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“Diagonal” spatially inhomogeneous (SI) models are introduced under the assumption of the existence
of (proper) intrinsic symmetries and can be seen, in some sense, as complementary to the Szekeres models.
The structure of this class of spacetimes can be regarded as a generalization of the (twist-free) locally
rotationally symmetric geometries without any global isometry containing, however, these models as
special cases. We consider geometries where a six-dimensional algebra IC of intrinsic conformal vector
fields (ICVFs) exists that acts on a two-dimensional (pseudo)-Riemannian manifold. Its members Xα—
constituted of three intrinsic Killing vector fields and three proper and gradient ICVFs—and the specific
form of the gravitational field are given explicitly. An interesting consequence, in contrast with the
Szekeres models, is the immediate existence of conserved quantities along null geodesics. We check
computationally that the magnetic part Hab of the Weyl tensor vanishes, whereas the shear σab and the
electric part Eab share a common eigenframe irrespective of the fluid interpretation of the models. A side
result is the fact that the spacetimes are foliated by a set of conformally flat three-dimensional timelike
slices when the anisotropy of the flux-free fluid is described only in terms of the three principal
inhomogeneous “pressures” pα, or equivalently when the Ricci tensor shares the same basis of
eigenvectors with σab and Eab. The conformal flatness also indicates that it is highly possible that a
ten-dimensional algebra of ICVFs Ξ that acts on the three-dimensional timelike slices exists, enriching in
that way the set of conserved quantities admitted by the SI models found in the present paper.
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I. INTRODUCTION

An inspection of the Einstein field equations (EFEs)

Ga
b ≡ Ra

b −
1

2
Rδab ¼ Ta

b ð1Þ

reveals the rich and strong correlation between the geom-
etry of spacetime and the dynamics. The latter is primarily
encoded in a realistic1 energy-momentum tensor Tab.
However, even if we assume that the spacetime does not
contain any dynamical fields, gabðxcÞ itself becomes a
dynamical variable, showing the complexity that arises
from this duality. It is thus evident that any intention to
simplify gabðxcÞ with some kind of symmetry must take
into account the fusion between the gravitational field and
the spacetime geometry.
On the other hand, observable quantities necessitate the

existence of a unit timelike vector field ua representing
an average velocity [1] and its kinematical quantities θ
(volume expansion scalar), σab (anisotropic expansion
trace-free tensor), ωba (the congruence’s twist tensor),

and _ua (nongeodesic indication 1-form) describe the dis-
tortion of the integral curves of ua as measured in the rest
space of a comoving observer,

θ≡ ua;bhab; σab ≡ uðc;dÞ

�
hcahdb −

1

3
hcdhab

�
;

_ua ≡ ua;bub; ωba ≡ u½c;d�hcahdb; ð2Þ

where hab ¼ gab þ uaub is the projection tensor normal to
ua. In the generic case there are no a priori reasons to
impose special features on the timelike congruence and
only the interplay of physics (plus observations) and
geometry with the inclusion of appropriate boundary data
(at spatial or null past/future infinity) should enforce the
need for such characteristics.
The third constituent element in this “arena” is the

presence of a matter fluid which is described in terms of
the geometry and the kinematics as

Ta
b ¼ ρuaub þ phab þ qaub þ uaqb þ πab; ð3Þ

where ρ and p are the energy density and the isotropic
pressure, respectively, qa is the direction of the momentum
flow, and πab is the anisotropic and trace-free pressure
tensor,
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1Realistic implies that the dynamical portions of Tab must be

derived from a set of well-established phenomenological laws
and not by hand.
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ρ≡ Tabuaub p≡ 1

