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In this paper we investigate a particular ghost-free bimetric theory that exhibits the partially massless
(PM) symmetry at quadratic order. At this order the global SOð1; 4Þ symmetry of the theory is enhanced to
SOð1; 5Þ. We show that this global symmetry becomes inconsistent at cubic order, in agreement with a
previous calculation. Furthermore, we find that the PM symmetry of this theory cannot be extended beyond
cubic order in the PM field. More importantly, it is shown that the PM symmetry cannot be extended to
quartic order in any theory with one massless and one massive spin-2 fields.
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I. INTRODUCTION

Nonlinear partially massless gravity is an elusive theory
closely related to massive [1–3] and bimetric gravity [4,5]
but propagating fewer degrees of freedom.1 At quadratic
order in the action, this is achieved via an additional gauge
symmetry that removes the scalar mode of the massive
spin-2 field described in both of these theories [9–15]. A
particularly appealing feature of this theory is that it
requires a positive cosmological constant that is propor-
tional to the squared mass of the spin-2 field. Since
all corrections to the latter must be proportional to the
mass itself, the cosmological constant can be naturally
small [16].
The existence of this theory is in doubt, however, as

several no-go results prevent extensions of the partially
massless (PM) gauge symmetry beyond quadratic order
[16–20]. In particular, in Refs. [16,17], it was shown that
massive gravity suffers from an obstruction at fourth order
in the action that prevents the extension of the PM
symmetry beyond cubic order. Different approaches where
one considers either one or a multiplet of partially massless
fields yield similar no-go results [18–20].
An alternative proposal is to consider partially massless

gravity as a theory that requires an additional massless
spin-2 field, i.e. as a bimetric theory with a particular set of
coupling constants [21–24]. There, the PM symmetry is
seen to exist up to sixth order in a derivative expansion of
the equations of motion [24]. Furthermore, in a de Sitter
background, a global version of the local PM symmetry is
found to all orders in the fields [21]. If the massless spin-2
field transforms nontrivially under the PM symmetry, it
may then be possible to overcome the results found in

massive gravity.2 Indeed, variation of the action under the
PM transformation yields

δS ∝
Z

d4xðΓμνδφμν þ ΠμνδhμνÞ; ð1:1Þ

where Γμν and Πμν denote the variations with respect to the
massive φμν and massless hμν fields. In principle, the
second term in Eq. (1.1) can counter the obstruction found
in massive gravity at fourth order.
A similar setup has recently been considered in Ref. [25],

which studies the global symmetries of the theory of a
massless spin-2 field and a partially massless graviton order
by order in the fields. Therein, it is shown that, while the
theory admits a global SOð1; 5Þ symmetry to lowest order
in the fields, the global symmetry algebra fails to close at
cubic order. Crucially, this inconsistency of the global
symmetry algebra implies the inconsistency of the local PM
symmetry beyond cubic order. The analysis of Ref. [25]
does not directly apply to the candidate PM bimetric theory,
however. The reasons are twofold: first, the cubic-order
Lagrangian is not derived directly from the bimetric theory;
second, the set of parameters considered in Ref. [25]
actually make the cubic-order Lagrangian of the bimetric
theory vanish.
In this paper, we analyze the gauge and global sym-

metries of the candidate PM bimetric theory beyond
quadratic order in the fields. We find that at cubic order
the bimetric action reduces to that considered in Ref. [25]
after appropriate field redefinitions and choice of param-
eters. The analysis of global symmetries then reveals that
the SOð1; 5Þ symmetry algebra does not close in agreement
with the general results of Ref. [25]. The only way to satisfy
the closure condition is to consider parameters in the theory

*luis.apolo@fysik.su.se
†fawad@fysik.su.se
‡anders.lundkvist@fysik.su.se
1For reviews on massive and bimetric gravity, see Refs. [6–8].

2This is somewhat reminiscent of higher spin theories where
the massless spin-2 field necessarily transforms under the higher
spin gauge symmetry.
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where the distinction between the massless and the would-
be partially massless fields becomes degenerate and the
expansion of the action breaks down. Interestingly, this is
precisely the set of parameters for which the equations of
motion of the bimetric theory reproduce the equations of
motion of conformal gravity at lowest order in a derivative
expansion [23,24]. Since bimetric gravity is an otherwise
consistent theory to all orders, we conclude that the
enhanced SOð1; 5Þ symmetry seen at quadratic order is
accidental. Hence, the candidate PM theory admits only the
standard SOð1; 4Þ global symmetries associated with the
background de Sitter spacetime.
Next, we consider the PM gauge symmetry of the

bimetric theory and attempt to extend it beyond quadratic
order in the massive spin-2 field. The nonclosure of the
global symmetry algebra would imply the absence of local
PM symmetry beyond cubic order in the PM field [25].
However, this analysis is not valid for all the possible
parameters of the bimetric theory, particularly for the
choice of parameters that make all odd powers of the
PM field vanish. Ideally, since the bimetric action is known
to all orders, one could search for the additional constraint
that is responsible for removing one of the degrees of
freedom from the spectrum. This is a technically challeng-
ing task due to the square root structure characterizing the
potential of massive and bimetric gravity. Furthermore, as
recalled above, an order-by-order construction of the PM
gauge symmetry already fails at fourth order in massive
gravity. Hence, it proves rewarding to check first whether
the bimetric theory is able to overcome this “fourth-order
wall.” A hint that this may be possible is given by Eq. (1.1)
provided that the massless spin-2 field transforms non-
trivially under the PM symmetry. Although the massless
field does transform nontrivially, we find that the local PM
transformations cannot be extended beyond cubic order in
the bimetric theory for any choice of parameters, in
agreement with Ref. [25]. In fact, there is no quartic-order
action that would allow us to do so. Among all the possible
quartic-order actions, the one from bimetric gravity comes
the closest to realizing the partially massless symmetry at
nonlinear order.
The paper is organized as follows. In Sec. II, we present

the candidate PM bimetric theory and expand the action up
to cubic order in the massive field. In Sec. III, we find the
nonlinear transformations of the massless and massive
fields that leave the action invariant up to cubic order. In
Sec. IV, we consider the algebra of global symmetries and
show that the enhanced global symmetry algebra is incon-
sistent beyond quadratic order. Finally in Sec. V, we
consider the action to fourth order and show that no
nonlinear extension of the PM symmetry can keep the
action invariant, despite the additional contributions from
the massless spin-2 field. Furthermore, we find that no
quartic action can render the action invariant under the PM
symmetry. We end with our conclusions in Sec. VI. The

explicit expression for the fourth-order action is given in
the Appendix.

II. BIMETRIC GRAVITY AND PARTIAL
MASSLESSNESS

In this section, we present the quadratic theory of a
partially massless field and introduce the candidate parti-
ally massless bimetric theory of Ref. [21]. We then expand
the action of the latter up to cubic order in the massive
(would-be partially massless) field.

