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Simplicity constraints play a crucial role in the construction of spin foam models, yet their effective
behavior on larger scales is scarcely explored. In this article we introduce intertwiner and spin net models
for the quantum group SUð2Þk × SUð2Þk, which implement the simplicity constraints analogous to four-
dimensional Euclidean spin foam models, namely the Barrett-Crane (BC) and the Engle-Pereira-Rovelli-
Livine/Freidel-Krasnov (EPRL/FK) model. These models are numerically coarse grained via tensor
network renormalization, allowing us to trace the flow of simplicity constraints to larger scales. In order to
perform these simulations we have substantially adapted tensor network algorithms, which we discuss in
detail as they can be of use in other contexts. The BC and the EPRL/FK model behave very differently
under coarse graining: While the unique BC intertwiner model is a fixed point and therefore constitutes a
two-dimensional topological phase, BC spin net models flow away from the initial simplicity constraints
and converge to several different topological phases. Most of these phases correspond to decoupling spin
foam vertices; however we find also a new phase in which this is not the case, and in which a nontrivial
version of the simplicity constraints holds. The coarse graining flow of the BC spin net models indicates
furthermore that the transitions between these phases are not of second order. The EPRL/FK model by
contrast reveals a far more intricate and complex dynamics. We observe an immediate flow away from the
original simplicity constraints; however, with the truncation employed here, the models generically do not
converge to a fixed point. The results show that the imposition of simplicity constraints can indeed lead to
interesting and also very complex dynamics. Thus we need to further develop coarse graining tools to
efficiently study the large scale behavior of spin foam models, in particular for the EPRL/FK model.
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I. INTRODUCTION

Spin foams provide a nonperturbative and background
independent path integral quantization for general relativity
[1–3]. The construction of spin foam models involves an
auxiliary discretization as a regulator for the path integral.
A key outstanding task is the removal of this regulator, a
process we refer to as continuum limit. One also needs to
establish whether spin foam models can reproduce in this
limit familiar low energy physics, in particular a geometric
phase in which the models resemble a smooth manifold.
Related is the question of whether diffeomorphism sym-
metry, which is deeply rooted in the dynamics of general
relativity, can be restored [4–6].
There are two main paths to remove dependence of

the auxiliary discretizations: a refinement limit of the

underlying discretization, see e.g. [7], or summing over
the discretizations [8–10]. We here consider the first
approach, based on the refinement limit for the following
reasons: a number of works [11–15] have shown that
discretization independent models, which at the same time
restore a notion of diffeomorphism invariance, can be
constructed via a refinement limit—implemented in prac-
tice via a coarse graining flow. (For a review, and an
explanation of the interplay between refinement and coarse
graining, see [7,16,17].) Secondly we are in particular
interested in the fate of diffeomorphism symmetry, which
in the canonical framework is implemented via constraints.
The spin foam path integral is supposed to provide a
projector onto wave functions satisfying the corresponding
quantized constraints [18,19]. However, summing over
discretizations does in general not lead to a projector
[20,21]. In contrast one can show that with the restoration
of diffeomorphism symmetry in the discrete path integral
one also obtains a projector, implementing the constraints,
including an anomaly free constraint algebra [11,12,22,23].
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The main challenge for the investigation of spin foam
models is their overwhelming algebraic complexity. This
comes together with an incomplete understanding of
possible infinities (possibly related to diffeomorphism
symmetry), a question on which there has been recent
progress however [24–28]. Furthermore a framework has
been developed that clarifies a number of conceptual
questions in the context of background independent
renormalization [7,15–17]. To condense this framework
to what is important for the current work, the initial models,
which are constructed via an auxiliary discretization, are
subjected to a coarse graining flow. The models typically
flow to an attractive fixed point, defining a phase of the
model. Such phases correspond to topological models (with
local amplitudes), which are triangulation invariant (and
also restore diffeomorphism symmetry), but do not feature
propagating degrees of freedom. Fine-tuning of some
parameters in the initial models, which correspond e.g.
to ambiguities in choosing the path integral measure, might
allow one to find phase transitions. In particular, second
order phase transitions are characterized by unstable fixed
points, which in the background dependent context
describe conformal theories. In the spin foam context,
we are interested in the fact that these are fixed points, i.e.
that the fixed point model is invariant under at least some
subset of discretization changes, defined by the coarse
graining flow. On such a fixed point we can construct a
meaningful refinement limit, e.g. via an inductive limit as
outlined in [7,16,17]. The corresponding model features
nonlocal amplitudes, but its dynamics is accessible via a
system of so-called dynamical embedding maps that allow
one to extract the large scale dynamics in terms of coarse
grained observables, which also capture the “most relevant
degrees of freedom” [16]. This framework is particularly
adapted to so-called tensor network renormalization (TNR)
schemes. Such schemes implement real space renormali-
zation, based on (a) identifying the most relevant (or
contributing) degrees of freedom in the path integral using
the dynamics of the system and (b) explicitly integrating
out these (relevant) degrees of freedom [29–32]. In par-
ticular, (b) is opposed to Monte Carlo simulations, in which
the integral is accessed via a sampling process. As spin
foams are real time path integrals, that is, expected to have
complex and highly oscillating amplitudes, this latter
method is however (in general) not applicable to spin
foams. This yields another motivation for the use of tensor
network renormalization.
Coming back to the overwhelming algebraic complexity

of the models, different lines of attack have been taken.
First of all, spin foams can be understood as generalized
lattice gauge theory models [33], allowing also a notion of
these models for finite groups [34]. This latter approach
inspired also so-called spin net models, which are the main
focus of this work. In short, spin net models share the same
dynamical ingredients as lattice gauge theories, namely

group elements and weights, which are associated to lower
dimensional objects, namely vertices and edges respec-
tively (instead of edges and faces). Instead of a local gauge
symmetry, spin nets have a global symmetry. The Ising
model is a typical example for a Z2 spin net. Remarkably,
two-dimensional spin net models of the same gauge group
share statistical properties with the four-dimensional lattice
gauge theory [35]. Hence we study spin net models as
dimensionally reduced analogues for spin foams, which
capture a key ingredient of spin foam dynamics, namely the
so-called simplicity constraints. Furthermore spin nets are
equivalent to so-called melon spin foams,1 which are spin
foams defined on a discretization involving only two (spin
foam) vertices but an arbitrary number of edges connecting
these vertices. The coarse graining collects a number of
spin foam edges to new “thicker” edges. The hope is that
the coarse graining of spin net models will allow us to study
and understand the behavior of the simplicity constraints
under coarse graining, and that a similar coarse graining
flow could hold in spin foams. In fact this avenue allowed
the investigation of more and more complicated models
[14,36,37] via tensor network renormalization, with [14]
studying spin nets based on the quantum group SUð2Þk, and
revealing a rich phase diagram for these models.
Furthermore, tensor network renormalization has been also
applied to three-dimensional spin foam models, so far
based on finite groups, where the results confirm the phase
diagram obtained for the corresponding spin nets [31,38].
The main aim of this work is to study spin nets with the

full algebraic complexity of the full (Euclidean) spin
foam models, in particular the Barrett Crane (BC)
and the so-called Engle-Pereira-Rovelli-Livine/Freidel-
Krasnov (EPRL/FK) models [39–43]. Implementing a
(positive) cosmological constant at the same time provides
a convenient cutoff on the summation range for the
variables; we therefore need to consider spin nets with a
structure group SUð2Þk × SUð2Þk. We see that this requires
a range of techniques to allow for the numerical imple-
mentation of the tensor network coarse graining. We detail
these techniques as we believe that these are also helpful in
more general contexts.
As mentioned the tensor network coarse graining is

based on explicit summation of the models. Furthermore,
the space of models, in which the coarse graining flow can
take place, is very large, in general given by all possible
tensors of a predefined rank and index range. The coarse
graining process proceeds iteratively; the effective ampli-
tudes of each coarse graining step are encoded in a tensor
(of very high dimension) which is updated in each step

1A melon spin foam consists only of two vertices, which are
connected by many dual edges. From this melon one obtains a
spin net by cutting through the dual edges, by mapping the
projectors on the edges of the foam to the vertices of the spin net.
The spin net vertices then have the same valency as the spin foam
edges.
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based on the previous tensor. This allows in principle to
keep track of many observables of the models, but is of
course also a challenge for the numerical implementation.
Most importantly this algorithm allows us to track the

coarse graining flow of the simplicity constraints, which are
crucial for the spin foam dynamics. The simplicity con-
straints determine which spin values are allowed and the
various models do differ in these sets. Under coarse
graining one expects that the allowed set of spins changes:
this is due to the coupling of “finer” spins to “coarser”
spins, which does not need to respect the simplicity
constraints. To understand the large scale behavior of spin
foams it is crucial to study how the simplicity constraints
change under coarse graining.
The recent work [44,45] takes in some sense an opposite

approach to the one taken here: one works with the full
models (more precisely EPRL/FK using coherent Livine-
Speziale intertwiners [46]), but implements a drastic,
geometrically motivated, truncation that for instance sup-
presses all curvature degrees of freedom, but keeps some
torsion degrees of freedom. The authors of [44,45] employ
furthermore a saddle point approximation for the spin foam
amplitudes, such that the focus is on large spins. (In
contrast, using quantum group models here, we rather
concentrate on small spins.) As curvature is suppressed the
associated Regge action vanishes, such that Monte Carlo
methods can be readily employed. These allow the approxi-
mate computation of expectation values for observables
arising in one coarse graining step. Such an expectation
value is then also used as a criterion to truncate the
amplitude for the coarse building block back to the initial
one-parameter family of models. This one parameter
encodes a certain freedom in the choice of path integral
measure. From this procedure one can deduce a coarse
graining flow which tracks only the parameter describing
the path integral measure. Thus compared to the tensor
network method, where the flow is computed in a very high
dimensional parameter space, here one truncates the flow to
a one-parameter space. Despite these drastic truncations
very interesting results were found: this (truncated) flow
shows indications for a phase transition, at which a notion
of residual diffeomorphism invariance is recovered.
Another approach relies even more heavily on analytical

techniques [47].2 The works [27,47] consider Pachner
moves in a general triangulation, which makes it however
difficult to come up with an iterative (regular) coarse
graining scheme. Thus one can compute the amplitudes
for a coarser complex; the details of the truncation scheme
and a full implementation of the flow still need to be
explored. These methods do however allow for a general

understanding of the divergence structure of the
models [27].
Let us also mention the older works [48] which studied

the BC model with Monte Carlo simulations. Here one uses
a property specific to the BC model, namely that it admits a
representation in which the amplitudes are positive [49].
This does not hold for the EPRL model, prohibiting so far
Monte Carlo simulations for the action contribution to the
path integral. The work [48] considered the SUð2Þ × SUð2Þ
BC model on a very simple four-dimensional triangulation,
given by the 5-simplex. It also implemented a cutoff in the
spins (j ¼ 5=2 and j ¼ 25=2). Three different choices for
measure factors were tested: one led to a fast “divergence”
of the model, i.e. a phase were large spins dominated (with
respect to the cutoff). One phase led to a fast convergence
and a partition function dominated by j ¼ 0 spins. This
motivated the introduction of a third choice, on the border
between these two behaviors. Also a quantum group BC
model has been considered in [50]. The most interesting
point here is that the expectation values in the quantum
group values do not converge to the classical group case,
indicating a discontinuity.
In these works [48,50] one has measured e.g. the relative

frequency of spin values in the probability distribution
defined by the BC model. Although such observables give
some insight—in this case testing the suitability of measure
factors—we believe that we need a more systematic
development of order parameters admitting a diffeomor-
phism invariant meaning. A main point of concern in [48] is
divergences and so-called bubbles that are actually a sign
for a restoration of diffeomorphism invariance.
The tensor network employed here has the advantage of

testing the model iteratively over a large range of scales
(defined by the number of coarse graining steps).
Divergences can in principle be dealt with (although these
do not arise here due to using quantum groups) by
normalizing the partition function in each coarse graining
step. Also a key point is the ability to track how the
simplicity constraints behave under coarse graining, as this
understanding is crucial for the understanding of the
(effective) dynamics in spin foams models.
In agreement with results in [45,48], we find that the

measure is a relevant factor which can drive phase
transitions. This is also intuitively understandable: choos-
ing a measure factor that suppresses larger spins drives the
system to the Ashtekar-Lewandowski phase, in which all
spins j > 0 are not allowed. The similar question concern-
ing the (dual) BF phase, which is characterized by allowing
all representations weighted by their respective dimension,
can be answered negatively: For both BC and EPRL
analogue models we do not observe a flow to a BF phase
for any choice of measure discussed here.
This article is organized into two main parts. One focuses

on the computational methods used in this work, while the
other one addresses the construction and results of the

2So far particular (simplifying) features of the model studied in
[47] seem to be important in order to allow for analytical
treatment; see also [28].
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quantum gravity related models. We have designed these
parts such that they can be read independently of one
another:
The first part is aimed at researchers outside quantum

gravity also using tensor network techniques. While avoid-
ing technical details of the models under discussion we
focus on the scope of the problem and the implemented
improvements to the algorithm. In Sec. II A we discuss the
scope of the models we intend to coarse grain with tensor
network techniques, which has motivated the improve-
ments to the algorithm we present in Sec. II B.
The second part is aimed at people familiar with

quantum gravity and spin foam models and can be read
without reference to the computational/numerical
details. In Sec. III A we briefly recall and motivate the
general class of models under discussion, including their
relation to lattice gauge theories and spin foam models. In
Sec. III B we construct models analogous to modern four-
dimensional spin foam models and discuss their behavior
under coarse graining.
We conclude with a discussion of the methods and

results in Sec. III E.
Several of the methods used in this article have already

been developed and used in previous articles. Thus we do
not introduce them in full detail, but concisely introduce
their main features in the appendixes.

II. PART I: IMPLEMENTATION

A. Coarse graining of spin net models:
numerical challenges

1. A brief introduction to tensor network renormalization

Before introducing the models under discussion in
this work let us briefly touch upon the numerical
algorithms used to coarse grain the models, which are
broadly summarized under the term tensor network
renormalization.
Before applying tensor network renormalization

[29,30,32] the partition function of the model is rewritten
as a contraction of a tensor network. A tensor network is a
collection of multidimensional arrays, i.e. tensors, at the
vertices of a lattice, where each tensor has as many indices
as the vertex has legs. Then the tensors are contracted
according to the combinatorics of the network, that is, a
shared leg implies that the respective indices get contracted.
There exist different ways to obtain such a tensor

network, but they are usually straightforward. In the cases
we are considering the partition function is already of
tensor network form. Crucially even though the tensor
network might coincide with the lattice the underlying
model is defined on, the network is independent as it
merely represents a rewriting of the model. This is
particularly beneficial in the context of background inde-
pendent approaches to quantum gravity as tensor networks
do not refer to a background structure. In most cases one

studies systems on regular lattices resulting also in a regular
network with identical tensors at all vertices. Thus the
coarse graining process can be straightforwardly iterated.
The fundamental idea of tensor network renormalization

is to locally manipulate the network, given by tensors T,
such that the same partition function is (approximately)
described by a coarser network of effective tensors T 0,

Z ¼ TtrT…T ≈ TtrT 0…T 0; ð1Þ
where Ttr denotes the tensor trace, i.e. the contraction of the
tensors according to the network. Hence one studies a flow
of tensors T → T 0 → … capturing the dynamics of the
system, which leads to the original name of tensor renorm-
alization group (TRG) [29]. In this article we use a method
closely related to the TRG. Nevertheless we point out that a
more advanced algorithm has been invented by Evenbly and
Vidal [32] named TNR, which filters out short-range
entanglement resulting in a proper renormalization group
flow. This method is also closely related to the multiscale
entanglement renormalization ansatz [51] used to construct
ground states of condensed matter systems.
More concretely let us discuss the algorithm introduced

in [29] as an example,3 as we modify it in the rest of the
article. Consider a two-dimensional square tensor network
of identical tensors. Let the indices of the tensor run from 1
to χ. This index range χ is frequently referred to as the
(initial) bond dimension.4

The general scheme of the algorithm is illustrated in
Fig. 1. To coarse grain this network each four-valent tensor
is split first into two three-valent ones, that is, the four-
valent tensor is written as a contraction of two three-valent
tensors along a new edge. This new edge is the effective
edge of the coarse grained tensor network. A priori a four-
valent tensor can be split in many different ways, but as
approximations during the numerical algorithm are neces-
sary this splitting should allow for error control. Thus the
tensor is rewritten into a matrix by a pairwise grouping of
its indices according to the intended splitting. This matrix is
then split into two by a singular value decomposition
(SVD) as follows:

3In general many schemes to coarse grain tensor networks
exist, e.g. one which more closely resembles block spin trans-
formations: By contracting the edges connecting four tensors on
the corner of a square one obtains a new coarse tensor. This step is
exact, yet the new tensor has “double” edges with a bond
dimension χ2. Due to this exponential growth of data and to
relate the new tensor to the original one, approximations are
necessary, which are usually implemented via variable trans-
formations and truncations, such that the error is minimized.
Graphically this is shown as a three-valent tensor mapping the
two edges into an effective one. We usually refer to these maps as
embedding maps.