3
Tabhab;

qa ≡ −hcaTcdud; πab ≡
�
hcahdb −

1

3
hcdhab

�
Tcd: ð4Þ

Each of the above dynamical components has (and must
have) a phenomenologically sound meaning [2] that can be
justified from observations at some acceptable cosmologi-
cal scale. It should be noticed that the choice of the observer
is not unique and can be chosen either comoving ua or
noncomoving ~uað≠ uaÞ, in which case the interpretation for
each one should be completely different, leading to the
notion of tilted models [3].
Spatially inhomogeneous (SI) models [4] have contrib-

uted significantly to our understanding of structure
formation and the effect of local density and pressure
fluctuations in the accelerated phase of the Universe. It is
clear that they represent not an alternative to the linearized
version of the perturbed Friedmann-Lemaître-Robertson-
Walker models, but rather exact perturbation solutions
within a homogeneous and isotropic background. Although
to date a quite generic SI model without special character-
istics (in the sense that will become transparent in the next
sections) has not been found, the known exact SI solutions
can serve as toy models in various directions [5].
Szekeres’ solution [6] was the first SI model without

any (global) isometry and, as such, is well fitted along the
aforementioned research lines. From a geometrical and
kinematical point of view, it admits a tetrad of unit vector
fields fua; xa; ya; zag that are hypersurface orthogonal and
any pair fua; xag, fua; yag, fua; zag is surface forming,
which implies that

ykLuxk ¼ zkLuxk ¼ 0;

xkLuyk ¼ zkLuyk ¼ 0;

xkLuzk ¼ ykLuzk: ð5Þ

In addition, the unit timelike vector field ua is geodesic,
consistent with a dust fluid content (Refs. [7,8] provide a
generalization of the Szekeres spacetime with p ≠ 0),
which results in the Szekeres family of quasisymmetric
models [9,10],

ds2 ¼ −dt2 þ S2
�½ðln S=EÞ0�2

ϵþ F
dr2

þ dy2 þ dz2

V2f1þ k
4
½ðy − YÞ2 þ ðz − ZÞ2�g2

�
; ð6Þ

ds2 ¼ −dt2 þ S2
�½ðln S=EÞ0�2

F
dr2

þ 4ðdy2 þ dz2Þ
½ðy − YÞ2 þ ðz − ZÞ2�2

�
; ð7Þ

where k ¼ ϵ=V2, and YðrÞ, ZðrÞ, VðrÞ, and FðrÞ are
arbitrary functions of the radial coordinate. An important
property of these models is the vanishing of the magnetic
part of the Weyl tensor,

1

2
ηac

ijCijbducud ≡Hab ¼ 0; ð8Þ

which implies that gravitational radiation cannot propagate
[11,12] within this class of models. Essentially, Eq. (8) is
true for the general diagonal metric (ua ¼ C−1δat )

ds2 ¼ gabdxadxb ¼ A2dx2 þ B2dz2 − C2dt2 þD2dy2;

ð9Þ

and therefore it can be seen entirely as an “artifact” of the
specific geometrical character of the tetrad fua; xa; ya; zag
irrespective of further dynamical restrictions. Spacetimes
that satisfy Eq. (8) are usually referred as purely “electrical”
and a lot of work has been done regarding the dynamical
structure and the existence of perfect fluid models (see,
e.g., Ref. [13] and references cited therein) with vanishing
Hab. The analysis is focused mainly on perfect fluids with a
barotropic equation of state p ¼ pðρÞ or rotational dust
(geodesic) models.
The key feature of the family (6) or (7) is the conformal

flatness of the three-dimensional slices t ¼ const [9] which,
geometrically, could be reminiscent of the constant curva-
ture of the two-dimensional hypersurfaces t; r ¼ const and
the subsequent existence of a six-dimensional algebra of
intrinsic conformal vector fields (ICVFs) X satisfying [10]

pc
apd

bLXpcd ¼ 2ϕðXÞpab; ð10Þ

where pab ¼ hab − xaxb is the projection tensor normal
to the pair fua; xag and, given the structure of Eq. (6) or
Eq. (7), represents the induced metric of the two-
dimensional manifold u∧x ¼ 0.
The notion of intrinsic symmetries was introduced in