A. Partial masslessness

Let us begin by discussing the free theory of a partially
massless field φμν in four dimensions [9–15]. The latter is
described by the Fierz-Pauli action [26] on a de Sitter
background,

IFP ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
−
1

2
∇̄ρφμν∇̄ρφμν þ 1

2
∇̄ρφ∇̄ρφ

− ∇̄ρφ∇̄σφ
ρσ þ ∇̄ρφμν∇̄νφμρ ð2:1Þ

þ Λ

�
φμνφ

μν −
1

2
φ2

�
−
1

2
m2ðφμνφ

μν − φ2Þ
�
; ð2:2Þ

where φ ¼ ḡμνφμν, ḡμν is the de Sitter metric and Λ is the
cosmological constant. In Eq. (2.2), the mass of the
graviton satisfies the Higuchi bound [27]

m2 ≥
2

3
Λ; ð2:3Þ

which is the minimum value of the mass for which the
action (2.2) is ghost free.
While the Fierz-Pauli action admits a gauge symmetry

whenm2 → 0, namely, the standard diffeomorphism invari-
ance of General Relativity, this action also features a gauge
symmetry when m2 saturates Eq. (2.3). This is the partially
massless symmetry where φμν transforms as

δφμν ¼
�
∇̄μ∇̄ν þ

Λ
3
ḡμν

�
ξðxÞ: ð2:4Þ

In particular, the PM symmetry is responsible for removing
the helicity-0 component of the otherwise massive graviton.
Thus, in four dimensions, partially massless fields propa-
gate four degrees of freedom, in contrast to the five degrees
of freedom of a massive graviton.
In principle, a self-interacting theory of partially mass-

less fields can be constructed order by order in the fields
until, eventually, a pattern emerges which points toward a
nonlinear formulation. However, as discussed in the
Introduction, several no-go results suggest that such a
theory does not exist as long as it contains at most
two derivatives and one or several partially massless
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fields [16–20]. Here, we will consider the candidate
partially massless theory of Refs. [21–24], which can in
principle circumvent these no-go results by adding a
massless spin-2 field to the spectrum.

B. Bimetric action

Consistent nonlinear theories of two interacting spin-2
fields are described by the bimetric action [4,5]

I½g; f� ¼ m2

Z
d4x

� ffiffiffiffiffiffi
−g

p
Rg þ α2

ffiffiffiffiffiffi
−f

p
Rf

− 2μ2
ffiffiffiffiffiffi
−g

p X4
n¼0

βnenðSÞ
�
; ð2:5Þ

where gμν and fμν are two metrics of which the perturba-
tions correspond to linear combinations of a massless and a
massive spin-2 fields. The constants m and μ in Eq. (2.5)
have dimensions of energy, while α and βn are dimension-
less constants. The functions enðSÞ denote the elementary
symmetric polynomials of the matrix S, which is defined by

Sμν ¼ ð
ffiffiffiffiffiffiffiffiffiffi
g−1f

q
Þμ

ν
: ð2:6Þ

In particular, we are interested in

e0ðSÞ ¼ 1; e2ðSÞ ¼
1

2
½trðSÞ2 − trðS2Þ�; e4ðSÞ ¼

ffiffiffiffiffiffi
−f

p
ffiffiffiffiffiffi−gp :

ð2:7Þ

The candidate nonlinear theory of partially massless
gravity that propagates an additional massless spin-2 field
was identified in Ref. [21]. It corresponds to the bimetric
action (2.5) with the following choice of βn parameters,

β0 ¼ 3α−2β2; β1 ¼ 0; β3 ¼ 0; β4 ¼ 3α2β2;

ð2:8Þ

where β2 and α are left undetermined. Note that it is
possible to recover the quadratic action of a partially
massless field given in Eq. (2.2) for several choices of
βn parameters. However, it is only for Eq. (2.8) that the
bimetric action admits a global version of the local PM
symmetry, namely, one where the function ξ in Eq. (2.4) is
constant. Furthermore, for this set of parameters, the local
PM symmetry can be extended up to sixth order in a
derivative expansion of the equations of motion [23,24].
Interestingly, the βn parameters given in Eq. (2.8) make

the potential of bimetric gravity symmetric upon exchange
of the gμν and fμν metrics. They also guarantee that
proportional solutions to the equations of motion, namely,

gμν ¼ ḡμν; fμν ¼ c2ḡμν; ð2:9Þ

leave the constant c undetermined. In particular, the
equations of motion admit proportional de Sitter solutions
where the cosmological constant is given by

Λ ¼ 3μ2

α2
ð1þ α2c2Þβ2: ð2:10Þ

This allows us to express the action entirely in terms of α
and the dimensionful constants m, μ, and Λ.

C. Bimetric action at quadratic and cubic order

Let us now consider the bimetric action to quadratic and
cubic order in the massive field φμν. We begin by expand-
ing the gμν and fμν metrics around a de Sitter background
ḡμν with a cosmological constant given by Eq. (2.10),3

gμν ¼ ḡμν þ δgμν; fμν ¼ c2ðḡμν þ δfμνÞ: ð2:11Þ

In particular, we have

gμν ¼ ḡμν − δgμν þ δgμαδgαν þ � � � ;

fμν ¼ 1

c2
ðḡμν − δfμν þ δfμαδfαν þ � � �Þ; ð2:12Þ

where all indices are raised with the background metric ḡμν.
The massless hμν and massive φμν fields correspond to
linear combinations of δgμν and δfμν. Up to normalization,
they are given by [21]

δgμν ¼ hμν − α2φμν; δfμν ¼ hμν þ
1

c2
φμν: ð2:13Þ

The factors of α2 and c2 are important. For example, if we
set α2c2 ¼ 1, the gμν ↔ fμν exchange symmetry of the
potential extends also to the full action and leads to a
vanishing cubic-order action for the φμν field.4

The action of bimetric gravity (2.5) can then be written as

I½~g;φ� ¼ ð1þ α2c2Þm2

Z
d4x

ffiffiffiffiffiffi
−~g

p �
R − 2Λþ

X∞
n¼2

Ln

�
;

ð2:14Þ

where all contractions, covariant derivatives, and curvature
tensors are defined with respect to the metric

~gμν ¼ ḡμν þ hμν; ~gμν ¼ ḡμν − hμν þ hμαhαν þ � � �
ð2:15Þ

3While it is common to refer to δA as the perturbation of the
field A, for convenience we parametrize the perturbation of the
metric fμν by c2δfμν instead.

4In fact, all the terms in the action containing an odd number of
φμν fields vanish.
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In other words, in Eq. (2.15), we have resummed the
perturbations of the massless spin-2 fields to all orders.
Hence, the bimetric action reduces to the action of a
symmetric rank-2 tensor φμν coupled nonminimally to
the metric ~gμν. This is equivalent to expanding the action
(2.5) around the off-shell metric ~gμν via

gμν ¼ ~gμν − α2φμν; fμν ¼ c2 ~gμν þ φμν: ð2:16Þ

A relative factor of c2 is still allowed since, in the absence
of the φμν perturbations, the equations of motion for the gμν
and fμν metrics both reduce to the Einstein equation,
namely, Rμν − 1

2
~gμνRþ Λ~gμν ¼ 0.