4As the models under discussion here are already of tensor
network form, the tensor actually inherits the variables of the
original model as labels on its edges. We refer to these spaces on
the edges also as edge Hilbert spaces He.
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TðabÞ;ðcdÞ ≕ MðabÞ;ðcdÞ ¼
Xχ2
i¼1

UðabÞ;iλiðVðcdÞ;iÞ†; ð2Þ

where U and V are the unitary matrices of singular vectors;
λi denote the singular values with λ1 ≥ λ2 ≥ � � � ≥ λχ2 ≥ 0.
From U and V one then constructs three-valent tensors,

e.g. Sab;i ¼ UðabÞ;i
ffiffiffiffi
λi

p
. Four of these tensors S are then

contracted along the links of the original network to give
the new effective tensors T 0,

T 0
ijkl ¼

X
abcd

Sab;iSbc;jScd;kSda;l: ð3Þ

For simplicity we have avoided enumerating the tensors S;
in principle they can be different, but this is not important to
illustrate the scheme.
The coarse edges of the new network of tensors T 0 are

those obtained from splitting the initial tensors T. Thus the
new tensors are actually labeled by the singular values.
Note that the SVD (2) is exact such that the coarse network
is an exact rewriting of the original partition function. From
this we can conclude the physical interpretation underlying
tensor network renormalization.

(i) The SVD serves as a variable transformation,
reshuffling the original degrees of freedom into
effective degrees of freedom on a coarser scale.
Since (2) is exact no degrees of freedom are lost,
while the relation to the original interpretation is
encoded in the maps U and V. Moreover the SVD
arranges the degrees of freedom according to their
significance, which is indicated by the relative size
of the associated singular values.

(ii) In general the tensor T 0 as obtained from (2) and (3)
has a bond dimension of χ2 compared to χ of the
original tensor T. Without approximations this bond
dimension grows exponentially with each iteration of
the algorithm quickly rendering the scheme ineffi-
cient. Thus approximations must be implemented to
keep the algorithm feasible. Due to the features of the
SVD the quality of the approximations can be readily
evaluated: The degrees of freedom are ordered in
significance indicated by the size of the singular

values. Hence it is straightforward to truncate less
important degrees of freedom in (2) by dropping e.g.
all λi with i > χ. This approximation is actually the
best one of MðabÞ;ðcdÞ by a matrix of rank χ (with
respect to least square error).

Of course the more singular values are taken over the better
the approximation is, e.g. the position of a phase transition
is more accurately determined.
Usually one iterates the algorithm for a fixed bond

dimension until the system has converged to a fixed point
tensor T�. This tensor is then used to identify different
phases of the model.
In the next section we introduce the models we coarse

grain in this article via tensor network renormalization.

2. A brief introduction to quantum group spin nets

In this article we successfully apply tensor network
renormalization to so-called spin net models [14,36,37]
based on the quantum group SUð2Þk × SUð2Þk. The goal of
this section is to give the reader an impression of why this is
a remarkable achievement made possible by several
improvements of tensor network algorithms. After giving
a very short introduction to spin net models we explain why
the main challenge is the size of the tensors, encoding the
models, leading to a memory consumption that is too large
to handle even with high performance computing resour-
ces. We then introduce several techniques which allow us to
reduce memory usage enormously. We expect that these
methods and ideas can also be facilitated by other
researchers, in particular in high accuracy calculations.
Spin net models can be defined on lattices of arbitrary

dimension, but we restrict ourselves to a two-dimensional
square lattice in this article. The models are characterized
by a global symmetry group, e.g. a non-Abelian finite or
(compact) Lie group. The simplest nontrivial example is the
Z2 Ising model, which is invariant under flipping all Ising
spins. This model can be represented in either the group
picture, e.g. with the group Z2 defining the fundamental
variables (the Ising spins), or in the dual picture, where the
variables are given by the irreducible representation labels
of the group. This latter picture defines also a tensor
network representation for the spin net models. For

FIG. 1. Scheme of four-valent algorithm: Each four-valent tensor is split along a new edge into two three-valent tensors. Then four of
these three-valent tensors are contracted along the original edges to give a new effective four-valent tensor, whose coarser edges are
those introduced by the splitting of the original tensors.
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non-Abelian groups, the representations are higher than one
dimensional and the representation labels are amended by
vector space labels.
The second representation, involving representations of

the symmetry group, is also called “spin representation.”
The name is due to the SU(2) representations j, which are
referred to as spins. It is this representation which can be
generalized also to quantum groups, in particular SUð2Þk
[52,53], which is thoroughly explained in [14]. In this
section we restrict the discussion to the most basic features
of representation theory for SUð2Þk in order to discuss the
index range of the initial tensor.

(i) SUð2Þk is a Hopf algebra, the q-deformation of the
universal enveloping algebra UðSUð2ÞÞ for q ¼
expð iπ

kþ2
Þ at the root of unity [52,53]. k ∈ N is called

the level of the quantum group. Very similar to SU
(2) these quantum groups have irreducible repre-
sentations labeled by spins j ∈ 1

2
N. These range

from 0 to jmax ¼ k
2
, the maximal spin of the quantum

group. As for SU(2) the representation vector spaces
Vj are (2jþ 1) dimensional. In this work we
restrict ourselves to the integer representations
of SUð2Þk.5

(ii) Each edge of SUð2Þk × SUð2Þk spin nets carries the
edge Hilbert space He ¼ ⨁jmax

jþ;j−¼0
Vjþ ⊗ Vjþ� ⊗

Vj− ⊗ Vj−� , where jþ and j− are SUð2Þk represen-
tations and j� denotes their dual representation. Thus
expressed naively as a tensor network each leg of a
tensor carries the indices fjþ; j−; mþ; nþ; m−; n−g,
where the so-called magnetic indices m, n range
from −j to j, in integer steps.

(iii) The tensor itself encodes the “quantum group
symmetries,” i.e. it is a projector onto the invariant
subspace in the product space of all representation
spaces meeting at the vertex, Invð⊗e⊃v VjeÞ. The
projector on the full invariant subspace is called the
Haar projector; see [14] or Appendix B for its
definition.

Due to the symmetry of themodel and the finite edgeHilbert
spaces, it is in principle possible to directly turn the model
into a tensor network. Thus one obtains the tensor

Tðfjþg;fjþ0g;fj−g;fj−0g;fmþg;fnþg;fm−g;fn−gÞ: ð4Þ

To not overburden the notation, we suppress the indices i of
the edges, which range from 1 to 4 in the case of a square
network.
However this naive approach is not very feasible for

either non-Abelian groups [37] or quantum groups: A quick
estimate of the dimension of the edge Hilbert space for a
small quantum group, e.g. k ¼ 4 such that the spins range

over j ¼ 0, 1, 2, shows that the index range is roughly 6000
if j�0 ≠ j��, due to the sheer amount of magnetic indices.
Fortunately due to the symmetries of the model, the

dependence of the tensor T on the magnetic indices denoted
is not arbitrary and given by the projector/intertwiner
structure. This projector structure actually survives under
tensor network renormalization and can be exploited to
significantly reduce the index range of the initial tensor. To
do so, two measures were introduced in [14,37].

(i) The initial tensor was rewritten into a so-called
recoupling (or intertwiner) basis, in which the tensor
is expanded into a sum over four-valent invariant
tensors, which are labeled by (intermediate) spins
fJ�; J�0g. This basis is adapted to the intended
splitting of the four-valent tensors into three-valent
ones. As the spins fj�j�0g associated to the original
edges have to couple to the intermediate spins
fJ�; J�0g, the tensor T can be expressed in a
block-diagonal form. Thus the crucial information
on the tensor is encoded in an amplitude only
depending on the spins fj�g on its edges and the
spins fJ�g labeling the basis. The projector struc-
ture, and with it the dependence of the tensor T on
the magnetic indices, is explicitly preserved under
coarse graining. This allows us to precontract the
magnetic indices of the projective part into so-called
recoupling symbols. Thus during the coarse graining
cycle itself we only have to deal with the spin
indices.

(ii) The intertwiner structure introduced above can be
exploited further by considering the coupling rules
of SUð2Þk. In fact the intertwiner basis is written as
the sum over two Clebsch-Gordan coefficients
which are only nonvanishing if triangle inequalities
are satisfied. Thus we introduce one superindex
KðJÞ for each intermediate label J counting the
allowed possibilities of the pair ðj1; j2Þ coupling to
J, dismissing all vanishing entries due to coupling
rules. Conversely one can translate KðJÞ back into
representations as jiðKðJÞÞ for i ¼ 1, 2. Figure 2
illustrates the idea with reference to the splitting in
the algorithm.

(iii) A similar super index BðJ; KðJÞ; K0ðJÞÞ is also
defined for the SUð2Þk f6jg recoupling symbol,
which is a particular contraction of four Clebsch-
Gordan coefficients and appears in the renormaliza-
tion equations due to the treatment of the magnetic
indices. Essentially one picks out one representation
J, to which two pairs of two representations couple
directly encoded in two superindices KðJÞ and
K0ðJÞ. The last remaining representation has to
satisfy several conditions and one stores the allowed
choices in the index B, which depends on J, KðJÞ
and K0ðJÞ. Thus one only stores (and sums over) the
nonvanishing f6jg symbols. As before we can

5This can be understood as the q-deformation of the algebra of
SO(3). If k is odd we take k−1

2
as the maximal spin.
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decode these indices back to the original spin values
via functions jαðJ; K; K0; BÞ, α ¼ 1;…6. This index
is explained in Fig. 3.

The first measure already drastically improves the initial
index range of the tensors,

Tðfj�g; fj�0g; fm�g; fn�gÞ
¼

X
J�;J�0

T̂ðJ�;J�0Þðfj�i g; fj�i 0gÞ

× ðPJþ
fjþi g

⊗ PJþ0
fjþi 0g ⊗ PJ−

fj−i g ⊗ PJ− 0
fj−i 0gÞ; ð5Þ

where the P represent a basis of four-valent intertwiners for
one copy of irreducible representations. Their explicit form
is not relevant here and can be found in Sec. III A and also
[14]. Again the pivotal insight is that this structure is
analytically dealt with and preserved under coarse graining,
such that the information of the tensor is stored in T̂ instead
of T. Thus the tensor is specified by four SUð2Þk repre-
sentations on each edge, which for k ¼ 4 is an index range
of χ ¼ 34 ¼ 81. For the entire tensor we obtain a size of
815 for the four edges and four intermediate spins labeling
the basis.
This expression can be further simplified by using

superindices KðJÞ. The superindices always combine
two representations coupling to the spin J. In the four-
valent case we group two representations together accord-
ing to the intended split, which we denote by sets fjiga and
fjigb, such that we also have superindices KaðJÞ and
KbðJÞ. Note that from here on we suppress the additional
superscripts � and 0 in order to simplify the notation.
Unless specified otherwise fjg is supposed to stand for
fj�; j�0g, similar for J and KðJÞ,

T̂fJgðfjiga; fjigbÞ ¼
�
T̂fJgðfjiðKaðJÞÞga; fjiðKbðJÞgbÞ if all pairs fjiga;b ¼ fjiðKa;bðJÞÞga;b:
0 else

ð6Þ

Since the projector structure is explicitly preserved it
is sufficient to just consider the entries of T̂ encoded in
the superindices KðJÞ. Since these KðJÞ combine the
representations on two fine edges, one cannot talk about
individual index ranges, but we can still give the size of the
total tensor. Again for k ¼ 4 this is given by 434, which is
roughly 0.1% of the data without using superindices.
To sum up the measures briefly described in this section

provide an interpretational and a computational advantage:
By introducing the intertwiner basis we isolate the relevant
data of T from the magnetic indices and encode them into a
much smaller tensor T̂. Moreover the tensor T̂fJg is already

in a block-diagonal form, where each block is labeled by
four SUð2Þk representations fJg. Expressed in superindices
fKaðJÞg, fKbðJÞg it can be readily rearranged into a matrix
Mab to which SVD is applied in order to split T̂. The new
edges created in this SVD carry over the labels fJg of the
block, which are the same type of variables as in the
original model. Thus one eventually obtains a new coarse
tensor T̂ 0 of the same form as the initial one. This procedure
(with smaller index ranges) described here has already been
used in [14].
However these significant improvements quickly turn

out to be insufficient as soon as one goes to higher levels k

FIG. 2. Visualization of the recoupling basis: Above we show
the intended splitting of the coarse graining algorithm. The
recoupling basis is chosen such that the variables that are to
be split couple to the same intermediate spin J. Instead of storing
all boundary data fjig, i ¼ 1;…; 4 we only store the ones leading
to nonvanishing tensors, stored in superindices KðJÞ and K0ðJÞ
respectively. We have suppressed additional representations j�
and magnetic indices.

FIG. 3. Indices for the f6jg symbol: We choose J ¼ j1 as the
reference spin; then all nonvanishing choices for j2, j3 and j5, j6
are encoded in indices KðJÞ and K0ðJÞ respectively. The non-
vanishing choices for j4 then depend on J, K and K0 and are
summarized in the superindex BðJ; K;K0Þ.
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of the quantum group SUð2Þk. In fact one easily reaches the
limits of modern high performance computers, in particular
in terms of memory usage. This issue is the subject of the
next subsection.

