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“Diagonal” spatially inhomogeneous (SI) models are introduced under the assumption of the existence
of (proper) intrinsic symmetries and can be seen, in some sense, as complementary to the Szekeres models.
The structure of this class of spacetimes can be regarded as a generalization of the (twist-free) locally
rotationally symmetric geometries without any global isometry containing, however, these models as
special cases. We consider geometries where a six-dimensional algebra ZC of intrinsic conformal vector
fields (ICVFs) exists that acts on a two-dimensional (pseudo)-Riemannian manifold. Its members X ,—
constituted of three intrinsic Killing vector fields and three proper and gradient ICVFs—and the specific
form of the gravitational field are given explicitly. An interesting consequence, in contrast with the
Szekeres models, is the immediate existence of conserved quantities along null geodesics. We check
computationally that the magnetic part H,, of the Weyl tensor vanishes, whereas the shear ¢, and the
electric part E,;, share a common eigenframe irrespective of the fluid interpretation of the models. A side
result is the fact that the spacetimes are foliated by a set of conformally flat three-dimensional timelike
slices when the anisotropy of the flux-free fluid is described only in terms of the three principal
inhomogeneous “pressures” p,, or equivalently when the Ricci tensor shares the same basis of
eigenvectors with ¢, and E,,. The conformal flatness also indicates that it is highly possible that a
ten-dimensional algebra of ICVFs E that acts on the three-dimensional timelike slices exists, enriching in

that way the set of conserved quantities admitted by the SI models found in the present paper.
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I. INTRODUCTION
An inspection of the Einstein field equations (EFEs)

1
G =R9, _§R5ab =T9, (1)

reveals the rich and strong correlation between the geom-
etry of spacetime and the dynamics. The latter is primarily
encoded in a realistic' energy-momentum tensor 7.
However, even if we assume that the spacetime does not
contain any dynamical fields, g,,(x¢) itself becomes a
dynamical variable, showing the complexity that arises
from this duality. It is thus evident that any intention to
simplify g,;,(x¢) with some kind of symmetry must take
into account the fusion between the gravitational field and
the spacetime geometry.

On the other hand, observable quantities necessitate the
existence of a unit timelike vector field u® representing
an average velocity [1] and its kinematical quantities 6
(volume expansion scalar), o,, (anisotropic expansion
trace-free tensor), wp, (the congruence’s twist tensor),
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Realistic implies that the dynamical portions of 7, must be
derived from a set of well-established phenomenological laws
and not by hand.
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and #“ (nongeodesic indication 1-form) describe the dis-
tortion of the integral curves of u? as measured in the rest
space of a comoving observer,

1
0 Ma;hhah, Oup = u(c;d) <h;hg - gthhab> s

ity = ugpu’, Wpy = u[c;dlhghg, (2)
where h,, = g, + u,uy, is the projection tensor normal to
u®. In the generic case there are no a priori reasons to
impose special features on the timelike congruence and
only the interplay of physics (plus observations) and
geometry with the inclusion of appropriate boundary data
(at spatial or null past/future infinity) should enforce the
need for such characteristics.

The third constituent element in this “arena” is the
presence of a matter fluid which is described in terms of
the geometry and the kinematics as

T = pu®u, + phy + q“up + u’qy + 7%, (3)

where p and p are the energy density and the isotropic
pressure, respectively, ¢g“ is the direction of the momentum
flow, and 7, is the anisotropic and trace-free pressure
tensor,
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1

p =T u'ub P EgTabh”h,

= —hST u,

1
Tab = </’l;hz — g /’lcld/’lab> Tcd' (4)

Each of the above dynamical components has (and must
have) a phenomenologically sound meaning [2] that can be
justified from observations at some acceptable cosmologi-
cal scale. It should be noticed that the choice of the observer
is not unique and can be chosen either comoving u“ or
noncomoving i#“(# u®), in which case the interpretation for
each one should be completely different, leading to the
notion of tilted models [3].