The Lagrangian density Ln in Eq. (2.14) depends on an
n-number of φμν fields and contains single powers of the
Ricci tensor. The fact that L1, which would be linear in φμν,
is missing from the action can be traced back to the relative
sign and the extra factors of α2 and c2 accompanying φμν in
Eqs. (2.13) and (2.16). Indeed, while the coefficients of φμν

in the expansion around the de Sitter background, cf.
Eqs. (2.11) and (2.13), diagonalize the action at quadratic
order, they also guarantee the absence of linear instabilities
in the action when expanding around the off-shell metric
~gμν in Eq. (2.16).
At quadratic order in φμν, we find that, up to total

derivatives,

L2 ¼
α2

2c2

�
−
1

2
∇ρφμν∇ρφμν þ 1

2
∇ρφ∇ρφ −∇ρφ∇σφ

ρσ þ∇ρφμν∇νφμρ þ 2Λ
3

φμνφ
μν

−
Λ
6
φ2 þ Gμν

�
−
1

2
~gμνφρσφ

ρσ þ 1

4
~gμνφ2 þ 2φρ

νφμρ − φφμν

��
; ð2:17Þ

where φ ¼ φμ
μ and Gμν ¼ Rμν − 1

2
R~gμν þ Λ~gμν is the

Einstein tensor with the cosmological constant term. In
particular, if we expand L2 around the de Sitter back-
ground, cf. Eq. (2.15), we recover the Fiertz-Pauli action
given in Eq. (2.2) where the mass of the spin-2 field φμν

saturates the Higuchi bound [27],

m2
PM ¼ 2

3
Λ: ð2:18Þ

Hence, at quadratic order, the bimetric action describes a
massless and a partially massless field propagating a total
of 2þ 4 degrees of freedom [9–15]. Let us note that this
action, which is defined to all orders in the massless
excitation hμν, was also considered in the bottom-up, i.e.
order-by-order, approach to partially massless bimetric
gravity of Ref. [25].
At cubic order, the Lagrangian density derived from the

bimetric action (2.5) reads

L3 ¼ λ3

�
−
1

2
φρσ∇ρφ

γλ∇σφγλ þ
1

2
φρσ∇ρφ∇σφ − φρσ∇σφ∇γφρ

γ − φρσ∇σφρ
γ∇γφ

þ φρσ∇γφ∇γφρσ −
1

4
φ∇γφ∇γφ − φρσ∇γφρσ∇λφγ

λ þ 1

2
φ∇γφ∇λφγ

λ

þ 2φρσ∇σφγλ∇λφρ
γ þ φρσ∇γφσλ∇λφρ

γ − φρσ∇λφσγ∇λφρ
γ −

1

2
φ∇γφσλ∇λφσγ

þ 1

4
φ∇λφσγ∇λφσγ þ 1

4

�
Rρσ −

1

6
R~gρσ

�
ð8φρ

γφσ
λφγλ − 2φρσφγλφ

γλ

− 4φρ
γφσγφþ φρσφ

2Þ þ 1

12
Λð4φρ

γφρσφσγ − φφσγφ
σγÞ

�
; ð2:19Þ

where λ3 is given by

λ3 ¼
α2

2c4
ðα2c2 − 1Þ: ð2:20Þ

This Lagrangian is different from the cubic-order
Lagrangian considered in Ref. [25], which, in particular,
does not contain any curvature tensors and is the simplest

covariantization of the cubic-order Lagrangian found in
Ref. [17]. Nevertheless, it is possible to recover the cubic
Lagrangian of Ref. [25] via a field redefinition of the
metric and the massive field. These field redefinitions are
given by

φμν → φμν −
ðα2c2 − 1Þ

4c2
φμρφ

ρ
ν; ð2:21Þ
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~gμν → ~gμν −
α2ðα2c2 − 1Þ

8c4

×

�
5

3
~gμνφα

γφαβφβγ −
3

2
~gμνφφβγφ

βγ þ 1

3
~gμνφ3

þ φαβφ
αβφμν − φ2φμν þ 3φφμ

αφνα − 4φαβφμ
αφν

β

�
:

ð2:22Þ

III. GAUGE SYMMETRIES TO CUBIC
ORDER IN THE ACTION

We now proceed to determine the PM gauge sym-
metry of the action order by order in the massive field
φμν. It will be convenient to find the transformation of
the fields in a de Sitter background first and then to
extend these results to all orders in the massless field
hμν. We will use a notation similar to that of Ref. [25]
where, schematically,

IðnÞ ∼
Z

d4x
ffiffiffiffiffiffi
−~g

p
φðn−2Þ∇φ∇φ; δðnÞγ O ∼ φðnÞ∇∇γ;

ð3:1Þ

for any field O. In Eq. (3.1), γ is a function of the
coordinates that parametrizes the PM transformation,
and Ið0Þ corresponds to the Einstein-Hilbert action.

A. Zeroth order

At zeroth order in the massive field, the variation of the
action reads

δIð0Þ ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p δIð0Þ

δ~gμν
δð0Þ ~gμν; ð3:2Þ

which admits the standard gauge symmetry associated with
diffeomorphisms, i.e.

δð0Þ ~gμν ¼ ∇ðμξνÞ; ð3:3Þ

where we (anti)symmetrize indices with unit weight, e.g.
∇ðμξνÞ ¼ 1

2
ð∇μξν þ∇νξμÞ. In particular, the nonlinear

analysis of Eef. [24] suggests that, under PM transforma-
tions of φμν, the metric transforms up to a convenient
normalization by

δð0Þγ ~gμν ¼ −
�
α2c2 − 1

2c2

�
∇μ∇νγ: ð3:4Þ

Since Eq. (3.4) looks just like a diffeomorphism, at this
order in φμν, we can always counter the transformation of
the metric by a change of coordinates δxμ ¼ ∇μγ.

B. Second order

At second order in φμν, variation of the action yields

δIð1Þ ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
δIð2Þ

δφμν
δð0Þφμν þ

δIð0Þ

δ~gμν
δð1Þ ~gμν

�
: ð3:5Þ

The second term is the contribution from the Einstein-
Hilbert action which vanishes in the de Sitter (dS) back-
ground ḡμν. Then, δγIð1Þ vanishes in the background if

δγIð1ÞjdS ¼ 0 ⇒ δð0Þγ φμνjdS ¼
�
∇̄μ∇̄ν þ

Λ
3
ḡμν

�
γ; ð3:6Þ

where ∇̄μ denotes the covariant derivative with respect to
ḡμν. Equation (3.6) is the standard PM gauge transforma-
tion (2.4) that, at quadratic order, is responsible for
removing one of the degrees of freedom of what is
otherwise a massive graviton [9–15].
We can extend the invariance of the action away from the

de Sitter background provided that the metric transforms
nontrivially under the partially massless gauge symmetry.
Indeed, we have

δγIð1Þ ¼ 0 ⇒ δð0Þγ φμν ¼
�
∇μ∇ν þ

Λ
3
~gμν

�
γ; ð3:7Þ

δð1Þγ ~gμν ¼ −
α2

2c2
ð2∇ðμφνÞρ −∇ρφμνÞ∇ργ: ð3:8Þ

Note that this result was previously obtained in Ref. [25]
since the authors’ quadratic action agrees with ours up to
normalization. Note also that the transformation of the
metric is ambiguous up to total derivatives. The latter
correspond to field-dependent diffeomorphisms, i.e. to
transformations of the form δð1Þ ~gμν ¼ 2∇ðμξνÞ where ξμ

depends linearly on φμν. For example, ξμ may be given by
ξμ ¼ φμν∇νγ. These extra transformations do not change
our results, however.