3. Memory costs of SUð2Þk × SUð2Þk spin nets

In this section we discuss the main numerical obstruction
that has to be overcome if one intends to coarse grain
SUð2Þk × SUð2Þk spin nets, which is an immense cost to
memory. In order to give an idea of the order of magnitude
it is sufficient to just consider the size of the initial tensor T̂
[using superindices KðJÞ].
As one increases the level k of the quantum group the

size of the initial tensor increases due to two effects: jmax
and thus the number of irreducible representations
increases and the range of the superindex KðJÞ increases
as more pairs of representations ðj1; j2Þ can couple to J.
Because of the first effect, the number of intertwiners grows
exponentially as they are labeled by four SUð2Þk repre-
sentations fJg. Moreover each of these grows in size as
well due to the larger range of the superindices. We
summarize this in Table I.
From the data we can clearly observe an exponential

increase in the size of the initial T̂ for growing level k of the
quantum group. The memory used to store it roughly
increases by an order of magnitude for each increase of k.
While the models k ¼ 4 and k ¼ 5 appear to be small
enough to still run on modern notebooks (at least con-
cerning the memory usage), one has to move to high
performance machines for k ≥ 6. However already for
k ¼ 8 the memory to only define the initial tensor exceeds
the memory available on many modern machines. Note
also that the memory cost for the initial T̂ alone can only
serve as a lower bound, in particular if one goes to higher
bond dimension after several iterations of the algorithm.
It is apparent that the standard four-valent algorithm

[14,29,30] is limited to smaller levels k due to the sheer size
of the tensors, which encode the dynamics of the theory.
Thus in order to go to larger quantum groups one has to find
a way of encoding the same information in smaller building
blocks carrying less data. In a way the tensor network

algorithm [14,29,30] itself already holds the key to the
solution of this problem. During the algorithm the four-
valent tensor T̂ is split via a SVD into two three-valent
tensors Ŝ1 and Ŝ2. This transformation is exact as long as no
singular values get truncated such that one can encode the
same information into three-valent tensors. This allows us
to redesign the algorithm [29,30] based on four-valent
tensors to an algorithm (first introduced in [31]) which is
equivalent in precision, but only involves three-valent
tensors and requires moreover less computational time
(scaling with χ3 instead of χ4). Fortunately in the inter-
twiner basis it is straightforward to define the initial three-
valent tensor without a SVD, such that one can readily
work with three-valent tensors Ŝ instead of T̂. The sizes of
three-valent and four-valent tensors are compared in
Table II.
Unsurprisingly the three-valent tensors are far more

economical in terms of memory usage compared to four-
valent ones, essentially because they are parametrized by
only one superindex KðJÞ per intertwiner label J instead of
two for four-valent ones. However as beneficial as this fact
may be one still requires a tensor network algorithm suited
to a three-valent tensor which avoids higher valent inter-
mediate tensors as much as possible. In the next section
we present such an algorithm, called a triangular algorithm,
show that it uses significantly less memory than the
original four-valent one and discuss further numerical
optimizations.

B. Optimizing tensor network algorithms

In this section we discuss the tensor network algorithm
used to coarse grain SUð2Þk × SUð2Þk spin net models.
Particular attention is given to the so-called triangular
algorithm which can be understood as a modification of
the familiar algorithms [29,30] using three-valent tensors,
denoted by Ŝ, as its basic building block instead of four-
valent ones, called T̂. Originally it was invented in [31]
and already applied in [54] yet it turns out to be indispen-
sable for the models under discussion as motivated in
the previous section. Furthermore we also discuss

TABLE I. Characteristic numbers for the initial tensor T̂ of SUð2Þk × SUð2Þk spin nets for different values of k.
We assume 16 bytes per entry.

Level k jmax Maximal KðJÞ
Number of
blocks

Size of largest
block

Size of block
in GB Size of T̂

Size of
T̂ in GB

4 2 Kð1Þ ¼ 5 81 254 ∼0.0058 434 ∼0.051
5 2 Kð1Þ ¼ 6 81 364 ∼0.025 704 ∼0.36
6 3 Kð1Þ ¼ Kð2Þ ¼ 8 256 644 ∼0.25 1604 ∼9.77
7 3 Kð2Þ ¼ 10 256 1004 ∼1.5 2464 ∼54.6
8 4 Kð2Þ ¼ 13 625 1694 ∼12.2 4614 ∼673.1
9 4 Kð2Þ ¼ 15 625 2254 ∼38.2 6714 ∼3021
10 5 Kð2Þ ¼ Kð3Þ ¼ 18 1296 3244 ∼165 11124 ∼23000
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improvements to the code itself which are recommended if
one is dealing with tensors and matrices of the size
mentioned before.

1. Triangular algorithm

As already discussed the step from the four-valent
algorithm [29,30] to a three-valent one is almost directly
built into the four-valent algorithm. At an intermediate step
each four-valent tensor is split into two three-valent ones by
a SVD. Then four of the latter are glued together to form a
new four-valent tensor, rotated by 45 degrees. However in
the next iteration of the algorithm this new coarse tensor is
again split into two coarse three-valent tensors that one in
principle could directly construct from two fine three-valent
ones. Thus the question arises whether one can instead
work just with three-valent tensors as the basic building
blocks. To make this idea more clear, let us consider the
lattice dual to the tensor network.
The lattice dual to a four-valent (square) tensor network

is again a square lattice. By splitting the four-valent tensor
into three-valent ones each square is cut along its diagonal
into two triangles, each dual to a three-valent tensor. As
such one obtains a regular triangulation of the square
lattice. In the next step of the algorithm four of these
triangles are glued to form a coarser square. During the next
iteration this square is again split into two triangles, where
the (coarse) cut is precisely along the lines along which the
finer triangles were glued. In fact it appears that the new
coarse triangles are made up of two fine triangles plus a
variable redefinition, mapping a “subdivided edge into a
coarse edge.” These mappings6 are instrumental for defin-
ing the truncation scheme underlying the tensor network
algorithm [16]. This motivates the triangular algorithm
[31,54].
Before we discuss this algorithm in detail note that it is

defined for a square lattice split into a triangulation as
described above. This is necessary in order to straightfor-
wardly iterate the algorithm.

The triangular algorithm is demonstrated for a larger
network in Fig. 4. The first step is therefore to turn the four-
valent tensor network into a three-valent one. In principle
this can be done by performing the first step of the usual
formalism, but it should rather be avoided if one has to deal
with tensors of the size illustrated in Sec. II A. Fortunately
it is possible to analytically define the three-valent tensors
for many models including the spin nets under discussion;
the Ising model is another example that is straightforward
to split into three-valent tensors.
So assume the triangulation of the square lattice, or its

dual tensor network of three-valent tensors Ŝ, is given,
where Ŝ depends on the following variables:

ŜfJgðfjaðKaðJÞÞgÞ: ð7Þ

The notation is purposely similar to the four-valent tensor
T̂. On the one hand the spins fJg label again the projector
basis and also serve as the label for the superindices
fKaðJÞg summarizing the (nonvanishing) configurations
of fine spin fjag. On the other hand fJg actually represent a
variable in the model attached to one edge of the three-
valent tensor/triangle. In fact this edge is distinguished both
in the definition of Ŝ and in the lattice/network, as it is a
coarser (that is by a factor of

ffiffiffi
2

p
longer) edge. This is also

illustrated in Fig. 5.
Given this triangulation it is straightforward to identify a

coarse triangle made up of two fine triangles glued along a
fine edge. From the tensor network perspective one edge
between two three-valent tensors gets contracted resulting
in a new effective four-valent tensor describing a coarse
triangle with a subdivided edge. Of course this immediately
raises the question whether one runs into the same issue as
the original algorithm of having to store an entire four-
valent tensor. Fortunately this problem can be nicely
circumvented.
Recall that both the three-valent Ŝ and the four-valent

tensor T̂ were expressed in a so-called intertwiner basis,
such that they are labeled by spins fJg [denoting the basis
and superindices fKðJÞg]. The same expansion can be
applied to the new four-valent tensor T̂ obtained from two
three-valent ones, see also Fig. 6,

TABLE II. Comparison of the size of three-valent tensors Ŝ and four-valent tensors T̂ for various levels k of the
quantum group.

Level k jmax Maximal KðjÞ Size of Ŝ Size of Ŝ in GB Size of T̂ Size of T̂ in GB

4 2 Kð1Þ ¼ 5 114 ∼0.00022 434 ∼0.051
5 2 Kð1Þ ¼ 6 144 ∼0.0006 704 ∼0.36
6 3 Kð1Þ ¼ Kð2Þ ¼ 8 244 ∼0.005 1604 ∼9.77
7 3 Kð2Þ ¼ 10 304 ∼0.013 2464 ∼54.6
8 4 Kð2Þ ¼ 13 454 ∼0.062 4614 ∼673.1
9 4 Kð2Þ ¼ 15 554 ∼0.14 6714 ∼3021
10 5 Kð2Þ ¼ Kð3Þ ¼ 18 764 ∼0.5 11124 ∼23000

6The maps can be seen as coarse graining maps or if one
considers the inverse maps, as embedding maps, which are
crucial for the continuum limit [16].
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T̂ fJgðfJaðKaðJÞÞg; fjbðKbðJÞgÞ
¼

X
fBðJ;Ka;KbÞg

SfJaðKaðJÞgÞ1ðfjbðKbðJÞg1;

fjðBÞgÞSfJaðKaðJÞgÞ2ðfjðBÞg;
fjbðKbðJÞg2Þ × fðJ; Ka; Kb; BÞ: ð8Þ

For the sake of simplicity we combine all SUð2Þk specific
expressions, that is, recoupling symbols, quantum dimen-
sion factors, etc., in the function f, which is also expressed
entirely as a function of fJ; Ka; Kb; Bg. See Appendix C
for the complete formula. Crucially the tensor T̂ is directly
expressed in its new intertwiner basis labeled by new
indices fJg. Consequently the old indices J of Ŝ get
expressed in terms of the superindex KaðJÞ, the fine
(uncontracted) j in terms of KbðJÞ and the fine contracted
j in terms of BðJ; Ka; KbÞ. Again this insures that one only
sums over representations allowed by the coupling rules.
As we have discussed in Sec. II A, storing the entire

tensor T̂ is a costly endeavor. Fortunately this is not
necessary in this case: Recall that our goal is to construct
a new three-valent tensor Ŝ0 from T̂ , which then again
serves as the starting point for the next iteration of the
algorithm. To do so we have to combine the two indices of
the subdivided coarse edge, which are labeled by the
superindices fKbg, into one effective index via a variable
transformation, which is computed with a SVD. The
form of T̂ fJg is precisely chosen with this goal in mind,
as we intend to preserve the coarse edges labeled by JaðKaÞ
and (variable) transform the fine ones labeled by jbðKbÞ.
Thus we apply a SVD to

T̂ fJg
fKag;fKbg ≕ MfJg

ab ¼
X
i

UfJg
ai λiðVfJg

bi Þ†; ð9Þ

where Uai and Vbi denote the ith left and right singular
vectors of Mab respectively, and λ1 ≥ λ2 ≥ … ≥ 0 are the
respective singular values ordered in size. The sum over the
index i counting the singular values runs over the full range
of superindices fKðJÞg.
The last step to obtain the new coarse tensor Ŝ0 is the

contraction of the indices fjbðKbðJÞÞg with the singular

vectors VfJg
fjbg;i,

ðŜ0ÞfJ;igðfJaðKaðJÞÞgÞ ¼
X

fjbðKbÞg
T̂ fJg

fKag;fKbgV
fJg
fjbg;i

¼ UfJg
fJaðKaÞg;iλi: ð10Þ

FIG. 4. Triangular algorithm for an extended network: First the square lattice is split into a regular triangulation as in the original
algorithm [29,30]. Instead of defining new coarse squares/four-valent tensors one combines two triangles into a coarse triangle, thus
working with three-valent tensors instead.

FIG. 5. Labels of triangular tensor: The triangular tensor
essentially inherits its block-diagonal form from the four-valent
one. The new coarse edge carries the reference spin J; the fine
spins are combined into a superindex KðJÞ.

FIG. 6. Intermediate four-valent tensor T̂ : Two three-valent
tensor are contracted to form an intermediate four-valent
tensor. It is directly defined in block-diagonal form labeled
by J̄ and indicated by the dashed recoupling lines. The combi-
natorics of this diagram exactly match the f6jg symbol, such that
one only sums over nonvanishing configurations labeled by
the superindex B.
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The last identity follows from the fact that the matrices of
singular vectors U, V are unitary. For Eq. (10) to be valid,
one has to insert a resolution of the identity VV† into the
tensor network in order not to change the partition function.
As a consequence the tensors opposite of T̂ get contracted
with V†; however there the second identity in (10) does not
apply in general.7

Having described the first iteration of the triangular
algorithm, it is time to address the elephant in the room: the
size of the intermediate tensor T̂ and how one can avoid
saving all of it in the triangular algorithm. Therefore we
draw the reader’s attention to Eqs. (8)–(10): the intertwiner
basis fJg puts both the tensors T̂ and Ŝ into the same
block-diagonal form, as the new coarsest edge of Ŝ inherits
the labels from T̂ . Therefore, in order to compute one block
fJg of Ŝ one only has to know the block fJg of T̂ . As a
result one can compute Ŝ0 block by block, for which one
only has to compute and store the respective block of T̂ .
Thus, as we can see from Tables I and II, the main limiting
factor in the triangular algorithm is actually the size of the

largest block T̂ fJg, which is roughly 2 orders of magnitude
smaller than the full four-valent tensor for any level k of the
quantum group.
This concludes the principle discussion of the three-

valent algorithm, in which we paid particular attention to
the (avoidance of the) memory problem. In order to iterate
the code one necessarily has to implement a truncation
scheme after the SVD, as in any other tensor network
algorithm. This is the subject of the next section.
Furthermore we explain and justify the simplifications
made in the algorithm.

2. Truncation scheme and simplifications

Any numerical tensor network algorithm requires a
truncation scheme after the SVD has been performed. If
we consider Eq. (10) again, we realize that the coarse three-
valent tensor Ŝ0 comes with an additional label i attached to
fJg enumerating the singular values from the previous
iteration in this block. Interpretationwise it tells us that fJg
appears with a certain multiplicity, which has to be stored
again. In the following iterations these index ranges keep
growing exponentially such that one eventually is forced to
truncate. However this should be done such that the error is
as small as possible.
The decomposition of a tensor (rearranged as a matrix)

by a SVD is optimal for that, as truncating the singular
values to the largest χ values gives the best approximation
(in terms of the least square error) of this matrix by another
matrix of (lower) rank χ. For the full tensor, that is, all

blocks fJg, one should compute all of the singular values
for each block, compare them and take the largest χ of
those. The approximation is improved if χ is increased.
As straightforward as this idea is it is rather cumbersome

to realize in the context of this work. Due to the size of four-
valent tensors in this model, one cannot simply compute the
SVD of all blocks one after another and store them, as the
full U and V each take up as much memory as the original
T̂ . Moreover computing the full SVD, i.e. all singular
values and vectors, of matrices of the size shown in Table I
(the size of largest block column) is very costly. Instead one
would have to compute one block fJg of T̂ , compute only
its singular values and store them. Then one deletes the
current block and continues with the next one. Once all
the singular values have been computed they are compared
and the largest χ singular values are taken over. Afterwards
one computes T̂ (block by block) again and computes
the SVD only for the amount of singular values taken
over.
Furthermore note that increasing the number of singular

values taken over directly affects the sizes of the three-
valent and four-valent tensors (and matrices) in the next and
next-to-next iteration due to the asymmetry of the three-
valent tensors. Thus one may yet again run into memory
issues. It has been noted in [36] that it is best advised not to
lower the number of singular values in one block in the
following iterations.
Instead of this elaborate truncation scheme we use the

same simple one as in [14], namely we take over only one
singular value per block fJg. Even though it may appear to
be very low at first sight, it actually does take many singular
values into account: If we consult Table I again we realize
that for k ¼ 8, which is the largest model we have studied,
we already have 625 blocks. Experience from previous
models [14] showed that for many models this scheme is
already suitable for exploring the phase structure of the
model. Nevertheless for one model discussed in this article
this approximation scheme clearly breaks down.
Concerning the triangular algorithm a further comment

is in order: In the original tensor network algorithm [29,30]
one usually gets four different three-valent tensors from
splitting the four-valent tensor in two ways. Therefore in
full generality the triangular algorithm is formulated for
four three-valent tensors, where each of these four gets
renormalized. Fortunately in the model under discussion, as
well as the Ising model [31], one finds out that all four
three-valent tensors are identical. This also extends to the
fact that Eq. (10) applies to all three-valent tensors Ŝ. Thus
it is sufficient to perform the three-valent algorithm with
just one tensor Ŝ, which slightly reduces memory usage but
more importantly saves a lot of computational time, as less
SVDs and summations have to be performed.
This concludes the discussion of the triangular algo-

rithm. In the next section we briefly discuss several
improvements of the code and parallelization.

