (38) together with Eqs. (A3) and
(A10) we obtain

β0 ¼ βRS
R100ðξÞ
R200ðξÞ

; ð45Þ

λ0 ¼ λRS
½R100ðξÞ�4
½R200ðξÞ�3

; ð46Þ

where λ0 ≡ exp α0 ¼ exp ðμβ0Þ and λRS ≡ expαRS ¼
exp ðμRSβRSÞ denote the corresponding fugacities. Thus,
using Eq. (33) together with these results we obtain the
following general relation between the thermodynamic
integrals:

ÎRSnrqðαRS; βRS; ξÞ ¼ Inqðα0; β0ÞRnrqðξÞ
½R200ðξÞ�1−n
½R100ðξÞ�2−n

: ð47Þ

However, in case the particle number is not conserved,
i.e., α̂ ¼ αRS ¼ 0, the inverse temperature inferred from the
Landau matching condition (44) is

β0 ¼
βRS

½R200ðξÞ�1=4
: ð48Þ

Thus, similarly to Eq. (47) we now obtain
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ÎRSnrqðβRS; ξÞ ¼ Inqðβ0Þ
RnrqðξÞ

½R200ðξÞ�ðnþ2Þ=4 : ð49Þ

This result was also obtained e.g. in Refs. [13–16] and
Refs. [17–19].
After applying the matching conditions we can calculate

the equilibrium pressure, P0 ¼ P0ðα0; β0Þ, and hence
define the bulk viscous pressure,

Π̂≡ −
1

3
T̂μνΔμν ¼ P̂ðαRS; βRS; ξÞ − P0ðα0; β0Þ; ð50Þ

which vanishes for a massless ideal gas, limm0→0 Π̂ ¼ 0.

B. 0þ 1-dimensional boost-invariant expansion

We now investigate how the solution of the fluid-
dynamical equations of motion is influenced by the choice
of moment to close them. We study this for a very simple
case only, the 0þ 1-dimensional boost-invariant expansion
of matter, known as Bjorken flow [30]. To this end, it is
advantageous to transform the usual space-time coordinates
ðt; zÞ to proper time τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
and space-time rapidity

ηs ¼ 1
2
ln tþz

t−z. The inverse transformation then reads
t ¼ τ cosh ηs and z ¼ τ sinh ηs. In Bjorken flow, the veloc-
ity of matter is given by vz ≡ z=t ¼ tanh ηs, such that

uμ ≡
�
t
τ
; 0; 0;

z
τ

�
¼ ðcosh ηs; 0; 0; sinh ηsÞ; ð51Þ

lμ ≡
�
z
τ
; 0; 0;

t
τ

�
¼ ðsinh ηs; 0; 0; cosh ηsÞ: ð52Þ

Then, D≡ uμ∂μ ¼ ∂
∂τ, Dl ≡ −lμ∂μ ¼ − ∂

τ∂ηs, and Duμ ¼
Dlμ ¼ 0, Dluμ ¼ − 1

τ l
μ, Dllμ ¼ − 1

τ u
μ, while ~θ ¼ ~θl ¼ 0.

Inserting Eq. (6) into Eq. (24), and using the fact that in
Bjorken flow all thermodynamic quantities are independent
of ηs, we obtain

∂ Îiþj;j;0

∂τ þ 1

τ
½ðjþ 1ÞÎiþj;j;0 þ ði − 1ÞÎiþj;jþ2;0� ¼ Ĉi−1;j:

ð53Þ

We also assume that the collision term is given by the
RTA [31], i.e., C½f̂� ¼ − Eku

τeq
ðf̂0k − f0kÞ. This means that

the anisotropic distribution function f̂0k is assumed to
approach the equilibrium distribution f0k on a time scale
set by τeq. Thus, in RTA the rhs of Eq. (53) reads

Ĉi−1;j ¼ −
1

τeq
ðÎiþj;j;0 − Iiþj;j;0Þ: ð54Þ

For τeq we either use a constant value or parametrize it
using the relation between τeq and shear viscosity [43,44],

τeqðτÞ ¼ 5β0ðτÞ
η

s
; ð55Þ

where η=s denotes the ratio of shear viscosity to entropy
density, which we assume to take a constant value.
In order to obtain the fluid-dynamical equations of

motion for the RS distribution function we substitute
Înrq → ÎRSnrq in Eqs. (53) and (54). Furthermore, using the
matching conditions Eqs. (43) and (44), the conservation
equations for particle number (26) and energy (27) read

∂n0ðα0; β0Þ
∂τ þ 1

τ
n0ðα0; β0Þ ¼ 0; ð56Þ

and

∂e0ðα0; β0Þ
∂τ þ 1

τ
½e0ðα0; β0Þ þ P̂lðαRS; βRS; ξÞ� ¼ 0: ð57Þ

The conservation of momentum in the direction of the
anisotropy, Eq. (28), leads to DM̂ ¼ −2M̂=τ, but since
M̂ ¼ 0 for the RS distribution function, this equation does
not provide any additional information. Likewise, the
conservation of momentum in the direction transverse to
the anisotropy, Eq. (29), gives ~∇αP̂⊥ ¼ 0, which also
contains no additional information since the system is
homogeneous in the transverse direction.
Now we discuss various choices to close the conserva-

tion equations (56) and (57). As mentioned above, in
principle, there are infinitely many equations that can be
selected from the hierarchy of balance equations (21) to
serve this purpose. Here we restrict ourselves to a few
representative examples. These follow from Eqs. (53) and
(54) by choosing particular values for the indices i and j.