C. Third order

At third order in the massive field, the variation of the
action reads

δIð2Þ ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
δIð3Þ

δφμν
δð0Þφμν þ

δIð2Þ

δφμν
δð1Þφμν

þ δIð2Þ

δ~gμν
δð0Þ ~gμν þ δIð0Þ

δ~gμν
δð2Þ ~gμν

�
: ð3:9Þ

Since the last term in Eq. (3.9) vanishes in the de Sitter
background, vanishing of δγIð2Þ determines the linear

transformation of the massive field δð1Þγ φμν. We find
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δγIð2ÞjdS ¼ 0 ⇒ δð1Þγ φμνjdS ¼
�
α2c2 − 1

2c2

�

×

�
∇̄ðμφνÞρ∇̄ργ −

1

2
∇̄ρφμν∇̄ργ −

Λ
3
φμνγ

�

ð3:10Þ

up to a transformation of the form δð0Þ~γ φμν where
~γ ¼ φγ. The latter corresponds to a field-dependent PM
transformation which can be trivially cancelled via an

appropriate shift of δð2Þγ φμν. Although these kinds of
transformations do affect the higher-order transformations
of the fields, they leave our results unchanged. The
normalization used in Eq. (3.4) was chosen so as to

simplify the expression for δð1Þγ φμν given above.
We now have all the ingredients necessary to carry out

the analysis of global symmetries in the bimetric theory. We

should note that, while δð1Þγ ~gμν agrees with Ref. [25], δ
ð1Þ
γ φμν

does not. The differences in δð1Þγ φμν can be traced back to
1) the nonlinear field redefinition given in Eq. (2.21) and
2) an extra diffeomorphism that results from having a

nonzero δð0Þγ ~gμν transformation. However, it is not immedi-
ately clear whether these extra ingredients of the bimetric
theory are enough to change the no-go results found
in Ref. [25].
Before we turn to the analysis of global symmetries, let

us generalize the above results away from the de Sitter
background. The vanishing of δγIð2Þ under PM transfor-
mations yields

δγIð2Þ ¼ 0⇒ δð1Þγ φμν ¼
�
α2c2− 1

2c2

�

×

�
∇ðμφνÞρ∇ργ−

1

2
∇ρφμν∇ργ−

Λ
3
φμνγ

�
; ð3:11Þ

δð2Þγ ~gμν ¼
α2

c2

�
α2c2 − 1

2c2

��
∇ðμφνÞσ −

1

2
∇σφμν

�
φσρ∇ργ;

ð3:12Þ

up to trivial transformations similar to the ones discussed
above and in the previous section.

IV. GLOBAL SYMMETRIES

Let us now consider the global symmetries of the
candidate PM theory. As in any gauge theory with non-
trivial boundary conditions, not all of the generators of
gauge symmetries are proportional to the constraints.
Indeed, some generators receive boundary contributions
that lead to finite, nonvanishing charges. For asymptotically
de Sitter spacetimes, the set of diffeomorphisms leads to an
SOð1; 4Þ global symmetry group. Since the partially

massless theory possesses an enlarged set of gauge
symmetries, it is natural to expect an enhancement of
the global symmetry group, although this is not automati-
cally guaranteed.5

This question was recently considered in Ref. [25] in an
order-by-order approach to partially massless bimetric
gravity. The authors of Ref. [25] first compute the algebra
generated by the PM and diffeomorphism transformations
to lowest order in the fields. This field-independent algebra
is the algebra of global symmetries provided that there exist
gauge parameters that leave the background invariant. To
lowest order in the fields, the global symmetry algebra of
the partially massless theory is enhanced from SOð1; 4Þ to
SOð1; 5Þ [25]. Since in de Sitter space there is no analog of
the Coleman-Mandula theorem, this enhancement of space-
time symmetries may be consistent at higher orders; i.e. it
may be realized in an interacting theory.
Let us first check that the bimetric theory admits an

enhanced set of global symmetries. The reason why this
check is nontrivial is that the commutator of symmetries

depends on the transformation of δð1Þγ φμν, which differs
from that considered in Ref. [25]. It is convenient to write
down the PM transformations of the massless and massive
fields up to linear order in the fields. First, we expand
around the de Sitter background using Eq. (2.15). Then,
from Eqs. (3.4), (3.6), and (3.10), we have

δγhμν ¼ λ1∇̄μ∇̄νγ −
λ1
2
ð2∇̄ðμhνÞσ − ∇̄σhμνÞ∂σγ

− λ2ð2∇̄ðμφνÞσ − ∇̄σφμνÞ∂σγ; ð4:1Þ

δγφμν ¼
�
∇̄μ∇̄ν þ

Λ
3
ḡμν

�
γ −

1

2
ð2∇̄ðμhνÞσ − ∇̄σhμνÞ∂σγ

þ Λ
3
hμνγ þ λ1

Λ
3
φμνγ

−
λ1
2
ð2∇̄ðμφνÞσ − ∇̄σφμνÞ∂σγ; ð4:2Þ

where λ1 and λ2 are given by

λ1 ¼ −
α2c2 − 1

2c2
; λ2 ¼

α2

2c2
: ð4:3Þ

On the other hand, the transformations of hμν and φμν under

diffeomorphisms, denoted here by ~δξ, are given by the
standard expressions

~δξhμν ¼ 2∇̄ðμξνÞ þ ξσ∇̄σhμν þ 2∇̄ðμξσhνÞσ;

~δξφμν ¼ ξσ∇̄σφμν þ 2∇̄ðμξσφνÞσ: ð4:4Þ

5See Ref. [28] for the construction of charges in the quadratic
partially massless theory.
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To zeroth order in the fields, the algebra of PM trans-
formations (δγ) and diffeomorphisms (~δξ) closes,

½~δξ; ~δη�O ¼ ~δχO; ½δγ; ~δη�O ¼ δτO; ½δγ; δβ�O ¼ ~δθO;

ð4:5Þ
where O denotes either the massless hμν or massive φμν

fields, and the parameters χμ, τ, and θμ are given by

χμ∂μ ≡ ½η; ξ� ¼ ðηρ∇̄σξ
μ − ξσ∇̄ση

μÞ∂μ; ð4:6Þ

τ≡ ½η; γ� ¼ ησ∂σγ; ð4:7Þ

θμ∂μ ≡ ½β; γ� ¼ ðα2c2 þ 1Þ2
16c4

ð∂σγ∇̄σ∂μβ − ∂σβ∇̄σ∂μγÞ∂μ:

ð4:8Þ

These results agree with Ref. [25] except that the commu-
tator ½δγ; ~δη�hμν does not vanish. This reflects the fact that
the metric has a nonzero PM transformation at lowest order
and, more importantly, that it leads to a consistent algebra.
In order to determine the global symmetry algebra, one

must first find the parameters γ and ξ which leave the
background ~gμν ¼ ḡμν and φμν ¼ 0 invariant. We have
two cases.
Case 1.—Diffeomorphisms and PM transformations vanish

independently, whereby the only solution to

0 ¼ δγ ḡμν ¼ λ1∇̄μ∇̄νγ;

0 ¼ δγφμν ¼
�
∇̄μ∇̄ν þ

Λ
3
ḡμν

�
γ; ð4:9Þ

is γ ¼ 0. In this case, the global symmetry algebra is
the standard SOð1; 4Þ symmetry algebra of de Sitter
space obtained from Eq. (4.6) and generated by the
solutions to

0 ¼ δξḡμν ¼ 2∇̄ðμξνÞ: ð4:10Þ

Case 2.—Use a diffeomorphism to undo the PM trans-
formation of the background. In this case, we can
define a new PM transformation δ0γ ¼ δγ − ~δζ with
ζμ ¼ − λ1

2
∂μγ where, to lowest order in the fields,

δ0γgμν ¼ 0, while the transformation of φμν is left
unchanged. Then, the background is left invariant
provided that

0 ¼ δξḡμν ¼ 2∇̄ðμξνÞ;

0 ¼ δ0γφμν ¼
�
∇̄μ∇̄ν þ

Λ
3
ḡμν

�
γ: ð4:11Þ

These equations do admit nontrivial solutions. Fur-
thermore, since the algebra (4.5) is left unchanged by

the prescription δγ → δ0γ , the solutions to Eq. (4.11)
lead to an SOð1; 5Þ algebra as shown explicitly in
Ref. [25].

This is not the end of the story, however, since the
closure of the algebra (4.5) may not hold to higher orders.
This would render the global symmetry algebra incon-
sistent at higher orders. To check whether this is the case for
the candidate PM bimetric theory, let us write down the
transformations of the fields under the δ0γ PM transforma-
tions. Up to linear order in the fields, these are given by

δ0γhμν ¼ −λ2ð2∇̄ðμφνÞσ − ∇̄σφμνÞ∂σγ; ð4:12Þ

δ0γφμν ¼
�
∇̄μ∇̄ν þ

Λ
3
ḡμν

�
γ −

1

2
ð2∇̄ðμhνÞσ − ∇̄σhμνÞ∂σγ

þ Λ
3
hμνγ þ λ1

Λ
3
φμνγ −

λ1
2
ð2∇̄ðμφνÞσ − ∇̄σφμνÞ∂σγ

þ λ1
2
ð∂σγ∇̄σφμν þ 2∇̄ðμ∂σγφνÞσÞ: ð4:13Þ

The crucial point is that on the parameters generating the
global symmetries, i.e. on the solutions to Eq. (4.11), these
transformations reduce to the transformations considered in
Ref. [25] for appropriate values of the coefficients λ1 and
λ2. In particular, this implies that at linear order in the
massive field, the commutator of two PM transformations
does not close [25],

½δ0γ; δ0β�φμν ¼ ~δξφμν þ
ðα2c2 þ 1Þ2

16c4
Cμν; ð4:14Þ

where ~δξφμν is given by Eq. (4.4) for some ξμ while Cμν is a
function of φμν and the parameters γ and β. Since the
commutator of two PM transformations should close into a
diffeomorphism, cf. Eq. (4.5), the second term in the rhs of
Eq. (4.14) should vanish.
Thus, the algebra of global symmetries becomes incon-

sistent at higher orders. One should note that this analysis is
not valid for the choice α2c2 ¼ 1, in which case both the
left- and right-hand sides of Eq. (4.14) vanish. Also note
that the action contains only factors of α2 and c2, so setting
α2c2 ¼ −1 is valid insofar as it leads to a real action.
However, this choice of parameters leads to an action (2.14)
where our calculations can no longer be trusted. That the
expansion of the action breaks down for this choice of
parameters can be seen directly from Eq. (2.13), where the
choice α2c2 ¼ −1 degenerates and leads to an inconsistent
parametrization of the massless and massive fields. Indeed,
when α2c2 ¼ −1, the quadratic action can no longer be
diagonalized in terms of massless and massive excitations.
Interestingly, this is precisely the set of parameters for
which the equations of motion of the bimetric theory
reproduce those of conformal gravity at lowest order in
derivatives [23,24].
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Since the bimetric theory exists to all orders and can be
rendered free of pathologies [29], we conclude that the
global symmetry algebra SOð1; 5Þ is accidental. Thus, the
candidate PM theory admits only the standard SOð1; 4Þ
global symmetries of de Sitter space.

V. GAUGE SYMMETRIES TO FOURTH ORDER

Let us return to the gauge symmetries of the candidate
partially massless bimetric theory. The absence of an
enhanced global symmetry group may be taken as a hint
of a larger problem. Indeed, in the analysis of Ref. [25] the
nonclosure of the global symmetry algebra shows that the
local PM symmetry cannot be extended beyond cubic
order. However, the analysis of Ref. [25] is not valid for the
choice α2c2 ¼ 1 of the bimetric theory where terms odd in

the PM field vanish. Therefore, a natural question to ask is
whether the PM gauge symmetry can be extended beyond
cubic order in the bimetric theory for any choice of
parameters. In principle, this is a hopeless endeavor since
success at fourth order does not guarantee success at fifth or
higher order. A more promising approach would be to
search for an additional first class constraint in the
Hamiltonian formulation of bimetric gravity that would
be responsible for removing the helicity-0 mode from the
massive spin-2 field. However, the square root structure in
the potential in Eq. (2.5) makes this a complicated task.
Furthermore, the fact that an order-by-order approach fails
in massive gravity already at fourth order makes a similar
calculation in the bimetric setup worthwhile.
At fourth order in φμν, the variation of the action reads

δIð3Þ ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
δIð4Þ

δφμν
δð0Þφμν þ

δIð3Þ

δφμν
δð1Þφμν þ

δIð2Þ

δφμν
δð2Þφμν þ

δIð3Þ

δ~gμν
δð0Þ ~gμν

þ δIð2Þ

δ~gμν
δð1Þ ~gμν þ δIð0Þ

δ~gμν
δð3Þ ~gμν

�
; ð5:1Þ

where Ið4Þ is the fourth-order action described by the
Lagrangian density (A1) given in the Appendix. As before,
let us first consider variation of the action in the de Sitter
background ḡμν. Then, the last term in Eq. (5.1) vanishes.