Ref. [14–17], but their covariant form was not. In order to
investigate the implications of the existence of geometric
symmetries in general relativity we must take into account
the holonomy group structure of the spacetime manifold
together with the associated local diffeomorphisms [18].
Furthermore, it is necessary to reformulate the necessary
and sufficient (integrability) conditions (coming from the
existence of the symmetry) in a covariant way and study
their consequences in the kinematics and dynamics of the
corresponding model. The fact that Szekeres models admit
(proper) ICVFs that act on two-dimensional (and possibly
three-dimensional) submanifolds shows that ICVFs could
be more relevant and impose far less restrictions than the
full CVF models, which are very rare [4].
The purpose of the present paper is to extend the

investigation of the existence of ICVFs to spacetimes with
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the metric (9), thus providing a kind of geometrical
classification with respect to the intrinsic conformal algebra
without assuming any matter content, and thus providing a
much richer diversity of possible physically sound models
than those that have been reported so far [13]. In particular,
in Sec. II we assume that a six-dimensional algebra of
ICVFs exists that acts on the timelike distribution x∧z ¼ 0,
which implies that the latter has constant curvature and the
resulting spacetimes can be referred to as quasisymmetric.
We give the explicit form of the ICVFs and the associated
spacetime metrics and show computationally that the
magnetic part Hab of the Weyl tensor vanishes, whereas
the shear σab and the electric part Eab ¼ Cacbducud share a
common eigenframe irrespective of the fluid interpretation
of the models. Furthermore, nontilted perfect fluids (where,
in general, p and ρ do not satisfy a barotropic equation of
state) cannot be excluded at once since the H-divergence
constraint is trivially satisfied. Two interesting results
then arise: in contrast with the Szekeres models, there
exist infinite conserved quantities along null geodesics.
Furthermore, the hypersurfaces x ¼ const are conformally
flat when the fluid is flux free (qa ¼ 0) and its anisotropy is
described only in terms of the three principal inhomo-
geneous “pressures” pα or, equivalently, when the Einstein
tensor Ga

b is “diagonal.” One should expect the existence
of a ten-dimensional algebra of ICVFs Ξ of the x⊥
distribution that satisfies

ĥcaĥ
d
bLΞĥcd ¼ 2ϕðΞÞĥab; ð11Þ

where ĥab ¼ gab − xaxb is regarded as the induced metric
of x⊥. In Sec. III, for completeness, we also give the six-
dimensional algebra of ICVFs that act on the x∧u ¼ 0
spacelike distribution when _ua ≠ 0 ¼ xa;bx

b. As expected,
the x slices are also conformally flat provided that Ta

b ¼
diagðρ; p1; p2; p3Þ. Section IV includes our conclusions
and further areas of research.
Throughout this paper, the following conventions are

used: the spacetime manifold is endowed with a Lorentzian
metric of signature (−;þ;þ;þ), spacetime indices are
denoted by lower case latin letters a; b;… ¼ 0, 1, 2, 3,
spatial frame indices are denoted by lower case greek letters
α; β;… ¼ 1, 2, 3, and we use geometrized units such
that 8πG ¼ 1 ¼ c.

II. SPATIALLY INHOMOGENEOUS AND
IRROTATIONAL MODELS OF TYPE II

We consider a spacetime geometry where a unit timelike
vector field ua is twist free (ωab ¼ 0) but nongeodesic
( _ua ≠ 0). We make the assumption that there exist three
independent spacelike unit vector fields fx; y; zg, normal to
ua, and each of these is hypersurface orthogonal

x½axb;c� ¼ y½ayb;c� ¼ z½azb;c� ¼ 0: ð12Þ

The unit spacelike vector field xa is taken to be geodesic,
i.e., ðxaÞ� ≡ xa;bxb ¼ 0 and the pairs fua; xag, fua; yag,
and fua; zag are surface forming, satisfying Eq. (5).
Under these conditions, the most general metric adapted

to the geodesic coordinates of xa has the following form:

ds2 ¼ gabdxadxb ¼ dx2 þ B2dz2 − C2dt2 þD2dy2;

ð13Þ

where the functions Bðt;x;y;zÞ, Cðt;x;y;zÞ, andDðt;x;y;zÞ
depend on all four coordinates. It follows from Eq. (13) that
the magnetic part of the Weyl tensor with respect to ua

vanishes (Hab ¼ 0) and, in general, the Petrov type is I, that
is, Eab ¼ diagð0; E1; E2; E3Þ.
Essentially, the induced metric of the distribution

x∧z ¼ 0 is represented by the second-order symmetric
tensor pab ≡ gab − xaxb − zazb, where pk

axk ¼ 0 ¼ pk
azk.