7To improve the algorithm one should actually perform the
SVD for both pairs of tensors and compare which map minimizes
the error.
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3. Code improvements and parallelization

The triangular algorithm describes the current state as a
block-structured matrix, i.e. as a matrix consisting of dense
blocks of varying sizes, where some blocks are known to be
identically 0 due to symmetry, and certain blocks are mere
transpositions of others. It goes without saying that one
needs to make use of this structure to improve performance
and reduce memory requirements.
The operations described above implementing the

renormalization flow define a new block-structured matrix
in terms of an existing one via tensor contractions. This
creates intermediate objects that can be significantly larger
than both the initial and the final state. It is thus crucial to
perform the tensor contractions in an optimal order to
reduce the amount of memory required for intermediate
states.
As modern workstations have multiple cores, it is

necessary to find parallelism for good performance. The
triangular algorithm can be parallelized in two ways. First,
each tensor operation (i.e. matrix multiplication or singular
value decomposition) can be executed in a parallel
operation. This is worthwhile only for sufficiently large
blocks, with more than about 202 elements on a modern
workstation. Second, the blocks making up the resulting
tensor can all be evaluated simultaneously. We found the
latter to lead to the best performance, because while there
are some large blocks, most blocks are too small to be
parallelized by themselves. We implemented this both
via a shared memory OpenMP [55] parallelization
with dynamically scheduled loop in a C++ code, as well
as via a distributed memory parallelization in a Julia
code [56].8

C. Summary of triangular algorithm

Before we continue to discuss the models studied in this
article in more detail, in particular from the perspective of
spin foam quantum gravity, we summarize and conclude
this part of the article about the employed tensor network
algorithm. In Sec. II A we have illustrated in detail that for
models equipped with a large symmetry group, like
SUð2Þk × SUð2Þk in our case, the four-valent algorithm
[29,30] is quickly limited by memory on modern machines.
This even holds when one exploits the symmetries of the
model as in [14,37]. By a shift of perspective from four-
valent to three-valent tensors we have remedied this issue
and invented the triangular algorithm [31,54], which is only
limited by the size of the largest block (in terms of the
symmetries) instead of the size of the entire tensor. Indeed
in our context the triangular algorithm allowed us to go to
much larger levels k of the quantum group.

In addition to that the shift to smaller fundamental
building blocks should have more potential for other
practitioners of tensor network algorithms, and also for
smaller symmetry groups. Since the triangular algorithm is
more economical than its four-valent counterpart it should
be possible to further increase the bond dimension of
the model and thus improve the approximation or lower
the computational costs at the same level of accuracy.
Moreover it might be worthwhile to modify the
entanglement filtering algorithm [32] to the triangular
case.
This concludes the part of this article focusing on the

technical and numerical aspects of this work. In the next
sections we go into more detail about the models under
discussion, in particular establishing the relation to modern
spin foam models and presenting the results of applying the
above-mentioned triangular algorithm to these models.

III. PART II: RESULTS

A. Intertwiner and spin net models

After focusing on the technical and numerical challenges
one faces when renormalizing quantum group spin net
models, the rest of this article focuses more on the technical
details of the models and their relation to spin foam models.
This entails a brief introduction to and motivation of the
models, including a discussion of intertwiner models [57], a
detailed construction of spin net models mimicking modern
spin foam models and a presentation of the results from
coarse graining these models.
Spin net models are defined on a lattice of arbitrary

dimension.9 To each vertex one assigns a group element
gv ∈ G, e.g. a finite or a (compact) Lie group, and weight
functions ωe∶G → C. For concreteness and similarity to
the quantum group case we assume that G is finite. The
edges of the lattice come with an orientation and the
associated weights are evaluated on the product of group
elements at the “source” and “target” of the edge, i.e.
ωeðgsðeÞg−1tðeÞÞ, where sðeÞ=tðeÞ denote the source/target

vertex of e respectively. Crucially the edge weights
are invariant under conjugation, i.e. ωeðhgh−1Þ ¼
ωeðgÞ∀h ∈ G. Thus the system possesses a global sym-
metry, as it is invariant under (left and right) multiplying
the same group element to all group elements on the
vertices. To conclude, the partition function of this system
is given by

Z ¼ 1

jGjE
X
fgvg

Y
e

ωeðgsðeÞg−1tðeÞÞ: ð11Þ

8Readers interested in the codes can request them by contact-
ing the authors.

9This lattice need not be regular for tensor network methods
to work. However regular lattices result in regular tensor net-
works, whose numerical coarse graining can be straightforwardly
iterated.
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By jGj we denote that the number of group elements of G
and E is the number of edges in the lattice. The simplest
nontrivial model is the Z2 Ising model (for vanishing
external magnetic field).
A dual description of spin net models can be derived

from (11) by a group Fourier transform, as can be found in
[34,58]. To do so one expands the class functions ωeðgÞ
into characters χρðgÞ of irreducible representations ρ of the
group G. As the characters factorize over group elements
(into representations) so does (11), such that the group
summation can be performed for each vertex individually.
Eventually one obtains a group theoretic object, the Haar
projector Pv,

10at each vertex of the lattice, such that (11) is
rewritten as

Z ¼ 1

jGjE
X

fρe;me;neg

Y
e

~ωρe

Y
v

Pvðfρege⊃vgÞfmeg
fneg

¼
X

fρe;me;neg

Y
e

~ωρe

Y
v

X
jιdi

fmegjιdihιdjfneg: ð12Þ

~ωρe denotes the Fourier transformed edge weight. The
indices of Pv are contracted with the indices of the other
projectors according to the connectivity of the graph, such
that each edge essentially carries the Hilbert space
He ¼ ⨁ρVρ ⊗ Vρ� , where ρ� denotes the dual represen-
tation to ρ:P itself is a projector satisfying P · P ¼ P.
More information and details on the derivation of these
expressions can be found in [34].
In order to apply tensor network algorithms, the partition

function (12) needs to be rewritten as a contraction of
tensors, i.e. as a sum over tensor indices. This implies
that we must assign all amplitudes to the vertices
and variables to the edges.11 As the projectors are already
assigned to the vertices, it remains to split the edge
weights ωe by assigning

ffiffiffiffiffiffi
ωe

p
to the source and target

vertex of each edge e. Hence we define the following
tensor T:

Tðfρg; fmg; fngÞ ≔ 1

jGj2
Y
e⊃v

ffiffiffiffiffiffiffi
~ωρe

q
Pvðfρege⊃vgÞfmeg

fneg

¼
Y
e⊃v

ffiffiffiffiffiffiffi
~ωρe

q X
jιdi

fmegjιdihιdjfneg: ð13Þ

Given this T, the sums over irreducible representations and
magnetic indices in (12) are expressed as the contraction of
tensor indices according to the combinatorics of the net-
work, called the tensor trace Ttr,

Z ¼ TtrT…T: ð14Þ

As briefly discussed in Sec. II A the representation (11)
is not available for quantum groups, as these are not groups
but Hopf algebras. Here we understand the quantum group
SUð2Þk as the q-deformation of the universal enveloping
algebra UðSUð2ÞÞ with q ¼ expð iπ

kþ2
Þ being a root of unity

[52,53]. k denotes the level of the quantum group. Since the
representation theory of SUð2Þk is well understood and
actually very similar to the one of SU(2), we take
representation (12) as our starting point. The most notable
difference to the undeformed case is the cutoff in the spins
jmax ¼ k

2
, which depends on the level k. Details on the

derivation of the Haar projector for SUð2Þk can be found
in [14].
At this stage we briefly comment on the relation of

spin net models and spin foams: the dynamical ingredients
of spin foams are very similar to spin nets; however there
are two major differences. First, group elements are
assigned to edges instead of vertices and weights are
assigned to faces. In representation (12), spin foams carry
representations on the faces and intertwiners on the edges
of the foam. The second difference is that spin foams
possess a local gauge symmetry instead of a global one. As
a result the partition functions of spin foams and spin nets
are very similar in form. Another difference is the chosen
dimension of the systems. Spin foam models are usually
describing four-dimensional spacetimes, whereas we study
here two-dimensional spin net models. There are several
reasons for this choice. It is a known feature that four-
dimensional lattice gauge theories and two-dimensional
spin systems share certain statistical properties and have
similar phase structures [35]. In addition to that two-
dimensional spin net models on a square lattice feature
four-valent projectors on their vertices as do four-
dimensional spin foam models defined on (the dual of a)
triangulation.
Among these reasons, the similarity of dynamical

ingredients was the main motivation for the construction
of spin net models [14,36,37] as it allows us to capture a
key dynamical ingredient of spin foams, the so-called
simplicity constraints. These simplicity constraints appear
in the Plebansky formulation of general relativity [59] and
break the symmetries of topological BF theory to obtain a
theory with propagating degrees of freedom. Spin foam
models take this Plebanski action as their starting point, but
first discretize and quantize the topological theory.
Discretized versions of the simplicity constraints are then
imposed at the quantum level and are expected to result in
propagating degrees of freedom. However this construction
is not unique and is the cause of different spin foammodels;
see again [3] for recent review. Due to their (dynamical)
similarities we hope that spin nets can serve as analogue
models for spin foams and that the phases and possibly
some key features of the coarse graining flow agree in these

10Pv∶Vρ1 ⊗ … ⊗ Vρn → InvðVρ1 ⊗ … ⊗ VρnÞ is the projec-
tor onto the invariant subspace of the tensor product of repre-
sentation vector spaces Vρ. It can also be seen as a sum over an
orthonormal basis of intertwiners jιdi ∈ InvðVρ1 ⊗ … ⊗ VρnÞ.11In general there exist many choices on how to rewrite a
partition function as a tensor network. In fact the tensor network
can be different from the underlying discretization.
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models. Due to their simpler structure spin nets allow the
tracking of the simplicity constraints during coarse grain-
ing. Besides spin nets are also useful in developing coarse
graining techniques that might be also applicable to
spin foams.
In fact spin nets can even be identified with spin foams

defined on a very special underlying discretization, known
as melon spin foam [14]: Such a melon consists of two spin
foam vertices glued together via many spin foam edges.
The spin net coarse graining corresponds to a bundling of a
number of spin foam edges into thicker edges. The
simplicity constraints determine also how the two spin
foam vertices are glued to each other. For instance later
on we encounter so-called factorizing spin net models,
which translate to factorizing, and hence unglued, spin
foam vertices.
As mentioned simplicity constraints are of particular

interest for the dynamics of spin foams. At the core of the
construction of modern spin foam models is the insight of
Plebanski that the Palatini action (a first order formu-
lation of the Einstein-Hilbert action) can be written as a
constrained topological field theory [3,59]. Since it is
understood how to discretize and quantize the uncon-
strained topological theory, known as BF theory, many
modern spin foam models use it as the starting point
[3,39,41,42]. In order to obtain propagating degrees of
freedom (a version of) the simplicity constraints are
implemented at the discrete quantum level. As it is
generically the case for discretizations this procedure is
not unique and the root of differences among modern spin
foam models. In more detail the simplicity constraints
affect the projectors P on the invariant subspace, e.g. in
(12), by forbidding certain intertwiners jιi such that P
projects only onto a subspace. In this regard spin foam
models can be seen as extensions of lattice gauge
theories [33].
Despite these difference in the construction of spin

foam models they are remarkably in agreement with the
semiclassical limit for one vertex amplitude, i.e. the
amplitude assigned to a 4-simplex, which is given by
the cosine of the Regge action [60], a discretization
of general relativity on a triangulation, of this simplex
[61–64]. While this is an encouraging result examinations
for larger 2-complexes are scarce and the dynamics of spin
foams is not well understood as well. Concerning the
simplicity constraints this is a crucial issue to tackle as
they play the crucial role of implementing the dynamics.
Whether this dynamics is nontrivial, in the sense of
describing propagating degrees of freedom, and further-
more compatible with general relativity in an appropriate
limit is on open question. In turn a better understanding of
the dynamics can lead to an improved construction of the
models.

Thus progress towards this goal would be achieved by
examining the effect of the simplicity constraints if the
foam consists of more than one building block. This is the
question of how the subspaces the constraints project on
change under coarse graining, i.e. how the constraints act
effectively on a coarser scale. Due to their dynamical
similarity to spin foams, yet for a simpler dynamics, we can
address these questions in spin net models and subject them
to a real space renormalization procedure. The purpose of
this article is therefore to construct spin net models
mimicking the properties of two four-dimensional spin
foam models, namely the BC [39] and the EPRL/FK
[41,42] model, and coarse grain them via tensor network
renormalization.
To this end the choice of the proper symmetry group is

crucial, where studying spin nets for the quantum group
SUð2Þk × SUð2Þk actually kills two birds with one stone.
On the one hand one requires a cutoff on the (irreducible)
representations in order to apply tensor network renorm-
alization. On the other hand quantum groups also provide
us with a physical motivation from quantum gravity as it is
conjectured that spin foam models for quantum groups
model gravity with a cosmological constant Λ ≠ 0 [65–72].
This insight stems from the Turaev-Viro model [73], a spin
foam model for discretized Euclidean quantum gravity in
three dimensions with a positive cosmological constant. Its
basic amplitude is precisely the SUð2Þk 6j-symbol describ-
ing a constantly (positively) curved quantum tetrahedron
describing the case Λ > 0. In this setting the maximum spin
jmax can be interpreted as an infrared cutoff via the
cosmological constant with Λ ∼ 1=jmax. The small value
of Λ in current observations would thus suggest a large
level k of the quantum group. Extensions of these ideas to
four-dimensional spin foam models are a topical field of
research [50,69,70] and have recently uncovered an inter-
esting connection to Chern-Simons theory [74]. Moreover,
canonical loop quantum gravity frameworks, implementing
a cosmological constant, can also be constructed, thus
providing the boundary Hilbert spaces for these models
[72,75–77].
After this motivation of quantum group spin nets let us

return to the discussion of the model itself. As discussed
above, the partition function is of the general form (12)
and can be written as a tensor network with (13) and (14).
With SUð2Þk × SUð2Þk as the underlying quantum
group irreducible representations are labeled by two
irreducible SUð2Þk representations jþ and j−; consequently
the edge Hilbert space is He ¼ ⨁jþ;j−Vjþ ⊗ Vj− ⊗
Vjþ� ⊗ Vj−� . Due to the quantum group symmetry
encoded in the projectors the tensors T are of a very specific
form derived in [14] and alluded to in Secs. II A
and II B,

DITTRICH, SCHNETTER, SETH, and STEINHAUS PHYSICAL REVIEW D 94, 124050 (2016)

124050-14



ð15Þ

This equation expresses the change of basis, namely to the
recoupling basis, at the heart of the tensor network algo-
rithm. dJ denotes the quantum dimension ½2J þ 1� of the
representation J, with [n] being the quantum number of n
(see Appendix A). T̂, which is a function solely of
representation labels, is the tensor expressed in the new,
block-diagonal basis. The graphical expressions denote the
Haar projector of SUð2Þk × SUð2Þk (modulo dimension
factors and signs) and encode the dependence on the
magnetic indices. Essentially each trivalent vertex is dual

to a Clebsch-Gordan coefficient
q
Cfjgfmg, where the first two

diagrams encode the indices fm�g and the latter two encode
fn�g. A short explanation on this graphical calculus can be
found in Appendix B; see also [14] for more details.
The crucial point about identity (15) is that any spin net

model equipped with the quantum group symmetry can be
written in this form. Thus the different methods and
concepts of implementing simplicity constraints result in
different tensors T̂. Moreover the symmetry structure of the
model is precisely preserved under coarse graining, such

that we can directly examine the renormalization group
flow of T̂, which one could then interpret as the flow
of the simplicity constraints. Again we recall that the basis
(15) is crucial for developing and optimizing the algorithm
such that it can be applied to larger levels k of the quantum
group, which is the subject of Secs. II A and II B.
Before we go on and discuss in more detail the

construction of BC and EPRL spin nets, we also introduce
SUð2Þk × SUð2Þk intertwiner models and give the reader a
brief context to other models examined before.