(i) i ¼ 0, j ¼ 2: This choice gives the time-evolution
equation for the longitudinal pressure P̂lðαRS;
βRS; ξÞ,

∂P̂l

∂τ þ 1

τ
ð3P̂l − ÎRS240Þ ¼ −

1

τeq
ðP̂l − P0Þ: ð58Þ

Here we can explicitly express P̂l and ÎRS240 via
Eq. (47),

P̂lðαRS; βRS; ξÞ ¼ e0ðα0; β0Þ
R220ðξÞ
R200ðξÞ

; ð59Þ

ÎRS240ðαRS; βRS; ξÞ ¼ e0ðα0; β0Þ
R240ðξÞ
R200ðξÞ

; ð60Þ

where the Rnrq are listed in Eqs. (A13), (A15), and
(A17). Note that Eqs. (59) and (60) are formally
unchanged when expressing P̂l and ÎRS240 through
Eq. (49). This means that the dynamical equation
for P̂l is a very special choice for closure of the
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conservation equations, since Eq. (58) is formally
independent of whether we conserve particle num-
ber or not. Furthermore, as it should be, in the limit
of small deviations from local thermodynamical
equilibrium, i.e., ξ ≪ 1, Eqs. (57) and (58) lead
precisely to the equations of motion of second-order
fluid dynamics as obtained in Refs. [45–48]; for
more details see Appendix B.

(ii) i ¼ 1, j ¼ 0: This choice was made e.g. in
Refs. [17–19]. It is possible only if particle number
is not conserved (such that the chemical potential is
always 0),

∂n̂
∂τ þ

1

τ
n̂ ¼ −

1

τeq
ðn̂ − n0Þ: ð61Þ

(iii) i ¼ 3, j ¼ 0: This choice is analogous to that of
Israel and Stewart [49], which use the second
moment of the Boltzmann equation to close the
conservation equations,

∂ ÎRS300
∂τ þ1

τ
ðÎRS300þ2ÎRS320Þ¼−

1

τeq
ðÎRS300−I300Þ: ð62Þ

(iv) i ¼ 1, j ¼ 2: This choice is analogous to the
previous one, in the sense that it also results from
the second moment of the Boltzmann equation,

∂ ÎRS320
∂τ þ 3

τ
ÎRS320 ¼ −

1

τeq
ðÎRS320 − I320Þ: ð63Þ

Note that according to Eq. (23) the cases (iii) and
(iv) follow from different projections of ∂λÎ

μνλ
00 ¼ Ĉμν00.

Also note that the choice i ¼ 2, j ¼ 1 is trivial since
ÎRS310 ¼ 0.
Finally, we also tested the following choices:
(v) i ¼ 0, j ¼ 0:

∂ ÎRS000
∂τ þ 1

τ
ðÎRS000 − ÎRS020Þ ¼ −

1

τeq
ðÎRS000 − I000Þ: ð64Þ

(vi) i ¼ 0, j ¼ 4:

∂ ÎRS440
∂τ þ 1

τ
ð5ÎRS440 − ÎRS460Þ ¼ −

1

τeq
ðÎRS440 − I440Þ; ð65Þ

(vii) i ¼ 1, j ¼ 4:

∂ ÎRS540
∂τ þ 5

τ
ÎRS540 ¼ −

1

τeq
ðÎRS540 − I540Þ: ð66Þ

IV. RESULTS AND DISCUSSIONS

In this section, we solve the conservation equations (56)
and (57) and study the impact of different ways to close

them, i.e., choosing one of the moment equations (58),
(61), (62), (63), (64), (65), or (66). We also compare the
fluid-dynamical solutions to the solution of the Boltzmann
equation, in order to identify which one of the moment
equations gives the best agreement with the latter.
We always initialize the system with temperature T0 ¼

300 MeV at initial time τ0 ¼ 1.0 fm, for three choices of
the initial anisotropy, ξðτ0Þ≡ ξ0 ¼ f0; 10; 100g. We inves-
tigate separately the cases with and without particle-
number conservation. In the case with particle-number
conservation, we take an initial fugacity λ0 ¼ 1. The initial
value of the temperature and the anisotropy parameter are
shown in the headlines of the following figures. If the
particle number is conserved, the initial fugacity is also
shown. We use either a constant relaxation time τeq ¼ 1 fm,
or the temperature-dependent one from Eq. (55) with
η=s ¼ f1=4π; 10=4π; 100=4πg.
For the comparison of the choice of moment in Sec. IV

A, we also solve the conservation equations for an ideal
fluid, ∂e0∂τ þ 1

τ ðe0 þ P0Þ ¼ 0, where P0 ≡ n0T0 ¼ e0=3,
together with ∂n0∂τ þ 1

τ n0 ¼ 0. Note that in this case the
two conservation equations are independent from each
other; hence if the system was initially in chemical
equilibrium it will stay in chemical equilibrium.
Furthermore, in the case of an ideal fluid ξðτÞ ¼ 0, the
time evolution of the fugacity is simply given by λðτÞ ¼ 1,
while the pressure is necessarily isotropic; hence
P̂lðτÞ=P̂⊥ðτÞ ¼ 1. These constant horizontal lines are
redundant and are not shown in the respective figures.