We assume that there exists a six-dimensional algebra
ICðXAÞ (A ¼ 1;…; 6) of ICVFs that act on a two-
dimensional pseudo-Riemannian manifold that obeys

pc
apd

bLXgcd ¼ pc
apd

bLXpcd ≡ ∇̄ðbXaÞ ¼ 2ϕðXÞpab;

ð14Þ

where ϕðXAÞ are the conformal factors of the vectors XA
that are lying and acting on the submanifold x∧z ¼ 0, and
∇̄a represents a well-defined covariant derivative

∇̄cpab ¼ pk
cpi

ap
j
b∇kpij ¼ 0 ð15Þ

for any tensorial quantity

∇̄cΠa
b ≡ pk

cpa
i p

k
bΠi

j;k:

From the inspection of Eq. (14) it follows that C ¼ D,
and the general solution shows thatX1,X2,X3 are intrinsic
Killing vector fields and X4, X5, X6 are proper and
gradient ICVFs, i.e., their associated bivectors vanish
identically (∇̄½bXa� ¼ 0),

X1 ¼ Myt ¼ ðy − YÞ∂t þ ðt − TÞ∂y; ð16Þ

X2 ¼
�
k
4
½ðy − YÞ2 þ ðt − TÞ2� − 1

�
∂t

þ k
2
ðy − YÞðt − TÞ∂y; ð17Þ

X3¼
k
2
ðy−YÞðt−TÞ∂tþ

�
1þk

4
½ðy−YÞ2þðt−TÞ2�

�
∂y;

ð18Þ

X4 ¼ H ¼ ðt − TÞ∂t þ ðy − YÞ∂y; ð19Þ
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X5¼
�
k
4
½ðt−TÞ2þðy−YÞ2�þ1

�
∂tþ

k
2
ðt−TÞðy−YÞ∂y;

ð20Þ

X6¼
k
2
ðt−TÞðy−YÞ∂tþ

�
k
4
½ðy−YÞ2þðt−TÞ2�−1

�
∂y;

ð21Þ
with the associated conformal factors

ϕðX1Þ ¼ ϕðX2Þ ¼ ϕðX3Þ ¼ 0; ð22Þ

ϕðX4Þ ¼
�
1 −

k
4
½ðy − YÞ2 − ðt − TÞ2�

�
N; ð23Þ

ϕðX5Þ ¼ kNðt − TÞ;
ϕðX6Þ ¼ kNðy − YÞ: ð24Þ

Consequently, the two-dimensional manifold x∧z ¼ 0
has (locally) constant curvature and the metric (13) takes
the form

ds2 ¼ dx2 þ B2dz2 þ S2

V2

−dt2 þ dy2

f1þ ϵ
4V2 ½ðy − YÞ2 − ðt − TÞ2�g2 ;

ð25Þ

where Sðx; zÞ, YðzÞ, TðzÞ, and VðzÞ are arbitrary functions
of their arguments and ϵ ¼ �1 (≠ 0) corresponds to the
constant curvature of the hypersurfaces x; z ¼ const.
If we define the function Eðt; y; zÞ according to

(k ¼ ϵ=V2)

Eðt; y; zÞ ¼ V

�
1þ k

4
½ðy − YÞ2 − ðt − TÞ2�

�
; ð26Þ

then

Nðt; y; zÞ ¼ 1

Eðt; y; zÞ ; ð27Þ

and the metric becomes

ds2 ¼ dx2 þ B2dz2 þ S2

E2
ð−dt2 þ dy2Þ: ð28Þ

The case where the distribution x∧z ¼ 0 has zero curva-
ture is treated similarly. The ICVFs are