1. Intertwiner models

Seen from spin net models, intertwiner models resemble
simpler version with fewer degrees of freedom. Looking
at the spin net for an arbitrary group (12), intertwiner
models only have an edge Hilbert space He ¼ ⊗ρ Vρ, so
the dual representations are missing. Thus the model is
considerably simpler, in particular compared to numerically
coarse grain, but of a similar form as (15),

ð16Þ

Indeed these models can prove useful in better under-
standing the full spin net models, as some of the fixed
points obtained via coarse graining actually factorize, that
is, the sets of representations decouple.
In previous work a similar behavior has already

been encountered: SUð2Þk intertwiner models have
been introduced in [57], where several (families of)
topological fixed points were derived by requiring
triangulation independence. These topological fixed
points were then used in [14] as initial data for SUð2Þk

spin nets and a rich phase structure with possibly second
order phase transitions were found. Some of the fixed
points describing the phases turned out to be factorizing
as the representation j and its dual j� completely
decoupled. Indeed taking the tensor product of fixed
points of intertwiner models is also a fixed point of
spin nets, as long as the representations j and j0 ≠ j� are
uncoupled. Note however, e.g. in (15), that in the initial
spin net models j0 ¼ j�. So one can interpret a spin
net as two entangled, or rather interacting, intertwiner
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models.12 Pushing these analogies even further, one can
interpret SUð2Þk × SUð2Þk spin nets as a tensor product of
two interacting SUð2Þk spin nets or as a tensor product of
four interacting SUð2Þk intertwiner models.
In the next section we discuss the construction of two

spin net models in detail, an analogue BC and an analogue
EPRL model.

B. BC and EPRL models

As we have discussed before most four-dimensional spin
foammodels are built by imposing a version of the simplicity
constraints on a discretized andquantizedBF theory,with the
goal to break the (toomany) symmetries of the latter to obtain
a theory with propagating degrees of freedom. In this article,
we intend to construct analogue models by mimicking the
four-dimensional procedures. In order to keep this concise,
we focus on the two models which have been studied most
thoroughly in the literature, namely the BC and EPRL
models, which differ significantly in their construction.

1. The BC construction

The BC model is one of the first four-dimensional spin
foam models that have been constructed, both for
Euclidean [39] and Lorentzian signatures [78]. As dis-
cussed before we focus on the Euclidean version in this
article. A BC spin foam model implementing a cosmo-
logical constant has been constructed in [50]. This work
also includes the Monte Carlo simulation of some observ-
ables, like relative frequencies of spin values.
Nowadays the BC model is disfavored, for mainly two

reasons [3,79,80]. On the one hand it suffers from metric

discontinuities in the semiclassical limit due to nonmatch-
ing shapes of tetrahedra along which 4-simplices are glued.
On the other hand the BC model (intentionally) does not
make contact with the (kinematical) Hilbert space of loop
quantum gravity (LQG) (as a boundary Hilbert space), such
that it cannot be used to define a physical inner product in
LQG. In particular the latter point is overcome in the EPRL
model. Indeed, a motivation of the EPRL model was the
failure of the BC model to reproduce all properties of the
continuum graviton propagator [81].
Despite these disadvantages the BCmodel is an interesting

model to study due to its geometric construction and
remarkable simplicity.Essentially it is constructed bydescrib-
ing a triangulated four-dimensional Riemannian manifold by
assigning bivectors to all triangles of the 4-simplices plus
constraints. These are identified with Lie algebra elements
and quantized by expressing them as group theoretic objects,
namely by assigning SUð2Þ × SUð2Þ representations
ðjþ; j−Þ to the triangles and intertwining maps to the
tetrahedra. Simplicity constraints are implemented by requir-
ing the bivectors to be simple, which is translated to the
representation labels jþ ¼ j−13 Representations ðj; jÞ are
thus also called simple representations. Four-valent inter-
twiners assigned to tetrahedra are shown to be unique. They
can be expanded into three-valent ones, where one requires
that the intermediate representations are simple again. This
splitting is not unique; however all possible recoupling
schemes are related to one another by fusion, where the
fusion coefficients are given by f6jg symbols. Following this
general idea, we define the following spin net tensor
implementing the BC conditions on the representations:

ð17Þ

The first diagram represents the representation ji,
the second one their duals j�i . The normalization
constant cfjig turns out to only depend on the quantum
dimension of the representations fjig. In the graphical
calculus the half-circle represents a Clebsch-Gordan
coefficient for representations ðjþi ; j−i Þ coupling to j ¼ 0,

i.e.
q
C
jþi j

−
i 0

mþ
i m

−
i 0
. This is only nonvanishing if jþi ¼ j−i ≕ ji.

Note that the tensor TBC generically is not a projector
onto the invariant subspace given by the basis in (15). In
order to define the spin net one thus has to project it down
onto the invariant subspace. To this end we contract both
the sets of magnetic indices of TBC with the Haar projector
P for SUð2Þk × SUð2Þk,

12This is also the reason that taking topological fixed points of
intertwiner models results in a flow of the spin net model under
coarse graining.

13This condition is inferred from the classical condition on the
bivectors stating that self-dual and antiself-dual parts have the
same norm.
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The diagrams are straightforwardly calculated by using
several identities and orthogonality relations of the
Clebsch-Gordan coefficients [52]. As can be read off from
the result TBC precisely implements the Barrett-Crane
conditions on the representations.
The only component left to define T̂BC is the normali-

zation constant cfjig. This can be fixed by requiring the
projector condition [82]; see Appendix D for a derivation,

TBC ∘ TBC ¼! TBC ⇒ cj1;j2;j3;j4 ¼ ðdj1dj2dj3dj4Þ−1: ð19Þ

We however introduce a free parameter in this normaliza-
tion, allowing a power α, instead of just ð−1Þ. The reason is
that this normalization determines the (path integral)
measure in spin foams. Different principles have been
suggested to fix this measure [26,82–84], leading to
different proposals. There is however one very strong
requirement which is expected to give a unique answer,
namely to ensure a restoration of diffeomorphism invari-
ance and triangulation independence in the continuum limit
[11,12,85]. This principle does in fact fix the measure in
three-dimensional Regge calculus uniquely [13]. For four-
dimensional Regge calculus one can show that there is no
local measure satisfying this requirement [86], which again
emphasizes the need to study which measures could lead to
a diffeomorphism invariant model via coarse graining.
Thus it is important to allow for some freedom of choice
in the initial measure, as this can also determine the phase
the models are flowing to. (In [45] the measure is the only
free parameter and its tuning does indeed indicate a phase
transition.)
To conclude the construction, we obtain the following

initial tensor T̂BC in block-diagonal form:

T̂fJg
BC ðfjigÞ ¼ ðdj1dj2dj3dj4ÞαðdJdJ0 Þ−1

× δJþ;J−δðJþÞ0;ðJ−Þ0
Y4
i¼1

δjþi ;j−i : ð20Þ

For the triangular algorithm, which we are using in this
work, one rather has to define a three-valent tensor from the
four-valent one. This is given by

ŜfJgBC ðfjigÞ ¼ ðdj1dj2ÞαðdJdJ0 Þ−1

× δJþ;J−δðJþÞ0;ðJ−Þ0
Y4
i¼1

δjþi ;j−i : ð21Þ

Note that in the triangular algorithm, the indices fJg do not
have the interpretation of an intermediate label, but rather
are the irreducible representations assigned to a coarser
edge of the tensor (obtained from splitting a square along its
diagonal).
This concludes the construction of the BC model. In the

next section we present the construction of the EPRL
model, which is based on very different concepts and is
more elaborate.

2. The EPRL construction

Originally the EPRL model was motivated as a modi-
fication of the BC model, in particular in the imposition of
the simplicity constraints onto discretized and quantized
BF theory [40,41,46]. These constraints do not form a
closed algebra, more precisely the off-diagonal constraints
are second class. Imposing them strongly, as it is done in
the BC model, might therefore restrict the degrees of
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freedom of the model more than in the classical theory. It is
frequently argued that the uniqueness of the BC intertwiner
supports this reasoning, as the intertwiner degrees of
freedom are completely constrained.
The EPRL model lifts this issue by imposing the

constraints weakly, that is, not as an operator equation
but at the level of expectation values, e.g. by a Gupta-
Bleuler criterion. In this article, we do not use the original
derivation, but rather follow the more recent and straight-
forward method which was motivated by the closely related
FK model [42]. Instead of imposing the quadratic simplic-
ity constraints, which can be shown to reduce BF theory to
general relativity, one imposes so-called linear simplicity
constraints. In the classical and discrete setting imposing
these linear constraints on each face of a triangulation is
actually equivalent to imposing the quadratic simplicity
constraints. Also the linear constraints are second class;
thus they are also imposed weakly. One possible solution,
in the Gupta-Bleuler condition, results in a condition on the
SUð2Þ × SUð2Þ representations ðjþ; j−Þ. In the rest of this
article we assume the Barbero-Immirzi parameter γ < 1,

ðjþ; j−Þ ≔
�
1þ γ

2
l;
1 − γ

2
l

�
: ð22Þ

l denotes another SU(2) representation. Given this relation
of SU(2) representations to SUð2Þ × SUð2Þ representations
labeled by γ one defines a map Yγ∶Hð1þγÞl=2;ð1−γÞl=2 → Hl

relating the respective Hilbert spaces. Essentially this map
restricts the representations ðjþ; j−Þ to those compatible
with the simplicity constraints.
Similarly one also constructs SUð2Þ × SUð2Þ inter-

twiners from SU(2) ones. First one maps all SU(2)
representations to SUð2Þ × SUð2Þ; however the resulting
vector is not necessarily an intertwiner, i.e. it does not lie in
the invariant subspace. Thus one has to contract this object
again with the Haar projectors from both sides in order to
obtain an SUð2Þ × SUð2Þ intertwiner. Note that this map
between invariant subspaces is not an isometry [87], that is,
the norm of the intertwiners is not preserved under this
map. Nevertheless, due to this construction of the EPRL
model its boundary Hilbert space is actually isomorphic to
the (kinematical) Hilbert space of loop quantum gravity
(for a fixed graph). Thus the EPRL model lifts the second
shortcoming of the BC model as it can be used to define
transition amplitudes for states of loop quantum gravity.
In the construction of the EPRL spin nets we essentially

follow the same route outlined in the previous two para-
graphs. First we consider a map from SUð2Þk representa-
tions to SUð2Þk × SUð2Þk ones implementing simplicity
constraints, where the maximum spin jmax of the quantum
group requires particular care. Then we lift the Haar
projector of SUð2Þk to a SUð2Þk × SUð2Þk representation
theoretic object, which we denote as the EPRL tensor
TEPRL. As this generically is not a projector onto the

SUð2Þk × SUð2Þk invariant subspace, it is then contracted
by Haar projectors of SUð2Þk × SUð2Þk. To put it in a
nutshell we essentially restrict the model to projectors that
can arise from the SUð2Þk Haar projector given the map
implementing the simplicity constraints.
The spirit of the construction is very similar to the

corresponding spin foam model as defined by Meusburger
and Fairbairn [69]. We work here with the Euclidean
version; Lorentzian spin foam vertex amplitudes have been
also constructed by [69] and [70].
As already mentioned above, the map (22) from l →

ðjþðlÞ; j−ðlÞÞ requires some attention in the Euclidean
theory: Both the representations l and jþ, j− must be
1
2
N. If this is not the case, the particular mapping is

forbidden, i.e. will be assigned a vanishing weight. As
we usually start from a representation l, this gives restric-
tions on the Barbero-Immirzi parameter γ in order to obtain
a nontrivial map, i.e. beyond just mapping the trivial
representations to one another. Thus one quickly realizes
that γ ∈ Q is the necessary condition to do so. Again this is
a particular condition on the Euclidean theory; a similar
restriction does not exist for the Lorentzian one. In the case
we are considering here, there is a further restriction, as we
only consider integer representations. On a more technical
level, one can understand this identification as a map from
Vl → Vjþ ⊗ Vj− , so essentially a Clebsch-Gordan coeffi-
cient. Thus the coupling rules of SU(2) also influence
whether a nontrivial map exists.
In the case of quantum groups further restrictions occur,

as it has been already studied in [69] (see also [70] for an
independent derivation of the Lorentzian model) in the case
γ < 1. As discussed above SUð2Þk (at root of unity) has a
natural cutoff on the spins, jmax ¼ k

2
. Representations

labeled by larger 1
2
N exist, but are referred to as having

vanishing quantum dimension.14 The SUð2Þk spin nets in
[14] have been explicitly constructed to avoid these
representations; thus we have to ensure that no allowed
spin l gets mapped to such a representation. Similar to [69],
we achieve this by requiring

ðjþðjmaxÞ;j−ðjmaxÞÞ¼
�
1þ γ

2
jmax;

1− γ

2
jmax

�

∈ fðj;j0Þ∈ ðN;NÞ∶j;j0 ≤ jmaxg: ð23Þ

Again this puts many restrictions on the possible choices of
γ, in particular for small levels k of the quantum group. In
many cases only the trivial map exists. The following
nontrivial cases are possible (we omit the trivial
identification):

(i) k¼6 (jmax ¼ 3) for γ ¼ 1
3
: l¼3↦ðjþ¼2;j−¼1Þ.

(ii) k¼10 (jmax¼5) for γ¼3
5
: l¼5↦ðjþ¼4;j−¼1Þ.

14For j > jmax the quantum dimension dj ¼ ½2jþ 1�q is no
longer positive definite.
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(iii) k¼12 (jmax¼6) for γ¼1
3
: l ¼ 3 ↦ ðjþ ¼ 2; j− ¼ 1Þ

and l ¼ 6 → ðjþ ¼ 4; j− ¼ 2Þ.
As we argue below, due to freedom in the normalization as
in the BC case, the model for k ¼ 12 is the most interesting
one, as it will actually be a whole one-parameter family of
models. However, at least for spin nets, k ¼ 12 is currently

beyond efficient simulation, despite the optimization
efforts described in Secs. II A and II B. Nevertheless, the
associated intertwiner model can be studied without
problems.
Concretely for spin nets, we first construct the EPRL

tensor TEPRL from the SUð2Þk Haar projector,

ð24Þ

Note again that j�i ¼ ð1� γÞli=2. cflg is the normalization
constant. Also it is important that both copies of
SUð2Þk × SUð2Þk representations are generated from the
same SUð2Þk intertwiner [and thus identical, i.e. ðj�i Þ0 ¼
ðj�i Þ�]. If the latter were independent, i.e. replace the

second l by l0, this would result in a different, factorizing
model.
As for the BC case, TEPRL is not a projector onto the

invariant subspace; therefore it has to be contracted with the
Haar projector from both sides,

ð25Þ

A comment on the choice of Haar projector is in order. In contrast to the BC model, we have slightly changed the Haar
projector,15 which allows us to simplify the diagrams.
Another peculiarity of quantum groups is the over- and undercrossings of representations, which one has to

keep track of since they do not commute. They can be transferred into one another employing the so-called
R matrix [52,57],

15The SUð2Þk × SUð2Þk Haar projector used for the BC model is a tensor product Pq ⊗ Pq̄, whereas the one for the EPRL is
Pq ⊗ Pq.
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ð26Þ

Using these identities we can replace the crossings in the diagrams. Furthermore the diagrams can be manipulated further
using identities derived in [14] (see also Appendix B). Eventually we can define the block-diagonal form of TEPRL, namely
T̂EPRL. Here we restrict ourselves to the triangular version ŜEPRL. See Appendixes E and F for derivations of the
normalization and the diagrams respectively,

ð27Þ

The normalization constant cflig is again computed by
contracting TEPRL with itself, and as in the BC case we
introduce more freedom by allowing it to appear with a
power α. Note that the normalization only depends on the
quantum dimensions of the SUð2Þk representations li.
Therefore α only plays a role if there exists a nontrivial
map li ↦ ðjþ; j−Þ for li ≠ 0, jmax, as d0 ¼ djmax

¼ 1. The
smallest k for which this is possible (in the model discussed
here) is k ¼ 12. Even though the diagrams turn out to be
nicely symmetric, we have not found a simpler expression
for them. Interestingly both diagrams turn out to give the
same expression.
Before we continue with the discussion of the related

intertwiner models, we comment on the simplicity con-
straints. As discussed above, these are implemented at the
level of representations, here explicitly in the maps
li ↦ ðjþi ; j−i Þ. In the diagrams we then observe that j�1
and j�2 couple to J�, which are then again coupled to l.
Note that the simplicity constraints are not explicitly
implemented in the latter coupling, such that we expect
a flow of the simplicity constraints. As one would interpret
the theory at a coarser scale as an effective theory of the
finer one, we a priori do not see a reason to enforce the
constraints there, too.