A. The choice of moment

The results shown in Fig. 1 were obtained by solving
both the particle-number conservation equation (56) and
the energy-conservation equation (57), closed by one of the
moment equations (58), (62), (63), (64), (65), or (66).
Correspondingly, the results in Fig. 2 were obtained
without particle-number conservation, i.e., we only solved
the energy-conservation equation (57) coupled to a par-
ticular moment equation. In this case, the first moment of
the Boltzmann equation, Eq. (61), can also be used to
provide closure (in addition to the previously listed
relaxation equations).
Figure 1 shows the evolution of the anisotropy parameter

ξ, temperature T, fugacity λ, and the ratio of longitudinal
and transverse pressure components P̂l=P̂⊥, as a function
of proper time τ. All figures in the left column are for
ξ0 ¼ 0, while those in the right column are for ξ0 ¼ 10. In
Fig. 2, the same is presented for the case without particle-
number conservation.
Focusing on the evolution of the anisotropy parameter ξ

we observe that in the case in which the system was initially
isotropic (ξ0 ¼ 0, left column), the longitudinal expansion
drives the system out of equilibrium. This lasts for about
1–2 fm, after which the system starts to approach the
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FIG. 1. From top to bottom: the evolution of the anisotropy parameter ξ, temperature T, fugacity λ, and the ratio of longitudinal and
transverse pressure components P̂l=P̂⊥ as a function of proper time τ. The thin green line in the figures in the second row represents the
temperature evolution for an ideal fluid. The other lines are the solution of the conservation equations (56) and (57) closed by different
moment equations: the dotted blue line (ÎRS000) corresponds to Eq. (64), the dash-dotted blue line (Î

RS
300) to Eq. (62), the full black line (P̂l) to

Eq. (58), the dash-dotted black line (ÎRS320) to Eq. (63), the dashed red line (ÎRS440) to Eq. (65), and the dotted red line (ÎRS540) to Eq. (66),
respectively.
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isotropic state again, ξ → 0. The approach to equilibrium
becomes much faster for a nonzero initial anisotropy
(ξ0 ¼ 10, right column). The late-time behavior is quite
similar in both cases, as both reach a similar value for
the anisotropy around τ ∼ 6–7 fm. The behavior of the
longitudinal to transverse pressure ratio, P̂l=P̂⊥, is quite
similar to that of the anisotropy isotropy parameter. Both
the evolution of ξ and P̂l=P̂⊥ are similar in the cases with
and without particle-number conservation, cf. the top and
bottom rows of Figs. 1 and 2. This can be explained by the
fact that P̂l=P̂⊥ is mainly determined by the momentum
anisotropy ξ.

The temperature, second row of Figs. 1 and 2, decreases
as the system expands, but the decrease is slower for a
nonzero initial anisotropy. This is due to the fact P̂l

decreases with increasing anisotropy; hence the driving
force to expand (and cool) the system is smaller for a larger
initial anisotropy. Note that for the case without particle-
number conservation, Fig. 2, the evolution of the temper-
ature is much closer to the one for an ideal fluid than for the
case with particle-number conservation. This holds for all
choices of closure of the conservation equations. Vice
versa, the spread in the curves is much larger for the case
with particle-number conservation, cf. Fig. 1. The reason is

FIG. 2. Similar to Fig. 1, but for the case without particle-number conservation, such that always λðτÞ ¼ 1 (and thus not explicitly
shown). The only difference to Fig. 1 is that now Eq. (61) is available to close the energy-conservation equation. The respective dashed
blue line is labeled n̂.
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that the deviation from chemical equilibrium parametrized
by the fugacity, third row of Fig. 1, has to be compensated
by an increase in temperature. Thus, the smaller the λðτÞ,
the larger TðτÞ has to be. This also explains why all curves
lie above the case for an ideal fluid (green lines).
These observations are generally valid for all

choices of closure for the conservation equations.
However, there are striking differences between the various
choices. The first observation is that there is a grouping
according to the power j of longitudinal momentum Ekl

appearing in the particular moment ÎRSiþj;j;0, cf. Î
RS
000 and Î

RS
300

(blue lines), P̂l ≡ ÎRS220 and Î
RS
320 (black lines), as well as Î

RS
440

and ÎRS540 (red lines). Apparently, the larger the j, the faster
the approach to isotropization. This behavior is universal
and can be observed in both Figs. 1 and 2.
We also remark that the solutions provided by ÎRS440

and ÎRS540 stay closer to the solution provided by P̂l than the
ones provided by ÎRS000, ÎRS300, and, in the case without
particle-number conservation, n̂. In particular, for ξ and
P̂l=P̂⊥, the latter ones sometimes deviate by more than a
factor of 2 from the solution provided by P̂l. As we see in
the next subsection, it turns out that the solution provided