On the other hand, the variations δð0Þγ ~gμν and δð1Þγ ~gμν of the
massless field do contribute to the variation of the action.
These have already been determined in Eqs. (3.4) and (3.8),
and the only undetermined term in Eq. (5.1) is the second-

order variation of φμν, namely, δð2Þγ φμν.
Unfortunately, the presence of δðnÞgμν terms is not

sufficient to overcome the no-go result found in massive
gravity [16]. There, it was found that terms of the form

δγIð3Þ ∼
R
d4xφ∇̄φ∇̄φγ cannot be cancelled for any choice

of δð2Þγ φμν. Indeed, in the bimetric theory, we find that, for a
relatively simple transformation of the form

δð2Þγ φμν ¼
�
1þ α4c4

2c4

��
∇̄ðμφνÞσ −

1

2
∇̄σφμν

�
φσρ∂ργ

þ Λ
2

�
1þ α2c2

2c2

�
2
�
1

3
ḡμνφρσφ

ρσ − φμ
αφαν

�
γ;

ð5:2Þ

variation of the action yields

δγIð3Þ ¼
α2m2ð1þ α2c2Þ3Λ

48c6

Z
d4x

ffiffiffiffiffiffi
−ḡ

p
γf2φρσ∇̄ρφ∇̄σφ − 2φρσ∇̄ρφ

γλ∇̄σφγλ

− 2φρσ∇̄σφ∇̄γφρ
γ þ 2φρσ∇̄γφ∇̄γφρσ − φ∇̄γφ∇̄γφ − φ∇̄σφ

σγ∇̄λφγ
λ

− 2φρσ∇̄γφρσ∇̄λφγ
λ þ 2φ∇̄γφ∇̄λφγ

λ þ 2φρ
γφρσ∇̄λ∇̄γφσ

λ − 2φρ
γφρσ∇̄λ∇̄λφσγ

þ 4φρσ∇̄σφγλ∇̄λφρ
γ − 2φρσ∇̄λφσγ∇̄λφρ

γ − φ∇̄γφσλ∇̄λφσγ þ φ∇̄λφσγ∇̄λφσγg:
It is possible to further simplify the variation of the action at the cost of introducing more terms in δð2Þγ φμν. For example,
adding the following terms to Eq. (5.2),

δð2Þγ φμν → δð2Þγ φμν þ
�
1þ α2c2

4c2

�
2
�
−
2

3
Λḡμνφρσφ

ρσγ þ 2Λφμ
αφανγ − ∇̄σðφσ

ρ∇̄μφν
ργÞ

þ ∇̄μðφν
σ∇̄σφ

ρ
ργÞ − ∇̄σðφρμ∇̄νφ

σργÞ − ∇̄σðφσρφρμ∇̄νγÞ þ
1

2
∇̄μð∇̄σφ

σ
νφγÞ

þ ∇̄μðφσρ∇̄νφ
σργÞ − 1

2
φ∇̄μφ∇̄νγ −

1

2
∇̄μφ∇̄νφγ þ

1

2
φ∇̄μ∇̄νφγ þ ðμ ↔ νÞ

�
;
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reduces the variation of the action to

δγIð3Þ ¼
α2m2ð1þ α2c2Þ3Λ

48c6

Z
d4x

ffiffiffiffiffiffi
−ḡ

p
γf4φρσ∇̄σφγλ∇̄λφρ

γ − 2φρσ∇̄ρφ
γλ∇̄σφγλ

− 2φρσ∇̄λφσγ∇̄λφρ
γ − φ∇̄γφσλ∇̄λφσγ þ φ∇̄λφσγ∇̄λφσγg: ð5:3Þ

One would expect that adding more terms to δð2Þγ φμν could
render the action invariant under PM transformations,
however unnatural the transformation may become. Un-

fortunately, there are no such terms, and there is no δð2Þγ φμν

transformation that leads to an invariant action, in agree-
ment with the general results of Ref. [25]. Thus, the
partially massless symmetry cannot be extended beyond
cubic order, and the bimetric theory with the βn parameters
given in Eq. (2.8) propagates a total of 2þ 5 degrees of
freedom corresponding to a massless and a massive spin-2
field.

A. Generalizing the quartic action

It is now reasonable to ask whether there exists any
action for which the PM symmetry can be extended beyond
the cubic order. In order to investigate this, let us once again
consider Eq. (5.1), where we now let Ið4Þ be the most
general fourth-order two-derivative action, rather than the
one given in Eq. (A1). In the de Sitter background ḡμν, this
action can be schematically written as

Ið4Þ ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p fφ2∇̄φ∇̄φþ Λφ4g; ð5:4Þ

with all possible index contractions and arbitrary coeffi-
cients in front of all terms. The second-order variation of

φμν, δ
ð2Þ
γ φμν, remains undetermined in Eq. (5.1), whereas all

other terms have already been fixed at lower orders. We

then consider the most general δð2Þγ φμν transformation with
at most two derivatives. It is schematically given by

δð2Þγ φ ¼ ∇̄φ∇̄φγ þ φ∇̄2φγ þ φ∇̄φ∇̄γ þ φ2∇̄2γ þ Λφ2γ:

ð5:5Þ

Up to cubic order in the massive field, the variation of the
action takes the following form,

δIð3Þ ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p
γfφ2∇̄4φþ φ∇̄φ∇̄3φ

þ φ∇̄2φ∇̄2φþ ∇̄φ∇̄φ∇̄2φ

þ Λφ2∇̄2φþ Λφ∇̄φ∇̄φþ Λ2φ3g; ð5:6Þ

where once again all index contractions and coefficients
have been omitted. The question is now if it is possible to

choose the parameters of Ið4Þ and δð2Þγ φμν in such a way
that this variation vanishes and the partially massless
symmetry is preserved up to quartic order. It turns out
that one can choose parameters such that all terms in
Eq. (5.6) vanish, except for terms of the form Λφ∇̄φ∇̄φγ.
In fact, the best one can do is reduce the variation of the
action given in Eq. (5.6) to that of the bimetric theory
given in Eq. (5.3). The quartic action for which this
maximal cancellation of terms takes place is precisely
that of bimetric gravity.6 Hence, the bimetric theory is the
closest we can get to a working PM theory with only two
spin-2 fields.

VI. CONCLUSIONS

In this paper, we have analyzed the gauge and global
symmetries of the candidate partially massless bimetric
gravity up to fourth order in the massive field. We have
seen that the action of the theory reduces to the action
of a massive spin-2 field coupled nonminimally to
gravity. Using the appropriate parametrization of the
massless and massive fields, cf. Eqs. (2.13) and (2.16),
we have shown that the cubic-order action does not
vanish. In particular, this action reduces to the cubic
action of a partially massless field studied in Ref. [17],
as well as the covariantization considered in Ref. [25],
after suitable field redefinitions. Crucially, we have seen
that the global symmetry analysis of Ref. [25] extends
to the bimetric setup. This implies that the SOð1; 5Þ
global symmetry of the candidate PM bimetric theory is
accidental and only the standard SOð1; 4Þ symmetry of
de Sitter space survives nonlinearly.
The absence of an SOð1; 5Þ global symmetry is not

surprising in light of our second result. Namely, the PM
gauge symmetry cannot be extended beyond cubic order
in the action, in agreement with the results presented in
Ref. [25]. In fact, there is no quartic action which is
invariant under an extension of the PM symmetry. Thus,
the presence of an additional massless spin-2 field is not
sufficient to render the quartic interactions of a massive
spin-2 field invariant under PM transformations. Our
results fall in line with similar results found in the