X1 ¼ Myt ¼ ðy − YÞ∂t þ ðt − TÞ∂y; ð29Þ

X2 ¼ ½ðy − YÞ2 þ ðt − TÞ2�∂t þ 2ðy − YÞðt − TÞ∂y; ð30Þ

X3 ¼ 2ðy − YÞðt − TÞ∂t þ ½ðy − YÞ2 þ ðt − TÞ2�∂y; ð31Þ

X4 ¼ H ¼ ðt − TÞ∂t þ ðy − YÞ∂y; ð32Þ

X5 ¼ ∂t; X6 ¼ ∂y; ð33Þ

with the conformal factors

ϕðX1Þ ¼ ϕðX2Þ ¼ ϕðX3Þ ¼ 0; ð34Þ

ϕðX4Þ ¼ −1; ð35Þ

ϕðX5Þ ¼
2ðt − TÞ

ðy − YÞ2 − ðt − TÞ2 ; ð36Þ

ϕðX6Þ ¼
2ðy − YÞ

ðt − TÞ2 − ðy − YÞ2 ; ð37Þ

and the metric function Eðt; y; zÞ is given by

Eðt; y; zÞ ¼ 1

Nðt; y; zÞ ¼
1

4
½ðy − YÞ2 − ðt − TÞ2�: ð38Þ

A potential application of the IC algebra ICðXAÞ found in
the present section could be the existence of conserved
currents and quantities. For example, consider a null
geodesic vector field la lying in the two-dimensional
manifold x∧z ¼ 0 and the quantities ntQA ¼ laXðAÞa. It
is easy to see that QA are conserved along the null
geodesics since

½QðAÞ�;ala ¼ lb;aXðAÞbla þ lalbXðAÞb;a ¼ 0: ð39Þ

For the metric (28) a null geodesic vector field is
la ¼ fðua þ yaÞ ¼ fna, where fðxaÞ satisfies ðf;knkÞna ¼
−fna;knk [we note that na ¼ ua þ ya is not geodesic for a
generic form of Eq. (28)].
In the search for fluid solutions we usually start by

analyzing the structure of the constraints of the EFEs (1).
The “temporal” constraints G0

α ¼ 0 for the metric (28)
reduce to

SB;tx − B;tS;x ¼ 0; ð40Þ

B;yEt þ B;tE;y þ EB;ty ¼ 0; ð41Þ

BSðEE;zt − E;tE;zÞ þ EB;tðES;z − SE;zÞ ¼ 0; ð42Þ

whereas the “spatial” constraints Gα
β ¼ 0 have the forms

B;yS;x − SB;yx ¼ 0; ð43Þ

BðES;zx − S;xE;zÞ þ B;xðSE;z − ES;zÞ ¼ 0; ð44Þ

BSðEE;zy − E;yE;zÞ þ EB;yðES;z − SE;zÞ ¼ 0; ð45Þ
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where a “,” denotes partial differentiation with respect to
the corresponding coordinate.
The general solution of the above set of coupled

differential equations is

B ¼ S½ln ðS=EÞ�;zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵþ FðzÞp ; ð46Þ

where FðzÞ is an arbitrary function and Eðt; y; zÞ is given in
Eq. (26) or Eq. (38).
It should be emphasized that the existence of the ICðXAÞ

intrinsic conformal algebra is a direct consequence of the
general solution (46), (26), or (38), and therefore in order to
determine the exact form of XA we could simply apply the
methodology of Ref. [10], thus avoiding Eq. (14).
Furthermore, we can verify that the Petrov type is D,
i.e., the eigenvalues of the electric part of the Weyl tensor
E1 ¼ E3 (in contrast with the Szekeres models where
E2 ¼ E3).
The EFEs (1) then become

Ga
b ¼ Ta

b ¼ diagðρ; p1; p2; p3Þ; ð47Þ

i.e., the Ricci tensor Ra
b shares the same basis of

eigenvectors with σab and Eab.
The directional and inhomogeneous “pressures” pα are

not necessarily equal and the fluid is, in general, anisotropic
for the comoving observers ua ¼ ðE=SÞδat. In order to
show whether a specific perfect fluid solution exists (i.e.,
p1 ¼ p2 ¼ p3), one must monitor the integrability con-
ditions, i.e., the consistent evolution of the nontrivial
constraints. We can prove, however, that the H-divergence
constraint is trivially satisfied. We observe computationally
that the three mutually orthogonal and unit spacelike
vector fields fxa; ya; zag areeigenvectorsof Eab ¼
diagð0; E1; E2; E1Þ and σab ¼ diagð0; σ1; σ2; σ3Þ. Because
Hab vanishes identically for the metric (28), the further
requirement p1 ¼ p2 ¼ p3 gives πab ¼ 0 and the H-
divergence equation [1]