FIG. 3. The evolution of temperature T, fugacity λ, and the ratio of longitudinal and transverse pressure components P̂l=P̂⊥ as a
function of proper time τ. The full black, the dashed blue, the dashed-dotted green and the dotted red lines are the solution of the
conservation equations closed by the relaxation equation for P̂l for τeq ¼ 1 fm and for τeq from Eq. (55) with the three different choices
for η=s. The large dots show the corresponding solution of the Boltzmann equation.
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by P̂l is closest to the one of the Boltzmann equation.
Note that, in order to improve the agreement of the
fluid-dynamical solution given by n̂ with the solution of
the Boltzmann equation, in some earlier works [43,44] a
rescaled relaxation time τAHeq ¼ τeq=2 was used. We
checked that also Eqs. (64) and (62) with τAHeq instead of
τeq lead to results that resemble the ones for P̂l. We remark,
however, that one is actually not free to adjust the relaxation
time in the various moment equations, since in the RTA,
cf. Eq. (54), it is the same as the one appearing in the
Boltzmann equation.

B. Comparisons to the exact solution

In this section we compare the solution of the con-
servation equations closed by Eq. (58) for P̂l to the solution
of the Boltzmann equation in the RTA. The numerical
method to solve the Boltzmann equation is discussed in
detail in Refs. [43,44] as well as in Appendix C. In analogy
to Eq. (7) we introduce the moments of the solution fk of
the Boltzmann equation,

Fnrq ¼
ð−1Þq
ð2qÞ!!

Z
dKEn−r−2q

ku Er
klðΞμνkμkνÞqfk: ð67Þ

On the other hand, the moments ÎRSnrq, cf. Eq. (32), can be
computed from solving the fluid-dynamical equations,
which provide α0, β0, and ξ required to compute these

moments according to Eqs. (47) or (49). We then compare
Fnrq to ÎRSnrq in order to estimate how much the anisotropic
distribution function f̂RS deviates from the full solution of
the Boltzmann equation.
In order to compare with the results of Refs. [43,44] we

have also used the temperature-dependent relaxation time
from Eq. (55). The solution of the Boltzmann equation is
obtained choosing the RS distribution function as the initial
condition at proper time τ0 ¼ 1.0 fm, i.e.,fkðτ0Þ ¼ fRSðτ0Þ.
In Figs. 3 and 4 the fluid-dynamical solution for a

constant relaxation time is shown by the black lines. For
ξ0 ¼ 0 (left columns of these figures) these are identical to
the black lines in the left columns of Figs. 1 and 2. The
other curves in Figs. 3 and 4 correspond to relaxation times
chosen according to Eq. (55).
For all quantities shown, the fluid-dynamical solution

agrees very well with the exact solution, even for very large
η=s ¼ 100=4π, and very large initial anisotropy ξ0 ¼ 100.
This is a strong indication that the conservation equations
closed by the relaxation equation for P̂l provide the best
match to the Boltzmann equation, at least for quantities
which appear in the energy-momentum tensor.
Now that we have identified the apparent best match for

closure we investigate how well the other moments of the
Boltzmann equation are reproduced using this particular
choice for closure. This comparison is shown in Figs. 5
and 6. As can be seen, the very good agreement is not

FIG. 4. Similar to Fig. 3, but for the case without particle-number conservation [such that λðτÞ ¼ 1 and thus not shown explicitly].
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necessarily inherited by other moments. In Fig. 5 we show
the ratio of the exact moment F320 to the fluid-dynamical
solution ÎRS320 in the case of conserved particle number, and
in Fig. 6 the ratio of the exact number density n≡ F100 to
n̂≡ ÎRS100 in the case without particle-number conservation.
As can be seen, the deviations between the fluid-dynamical
and exact solutions can be as large as 50%, even if the
agreement between the primary fluid-dynamical quantities,
i.e., the quantities that appear in the energy-momentum
tensor itself, is almost perfect, cf. Figs. 3 and 4.

C. Matching to the solution of the Boltzmann equation

In general, a given functional form of the anisotropic
distribution function, e.g. f̂RS, does not agree exactly with
the solution fk of the Boltzmann equation. Thus, there is
also no reason to expect that all moments ÎRSnrq of f̂RS agree
with all moments Fnrq of fk. In other words, computing the
parameters α0, β0, and ξ that determine f̂RS from matching
a certain subset of the moments ÎRSnrq to the moments Fnrq

of the exact solution does not necessarily lead to a good
agreement for all other moments. In this subsection, we
provide evidence for this observation through an explicit
calculation.
First, however, let us make a few remarks (for the sake of

simplicity we discuss only the case with particle-number
conservation).

(i) The anisotropic distribution function is character-
ized by three parameters, α0, β0, and ξ. Correspond-
ingly, three matching conditions are required to
determine these parameters.

(ii) The matching conditions can in general be chosen
from Eq. (47), for any values of n, r, and q.

(iii) In the RTA the usual Landau matching conditions
(43) and (44) are not only convenient, but also
necessary to ensure the conservation of energy,
momentum, and particle number. These correspond
to matching with ðn; r; qÞ ¼ ð2; 0; 0Þ and ðn; r; qÞ ¼
ð1; 0; 0Þ. The third matching condition can be
provided by any other choice for ðn; r; qÞ.