In the next section we discuss the respective intertwiner
models and their behavior under coarse graining.

C. Intertwiner models

As already discussed above intertwiner models can be
motivated from spin nets as simpler versions of those. In
fact one can interpret the latter as the tensor product of two
interacting intertwiner models; thus one could also denote
them as entangled.16 This insight in itself is already helpful
in interpreting the fixed point of spin net models, as they
often turn out to be factorizing.
Nevertheless the study of intertwiner models themselves

is already interesting in itself as their construction is
analogous to spin nets, such that coarse graining them
gives us first hints and insights into the behavior of the
simplicity constraints under coarse graining with much
lower computational costs. The latter is crucial for studying
the EPRL model, as the interesting case, i.e. k ¼ 12, for
spin net models is currently out of reach.

16This is in full analogy to quantum information where two
subsystems are entangled when they cannot be written as a
product state, e.g. the Bell states.

DITTRICH, SCHNETTER, SETH, and STEINHAUS PHYSICAL REVIEW D 94, 124050 (2016)

124050-20



Therefore in the next two subsections we very briefly
introduce the respective BC and EPRL intertwiner models
and discuss the results under coarse graining.

1. BC intertwiner model

For completeness, let us give the initial three-valent
tensor (in block-diagonal form) for BC intertwiner models,
which can be straightforwardly defined by omitting the
dual representations [compare also with (21)],

ŜfJgBC ðfjigÞ ¼ ðdj1dj2ÞαðdJÞ−1δJþ;J−
Y4
i¼1

δjþi ;j−i : ð28Þ

As before we keep the factor α as a means to study different
models. It reflects the fact that the normalization is not
uniquely defined, as it is also the case for edge and face
amplitudes in spin foam models.
Under coarse graining we find a very simple pattern valid

for all levels k of quantum groups: the first important fact is
that theBC intertwiner is a fixed point of the renormalization
group flow for αc ¼ 1

2
. This is not surprising as the original

four-valent BC intertwiner [39] is unique, i.e. it does not
depend on the recoupling scheme chosen. On that specific
fixed point the model thus is discretization independent.
If we consider α ≠ αc we do observe the following

behavior: As the model is not on the fixed point, we
observe that channels other than the BC ones, i.e. Jþ ≠ J−,
get excited, that is come associated with a nonvanishing
singular value. This signifies a weakening of the simplicity
constraints under the coarse graining flow. As we see below
the BC simplicity conditions are however restored at the
fixed points.
If one orders the singular values into a matrix Jþ ¼ J−

give the diagonal elements; Jþ ≠ J− are off-diagonal
elements. Crucially this matrix is symmetric, that is, the
model is invariant under exchanging Jþ and J−. Eventually
the models flow back to only BC channels and converge to
one of two different fixed points. One of them is again the
usual BC fixed point (for α ¼ 1

2
), that is, all channels

Jþ ¼ J− are equally excited with J� ∈ f0; 1;…; jmaxg.

The model flows back to this fixed point for roughly
all α > 0.
For α < 0 we observe a flow to a different fixed point.

Again only channels Jþ ¼ J− are allowed; however only
J� ∈ f0; jmaxg for k even and J� ¼ 0 for k odd. (For odd k
the maximal representation is half integer, which we have
excluded.) This new fixed point, which is similar to the
Ashtekar-Lewandowski vacuum in LQG, also exists in the
initial model if α→−∞. Then all representations j≠0;jmax
in (28) get suppressed as they possess a quantum dimension
dj > 1. Due to the coupling rules of SUð2Þk any combina-
tions of the trivial and the maximal representation can only
couple to either the trivial or the maximal representation.
Thus, to sum up, we find that the BC intertwiner model

has a simple phase structure valid for all levels k of the
quantum group. There exist two (attractive) fixed points of
the renormalization group flow, both compatible with the
BC condition Jþ ¼ J−. The BC intertwiner, given for
α ¼ 1

2
, is the fixed point allowing all representations,

whereas the other fixed point (for α → −∞) is similar to
the Ashtekar-Lewandowski vacuum of LQG, where only
the trivial and the maximal representations are allowed.
That the maximal representation remains is a peculiarity of
the quantum group as it also has a quantum dimension of 1
as the trivial one. Thus we expect that only the trivial one
remains in the limit towards SU(2). For any other value of α
the system initially flows away from the BC condition
before eventually converging to one of the two fixed points.
It appears that this condition is very strictly implemented
and deviations from it are possible, but are dynamically
disfavored. Therefore it is interesting to study the BC spin
net model under similar aspects.
In the next subsection we study the EPRL intertwiner

model in detail.

2. EPRL intertwiner model

Before we discuss the behavior of the EPRLmodel under
coarse graining, let us present the initial three-valent tensor
[again compare with (27)],

ð29Þ
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Compared to the BC model this expression is clearly more
complicated and involved, which is reflected in the flow
under coarse graining. Again we keep the parameter α free
in order to keep a freedom in the normalization choice. As
discussed above this is actually only relevant when the map
from SUð2Þk representations to the SUð2Þk × SUð2Þk ones
is nontrivial, i.e. there exists an l different from j ¼ 0 or
j ¼ jmax that gets mapped to an SUð2Þk × SUð2Þk repre-
sentation. This is the case for k ¼ 12; thus we focus on this
one in the following.
Before we start with the discussion of the flow under

coarse graining it is instructive to focus first on the diagram
in the definition of the model. We see that the two
representations Jþ and J− couple to l; however this
coupling does not need to fulfil the conditions of the
simplicity constraints. Thus, if one considers the coupling
rules of SUð2Þk, one quickly realizes that channels ðJþ; J−Þ
are allowed that are initially not part of the conditions given
by the simplicity constraints. These include for example
several diagonal channels (with Jþ ¼ J−). Therefore it is
clear that this EPRL intertwiner model immediately flows
away from the original one for any value of α. Note that this
is the first clear difference to the BC model, where the BC
simplicity condition Jþ ¼ J− automatically followed from
recoupling theory and thus remained valid at least in the
first iteration. In this regard the EPRL model appears to
restrict the intertwiner degrees of freedom less. Moreover,
the symmetry of the BC model under exchange of Jþ and
J− does not exist in the EPRL one by construction.
Indeed under coarse graining we observe an almost

orthogonal behavior of the EPRL model compared to the
BC model. The truncation scheme we have used in this
article, see also Sec. II B, is taking over the most relevant
(effective) degree of freedom per block fJ�g. While this
scheme works very well for the BC model, as there usually
one degree of freedom is clearly the most important one
(given by the size of its singular value), this does not hold
any more for the EPRL model. Already from the first
iteration, one finds that the several effective degrees of
freedom per block are too relevant to be truncated, that is,
are not negligible in reference to the most important one. In
subsequent iterations this gets even more pronounced for
more of the channels. Therefore in order to study the
system in more detail one should employ a more elaborate
truncation scheme. However we refrain from doing so for
three reasons: first our main goal is to study the respective
spin net models, for which simply increasing the number of
degrees of freedom is out of reach (for the interesting
models). The second reason concerns the increasing num-
ber of degrees of freedom that are too relevant to be
truncated: previously we have observed this only close to
(arguably) second order phase transitions, which are
indicated by an (almost) scale invariance. We do not find
such an indication here. Although this might be due to the
truncation scheme, it hints at the possibility of a very

intricate behavior of the simplicity constraints. This brings
us to the third reason, which is the need to have a geometric
interpretation of the additional degrees of freedom appear-
ing in each block. With the truncation of one singular value
per block the models also preserved part of their initial
form, thus allowing us to retain the original geometrical
interpretation. This would change with a more complicated
truncation scheme, which also should be accompanied with
a geometric understanding of the emerging effective
degrees of freedom. Nevertheless it would be more prom-
ising to study this model with an algorithm more suited for
cases where the number of relevant degrees of freedom
increases [32], in order to better understand the origin of
these degrees of freedom.
Despite these shortcomings we still report on some of the

observations that we have made under renormalization. Of
course these results should be taken with a grain of salt as
they might change under a more accurate algorithm. One of
the first observations is that phases are very difficult to
identify as in many cases the model does not converge to a
fixed point, but rather oscillates. This behavior is most
likely related to the low cutoff per block, such that it can
happen that two degrees of freedom in the same block fJg
change their significance, leading to a different new tensor
and subsequent flow. Nevertheless, for α < 0.3 we observe
a flow of the model towards a phase similar to the Ashtekar-
Lewandowski vacuum of LQG, where only ðJþ; J−Þ ¼
ð0; 0Þ is allowed.
For (roughly) α > 0.3 we observe another peculiarity

that we have never encountered in related models so far.
Usually the trivial representation, here with the channel
ðJþ; J−Þ ¼ ð0; 0Þ always appears as the most important
one, i.e. with the largest singular value, such that it is
suitable to normalize the tensor with respect to it. However
for α > 0.3 other representations become more relevant
than the trivial one, i.e. their associated singular value is
larger. That is unexpected as inevitably all degrees of
freedom couple to the trivial representation again.
Moreover, if we increase α further to roughly α > 1 we
also observe that some of the singular values associated to
nontrivial representations increase over several iterations
and appear to diverge, e.g. are several orders of magnitude
larger than the one associated to the trivial representation.
The analysis is made difficult also by the oscillation of the
singular values as no clear pattern can be uncovered under
coarse graining, such that changing the normalization is not
straightforward as well. One example for this is again the
behavior for α > 1, where we observe some singular values
increasing rapidly iteration after iteration before suddenly
dropping to values smaller than the trivial representation
before converging to the Ashtekar-Lewandowski vacuum.
We again attribute these features to the cutoff scheme. In
Fig. 7 we plot the singular values for three different values
of α to illustrate the behavior of the model in the three
different regimes described above.
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One reason for the rather irregular behavior of the EPRL
model might be due to the few spin values that are allowed
in the initial model, which are moreover asymmetric under
exchange of jþ and j−. For the case k ¼ 12 with maximal
spin j�max ¼ 6 (and the Barbero-Immirzi parameter chosen
as γ ¼ 1

3
) these include besides the trivial spin assignment

only the two cases ðjþ; j−Þ ¼ ð2; 1Þ and ðjþ; j−Þ ¼ ð4; 2Þ.
Compare this with the BC model (for finite α) in which all
configurations satisfying jþ ¼ j− appear. We expect that
this might actually hinder the Euclidean EPRL-Λ models,
as defined in their current form [69], displaying a suitable
continuum limit, at least for large cosmological constant
(correspondingly small k). For larger k this issue should be
attenuated as more configurations become allowed and
more choices for the Immirzi parameter lead to nontrivial
configurations. In the Lorentzian case one has a priori
infinitely many representations appearing; however the
imposition of the (EPRL) simplicity constraints does lead
to a cutoff in the spins. That is, also in this case the
combination of using a quantum group and implementing a
Barbero-Immirzi parameter suppresses (infinitely) many
spin combinations.
Clearly one should not interpret too much of results

obtained from coarse graining the EPRL intertwiner model,
due to the reasons mentioned above. Nevertheless we have
reported on several qualitative features which are strikingly
different from the BC model or other models studied so far,
namely the quickly growing number of relevant degrees of
freedom for any parameter of the model, that is, without a
sign of a nearby phase transition. Thus it is apparent that the
EPRL construction allows for a far more intricate dynamics
than the BC one, which is difficult to characterize yet. The
dynamics of the model has to be studied in more detail,
which requires new tools, possibly combining both ana-
lytical and numerical methods.
Let us further remark that the fact that the BC intertwiner

model allows for a fixed point (for α ¼ 1=2), that is, defines
a triangulation invariant two-dimensional model, is crucial

for the arguments that were invoked to show uniqueness of
the model in [88]; see also the discussion in [14]. In
contrast we have not found a corresponding topological
model that would be triangulation invariant and originates
from the EPRL intertwiner models by coarse graining.
Again one reason seems to be the restrictions on the
allowed spins imposed by the Barbero-Immirzi parameter.
Also our coarse graining method is not sufficient to capture
the phase structure, that is, find local, triangulation invari-
ant models, to which the initial models flow under coarse
graining. It might however be that the fixed points for the
EPRL model feature nonlocal amplitudes, which in par-
ticular applies to second order phase transitions [86,89].
This concludes the section on intertwiner models. In the

next section we move on towards coarse graining spin net
models.