ϵαβγσβδEδ
γ ¼ 0

implies that the shear σab and the electric part Eab tensors
commute, i.e., they must share a common eigenframe
(which they actually do).
An important consequence of the solution (26) or (38)

and Eq. (46) is that the Cotton-York tensor [19,20]

Cabc ¼ 2

�
Ra½b −

1

4
Rga½b

�
;c�

ð48Þ

vanishes, i.e., the hypersurfaces x ¼ const are conformally
flat. Therefore, in complete analogy with the two-
dimensional case, one should expect the existence of a

ten-dimensional algebra of ICVFs Ξ of the x⊥ distribution
that satisfies

ĥcaĥ
d
bLΞĥcd ¼ 2ϕðΞÞĥab; ð49Þ

where ĥab ¼ gab − xaxb is regarded as the induced metric
of x⊥.
We note that by relaxing the flux-free restrictions

[Eq. (40)–(42)], exact perfect-fluid models could exist
for noncomoving (tilted) observers ~ua, similar to the case
of spatially homogeneous tilted perfect models (e.g.,
Refs. [21–23]) which necessitates the presence of nonzero
vorticity [24]. This could also be possible for the Szekeres
geometries, i.e., when ~ua are comoving with the (perfect)
fluid, in which case the ua observers will interpret it as
imperfect.2 Again, if such a solution exists, it must be
proven that it evolves consistently along ua that “see” an
anisotropic and nonzero flux matter fluid.

III. SPATIALLY INHOMOGENEOUS AND
IRROTATIONAL MODELS OF TYPE III

We are interested in the case where the induced metric
of the distribution x∧u ¼ 0, represented by the second-
order symmetric tensor pab ≡ gab − xaxb þ uaub (where
pk
axk ¼ 0 ¼ pk

auk), admits the six-dimensional algebra
ICðXAÞ (A ¼ 1;…; 6) of ICVFs:

pc
apd

bLXpcd ¼ 2ϕðXÞpab; ð50Þ

X1 ¼ Myz; ð51Þ

X2 ¼
�
1þ k

4
½ðy − YÞ2 − ðz − ZÞ2�

�
∂y

þ k
2
ðy − YÞðz − ZÞ∂z; ð52Þ

X3 ¼
k
2
ðy − YÞðz − ZÞ∂y

þ
�
1þ k

4
½ðz − ZÞ2 − ðy − YÞ2�

�
∂z; ð53Þ

X4 ¼ H ¼ ðy − YÞ∂y þ ðz − ZÞ∂z; ð54Þ

X5 ¼
�
k
4
½ðy − YÞ2 − ðz − ZÞ2� − 1

�
∂y

þ k
2
ðy − YÞðz − ZÞ∂z; ð55Þ

2In Ref. [25] the “environment” was completely different since
the comoving interpretation remained that of a perfect fluid (i.e.,
the exact Szekeres model) and the tilted observers were derived
from a Lorentz boost of ua.
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X6 ¼
k
2
ðy − YÞðz − ZÞ∂y

þ
�
k
4
½ðz − ZÞ2 − ðy − YÞ2� − 1

�
∂z: ð56Þ

X4, X5, and X6 are proper and gradient ICVFs and the
conformal factors are given by

ϕðX1Þ ¼ ϕðX2Þ ¼ ϕðX3Þ ¼ 0; ð57Þ

ϕðX4Þ ¼
�
1 −

k
4
½ðy − YÞ2 þ ðz − ZÞ2�

�
N; ð58Þ

ϕðX5Þ ¼ kNðy − YÞ; ϕðX6Þ ¼ kNðz − ZÞ: ð59Þ

The two-dimensional manifold x∧u ¼ 0 is of constant
curvature and the metric (13) is

ds2 ¼ dx2 − C2dt2 þ S2

V2

dy2 þ dz2

f1þ ϵ
4V2 ½ðy − YÞ2 þ ðz − ZÞ2�g2 ;