FIG. 5. The ratio of the exact solution F320ðτÞ to the corresponding fluid-dynamical solution ÎRS320ðτÞ, obtained from Eqs. (56)–(58).
The choice of moment to close the equations is indicated in brackets, ½P̂l�, behind the label on the ordinate. The various lines are similar
to Figs. 3 and 4.

FIG. 6. Similar to Fig. 5, but without particle-number conservation. Here nðτÞ≡ F100ðτÞ represents the solution of the Boltzmann
equation while n̂ðτÞ≡ ÎRS100ðτÞ is computed from the solution of Eqs. (57) and (58). The choice of moment to close the equations is
indicated in brackets, ½P̂l�, behind the label on the ordinate.
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(iv) When we choose a particular moment equation to
close the conservation equations, at the same time
we also choose a specific matching condition. For
example, closing the system by using Eq. (58) also
implies that α0, β0, and ξ are matched to P̂l ≡ ÎRS220.
Alternatively, choosing Eq. (62) implies that they are
matched to ÎRS300. Note that in general different
choices lead to different values of α0, β0, and ξ.

(v) Once the matching conditions are fixed, any other
moment can be calculated according to the rhs of
Eq. (47).

To further investigate the importance of the matching
conditions, we match α0ðτÞ, β0ðτÞ, and ξðτÞ to a particular
moment of the solution of the Boltzmann equation, instead
of its fluid-dynamical approximation (53).
In Fig. 7 we use Pl ≡ F220 ¼ ÎRS220ðα220; β220; ξ220Þ≡ P̂l

as a matching condition, and plot the ratio of the exact
solution F300 to the moment ÎRS300ðα220; β220; ξ220Þ obtained
through such a choice of matching [the rhs of Eq. (47)].
In Fig. 8 we show the opposite scenario, i.e., the ratio of

F220 to ÎRS220ðα300; β300; ξ300Þ obtained by matching α300,
β300, and ξ300 to always reproduce the exact moment F300.

As can be seen from the figures, if we choose the P̂l

matching, then ÎRS300ðα220; β220; ξ220Þ is a good approxima-
tion to F300, but the opposite is not true: matching to F300

does not give the correct Pl ¼ F220 ≠ P̂lðα300; β300; ξ300Þ.
We note that when we solve anisotropic fluid dynamics

by choosing Eq. (62), we implicitly use the latter matching.
In other words, the values for α0, β0, and ξ are obtained by
matching to ÎRS300, e0, and n0. However, as can be seen from
Fig. 8, the values for P̂l obtained in this way can deviate by
more than 50% from the exact solution. Since P̂l appears
explicitly in the energy-conservation equation, this deviation
in P̂l also leads to deviations from the exact solution.
On the other hand, closing the conservation equations

with Eq. (58), which corresponds to matching with P̂l,
gives an overall good agreement with the exact solution.
The comparison of Figs. 7 and 8 indicates why this is the
case: the matching to P̂l directly leads to the correct
driving force in the energy-conservation equation. It is
then obvious that this choice gives the best agreement
with the Boltzmann equation, as well as smaller deviations
from the exact solution for all other moments.

FIG. 7. The ratio of the exact solution F300ðτÞ to ÎRS300ðα220; β220; ξ220; τÞ, where α220, β220, and ξ220 were obtained by matching to
F220ðτÞ. See the text for more details.

FIG. 8. Similar to Fig. 7. The ratio of the exact solution F220ðτÞ to ÎRS220ðα300; β300; ξ300; τÞ, where α300, β300, and ξ300 were obtained by
matching to F300ðτÞ. See the text for more details.
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We note that for the (0þ 1)-dimensional expansion this
choice corresponds to the one proposed in Ref. [50], where
the anisotropy parameters were matched to the components
of Tμν, and the equations of motion were closed by using
the exact equations of motion for the dissipative quantities,
e.g. for the shear-stress tensor πμν. This approach was
originally proposed in Ref. [51] for conventional fluid
dynamics.

V. CONCLUSIONS

Starting from the relativistic Boltzmann equation, we
have derived the equations of motion for a fluid which has a
certain anisotropic single-particle distribution function f̂0k
in momentum space in the LR frame. Choosing as an
example f̂0k ¼ f̂RS we have solved these equations in a
simple 0þ 1-dimensional boost-invariant expansion sce-
nario. We have pointed out the importance of the choice of
moment equation to close the conservation equations. The
solution of the Boltzmann equation is most accurately
reproduced by the equations of anisotropic fluid dynamics
when the latter are closed using the relaxation equation for
the longitudinal pressure P̂l, i.e., a quantity which also
appears in the energy-momentum tensor. Other choices for
the moments to close the conservation equations lead to a
less good agreement with the solution of the Boltzmann
equation. In the future, one should extend the present study
to more realistic geometries (with nontrivial transverse and
longitudinal dynamics) and include corrections to f̂0k,
using the framework developed in Ref. [29].
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APPENDIX A: THERMODYNAMIC INTEGRALS
IN THE MASSLESS BOLTZMANN LIMIT