6Note that the quartic action can be changed from that of
bimetric gravity at the cost of adding extra terms to the
transformation δð2Þγ φμν. We have ignored such terms throughout
this paper since they do not remove the nontrivial contributions
to Eq. (5.1) that originate from lower-order terms.
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literature that rule out the existence of a nonlinear theory
of partially massless gravity describing one or a multiplet
of PM fields [16–20].
One way to avoid these no-go results is to further

enlarge the spectrum of the theory, i.e. to add lower or
higher spin fields that transform nontrivially under the
PM gauge symmetry. For example, Refs. [30,31] con-
sider a three-dimensional model of colored gravity
interacting nontrivially with SUðNÞ vector fields.
Upon spontaneous breaking of the SU(N) symmetry,
it is seen that all except one of the spin-2 fields
become partially massless. However, this construction
works only in three dimensions, and it is not obvious
whether the partially massless symmetry can be
extended beyond quadratic order. A related four-dimen-
sional theory where the partially massless symmetry
can be extended to all orders will be presented
in Ref. [32].
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APPENDIX: FOURTH-ORDER ACTION

The quartic Lagrangian in the action (2.14) is compli-
cated but not particularly illuminating. Its distinguishing
feature is that terms without derivatives, i.e. terms propor-
tional to the cosmological constant, depend on the param-
eters α2 and c2, unlike the quadratic (2.17) and cubic (2.19)
Lagrangian densities. Up to total derivatives, the quartic
Lagrangian density reads

L4 ¼ λ4

�
Λ

6ð1 − α2c2 þ α4c4Þ ½4ð5 − 2α2c2 þ 5α4c4Þφρ
γφρσφσ

λφγλ − 4ð1þ α2c2Þ2φρ
ρφσ

λφσγφγλ

− ð1þ 6α2c2 þ α4c4Þφρσφ
ρσφγλφ

γλ þ 8α2c2φρ
ρφ

σ
σφγλφ

γλ − α2c2φρ
ρφ

σ
σφ

γ
γφ

λ
λ�

þ 1

3

�
Rρσ −

1

8
Rgρσ

�
ð96φρ

γφσ
λφγ

μφλμ − 16φρσφγ
μφγλφλμ − 24φρ

γφσγφλμφ
λμ

þ 12φρσφ
γ
γφλμφ

λμ − 48φρ
γφσ

λφγλφ
μ
μ þ 12φρ

γφσγφ
λ
λφ

μ
μ − 2φρσφ

γ
γφ

λ
λφ

μ
μÞ

þ 16φρσφγλ∇σφλμ∇γφρ
μ − 8φρ

γφρσ∇σφ
λμ∇γφλμ þ 4φρ

ρφ
σγ∇σφ

λμ∇γφλμ

þ 8φρ
γφρσ∇σφ

λ
λ∇γφ

μ
μ − 4φρ

ρφ
σγ∇σφ

λ
λ∇γφ

μ
μ − 16φρ

γφρσ∇γφ
μ
μ∇λφσ

λ

þ 8φρ
ρφ

σγ∇γφ
μ
μ∇λφσ

λ − 16φρσφγλ∇γφρ
μ∇λφσμ − 16φρσφγλ∇σφργ∇λφ

μ
μ

þ 16φρσφγλ∇γφρσ∇λφ
μ
μ − 16φρ

γφρσ∇γφσ
λ∇λφ

μ
μ þ 8φρ

ρφ
σγ∇γφσ

λ∇λφ
μ
μ

þ 16φρ
γφρσ∇λφ

μ
μ∇λφσγ − 8φρ

ρφ
σγ∇λφ

μ
μ∇λφσγ − 2φρσφ

ρσ∇λφ
μ
μ∇λφγ

γ

þ φρ
ρφ

σ
σ∇λφ

μ
μ∇λφγ

γ − 16φρσφγλ∇γφρσ∇μφλ
μ − 16φρ

γφρσ∇λφσγ∇μφλ
μ

þ 8φρ
ρφ

σγ∇λφσγ∇μφλ
μ þ 4φρσφ

ρσ∇λφγ
γ∇μφλ

μ − 2φρ
ρφ

σ
σ∇λφγ

γ∇μφλ
μ

− 16φρσφγλ∇λφγμ∇μφρσ þ 8φρσφγλ∇μφγλ∇μφρσ þ 32φρσφγλ∇λφσμ∇μφργ

− 8φρσφγλ∇μφσλ∇μφργ þ 32φρ
γφρσ∇γφλμ∇μφσ

λ − 16φρ
ρφ

σγ∇γφλμ∇μφσ
λ

þ 16φρ
γφρσ∇λφγμ∇μφσ

λ − 8φρ
ρφ

σγ∇λφγμ∇μφσ
λ − 16φρ

γφρσ∇μφγλ∇μφσ
λ

þ 8φρ
ρφ

σγ∇μφγλ∇μφσ
λ − 4φρσφ

ρσ∇λφγμ∇μφγλ þ 2φρ
ρφ

σ
σ∇λφγμ∇μφγλ

þ 2φρσφ
ρσ∇μφγλ∇μφγλ − φρ

ρφ
σ
σ∇μφγλ∇μφγλ

�
; ðA1Þ

where λ4 ¼ α2

32c6 ð1 − α2c2 þ α4c4Þ.

APOLO, HASSAN, and LUNDKVIST PHYSICAL REVIEW D 94, 124055 (2016)

124055-10



[1] C. de Rham and G. Gabadadze, Generalization of the Fierz-
Pauli action, Phys. Rev. D 82, 044020 (2010).

[2] C. de Rham, G. Gabadadze, and A. J. Tolley, Resummation
of Massive Gravity, Phys. Rev. Lett. 106, 231101 (2011).

[3] S. F. Hassan and R. A. Rosen, On non-linear actions for
massive gravity, J. High Energy Phys. 07 (2011) 009.

[4] S. F. Hassan and R. A. Rosen, Bimetric gravity from ghost-
free massive gravity, J. High Energy Phys. 02 (2012) 126.

[5] S. F. Hassan and R. A. Rosen, Confirmation of the
secondary constraint and absence of ghost in massive
gravity and bimetric gravity, J. High Energy Phys. 04
(2012) 123.

[6] K. Hinterbichler, Theoretical aspects of massive gravity,
Rev. Mod. Phys. 84, 671 (2012).

[7] C. de Rham, Massive gravity, Living Rev. Relativ. 17, 7
(2014).

[8] A. Schmidt-May and M. von Strauss, Recent developments
in bimetric theory, J. Phys. A 49, 183001 (2016).

[9] S. Deser and R. I. Nepomechie, Gauge invariance versus
masslessness in de Sitter space, Ann. Phys. (N.Y.) 154, 396
(1984).

[10] S. Deser and A. Waldron, Gauge Invariances and Phases of
Massive Higher Spins in (A)dS, Phys. Rev. Lett. 87, 031601
(2001).