Spatially inhomogeneous (SI) models [4] have contrib-
uted significantly to our understanding of structure
formation and the effect of local density and pressure
fluctuations in the accelerated phase of the Universe. It is
clear that they represent not an alternative to the linearized
version of the perturbed Friedmann-Lemaitre-Robertson-
Walker models, but rather exact perturbation solutions
within a homogeneous and isotropic background. Although
to date a quite generic SI model without special character-
istics (in the sense that will become transparent in the next
sections) has not been found, the known exact SI solutions
can serve as toy models in various directions [5].

Szekeres’ solution [6] was the first SI model without
any (global) isometry and, as such, is well fitted along the
aforementioned research lines. From a geometrical and
kinematical point of view, it admits a tetrad of unit vector
fields {u“, x*, y*, z*} that are hypersurface orthogonal and
any pair {u“ x*}, {u®,y*}, {u“ z*} is surface forming,
which implies that

YELyxp = ZFLyx; = 0,

kauyk = ZkLuyk =0,

*Lyzp = Y Lyz. (5)
In addition, the unit timelike vector field u® is geodesic,
consistent with a dust fluid content (Refs. [7,8] provide a
generalization of the Szekeres spacetime with p # 0),

which results in the Szekeres family of quasisymmetric
models [9,10],

ds? = —d* + SZ{%drz
dy* + dz*
TV =Y+ =27 1}2} ©)

[(InS/E)?
F
4(dy* + dz?) }
(=2 +(z=27)

ds* = —dt* + SZ{ dr?
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where k =¢/V?, and Y(r), Z(r), V(r), and F(r) are
arbitrary functions of the radial coordinate. An important
property of these models is the vanishing of the magnetic
part of the Weyl tensor,

_nacijcijbducud =H, =0, (8)

2
which implies that gravitational radiation cannot propagate
[11,12] within this class of models. Essentially, Eq. (8) is
true for the general diagonal metric (u® = C~'5¢)

ds® = gpdxtdx® = A%dx* + B?dz? — C?dr* + D*dy?,

©)

and therefore it can be seen entirely as an “artifact” of the
specific geometrical character of the tetrad {u“, x“, y*, z*}
irrespective of further dynamical restrictions. Spacetimes
that satisfy Eq. (8) are usually referred as purely “electrical”
and a lot of work has been done regarding the dynamical
structure and the existence of perfect fluid models (see,
e.g., Ref. [13] and references cited therein) with vanishing
H ,,. The analysis is focused mainly on perfect fluids with a
barotropic equation of state p = p(p) or rotational dust
(geodesic) models.

The key feature of the family (6) or (7) is the conformal
flatness of the three-dimensional slices ¢ = const [9] which,
geometrically, could be reminiscent of the constant curva-
ture of the two-dimensional hypersurfaces ¢, r = const and
the subsequent existence of a six-dimensional algebra of
intrinsic conformal vector fields (ICVFs) X satisfying [10]

pgpgﬁchd =2¢(X)Pap, (10)
where p,, = h,, — x,x;, is the projection tensor normal
to the pair {u®, x“} and, given the structure of Eq. (6) or
Eq. (7), represents the induced metric of the two-
dimensional manifold uAnx = 0.

The notion of intrinsic symmetries was introduced in
Ref. [14—17], but their covariant form was not. In order to
investigate the implications of the existence of geometric
symmetries in general relativity we must take into account
the holonomy group structure of the spacetime manifold
together with the associated local diffeomorphisms [18].
Furthermore, it is necessary to reformulate the necessary
and sufficient (integrability) conditions (coming from the
existence of the symmetry) in a covariant way and study
their consequences in the kinematics and dynamics of the
corresponding model. The fact that Szekeres models admit
(proper) ICVFs that act on two-dimensional (and possibly
three-dimensional) submanifolds shows that ICVFs could
be more relevant and impose far less restrictions than the
full CVF models, which are very rare [4].