Here we evaluate the thermodynamic integrals assuming
Boltzmann statistics in the massless limit. In the LR frame,
where uμLR ¼ ð1; 0; 0; 0Þ, Eq. (4) reads

f0k ≡ exp ðα0 − β0EkuÞ ¼ λ0 exp
�
−β0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ k2
q �

;

ðA1Þ

where the fugacity is λ0 ¼ expα0 and Eku;LR ¼ k0.
Similarly, the RS distribution function (30) reads in the
LR frame

f̂RS ≡ exp
�
αRS − βRS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
ku þ ξE2

kl

q �

¼ λRS exp
�
−βRS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ k2 þ ξk2z

q �
; ðA2Þ

where the fugacity is λRS ¼ expαRS and Ekl;LR ¼ kz.
Using these distribution functions the different thermo-

dynamic integrals appearing in Eqs. (32) and (34) are
evaluated in spherical coordinates, where k ¼ jkj, kx ¼
k cosφ sin θ, ky ¼ k sinφ sin θ, kz ¼ k cos θ. Therefore,

dK ≡ A0
d3k
k0 ¼ A0

k2

k0 dk sin θdθdφ, where θ ∈ ½0; π�, φ ∈
½0; 2πÞ, k ∈ ½0;∞Þ, and A0 ¼ g=ð2πÞ3. Furthermore, we
also need the LR frame values of −ðΔαβkαkβÞLR ¼ k2

and −ðΞμνkμkνÞLR ≡ k2⊥ ¼ k2x þ k2y ¼ k2 sin2 θ.
In the massless limit, i.e., limm0→0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ k2
p ¼ jkj, we

obtain the following result for Eq. (34),

lim
m0→0

Inq ≡ λ0
ð−1Þ2q4πA0

ð2qþ 1Þ!!
Z

∞

0

dkknþ1 exp ð−β0kÞ

¼ λ0
4πA0ðnþ 1Þ!
βnþ2
0 ð2qþ 1Þ!! : ðA3Þ

Here we list some of these integrals explicitly,

I00ðα0; β0Þ≡ I000 ¼ λ0
4πA0

β20
; ðA4Þ

I10ðα0; β0Þ≡ I100 ¼ λ0
8πA0

β30
¼ n0; ðA5Þ

I20ðα0; β0Þ≡ I200 ¼ λ0
24πA0

β40
¼ e0; ðA6Þ

I21ðα0; β0Þ≡ I201 ¼ I220 ¼ P0; ðA7Þ

where P0 ≡ n0=β0 ¼ e0=3, and

I30ðα0; β0Þ≡ I300 ¼ λ0
96πA0

β50
; ðA8Þ

I31ðα0; β0Þ≡ I301 ¼ I320 ¼
I30ðα0; β0Þ

3
: ðA9Þ

The RS distribution function leads to the following
thermodynamical integral in the massless limit,
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lim
m0→0

ÎRSnrq ≡ λRS
ð−1Þ2q2πA0

ð2qÞ!!
Z

π

0

dθ cosr θ sin2qþ1 θ

×
Z

∞

0

dkknþ1 exp ½−βRSk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ cos2 θ

p
�

¼ λRS
2πA0ðnþ 1Þ!
βnþ2
RS ð2qÞ!!

Z
π

0

dθ
cosr θ sin2qþ1 θ

ð1þ ξ cos2 θÞnþ2
2

:

ðA10Þ

Therefore, the ratio between the RS and equilibrium
thermodynamical integrals defined in Eq. (33) reads

Rnrq ¼
ð2qþ 1Þ!!
2ð2qÞ!!

Z
π

0

dθ
cosr θ sin2qþ1 θ

ð1þ ξ cos2 θÞnþ2
2

; ðA11Þ

hence the values that correspond to Eqs. (37)–(40) are

R100ðξÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p ; ðA12Þ

R200ðξÞ ¼
1

2

�
1

1þ ξ
þ arctan

ffiffiffi
ξ

p
ffiffiffi
ξ

p
�
; ðA13Þ

R201ðξÞ ¼
3

2ξ

�
1

1þ ξ
− ð1 − ξÞR200ðξÞ

�
; ðA14Þ

R220ðξÞ ¼ −
1

ξ

�
1

1þ ξ
− R200ðξÞ

�
: ðA15Þ

Note that these results were obtained previously by
Martinez and Strickland, see for example Ref. [18], such
that R100 ¼ R0 and R200 ¼ R, R201 ¼ RT , while the last
term differs from the results of Ref. [18] by a factor of
I20=I21 ¼ 3 since they calculated ÎRS220=I21 ¼ 3R220ðξÞ,
i.e., R220 ¼ RL=3.
Furthermore, for the other moment equations (58)

and (62)–(66) we also need the following RnrqðξÞ ratios:

R000ðξÞ ¼
arctan

ffiffiffi
ξ

p
ffiffiffi
ξ

p ; R020ðξÞ ¼
1 − R000ðξÞ

ξ
; ðA16Þ

R240ðξÞ ¼
1

ξ2

�
3þ ξ

1þ ξ
− 3R200ðξÞ

�
; ðA17Þ

R300ðξÞ ¼
3þ 2ξ

3ð1þ ξÞ3=2 ; R301ðξÞ ¼ R100ðξÞ; ðA18Þ

R320ðξÞ ¼
1

3ð1þ ξÞ3=2 ; ðA19Þ

R440ðξÞ ¼ −
1

8ξ2

�
3þ 5ξ

ð1þ ξÞ2 − 3
arctan

ffiffiffi
ξ

p
ffiffiffi
ξ

p
�
; ðA20Þ

R460ðξÞ ¼
1

8ξ3

�
15þ 25ξþ 8ξ2

ð1þ ξÞ2 − 15
arctan

ffiffiffi
ξ

p
ffiffiffi
ξ

p
�
; ðA21Þ

R540ðξÞ ¼
1

5ð1þ ξÞ5=2 : ðA22Þ

Note that, for any odd r, ÎRSnrq ¼ 0.

APPENDIX B: SECOND-ORDER FLUID
DYNAMICS IN THE LIMIT OF

SMALL ANISOTROPY

Here we recall the equations of second-order fluid
dynamics describing the 0þ1-dimensional boost-invariant
expansion. Neglecting bulk viscosity we have

∂e0
∂τ ¼ −

1

τ
ðe0 þ P0 − πÞ; ðB1Þ

τπ
∂π
∂τ ¼ 4

3

η

τ
− π −

�
1

3
τππ þ δππ

�
π

τ
; ðB2Þ

where the equation for particle-number conservation is
given in Eq. (56). Here π ¼ π00 − πzz enters the shear-stress
tensor πμν ≡ TαβΔμν

αβ ¼ diagð0; π=2; π=2;−πÞ, where the
corresponding symmetric, orthogonal, and traceless pro-
jection operator is Δμν

αβ ¼ 1
2
ðΔμ

αΔν
β þ Δμ

βΔν
αÞ − 1

3
ΔμνΔαβ.

Furthermore, the coefficients in the massless limit are,
see for example Refs. [20,45–48,52],

τππ ¼
10

7
τπ; δππ ¼

4

3
τπ: ðB3Þ

These equations and coefficients can be derived by using
the method of moments [48], where πμν ¼ R

dKkhμkνiδfk
and δfk ¼ fk − f0k is the deviation from the equilibrium
distribution function.
In the present case a similar approximation leads to f̂k ¼

f0k þ δfkðξÞ which corresponds to a series expansion
of the fluid-dynamical quantities for small ξ. Expanding
Eqs. (59) and (60) and neglecting corrections of order
Oðξ2Þ we obtain

P̂l ≡ e0

�
1

3
−

8

45
ξ

�
¼ P0 − π; ðB4Þ

ÎRS240 ≡ e0

�
1

5
−

16

105
ξ

�
¼ 3

5
P0 −

6

7
π: ðB5Þ

Applying these results to Eqs. (57) and (58) together with
Eq. (55) we get

τeq
∂π
∂τ ¼ 4

3

η

τ
− π −

38

21

π

τ
τeq; ðB6Þ
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which, after noting that in RTA τeq ¼ τπ , leads precisely to
Eq. (B1). In the massive case it was shown [50] that this
closure leads to the fluid-dynamical limit calculated in
Refs. [45,46], which in themassless case reduces to Eq. (B6).

APPENDIX C: NUMERICAL SOLUTION
OF THE BOLTZMANN EQUATION

IN THE RTA

For the sake of completeness we repeat the discussion
related to the numerical solution of the Boltzmann equation
based on the derivation of Refs. [43,44]. Let us first
introduce the following Lorentz-invariant variables:

v≡ τEku ¼ k0t − kzz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ ðk2⊥ þm2

0Þτ2
q

; ðC1Þ

w≡ τEkl ¼ kzt − k0z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − ðk2⊥ þm2

0Þτ2
q

: ðC2Þ
The inverse transformation reads

k0 ≡ vtþ wz
τ2

¼ cosh η
τ

ðvþ w tanh ηÞ; ðC3Þ

kz ≡ wtþ vz
τ2

¼ cosh η
τ

ðwþ v tanh ηÞ: ðC4Þ

Using these new boost-invariant variables the Boltzmann
equation in RTA becomes a first-order linear differential
equation

∂fk
∂τ ¼ fk0 − fk

τeq
; ðC5Þ

with the formal solution

fkðτÞ ¼ Dðτ; τ0Þfkðτ0Þ þ
Z

τ

τ0

dτ0

τeqðτ0Þ
Dðτ; τ0Þfk0ðτ0Þ;

ðC6Þ
where Dðτ2; τ1Þ is a so-called damping function,

Dðτ2; τ1Þ ¼ exp

�
−
Z

τ2

τ1

dτ0

τeqðτ0Þ
�
: ðC7Þ

In order to obtain the relevant quantities we need to calculate
the moments of the solution (C6). Hence, similarly to
Eq. (6), we calculate the moments of the equilibrium and
anisotropic distribution functions. The equilibrium thermo-
dynamic integrals Inrqðτ; τ0; α0ðτ0Þ; β0ðτ0ÞÞ ¼ Inrq read

Inrq ≡ ð−1Þq
ð2qÞ!!