D. BC spin net models

In this section we present the results obtained by
applying the tensor network renormalization algorithm
introduced and thoroughly discussed in Secs. II A
and II B to BC spin nets constructed in Sec. III B. Note
that the details of the algorithm are not vital for under-
standing the results.
Before doing this however we mention again why we do

not consider the EPRL spin net model here as well. On the
technical side this is due to the size of the tensors for
k ¼ 12, the first nontrivial model we can study. With all the
optimizations developed and implemented, the largest
obstacle remaining is the size of the largest block fJg of
the tensor. For k ¼ 12 this block consists of 258 entries,
which equals roughly 2.3 TByte of memory usage.
Moreover as we have already observed for the intertwiner
models, a more accurate cutoff scheme, which further
increases the memory usage, as well as an algorithm better
suited to dealing with an increasing number of relevant
degrees of freedom [32] are necessary. Therefore we do not
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FIG. 7. Plots of singular values for the EPRL-intertwiner model for k ¼ 12: We plot the flow of singular values for three different
initial values of α from the regions mentioned in the main text. For α ¼ −1, we observe a convergence to the Ashtekar-Lewandowski
phase, where only ðJþ; J−Þ ¼ ð0; 0Þ is allowed. For the other values the behavior is ambiguous, as we observe oscillations (for α ¼ 0.35
and α ¼ 2) and diverging singular values for α ¼ 2. The singular values are normalized with respect to channel ðJþ; J−Þ ¼ ð0; 0Þ. We
plot only a selection of values, namely all diagonal ones with Jþ ¼ J−, as well as ðJþ; J−Þ ¼ ð1; 2Þ; ð2; 1Þ; ð2; 4Þ; ð4; 2Þ, in which the
EPRL model is explicitly asymmetric [(2,1) and (4,2) are initially allowed]. As we cannot identify interesting phases, we refrain from
labeling the singular values.
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expect reliable results and thus leave this question for future
research.
Returning to the BC model, the initial tensor is given in

(21) and is of a very simple form. The thoughtful reader
might wonder why we expect an interesting flow of this
tensor under coarse graining when it essentially consists of
two BC intertwiners, which have been previously identified
(individually) as fixed points of the renormalization pro-
cedure. As we have already commented before the two
intertwiners making up the projector sitting at the vertices
of the spin net are not independent, but depend on the same
labels. In particular the second copy of representations
satisfies ðj�i Þ0 ¼ ðj�i Þ�. Due to the particular conditions of
the BC model this actually also translates to the new
effective labels J�. The two intertwiners are only com-
pletely independent if all ðj�i Þ0 are completely unrelated to
the j�i , such that the model could be written exactly as a
tensor product of two intertwiners. As the renormalization
algorithm does not mix the two copies of the representa-
tions, i.e. fjg and fj0g, they stay independent during the
entire coarse graining process. Thus tensor products of
fixed points are indeed fixed points of the renormalization
group flow. Using the same terminology, the intertwiner
degrees of freedom in the BC spin net are interacting; one
could say the intertwiners are entangled (as they do not
factorize). As a result one observes a nontrivial renormal-
ization group flow (at least initially) beyond factorizing
models.
In this article we do not consider only one BC spin net

model, but a one-parameter family described by the
parameter α, which appears as the power of the normali-
zation constant. Again this relates to the ambiguities in the
choice of face and edge amplitudes in spin foam models.
From the intertwiner models in Sec. III C we have already
observed that α influences the model quite significantly: if
α < 0 it suppresses representations j in the model with
quantum dimension dj > 1, which is all other than the
trivial and maximal one. For α > 0 it conversely empha-
sizes the representations. We see that this also affects the
BC spin net model.
A further comment on the simplicity constraints is in

order: as discussed thoroughly above, the simplicity con-
straints in the BC model are essentially imposed by
requiring that all jþi ¼ j−i . This holds also for the new
edge labels Jþ ¼ J− introduced in the first coarse graining
iteration; however, as we have already seen for the
intertwiner models away from one of its two fixed points,
this condition gets violated dynamically under coarse
graining. Thus we also expect this for spin nets, as long
as the initial model is not a fixed point.
This immediately leads us to one of the first observa-

tions: the BC spin net model is not a fixed point of the
renormalization group flow for any finite value of α; it is
only a fixed point if one sends α → −∞, such that only the
trivial and maximal representation are allowed. Similar to

the intertwiner model we find at least two (extended)
phases, i.e. fixed points the model converges to, for each
level k of the quantum group. Additionally we find up to
two more phases for particular levels k.
The phases/fixed points of the model are characterized

by the singular values assigned to the intertwiner channels
fJg and are best organized in a matrix, with ðJþ; J−Þ and
ððJþÞ0; ðJ−Þ0Þ denoting rows and columns respectively.17

Actually this matrix is (and stays) symmetric with respect
to both diagonals, i.e. under exchanging both sets of
representations and also under exchanging Jþ and J−.
Let us begin with the two phases found for any level k of

the quantum group, which are quite similar to the ones of
the intertwiner model. Actually one of the fixed points is
precisely a tensor product of two BC intertwiners.

(i) The first phase one finds for very small α is the phase
in which only the trivial ðjþ; j−Þ ¼ ð0; 0Þ and the
maximal representation ðjþ; j−Þ ¼ ðjmax; jmaxÞ (for
even k) are allowed. As already discussed before,
this is very similar to the Ashtekar-Lewandowski
vacuum of LQG. This phase itself is not factorizing
as it actually requires that J ¼ J0. The fixed point is
summarized in the following matrix (for even k):

0
BBB@

1 0 0 … 0

0 0 … 0

..

. . .
. ..

.

0 … 0 1

1
CCCA: ð30Þ

(ii) The second phase we find appears for larger α and
we call it the factorizing BC phase. It is charac-
terized by allowing all representations ðJþ; J−Þ ¼
ðJ; JÞ, where both copies of representations, i.e. J�

and ðJ�Þ0, are independent of one another. Summa-
rized in a matrix of singular values this looks as
follows (for k ¼ 4, jmax ¼ 2):

0
BBBBBBBBBBBBBBBB@

1 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0

0 ..
. ..

. ..
. ..

.
0

0 0 0

1 0 0 0 1 0 0 0 1

0 0 0

0 0 0

0 0 0

1 0 0 0 1 0 0 0 1

1
CCCCCCCCCCCCCCCCA

: ð31Þ

17The ordering of ðJþ; J−Þ in the (rows and columns of the)
matrix is as follows: ðJþ; J−Þ ¼ ð0; 0Þ, ð0; 1Þ;…ð0; jmaxÞ, (1,0),ð1; 1Þ;…ðjmax; jmax − 1Þ, ðjmax; jmaxÞ.
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As this model is factorizing, this matrix can be
written as a tensor product of two vectors, one for
ðJþ; J−Þ and one for ððJþÞ0; ðJ−Þ0Þ, which have
entries 1 if Jþ ¼ J− and 0 otherwise. These exactly
characterize the original BC intertwiner fixed point.

For most levels k of the quantum group we have studied we
only find these two extended phases, that is, both fixed
points are attractive. In detail these were the levels k ¼ 5,
k ¼ 6 and k ¼ 7. The parameter α at which the transition
occurs varies for these three models; we summarize these
values in Fig. 8. Moreover if we tune the system towards
the phase transition we do not observe an (almost) scale
invariance, that is, an increase in the number of iterations
that the models need to flow to a fixed point. Instead the
system rather quickly flows to one or the other fixed
point—the nonvanishing singular values specifying that the
phase has converged after roughly ten to fifteen iterations.
Thus it is unlikely that these phase transitions are of
second order.
There exist two models that possess a more interesting

phase structure, namely for k ¼ 4 and k ¼ 8. There we find
the following two phases.

(i) The first phase only occurs for the model k ¼ 4 and
appears in between the Ashtekar-Lewandowski and
the factorizing BC phase. It is summarized best in a
matrix,

0
BBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCA

: ð32Þ

As one can see only channels on the main diagonals
are allowed, together with the condition that the
sum of spins [individually for ðJþ; J−Þ and
ððJþÞ0; ðJ−Þ0Þ] must be even. Thus the BC condition
is broken on this fixed point. Clearly both copies of
representations are not independent and the model is
thus not factorizing, without requiring that J0 ¼ J�.
Interestingly we have not found a similar phase in
any other model. Due to the similarities of SUð2Þk
for k ¼ 4 restricted to integer representations to the
finite group S3, a similar phase/fixed point might
exist for S3 × S3 as well.

(ii) Another phase can be found for k ¼ 4 and k ¼ 8
for large α, which is also violating the BC condition
Jþ ¼ J−. Essentially all channels are allowed
as long as the sum of spins for each copy of

representations is even. Thus the matrix of singular
values is alternating between 0 and 1 in each column
and row (see k ¼ 4),

0
BBBBBBBBBBBBBBBB@

1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 1

1
CCCCCCCCCCCCCCCCA

: ð33Þ

This phase is factorizing yet again, as we can write
the matrix as a tensor product of two vectors, whose
values alternate between 1 and 0. Thus we have
found another fixed point of intertwiner models, to
which the BC intertwiner model does not flow.

Due to these additional fixed points the phase structure for
k ¼ 8 and in particular k ¼ 4 is more interesting than for
the other models. Again these fixed points are attractive and
come with extended phases. We have summarized the
values of α at which the transitions occur in Fig. 8.
Furthermore in Fig. 9 we plot the flow of singular values
for k ¼ 4 for four different values of α, one for each phase.
Of course, more phases imply more phase transitions,

which might possibly be of second order. Let us first focus
on the case k ¼ 4, more precisely the transitions between

1 0 1 2 3 4 5

FIG. 8. Phases of BC spin nets: Red indicates the Ashtekar-
Lewandowski phase, green the factorizing BC phase and blue the
factorizing phase with singular values alternating between 1 and
0. Only for k ¼ 4 do we find a nonfactorizing phase, here orange,
in between the Ashtekar-Lewandowski and the factorizing BC
phase. The arrows indicate that this phase continues up to �∞.
Across the different levels k, the transition between the Ashtekar-
Lewandowski and factorizing BC phase is close to α ¼ 0. It
appears that the transition from the factorizing BC phase to the
factorizing and alternating phase moves to larger α as k is
increased; however one would need to study even larger k to
confirm that.
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the only nonfactorizing phase (orange in Fig. 8) we
have found.
As we have discussed above in most models there exists

a direct transition between the Ashtekar-Lewandowski and
the factorizing BC phase, which is not of second order. In
the k ¼ 4 model, the nonfactorizing phase sits right in
between the two above-mentioned phases, thus splitting
one phase transition into two. At the transition at lower α,
i.e. from the Ashtekar-Lewandowski phase to the non-
factorizing phase, we observe only that the system requires
a few more iterations (roughly 20) before converging to its
fixed point. However no matter how close we tune α
towards the transition, we do not find signs of an almost
scale invariance. The situation is also very similar at the
new transition to the factorizing BC phase. Thus these two
transitions are likely not of second order either.
The last remaining transition, from factorizing BC to the

factorizing and alternating model, is present in the models
k ¼ 4 and k ¼ 8. However, as for the other phase tran-
sitions we do not find signs that the transition is of second
order; in particular we find no (almost) scale invariance the
further we tune the model towards the transition.
To sum up the initial BC spin net model, in contrast to

the BC intertwiner, is not a fixed point of the renormaliza-
tion group flow. Thus the model flows under coarse

graining, where we find two to four different (extended)
phases/fixed points depending on the level k of the
quantum group. It appears that we find more phases in
the case in which the level k is a multiple of 4, which might
be related to the following fact: If it exists, the representa-
tion jmax

2
¼ k

4
has the maximal quantum dimension (of the

quantum group) and allows for the largest number of
couplings to other representations. As we restrict our
models to integer representations this particular represen-
tation only exists for k ¼ 4l, l ∈ N. If we increase α the
respective weight of configurations containing j ¼ k

4
grows

faster than others while this representation furthermore
couples to most other representations. We expect this to be
the origin of the last factorizing phase the model flows to
for large α, yet it seems that α has to be significantly larger
for larger levels k of the quantum group.
In fact, if one is looking for fixed points for the

intertwiner models, leading to two-dimensional topological
models, the models with even levels k and especially levels
k ¼ 4l, l ∈ N play a special role in featuring more fixed
points or equivalently phases compared to the cases where
k is odd [57]. For these additional phases the condition of
even spins also appears. We therefore believe that the
additional fixed points we found might appear for larger
values of k ¼ 4l as well.
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FIG. 9. Plots of singular values [per channel ðjþ; j−; ðjþÞ0; ðj−Þ0Þ] for the k ¼ 4 BCmodel: The plots are for four different choices of α
each flowing to a different fixed point characterizing one of the four phases. The color coding of the plots is identical in each figure.
Depending on the phase, the singular values of different channels converge to either 0 or 1. (The fact that some singular values do
converge to a nonzero value smaller than 1 for α ¼ 0.2 is a known, yet unphysical, feature of tensor network algorithms, which is
overcome in the recent algorithm by Evenbly and Vidal [32].) Note that we do not plot those singular values that always converge to 0
and thus do not help in differentiating the phases. Note that the convergence happens rather quickly after 10 to 15 iterations, even though
some values of α are quite close to phase transitions. This already indicates that the transitions are not of second order.
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A nontrivial phase structure with multiple phases also
implies transitions between these phases. Second order
phase transitions are particularly interesting for discrete
models as they provide a nontrivial way of taking the
continuum limit and obtaining propagating degrees of
freedom. A typical sign for such a transition is an almost
scale invariance close to the transition. In tensor networks
this manifests itself as the tensors remain unchanged for a
growing number of iterations the closer the system is tuned
towards the transition.18 Unfortunately we observe no such
behavior for BC spin nets at any of the transitions we have
found, no matter how close we tune towards the transition.
Thus we conclude that the transitions of the BC spin net
models are very likely not of second order and therefore do
not allow for propagating degrees of freedom.
These results allow us to draw a few tentative conclu-

sions for the BC spin foam model. Of course, the
nonexistence of second order phase transitions in BC spin
nets does not prove that the same holds for BC spin foams,
but it can be taken as an indication. (As mentioned spin nets
can be interpreted as spin foams based on a particular 2-
complex, which includes only two vertices, but a large
number of edges.) The BC model has been criticized as
implementing the simplicity constraints too strongly, which
could suppress propagating degrees of freedom. The
absence of a second order phase transition in the corre-
sponding spin net model can be taken as an indicator that
this is indeed the case. Of course this has to be confirmed
by studying the BC spin foam model itself.

E. Summary and discussion

In this article we have employed tensor network renorm-
alization to thoroughly study SUð2Þk × SUð2Þk intertwiner
and spin net models, which are constructed analogously to
four-dimensional BC and EPRL/FK spin foam models. We
have illustrated the numerical challenges in examining
these models for larger levels k of the quantum group
and described how we have overcome these by a three-
valent version of familiar tensor network algorithms and
further steps that reduced drastically the computational
resources required. Let us briefly summarize and discuss
the results.
The analogue BC models show an interesting structure.

In the intertwiner case we find two fixed points; one is
similar to the Asthekar-Lewandowski vacuum in LQG, and
the other is the initial BC intertwiner itself. Thus in a certain
sense the BC model already implements a version of
triangulation independence. For most levels k of the
quantum group BC spin nets similarly show two phases,
again one of Ashtekar-Lewandowski type. The other is best

described as a factorizing implementation of the BC
condition on the representations, that is jþ ¼ j−. In the
interpretation of spin nets as a melon spin foam [14], i.e.
two spin foam vertices connected by many edges, this
implies a decoupling of the two spin foam vertices. Since
the simplicity constraints weaken the gluing or coupling of
spin foam vertices, this can be interpreted as models in
which the simplicity constraints are implemented too
strongly.
Notably the initial BC model is not a fixed point of spin

net models. For particular levels k we have found up to two
new phases, one of which is not factorizing. It thus could
represent an interesting new phase, where spin foam
vertices are not decoupled, but nevertheless implement a
version of the simplicity constraints.
None of these fixed points corresponds to BF theory,

which implies that the simplicity constraints are imple-
mented strong enough such that the BF symmetry is not
recovered under coarse graining. However we have not
found any signs indicating that the phase transitions are of
second order, which can be taken as an indication that the
simplicity constraints are implemented too strongly.
This latter conclusion does however depend on how accu-
rately the two-dimensional spin net models mimic the
four-dimensional spin foam models: a close relationship
holds between two-dimensional spin systems and four-
dimensional lattice gauge systems. Spin foams can be
understood as generalized gauge systems [33]; the question
is therefore whether this relationship survives the generali-
zation. We hope that these questions can be resolved in the
near feature by studying the coarse graining flow of four-
dimensional spin foam models, e.g. the BC model can be
readily studied via Monte Carlo simulations [48–50].
For the EPRL/FK model we have only been able to study

intertwiner models, as the restrictions to imposing the
simplicity constraints require large levels k for nontrivial
models. Generically we do not observe a convergence to a
fixed point, only for parameters (in the one-parameter
family of models parametrizing the measure) which dis-
favor representations with quantum dimension dj > 1, i.e.
all but j� ¼ 0, jmax; the model appears to flow to the
Ashtekar-Lewandowski fixed point. This is rooted in the
construction of the (Euclidean) model, where only very few
entries in the initial tensor are actually nonzero. We expect
this to be less severe for larger levels k and in the Lie group
case; however it could be a general flaw of the Euclidean
theory. However these results must be taken with a grain of
salt as the applied truncation scheme cannot account for all
degrees of freedom relevant under coarse graining.
We have however seen that the coarse graining flow, in

particular in the EPRL/FK case, shows a surprising com-
plexity. Of course to encounter such a complexity one
needs a sufficiently large parameter space, in which the
coarse graining flow takes place. Indeed tensor network
algorithms provide such a large parameter space, in