The purpose of the present paper is to extend the
investigation of the existence of ICVFs to spacetimes with
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the metric (9), thus providing a kind of geometrical
classification with respect to the intrinsic conformal algebra
without assuming any matter content, and thus providing a
much richer diversity of possible physically sound models
than those that have been reported so far [13]. In particular,
in Sec. II we assume that a six-dimensional algebra of
ICVFs exists that acts on the timelike distribution xAz = 0,
which implies that the latter has constant curvature and the
resulting spacetimes can be referred to as quasisymmetric.
We give the explicit form of the ICVFs and the associated
spacetime metrics and show computationally that the
magnetic part H,, of the Weyl tensor vanishes, whereas
the shear o, and the electric part E,j, = C,.pqu‘u’ share a
common eigenframe irrespective of the fluid interpretation
of the models. Furthermore, nontilted perfect fluids (where,
in general, p and p do not satisfy a barotropic equation of
state) cannot be excluded at once since the H-divergence
constraint is trivially satisfied. Two interesting results
then arise: in contrast with the Szekeres models, there
exist infinite conserved quantities along null geodesics.
Furthermore, the hypersurfaces x = const are conformally
flat when the fluid is flux free (¢* = 0) and its anisotropy is
described only in terms of the three principal inhomo-
geneous “pressures” p, or, equivalently, when the Einstein
tensor G“;, is “diagonal.” One should expect the existence
of a ten-dimensional algebra of ICVFs E of the x|
distribution that satisfies

hihiyCahe = 20(E)ha,. (1)

where fzab = gup — XX} 1s regarded as the induced metric
of x . In Sec. III, for completeness, we also give the six-
dimensional algebra of ICVFs that act on the xAu =0
spacelike distribution when ¢ # 0 = xfbxb. As expected,
the x slices are also conformally flat provided that 7%, =
diag(p, p1, p2, p3)- Section IV includes our conclusions
and further areas of research.

Throughout this paper, the following conventions are
used: the spacetime manifold is endowed with a Lorentzian
metric of signature (—,+,+,+), spacetime indices are
denoted by lower case latin letters a,b,... =0, 1, 2, 3,
spatial frame indices are denoted by lower case greek letters
a,p,...=1, 2, 3, and we use geometrized units such
that 82G =1 =c.

II. SPATIALLY INHOMOGENEOUS AND
IRROTATIONAL MODELS OF TYPE 11

We consider a spacetime geometry where a unit timelike
vector field u® is twist free (w,, = 0) but nongeodesic
(1" #0). We make the assumption that there exist three
independent spacelike unit vector fields {x, y, z}, normal to
u“, and each of these is hypersurface orthogonal

XaXbic] = YaYbie] = Z[aZlbie] = 0. (12)
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The unit spacelike vector field x¢ is taken to be geodesic,
ie., (x,)* =x,,x" =0 and the pairs {u“, x*}, {u“, y*},
and {u“, z%} are surface forming, satisfying Eq. (5).
Under these conditions, the most general metric adapted
to the geodesic coordinates of x* has the following form:

ds® = gpdxtdx? = dx* + B?dz* — C*dr* + D*dy?,
(13)

where the functions B(t,x,y,z), C(t,x,y,z), and D(t,x,y,7)
depend on all four coordinates. It follows from Eq. (13) that
the magnetic part of the Weyl tensor with respect to u
vanishes (H,, = 0) and, in general, the Petrov type is I, that
iS, Eab = dlag((), E] s Ez, E3)

Essentially, the induced metric of the distribution
xAZ = 0 is represented by the second-order symmetric
teNSOr Pap = Gab — XaXp — ZaZp» Where phx, =0 = plz;.
We assume that there exists a six-dimensional algebra
IC(X,) (A=1,...,6) of ICVFs that act on a two-
dimensional pseudo-Riemannian manifold that obeys

PSPLLxGed = PPILXPea = V(5 Xa) = 20(X) Pus,
(14)

where ¢(X,) are the conformal factors of the vectors X,
that are lying and acting on the submanifold xAz = 0, and

V, represents a well-defined covariant derivative
Vepar = PEPEPIV i = 0 (15)
for any tensorial quantity
V. 1§ = ptpg pfIle,.