[11] S. Deser and A. Waldron, Partial masslessness of higher
spins in (A)dS, Nucl. Phys. B607, 577 (2001).

[12] S. Deser and A. Waldron, Stability of massive cosmological
gravitons, Phys. Lett. B 508, 347 (2001).

[13] S. Deser and A. Waldron, Null propagation of partially
massless higher spins in (A)dS and cosmological constant
speculations, Phys. Lett. B 513, 137 (2001).

[14] Yu. M. Zinoviev, On massive high spin particles in (A)dS,
arXiv:hep-th/0108192.

[15] S. Deser and A. Waldron, Conformal invariance of partially
massless higher spins, Phys. Lett. B 603, 30 (2004).

[16] C. de Rham, K. Hinterbichler, R. A. Rosen, and A. J. Tolley,
Evidence for and obstructions to nonlinear partially mass-
less gravity, Phys. Rev. D 88, 024003 (2013).

[17] Yu. M. Zinoviev, On massive spin 2 interactions, Nucl.
Phys. B770, 83 (2007).

[18] S. Deser, M. Sandora, and A. Waldron, Nonlinear partially
massless from massive gravity?, Phys. Rev. D 87, 101501
(2013).

[19] S. Garcia-Saenz and R. A. Rosen, A non-linear extension of
the spin-2 partially massless symmetry, J. High Energy
Phys. 05 (2015) 042.

[20] S. Garcia-Saenz, K. Hinterbichler, A. Joyce, E. Mitsou, and
R. A. Rosen, No-go for partially massless spin-2 Yang-
Mills, J. High Energy Phys. 02 (2016) 043.

[21] S. F. Hassan, A. Schmidt-May, and M. von Strauss, On
partially massless bimetric gravity, Phys. Lett. B 726, 834
(2013).

[22] S. F. Hassan, A. Schmidt-May, andM. von Strauss, Bimetric
theory and partial masslessness with Lanczos-Lovelock
terms in arbitrary dimensions, Classical Quantum Gravity
30, 184010 (2013).

[23] S. F. Hassan, A. Schmidt-May, and M. von Strauss, Higher
derivative gravity and conformal gravity from bimetric and
partially massless bimetric theory, Universe 1, 92 (2015).

[24] S. F. Hassan, A. Schmidt-May, andM. vonStrauss, Extended
Weyl invariance in a bimetricmodel and partialmasslessness,
Classical Quantum Gravity 33, 015011 (2016).

[25] E. Joung, W. Li, and M. Taronna, No-Go Theorems for
Unitary and Interacting Partially Massless Spin-Two Fields,
Phys. Rev. Lett. 113, 091101 (2014).

[26] M. Fierz and W. Pauli, On relativistic wave equations for
particles of arbitrary spin in an electromagnetic field, Proc.
R. Soc. A 173, 211 (1939).

[27] A. Higuchi, Forbidden mass range for spin-2 field theory in
de Sitter space-time, Nucl. Phys. B282, 397 (1987).

[28] K. Hinterbichler and R. A. Rosen, Partially massless mo-
nopoles and charges, Phys. Rev. D 92, 105019 (2015).

[29] S. F. Hassan and M. Kocic (to be published).
[30] S. Gwak, E. Joung, K. Mkrtchyan, and S.-J. Rey, Rainbow

valley of colored (anti) de Sitter gravity in three dimensions,
J. High Energy Phys. 04 (2016) 055.

[31] S. Gwak, E. Joung, K. Mkrtchyan, and S.-J. Rey, Rainbow
vacua of colored higher spin gravity in three dimensions,
J. High Energy Phys. 05 (2016) 150.

[32] L. Apolo and S. F. Hassan, Non-linear partially massless
symmetry in an SO(1,5) continuation of conformal gravity,
arXiv:1609.09514.

[33] J. M. Martín-García, xAct: Efficient tensor computer alge-
bra for Mathematica, 2002–2015, http://www.xact.es.

[34] T. Nutma, xTras: A field-theory inspired xAct package for
Mathematica, Comput. Phys. Commun. 185, 1719 (2014).

GAUGE AND GLOBAL SYMMETRIES OF THE CANDIDATE … PHYSICAL REVIEW D 94, 124055 (2016)

124055-11

http://dx.doi.org/10.1103/PhysRevD.82.044020
http://dx.doi.org/10.1103/PhysRevLett.106.231101
http://dx.doi.org/10.1007/JHEP07(2011)009
http://dx.doi.org/10.1007/JHEP02(2012)126
http://dx.doi.org/10.1007/JHEP04(2012)123
http://dx.doi.org/10.1007/JHEP04(2012)123
http://dx.doi.org/10.1103/RevModPhys.84.671
http://dx.doi.org/10.12942/lrr-2014-7
http://dx.doi.org/10.12942/lrr-2014-7
http://dx.doi.org/10.1088/1751-8113/49/18/183001
http://dx.doi.org/10.1016/0003-4916(84)90156-8
http://dx.doi.org/10.1016/0003-4916(84)90156-8
http://dx.doi.org/10.1103/PhysRevLett.87.031601
http://dx.doi.org/10.1103/PhysRevLett.87.031601
http://dx.doi.org/10.1016/S0550-3213(01)00212-7
http://dx.doi.org/10.1016/S0370-2693(01)00523-8
http://dx.doi.org/10.1016/S0370-2693(01)00756-0
http://arXiv.org/abs/hep-th/0108192
http://dx.doi.org/10.1016/j.physletb.2004.10.007
http://dx.doi.org/10.1103/PhysRevD.88.024003
http://dx.doi.org/10.1016/j.nuclphysb.2007.02.005
http://dx.doi.org/10.1016/j.nuclphysb.2007.02.005
http://dx.doi.org/10.1103/PhysRevD.87.101501
http://dx.doi.org/10.1103/PhysRevD.87.101501
http://dx.doi.org/10.1007/JHEP05(2015)042
http://dx.doi.org/10.1007/JHEP05(2015)042
http://dx.doi.org/10.1007/JHEP02(2016)043
http://dx.doi.org/10.1016/j.physletb.2013.09.021
http://dx.doi.org/10.1016/j.physletb.2013.09.021
http://dx.doi.org/10.1088/0264-9381/30/18/184010
http://dx.doi.org/10.1088/0264-9381/30/18/184010
http://dx.doi.org/10.3390/universe1020092
http://dx.doi.org/10.1088/0264-9381/33/1/015011
http://dx.doi.org/10.1103/PhysRevLett.113.091101
http://dx.doi.org/10.1098/rspa.1939.0140
http://dx.doi.org/10.1098/rspa.1939.0140
http://dx.doi.org/10.1016/0550-3213(87)90691-2
http://dx.doi.org/10.1103/PhysRevD.92.105019
http://dx.doi.org/10.1007/JHEP04(2016)055
http://dx.doi.org/10.1007/JHEP05(2016)150
http://arXiv.org/abs/1609.09514
http://www.xact.es
http://www.xact.es
http://www.xact.es
http://dx.doi.org/10.1016/j.cpc.2014.02.006