ð60Þ

where Sðt; xÞ and YðtÞ, ZðtÞ, and VðtÞ are now arbitrary
functions of t, and ϵ ¼ �1 (≠ 0) corresponds to the
constant curvature of the hypersurfaces x; t ¼ const.
Similarly with type II, we define the function Eðt; y; zÞ

according to (k ¼ ϵ=V2)

Eðt; y; zÞ ¼ V

�
1þ k

4
½ðy − YÞ2 þ ðz − ZÞ2�

�
; ð61Þ

with

Nðt; y; zÞ ¼ 1

Eðt; y; zÞ ; ð62Þ

and the metric becomes

ds2 ¼ dx2 − C2dt2 þ S2

E2
ðdy2 þ dz2Þ: ð63Þ

For completeness we give the corresponding expressions
for the ICVFs and the metric for the case where the
curvature of x∧u ¼ 0 vanishes:

X1 ¼ Myz ¼ ðz − ZÞ∂y − ðy − YÞ∂z; ð64Þ

X2 ¼ ½ðy − YÞ2 − ðz − ZÞ2�∂y þ 2ðy − YÞðz − ZÞ∂z;

ð65Þ

X3 ¼ 2ðy − YÞðz − ZÞ∂y þ ½ðz − ZÞ2 − ðy − YÞ2�∂z;

ð66Þ

X4 ¼ H ¼ ðy − YÞ∂y þ ðz − ZÞ∂z; ð67Þ

X5 ¼ ∂y; X6 ¼ ∂z: ð68Þ

The conformal factors are

ϕðX1Þ ¼ ϕðX2Þ ¼ ϕðX3Þ ¼ 0; ð69Þ

ϕðX4Þ ¼ −1; ð70Þ

ϕðX5Þ ¼ −
2ðy − YÞ

ðy − YÞ2 þ ðz − ZÞ2 ; ð71Þ

ϕðX6Þ ¼ −
2ðz − ZÞ

ðy − YÞ2 þ ðz − ZÞ2 ; ð72Þ

and the metric function Eðt; y; zÞ assumes the form

Eðt; y; zÞ ¼ 1

Nðt; y; zÞ ¼
1

4
½ðy − YÞ2 þ ðz − ZÞ2�: ð73Þ

In contrast with the previous case, the spacetime (63) does
not allow the existence of conserved currents and quantities
constructed from null vector fields “living” in x∧u ¼ 0
due to the positive-definite character of the quasisymmetric
two-dimensional metric pab. However, we can check for a
flux-free solution which implies the “temporal” constraints
(G0

α ¼ 0)

CðES;tx − S;xE;tÞ þ C;xðSE;t − ES;tÞ ¼ 0; ð74Þ

CSðEE;ty − E;tE;yÞ þ EC;yðES;t − SE;tÞ ¼ 0; ð75Þ

CSðEE;zt − E;tE;zÞ þ EC;zðES;t − SE;tÞ ¼ 0; ð76Þ

and the associated “spatial” constraints (Gα
β ¼ 0)

SC;yx − C;yS;x ¼ 0; ð77Þ

SC;zx − C;zS;x ¼ 0; ð78Þ

C;yE;z þ C;zE;y þ EC;zy ¼ 0: ð79Þ

We can verify that the general solution of Eqs. (74)–(79) is

C ¼ S½ln ðS=EÞ�;tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵþ FðtÞp ; ð80Þ

where FðtÞ is an arbitrary function and Eðt; y; zÞ is given
in Eq. (61) or Eq. (73). In this type it also becomes
evident that the existence of the ICðXAÞ intrinsic con-
formal algebra is a direct consequence of the general
solution (80), (61), or (73).

PANTELIS S. APOSTOLOPOULOS PHYSICAL REVIEW D 94, 124052 (2016)