From the inspection of Eq. (14) it follows that C = D,
and the general solution shows that X, X,, X5 are intrinsic
Killing vector fields and X4, X5, X4 are proper and
gradient 1CVFs, i.e., their associated bivectors vanish
identically (V[,,xa] =0),

X, = Myt = (y - Y)at + (t - T)ay’ (16)
X: = {{ o=+ (=171 -1}
+§( —Y)(I—T)ay, (17)

x3=§<y-y><t_r>a,+{1+§[<y—y>2+<r—”2]}a>”

(18)

X, =H=(t=T)3, + (y - Y)d,, (19)
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Xs= {fz‘[(z—T)u(y—Y)z} +1}a,+’§‘(t—T)(y—Y>5w

(20)

Xe=3(t=1)0-1)0,+ {{{6-YP+ (=17 =10,
@)

with the associated conformal factors

P(X)) = p(Xz) = $(X5) =0, (22)

oxo = {1-5l0-rr-a-T7N. @)

$(Xe) = kN(y = Y). (24)

Consequently, the two-dimensional manifold xAz =0
has (locally) constant curvature and the metric (13) takes
the form

s2 —dr* + dy?
ds®> = dx* + B*dz> + — ,
V{14 &y =Y) = (t=T)}?

(25)

where S(x, z), Y(z), T(z), and V(z) are arbitrary functions
of their arguments and ¢ = £1 (# 0) corresponds to the
constant curvature of the hypersurfaces x, z = const.

If we define the function E(t,y,z) according to
(k=¢/V?)

Bty = v{1+5l0- 17 - (=171, o

then

1

N(t,y,2) :m,

(27)

and the metric becomes

SZ
ds®> = dx* + B*dz? + = (=di* + dy?).  (28)

The case where the distribution XAz = 0 has zero curva-
ture is treated similarly. The ICVFs are

X, =M, = (y=V)0,+(1-T)d,,  (29)
X = [(y = Y2+ (1= TP0, + 20y = V) (1 = T)3,. (30)

X;=20y=Y)(t=T)0,+[y-Y)* + (t=T)’]9,. (31)
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X,=H=(t-T)0,+ (y-Y)d,, (32)
X6 - ay, (33)

with the conformal factors

d(X1) = ¢(X,) = ¢(X3) =0, (34)

P(Xy) = -1, (35)
2(t=T)

¢(X5) - (y _ Y)2 _ (l‘ _ T)2 ’ (36)

B(Xg) = — 2=V (37)

(t=TP-(y-Y)?
and the metric function E(t,y, z) is given by

E(t )—41 —l
’y9Z _N([7y’z)_4

[(y=Y)>=(t=T)]. (38)
A potential application of the IC algebra ZC(X,) found in
the present section could be the existence of conserved
currents and quantities. For example, consider a null
geodesic vector field [* lying in the two-dimensional
manifold xAz =0 and the quantities ntQy = I“X4),. It
is easy to see that Q4 are conserved along the null
geodesics since

(O] 1 = 17X (apl* + 11" X (4)pa = 0. (39)

For the metric (28) a null geodesic vector field is
9= f(u +y*) = fn4, where f(x%) satisfies (f,n*)n® =
—f n”;knk [we note that n? = u® 4 y“ is not geodesic for a
generic form of Eq. (28)].

In the search for fluid solutions we usually start by
analyzing the structure of the constraints of the EFEs (1).
The “temporal” constraints G°, = 0 for the metric (28)
reduce to

SB,,—B,S,=0, (40)
B,E,+B,E,+EB, =0, (41)
BS(EE, —E/E;) + EB,(ES, - SE;) =0, (42)
whereas the “spatial” constraints G*; = 0 have the forms
B,S,—SB,, =0, (43)

B(ES ., —S,E.)+ B, (SE_—ES,) =0, (44)

BS(EE ,,—E,E,)+EB,(ES,—-SE,) =0, (45)
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where a )’ denotes partial differentiation with respect to
the corresponding coordinate.