18Observing such a behavior does not prove that the transition
is of second order, but it is a strong indication, e.g. this is
observed at the phase transition of the two-dimensional Ising
model.
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addition to a truncation scheme, adjusted to the dynamics
of the system. As we have seen this leads of course to
numerical challenges. We addressed these challenges with
a range of techniques in this work, but a further improve-
ment is needed.
In general one can always expect that the set of spin

representations, allowed to appear in the initial models as
prescribed by the simplicity constraints, is enlarged. This
happens because under the coarse graining flow spins
associated to finer building blocks are coupled to each
other to give spins associated to coarse grained building
blocks. The question is then whether the flow leads to a
complete washing out of simplicity constraints (if one flows
to the BF model in which all spins are allowed) or whether
the flow leads to some subset of allowed spins that can be
interpreted as a stable form of the simplicity constraints.
Another possibility is, as we have seen, a flow to the trivial
phase, where only spin j ¼ 0 (or in the quantum group case
also a jmax with quantum dimension 1) is allowed to appear.
The tensor network algorithm employed here allows us to
track which spins are allowed and how relevant the spin
configurations actually are.
Interestingly we have not found that the simplicity

constraints are completely washed out, that is, a flow to
the BF models. This shows that the spin foam construction
principle—building models by imposing simplicity con-
straints on the BF model—has the potential to lead to
interesting models. For the BC spin net models we have
found various fixed points, including a new fixed point,
which does describe a nonfactorizing spin net model. On
the other hand the EPRL/FK intertwiner model showed a
very intricate flow. We attribute that in part to the fact that
in the Euclidean quantum group model only very few spin
values are allowed initially. However, also in the more
general EPRL/FK models the set of allowed spins is indeed
much more intricate than in the BCmodel. We thus expect a
much more complex flow that also depends on the Immirzi
parameter. To study such aspects it is of course necessary to
allow for a sufficiently large parameter space in which the
flow can take space.
The results in this article are a first hint of the complex

dynamics of spin foam models beyond a few building
blocks. In order to explore this regime of many degrees of
freedom, numerical algorithms and suitable truncations are
required to efficiently identify and study the relevant
dynamics. Once achieved this will allow us to contrast
the models with observations and measurements, such that
they can be eventually verified or falsified. To advance
towards this goal works such as the one presented here are
necessary as they shed light on promising directions and
technical issues that have to be overcome.
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APPENDIX A: SUð2Þk AND GRAPHICAL
CALCULUS

In the following appendixes we include several technical
details necessary to thoroughly understand the calculations
in this article, which are however not necessary to under-
stand the main ideas. Moreover we keep this brief as most
of these topics have been more extensively addressed
in [14,54].
In this appendix we briefly include several basic facts

about the quantum group SUð2Þk. The notation and
conventions used are taken from [52], where one can also
find a more detailed discussion of quantum groups.
Interested readers should also consult [53].
By SUð2Þk we actually mean the q-deformation

Uqðsuð2ÞÞ of the universal enveloping algebra Uðsuð2ÞÞ
of the Lie algebra suð2Þ as in [52]. This algebra is
generated by three operators J�, Jz with commutation
relations

½Jz; J�� ¼ �J�;

½Jþ; J−� ¼
qJz − q−Jz

q1=2 − q−1=2
: ðA1Þ

Given the deformation parameter q one defines quantum
numbers of the quantum group,

½n� ¼ q
n
2 − q−

n
2

q
1
2 − q−

1
2

: ðA2Þ

For SUð2Þk, q is a root of unity, q ¼ expð 2π
ðkþ2Þ iÞ, where

k ∈ N is called the level of the quantum group. In this case
quantum numbers are periodic,

½n� ¼ sinð 2πn
2kþ4

Þ
sinð 2π

2kþ4
Þ ; ðA3Þ

with 0’s at n ¼ 0 and n ¼ kþ 2.
As for SU(2), the finite dimensional representations of

SUð2Þk are labeled by j ∈ N
2

and can be defined on
2ðjþ 1Þ-dimensional representation spaces Vj. The quan-
tum dimension dj of representation j is defined as the
quantum number of the classical dimension,
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dj ≔ ½2jþ 1�: ðA4Þ

Given the periodicity of quantum numbers only represen-
tations j ≤ k

2
have a strictly positive quantum dimension.

Representations j ¼ 0; 1
2
;…; k

2
are called admissible; rep-

resentations j > k
2
are of so-called quantum trace 0.

The tensor product of two representations Vj1 ; Vj2 is
defined via the coproduct Δ. The action of the SUð2Þk
algebra on Vj1 ⊗ Vj2 is defined as

ΔðJ�Þ ¼ q−Jz=2 ⊗ J� þ J� ⊗ qJz=2;

ΔðJzÞ ¼ I ⊗ Jz þ Jz ⊗ I: ðA5Þ

The tensor product Vj1 ⊗ Vj2 can be decomposed into a
direct sum of irreducible representations plus a part con-
sisting of trace 0 representations (which are modded out).
With an orthogonal basis jj;mi in the representation
spaces, the decomposition is given by Clebsch-Gordan
coefficients

jj; mi ¼
X
m1;m2

qC
j1j2j
m1m2mjj1m1i ⊗ jj2; m2i: ðA6Þ

If three admissible representations jI , jK and jL are coupled
in this way, the Clebsch-Gordan coefficients are non-
vanishing if several conditions are satisfied,

jI þ jK ≥ jL for permutations fJ; K; Lg of f1; 2; 3g;
j1 þ j2 þ j3 ¼ 0 mod 1;

j1 þ j2 þ j3 ≤ k: ðA7Þ

The last condition in (A7) is special to the quantum
deformed case at the root of unity and indicates that
Vj1 ⊗ Vj2 can include trace 0 parts, which can be modded
out [53]. However, some equations (for instance the
definition of the ½6j� symbol) are only valid up to trace
0 parts [53].
In particular we have the completeness relation

X
m3;j3admiss

qC
j1j2j3
m1m2m3q

Cj1j2j3
m0

1
m0

2
m3

¼ Πj1j2
m1m2;m0

1
m0

2
; ðA8Þ

where Πj1j2
m1m2;m0

1
m0

2
projects out the trace 0 part in Vj1 ⊗ Vj2 .

The orthogonality relation for the Clebsch-Gordan coef-
ficients is given as

X
m1;m2

qC
j1j2j
m1m2mq

Cj1j2j0
m1m2m0 ¼ δjj0δmm0θj1j2j; ðA9Þ

where θj1j2j ¼ 1 if the coupling conditions (A7) are
satisfied and vanishing otherwise.

APPENDIX B: DIAGRAMMATIC CALCULUS

When studying spin net models the notion of the dual
representation is necessary. For quantum groups this is
more complicated to define than in the classical case, but
can be conveniently overcome with the graphical calculus
invented in [14] (and also used in [54]).
A special direction must be specified for the quantum

group, which we take to be the vertical direction. Then the
drawings are interpreted as maps from a tensor product of
representation spaces of SUð2Þk (incoming lines from
below) to a tensor product of representation spaces (out-
going lines on top). Each line carries a representation label
j and a magnetic index m. Clebsch-Gordan coefficients

qC
j1j2j3
m1m2m3

19 are a basic example: They are interpreted as a
map Vj1 ⊗ Vj2 → Vj3 , symbolizing how the spins j1 and j2
(with their respective magnetic indices) couple to j3,

ðB1Þ

A special case of this Clebsch-Gordan coefficient is given
by j1 ¼ j2 ¼ j and j3 ¼ 0, which we call “cap.” It
represents a map Vj ⊗ Vj → C,

ðB2Þ

From this cap we can similarly define a “cup” by requiring
that they give the identity if we concatenate them,

ðB3Þ

which gives

ðB4Þ

Using cups and caps we obtain Clebsch-Gordan coeffi-
cients for the quantum group with inverse (here complex
conjugate) deformation parameter q as follows:

19This is not the standard Clebsch-Gordan coefficient defined
in [52], but it is modified by the quantum dimension:

qC
j1j2j3
m1m2m3

¼ qC
j1j2j3
m1m2m3

ð ffiffiffiffiffiffi
dj3

p Þ−1.
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ðB5Þ

This map is hence interpreted as mapping
Vj3 → Vj1 ⊗ Vj2 ; thus it is dual to (B1). Of course one
can analogously obtain (B1) again,

ðB6Þ

Concatenating these two maps gives a map Vj3 → Vj3
proportional to the identity.

ðB7Þ

With this graphical calculus already seen in the main body
of the article, several important identities can be compactly
written.
An important ingredient is the Haar projector P, where

we restrict ourselves here to the one for SUð2Þk. The
version for SUð2Þk × SUð2Þk is obtained by tensoring the
expression as seen in the main part of this article. A four-
valent intertwiner is given as follows:

ðB8Þ

Its dual is defined by placing cups on its bottom legs and caps on its top ones avoiding crossing of legs. Graphically this is
nicely expressed as

ðB9Þ

Diagrams (B8) and (B9) determine P up to normalization. To compute P · P we have to evaluate the following diagram:

ðB10Þ

We obtain

ðB11Þ

where the magnetic indices m are encoded in the first diagram, n in the second.
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The change of the recoupling scheme

ðB12Þ

is given by the ½6j� symbol, which is also defined by a graphical identity,

ðB13Þ

See [14] for a derivation.
A diagram worth mentioning is the following, as it appears in the four-valent tensor network algorithm (see again [14] for

a derivation):

ðB14Þ

With the following two identities, it is possible to split this diagram into two ½6j� symbols. Fortunately this splitting is
precisely the splitting necessary for the three-valent algorithm such that the equation for the coarse grained tensor can be
readily read off from the four-valent algorithm (see [54] for a more thorough derivation),

ðB15Þ

Thus we obtain for (B14)
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ðB16Þ

APPENDIX C: RENORMALIZATION EQUATION

For the sake of completeness we provide the equations to compute the renormalized three-valent tensor Ŝ.
In the three-valent algorithm, two three-valent tensors Ŝ are contracted among a common edge20 to an intermediate four-

valent tensor. For efficiency we directly compute the block-diagonal form of T̂ ,

T̂ ðfJgÞðfj1g; fj2g; fjcg; fjagÞ ¼
X
fjbg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1Þjþc þjþa þJþ

q
ffiffiffiffiffiffiffi
dJþ

p ffiffiffiffiffiffiffi
djþb

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1Þj−cþj−aþJ−

q
ffiffiffiffiffiffiffi
dJ−

p ffiffiffiffiffiffiffi
dj−b

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1Þðjþc Þ0þðjþa Þ0þðJþÞ0

q
ffiffiffiffiffiffiffiffiffiffiffi
dðJþÞ0

q ffiffiffiffiffiffiffiffiffiffi
dðjþb Þ0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1Þðj−c Þ0þðj−a Þ0þðJ−Þ0

q
ffiffiffiffiffiffiffiffiffiffi
dðJ−Þ0

q ffiffiffiffiffiffiffiffiffiffi
dðj−b Þ0

q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffi
djþ

1
djþ

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
dj−

1
dj−

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðjþ

1
Þ0dðjþ

2
Þ0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðj−

1
Þ0dðj−

2
Þ0

q

×

�
jþc jþa Jþ

jþ1 jþ2 jþb

��
j−c j−a J−

j−1 j−2 j−b

�� ðjþc Þ0 ðjþa Þ0 ðJþÞ0
ðjþ1 Þ0 ðjþ2 Þ0 ðjþb Þ0

�� ðj−c Þ0 ðj−a Þ0 ðJ−Þ0
ðj−1 Þ0 ðj−2 Þ0 ðj−b Þ0

�

× ðŜÞðfj1gÞðfjbg; fjagÞðŜÞðfj2gÞðfjcg; fjbgÞ: ðC1Þ

The ½6j� symbols stem from the treatment of magnetic
indices to arrive at the block-diagonal form. The notation is
explained in Fig. 10. Note that in the actual algorithm we
work with superindices to only sum and store nonvanishing
contributions. As before fJg denotes four SUð2Þk repre-
sentations Jþ, J−, ðJþÞ0, ðJ−Þ0.
To define a new effective three-valent tensor Ŝ0, we need

to define a map mapping fjag, fjcg into a new coarser edge

labeled by fJg. As usual this is done by a singular value

decomposition: From T̂ ðfJgÞ we define a matrix by group-
ing together the coarse edges fj1g, fj2g and the finer edges
fjag, fjcg,

~̂S
ðfJgÞ
ðfj1g;fj2gÞ;ðfjag;fjcgÞ ¼

X
i

UðfJgÞ
ðfj1g;fj2gÞ;iλ

ðfJgÞ
i ðVðfJgÞ

ðfjag;fjcgÞ;iÞ
†
:

ðC2Þ

In our truncation scheme, we take over one singular value

per block fJg. Thus we obtain ðŜ0ÞðfJgÞ by contracting the

legs fjag, fjcg with the map VðfJgÞ
ðfjag;fjcgÞ;1.

21 However as V

is a unitary matrix it immediately follows that ðŜ0ÞðfJgÞ is
given by

FIG. 10. Notation for intermediate tensor T̂ .

20In principle, one has four different tensors Si, i ¼ 1;…; 4,
but for the models under discussion here, they turn out to be all
identical. Thus the algorithms are significantly simplified.

21To not alter the partition function one actually inserts VV†.
V† gets contracted with the opposite tensor.
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ðŜ0ÞðfJgÞðfj1g; fj2gÞ ¼ UðfJgÞ
ðfj1g;fj2gÞ;1λ

ðfJgÞ
1 : ðC3Þ

APPENDIX D: NORMALIZATION BC MODEL

In this section we briefly derive the normalization of the BC model. We fix it by requiring that the BC tensor TBC (17)
contracted with itself gives TBC again,

TBC ∘ TBC¼! TBC: ðD1Þ
TBC ∘ TBC is of the following form:

ðD2Þ

For the normalization constant cfjig we thus obtain the following condition:

c2fjigð−1Þ2ðj1þj2þj3þj4Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼1

dj1dj2dj3dj4 ¼
!
cfjig ⇒ cfjig ¼ ðdj1dj2dj3dj4Þ−1: ðD3Þ

As explained in the main body of the article the normalization in spin foam models is not uniquely fixed. Thus we choose
cfjig ¼ ðdj1dj2dj3dj4Þα to accommodate for this uncertainty.

APPENDIX E: NORMALIZATION OF THE EPRL MODEL

The derivation for the normalization of the EPRL spin net model is analogous to the BC case. Again we study TEPRL (24)
contracted with itself, which should give TEPRL again,

TEPRL ∘ TEPRL !¼TEPRL: ðE1Þ
For TEPRL ∘ TEPRL we obtain

ðE2Þ
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The last diagram is straightforward to compute given the graphical identities in Appendix B,

ðE3Þ

This implies for the normalization constant cflg,

c2flgð−1Þ
P

4

i¼1
jþi þj−i −2lðdl1dl2dl3dl4Þ−1ðdlÞ−2¼

! cflg ⇒ cflg ¼ ð−1Þ
P

4

i¼1
jþi þj−i −2ldl1dl2dl3dl4d

2
l : ðE4Þ

Again as the normalization is not uniquely determined in spin foams we keep this arbitrary; we choose

cflg ¼ ð−1Þ
P

4

i¼1
jþi þj−i −2lðdl1dl2dl3dl4Þαd2l .

APPENDIX F: DERIVATION OF THE EPRL AMPLITUDE

In this appendix we quickly outline how to derive the diagrams in the three-valent EPRL model from the four-valent one.
Essentially one applies the identities (B15). We demonstrate this only for one diagram in (25), as it follows for the other
diagram analogously,

ðF1Þ

To arrive at the final expression it remains to include the identity for theR matrices, which is explained in the main part of
the paper.
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