Z
dKEn−r−2q

ku Er
klðΞμνkμkνÞqfk0ðτ0Þ

¼ 2πA0ðnþ 1Þ!
ð2qÞ!!

λ0ðτ0Þ
βnþ2
0 ðτ0ÞHnrqðτ; τ0Þ; ðC8Þ

where we introduced the following integral:

Hnrqðτ; τ0Þ ¼
Z

π

0

dθ
cosr θ sin2qþ1 θ

½ð ττ0Þ2 cos2 θ þ sin2 θ�nþ2
2

: ðC9Þ

In some cases of interest these integrals were already
calculated in Ref. [44]; hence H200ðτ; τ0Þ ¼ Hðτ0=τÞ,
H220ðτ; τ0Þ ¼ HLðτ0=τÞ and H201ðτ; τ0Þ ¼ HTðτ0=τÞ; see
Eq. (A1) of Ref. [44]. Also note that these integrals were
calculated using boost-invariant variables and additionally
applying a second variable change, p cos θ ¼ βðτ0Þw=τ0
and p sin θ ¼ βðτ0Þk⊥.
Similarly, for the RS distribution function we have

ÎRSnrqðτ; τ0; αRSðτ0Þ; βRSðτ0Þ; ξðτ0ÞÞ ¼ ÎRSnrq,

ÎRSnrq ≡ ð−1Þq
ð2qÞ!!

Z
dKEn−r−2q

ku Er
klðΞμνkμkνÞqfRSðτ0Þ

¼ 2πA0ðnþ 1Þ!
ð2qÞ!!

λRSðτ0Þ
βnþ2
RS ðτ0ÞHnrq

�
τ;

τ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξðτ0Þp

�
;

ðC10Þ

where the argument of theHnrq integral is scaled by a factor

of 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξðτ0Þp

compared to Eq. (C8).
Now, applying the definition of the moments on both

sides of Eq. (C6) together with the formal integral from
Eq. (67),

Fnrqðτ; τ0Þ ¼
ð−1Þq
ð2qÞ!!

Z
dKEn−r−2q

ku Er
klðΞμνkμkνÞqfkðτ0Þ;

ðC11Þ

we obtain an integral equation that can be solved for
various initial conditions,

Fnrqðτ; τÞ ¼ Dðτ; τ0ÞFnrqðτ; τ0Þ

þ
Z

τ

τ0

dτ0

τeqðτ0Þ
Dðτ; τ0ÞInrqðτ; τ0Þ: ðC12Þ

Assuming that the initial distribution function is of the RS
form, i.e., fkðτ0; kÞ ¼ fRSðτ0; kÞ, leads to the following
equation for the energy density, eðτÞ ¼ F200ðτ; τÞ,

eðτÞ ¼ Dðτ; τ0ÞÎ200ðτ; τ0Þ

þ
Z

τ

τ0

dτ0

τeqðτ0Þ
Dðτ; τ0ÞI200ðτ; τ0Þ: ðC13Þ

However, since Înrq depends on a different set of
parameters than Inrq we also need to obtain αRSðτÞ and
βRSðτÞ in terms of the equilibrium quantities α0ðτÞ and
β0ðτÞ at τ ¼ τ0. This is done via the Landau matching
conditions as shown in Sec. III; hence in the case in
which that particle number is not conserved, i.e.,
Î200ðτ0; τ0Þ ¼ I200ðτ0; τ0Þ, Eqs. (C8) and (C10) lead to
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βRSðτ0Þ ¼ β0ðτ0Þ
�
H200ðτ0; τ0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ0

p Þ
H200ðτ0; τ0Þ

�
1=4

; ðC14Þ

where ξ0 ¼ ξðτ0Þ while H200ðτ0; τ0Þ ¼ 2 and so this
expression is obviously equivalent to Eq. (48).
Finally, using the Landau matching condition for the lhs

of the integral equation eðτÞ≡ F200ðτ; τÞ ¼ I200ðτ; τÞ, we
obtain the following equation for the evolution of the
temperature:

T4ðτÞ ¼ T4ðτ0ÞDðτ; τ0Þ
H200ðτ; τ0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ0

p Þ
H200ðτ0; τ0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ0

p Þ

þ
Z

τ

τ0

dτ0

τeqðτ0Þ
T4ðτ0ÞDðτ; τ0ÞH200ðτ; τ0Þ

H200ðτ; τÞ
: ðC15Þ

In order to obtain the temperature as a function of proper
time we use a combination of iteration and interpolation

technique designed to obtain numerical solutions of integral
equations [53].
Once the temperature is obtained we can calculate any

moment of the distribution function from Eq. (C12) as

FnrqðτÞ ¼
2πA0ðnþ 1Þ!

ð2qÞ!!

×

�
Tnþ2ðτ0ÞDðτ; τ0Þ
H−ðnþ2Þ=4

200 ðτ0; τ0Þ
Hnrqðτ; τ0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ0

p Þ
Hðnþ2Þ=4

200 ðτ0; τ0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ0

p Þ

þ
Z

τ

τ0

dτ0

τeqðτ0Þ
Tnþ2ðτ0ÞDðτ; τ0ÞHnrqðτ; τ0Þ

�
:

ðC16Þ

The method presented here can be extended to the case
where particle number is conserved.
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