The general solution of the above set of coupled
differential equations is

5 Sin(s/B)L. o)

Ve+F(@)'

where F(z) is an arbitrary function and E(¢, y, z) is given in
Eq. (26) or Eq. (38).

It should be emphasized that the existence of the ZC(X4)
intrinsic conformal algebra is a direct consequence of the
general solution (46), (26), or (38), and therefore in order to
determine the exact form of X, we could simply apply the
methodology of Ref. [10], thus avoiding Eq. (14).
Furthermore, we can verify that the Petrov type is D,
i.e., the eigenvalues of the electric part of the Weyl tensor
E, = E; (in contrast with the Szekeres models where
E2 = E3)

The EFEs (1) then become

G, =T, = diag(p, p1. p2. P3), (47)
i.e., the Ricci tensor R?, shares the same basis of
eigenvectors with o, and E .

The directional and inhomogeneous “pressures” p, are
not necessarily equal and the fluid is, in general, anisotropic
for the comoving observers u® = (E/S)5%. In order to
show whether a specific perfect fluid solution exists (i.e.,
pP1 = P2 = p3), one must monitor the integrability con-
ditions, i.e., the consistent evolution of the nontrivial
constraints. We can prove, however, that the H-divergence
constraint is trivially satisfied. We observe computationally
that the three mutually orthogonal and unit spacelike
vector fields {x“ y% z%} areeigenvectorsof E,, =
diag(0, E,, E», E,) and o, = diag(0, 6y, 0,,03). Because
H,, vanishes identically for the metric (28), the further
requirement p; = p, = p3 gives n,, =0 and the H-
divergence equation [1]

€(lﬁ76/}(sE5y =0

implies that the shear o,;, and the electric part E,;, tensors
commute, i.e., they must share a common eigenframe
(which they actually do).

An important consequence of the solution (26) or (38)
and Eq. (46) is that the Cotton-York tensor [19,20]

1
Cabc = 2<Ra[b - ZRga[b> (48)

ic]

vanishes, i.e., the hypersurfaces x = const are conformally
flat. Therefore, in complete analogy with the two-
dimensional case, one should expect the existence of a

PHYSICAL REVIEW D 94, 124052 (2016)

—
=

ten-dimensional algebra of ICVFs E of the x| distribution
that satisfies

hahi Laheq = 2(2)hg. (49)
where fzab = gup — XX}, 18 regarded as the induced metric
of x,.

We note that by relaxing the flux-free restrictions
[Eq. (40)—(42)], exact perfect-fluid models could exist
for noncomoving (tilted) observers u“, similar to the case
of spatially homogeneous tilted perfect models (e.g.,
Refs. [21-23]) which necessitates the presence of nonzero
vorticity [24]. This could also be possible for the Szekeres
geometries, i.e., when u“ are comoving with the (perfect)
fluid, in which case the u“ observers will interpret it as
imperfect.2 Again, if such a solution exists, it must be
proven that it evolves consistently along u® that “see” an
anisotropic and nonzero flux matter fluid.

III. SPATIALLY INHOMOGENEOUS AND
IRROTATIONAL MODELS OF TYPE III

We are interested in the case where the induced metric
of the distribution xAu = 0, represented by the second-
order symmetric tensor p,, = g, — XuXp + UysU;, (Where
pkx, =0 = pfu,), admits the six-dimensional algebra
IC(X,) (A=1,...,6) of ICVFs:

pzcsz‘Cchd =2¢(X)Pavs (50)
X, =M,,, (51)
X ={1+5lo-r7--271}0,
FE -1~ 2)2. (52)
k
X3 = E(y -Y)(z- Z)av
Hiskie-zr-0-nfo. o
X, =H=(y-Y)d, + (z - 2),, (54)
Xs = {{lo-1- =27 -1},
FE - 1) -2)2. (55)

’In Ref. [25] the “environment” was completely different since
the comoving interpretation remained that of a perfect fluid (i.e.,
the exact Szekeres model) and the tilted observers were derived
from a Lorentz boost of u.