124052-6



Using the same arguments, the directional “pressures”
pα are, in general, not equal and the fluid is anisotropic.
This, however, does not exclude a priori a perfect-fluid
(nontilted) solution once the consistency of the integrability
conditions is established. In addition, the existence of
the general solution of Eqs. (74)–(79) is equivalent to
the fact that the x slices are conformally flat and timelike,
which indicates a ten-dimensional algebra of ICVFs ϒ
which will give rise to conserved quantities along null
geodesics of the form la ¼ f0ua þ f1ya þ f2za, where f0,
f1, and f2 are some functions satisfying the orthonormality
condition f20 ¼ f21 þ f22 and the geodesic assumption
ðf0ua þ f1ya þ f2zaÞ;blb ¼ 0.
Summarizing the results of Secs. II and III regarding the

conformal flatness of the x⊥ distribution in both types II
and III, we can speculate that a spacetime with the metric
(9) is foliated with conformally flat three-dimensional
hypersurfaces iff a six-dimensional subalgebra of ICVFs
exists that acts on two-dimensional submanifolds and the
u⊥ or x⊥ distributions are almost (1þ 2) decomposable (in
the spirit of the arguments in Ref. [10]). Equivalently, the
above holds true iff a six-dimensional subalgebra of ICVFs
exists that acts on two-dimensional (pseudo)-Riemannian
manifolds and the Ricci tensor shares a common basis of
eigenvectors with shear σab and the electric part Eab of the
Weyl tensor.

IV. CONCLUSIONS

It should be noticed that the existence of the six-
dimensional algebra of ICVFs that act on two-dimensional
manifolds is independent of the geodesic assumption of the
unit spacelike vector field xa, and the form of the metrics
(28) and (63) is altered only by an arbitrary function in the
gxx component with a subsequent change in the dynamics.
As such, the structure of the class of spacetimes presented
in this paper can be regarded as a generalization of the
(irrotational) locally rotationally symmetric geometries
without any global isometry which, however, contain these
models as special cases [26].
An interesting aspect of the analysis of the preceding

sections is the existence of infinite conserved quantities
along null geodesics originating from the ICVFs admitted
by the two-dimensional submanifold (in type II) or the x⊥
submanifold (in types II and III). Therefore, it could be
enlightening to determine the ten-dimensional algebra of
ICVFs due to the emerged conformal flatness of the

hypersurfaces x ¼ const when the fluid is flux free
(qa ¼ 0) and its anisotropy is described only in terms of
the three principal inhomogeneous “pressures” pα (or
equivalently when the Einstein tensor Ga

b is diagonal).
As we have seen, a perfect fluid solution was not

excluded a priori. In this direction, it would be interesting
to allow the inclusion of a cosmological constant Λ similar
to the case of the Szekeres models [27] or the Petrov type I
silent universes [28] where exact solutions have been
shown to exist. Furthermore, the models of type II
[Eqs. (28) and (46), with Eqs. (26) and (38)] or
type III [Eqs. (63) and (80), with Eqs. (61) and (73)]
could also be relevant for studying the effect of small
anisotropic and inhomogeneous “pressures” on the expan-
sion dynamics—either as the relic of various physical
sources [29] or as the result of backreaction terms of the
density fluctuations [30,31]—provided that the use of
purely phenomenological laws governing the appearance
of “pressures” is consistent with the kinetic theory
approach of the fluid thermodynamics.
Relaxing the flux-free restrictions [Eqs. (40)–(42) or

Eqs. (74)–(76)] opens the possibility that exact tilted
perfect-fluid solutions could be found for the spacetimes
presented in this paper. Unlike the symmetric Lemaître-
Tolman-Bondi subclass [32] (or the plane/hyperbolic
analogues) where a tilted (twisted) perfect-fluid solution
cannot exist [26] (due to the locally rotational symmetry), it
is far from obvious that the intrinsic locally rotational
symmetry induced from the ICVF could be strong enough
to forbid a noncomoving perfect-fluid interpretation.
We emphasize that every attempt to assign a dynamical

(vacuum or nonvacuum) interpretation to the spacetimes
presented in this paper must take into account the induced
(nonsymmetry) integrability conditions. This can be done
by examining whether a suitable set of initial data evolves
consistently, which is equivalent to demanding that the
constraints (spatial divergence and curl equations encoded
in the set of the initial data) are consistent with the
evolution equations, and hence that they are preserved
identically along the timelike congruence ua without
imposing new geometrical, kinematical, or dynamical
restrictions [11,12]. Therefore, it is necessary to covariantly
formulate the necessary and sufficient conditions coming
from the existence of the symmetry, and study their
consequences in the dynamics. We believe that all of the
above points are physically sound and require further
investigation.
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