124052-5



PANTELIS S. APOSTOLOPOULOS

X, =5 (= Y)(z = 2)9,

+{ile-zr-0-rr-1jo. )

X4, X5, and Xg are proper and gradient ICVFs and the
conformal factors are given by

$(Xy) = $(Xy) = $(X3) =0, (57)
0% = {1-3l0 =12+ G- 2PN, (59

H(Xs) = kN(=Y),  $(Xe) = kN(z=2). (59)

The two-dimensional manifold xAu = 0 is of constant

curvature and the metric (13) is

52 dy? +dz?

V{1 + 5[ =Y)? + (2= 27}
(60)

ds? = dx* — C*dt* +

where S(z,x) and Y(r), Z(¢), and V(¢) are now arbitrary
functions of 7, and ¢ = +1 (#0) corresponds to the
constant curvature of the hypersurfaces x, t = const.

Similarly with type II, we define the function E(z,y, z)
according to (k = ¢/V?)

E(t,y,z) = V{l +E[(y -Y)?+(z- 2)2]}, (61)

4
with
Nty,2) = ()
,y,Z - E(t,y’z) ’
and the metric becomes
S2
ds* = dx* — C2dr* + = (dy* + dz?). (63)

For completeness we give the corresponding expressions
for the ICVFs and the metric for the case where the
curvature of xAu = 0 vanishes:

X, = Myz = (Z - Z)ay - (y - Y)av (64)

X, =[(y-Y)?= (=20, +2(y - ¥)(z = 2)0..

(65)

Xy =2(y — ¥)(z - 2), + [(z = 2> — (y — ¥)0..
(66)

PHYSICAL REVIEW D 94, 124052 (2016)
Xy=H=(y- Y)ay +(z- Z)az’ (67)

XS - 8 X6 - az. (68)

yr

The conformal factors are

#(X) = p(X,) = p(X3) =0, (69)
$(Xy) = -1, (70)

. 2(y-Y)
¢(X5) - (y _ Y)2 + (Z _ Z)2 ’ (71)
pX) =D ()

(y=Y)?+(z=-2)
and the metric function E(t,y, z) assumes the form

E(t )——1 .
9y’Z 7N(l"y’z)74

(V=Y +(-27. (73)
In contrast with the previous case, the spacetime (63) does
not allow the existence of conserved currents and quantities
constructed from null vector fields “living” in xAu = 0
due to the positive-definite character of the quasisymmetric
two-dimensional metric p,,. However, we can check for a
flux-free solution which implies the “temporal” constraints
(Ga =0)

C(ES,tx - S.xE.t) + C,x(SE,r - ES.t) =0, (74)

CS(EE,, — E,E,) + EC,(ES, - SE,) =0, (75)
CS(EE.,—E,E.) + EC.(ES,—SE,) =0, (76)

and the associated “spatial” constraints (G§ = 0)

SC,. —C,S, =0, (77)
SC,. —C,S, =0, (78)
C,E.+C.E,+EC.,=0. (79)

We can verify that the general solution of Eqgs. (74)—(79) is

o Sin(s/B), 50

VerFEr)

where F(t) is an arbitrary function and E(7,y,z) is given
in Eq. (61) or Eq. (73). In this type it also becomes
evident that the existence of the ZC(X,) intrinsic con-
formal algebra is a direct consequence of the general
solution (80), (61), or (73).

124052-6
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Using the same arguments, the directional “pressures”
P, are, in general, not equal and the fluid is anisotropic.
This, however, does not exclude a priori a perfect-fluid
(nontilted) solution once the consistency of the integrability
conditions is established. In addition, the existence of
the general solution of Eqs. (74)—(79) is equivalent to
the fact that the x slices are conformally flat and timelike,
which indicates a ten-dimensional algebra of ICVFs Y
which will give rise to conserved quantities along null
geodesics of the form [4 = fou® 4 fy* + f,z%, where f,
f1, and f, are some functions satisfying the orthonormality
condition f3 = f?+ f3 and the geodesic assumption
(fou® + f1y* + f22%) 1" = 0.

Summarizing the results of Secs. II and III regarding the
conformal flatness of the x| distribution in both types II
and III, we can speculate that a spacetime with the metric
(9) is foliated with conformally flat three-dimensional
hypersurfaces iff a six-dimensional subalgebra of ICVFs
exists that acts on two-dimensional submanifolds and the
u | orx | distributions are almost (1 4+ 2) decomposable (in
the spirit of the arguments in Ref. [10]). Equivalently, the
above holds true iff a six-dimensional subalgebra of ICVFs
exists that acts on two-dimensional (pseudo)-Riemannian
manifolds and the Ricci tensor shares a common basis of
eigenvectors with shear o,;, and the electric part E,;, of the
Weyl tensor.

IV. CONCLUSIONS

It should be noticed that the existence of the six-
dimensional algebra of ICVFs that act on two-dimensional
manifolds is independent of the geodesic assumption of the
unit spacelike vector field x¢, and the form of the metrics
(28) and (63) is altered only by an arbitrary function in the
gy component with a subsequent change in the dynamics.
As such, the structure of the class of spacetimes presented
in this paper can be regarded as a generalization of the
(irrotational) locally rotationally symmetric geometries
without any global isometry which, however, contain these
models as special cases [26].

An interesting aspect of the analysis of the preceding
sections is the existence of infinite conserved quantities
along null geodesics originating from the ICVFs admitted
by the two-dimensional submanifold (in type II) or the x |
submanifold (in types II and III). Therefore, it could be
enlightening to determine the ten-dimensional algebra of
ICVFs due to the emerged conformal flatness of the

PHYSICAL REVIEW D 94, 124052 (2016)

hypersurfaces x = const when the fluid is flux free
(g = 0) and its anisotropy is described only in terms of
the three principal inhomogeneous ‘“pressures” p, (or
equivalently when the Einstein tensor G“; is diagonal).

As we have seen, a perfect fluid solution was not
excluded a priori. In this direction, it would be interesting
to allow the inclusion of a cosmological constant A similar
to the case of the Szekeres models [27] or the Petrov type I
silent universes [28] where exact solutions have been
shown to exist. Furthermore, the models of type II
[Egs. (28) and (46), with Eqgs. (26) and (38)] or
type I [Egs. (63) and (80), with Egs. (61) and (73)]
could also be relevant for studying the effect of small
anisotropic and inhomogeneous “pressures” on the expan-
sion dynamics—either as the relic of various physical
sources [29] or as the result of backreaction terms of the
density fluctuations [30,31]—provided that the use of
purely phenomenological laws governing the appearance
of “pressures” is consistent with the kinetic theory
approach of the fluid thermodynamics.

Relaxing the flux-free restrictions [Egs. (40)-(42) or
Eqgs. (74)-(76)] opens the possibility that exact tilted
perfect-fluid solutions could be found for the spacetimes
presented in this paper. Unlike the symmetric Lemaitre-
Tolman-Bondi subclass [32] (or the plane/hyperbolic
analogues) where a tilted (twisted) perfect-fluid solution
cannot exist [26] (due to the locally rotational symmetry), it
is far from obvious that the intrinsic locally rotational
symmetry induced from the ICVF could be strong enough
to forbid a noncomoving perfect-fluid interpretation.

We emphasize that every attempt to assign a dynamical
(vacuum or nonvacuum) interpretation to the spacetimes
presented in this paper must take into account the induced
(nonsymmetry) integrability conditions. This can be done
by examining whether a suitable set of initial data evolves
consistently, which is equivalent to demanding that the
constraints (spatial divergence and curl equations encoded
in the set of the initial data) are consistent with the
evolution equations, and hence that they are preserved
identically along the timelike congruence u“ without
imposing new geometrical, kinematical, or dynamical
restrictions [11,12]. Therefore, it is necessary to covariantly
formulate the necessary and sufficient conditions coming
from the existence of the symmetry, and study their
consequences in the dynamics. We believe that all of the
above points are physically sound and require further
investigation.
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