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We study the efficiency of nonspinning waveform templates in gravitational wave searches for aligned-
spin binary black holes (BBHs). We use PhenomD, which is the most recent phenomenological waveform
model designed to generate the full inspiral-merger-ringdown waveforms emitted from BBHs with the
spins aligned with the orbital angular momentum. Here, we treat the effect of aligned-spins with a single
spin parameter χ. We consider the BBH signals with moderately small spins in the range of −0.4 ≤ χ ≤ 0.4.
Using nonspinning templates, we calculate fitting factors of the aligned-spin signals in a wide mass range
up to ∼100 M⊙. We find that the range in spin over which the nonspinning bank has fitting factors
exceeding the threshold of 0.965 for all signals in our mass range is very narrow, i.e., −0.3 ≤ χ ≤ 0. The
signals with negative spins can have higher fitting factors than those with positive spins. If χ ¼ 0.3, only the
highly asymmetric-mass signals can have the fitting factors exceeding the threshold, while the fitting
factors for all of the signals can be larger than the threshold if χ ¼ −0.3. We demonstrate that the
discrepancy between the regions of a positive and a negative spin is due to the physical boundary (η ≤ 0.25)
of the template parameter space. In conclusion, we emphasize the necessity of an aligned-spin template
bank in the current Advanced LIGO searches for aligned-spin BBHs. We also show that the recovered mass
parameters can be significantly biased from the true parameters.
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I. INTRODUCTION

Recently, two gravitational wave (GW) signals named
as GW150914 and GW151226, were detected by the
two LIGO detectors [1,2], and these observations indicate
that future observing runs of the advanced detector network
[3–5] will yield more binary black hole (BBH) merger
signals [6–9]. Detailed analyses in the parameter estimation
showed that both signals were emitted from merging BBHs
[2,10,11]. The masses of the two binaries were found to be
∼65 and 22 M⊙ for GW150914 and GW151226, respec-
tively. In particular, the two components of GW150914
are the heaviest stellar mass BHs known to date. On the
other hand, the precession effects for both signals were
poorly measured, while the aligned-spins (χ) were mean-
ingfully constrained. Although we might expect high-
spin BHs from the X-ray observations [12], both binaries
had small values of χ. The 90% credible intervals in
their parameter estimations were in the range of −0.4 ≤
χ ≤ 0.4.
The waveforms emitted from BBHs have three phases:

inspiral, merger, and ringdown (IMR), and the IMRphases of
stellar mass BBHs are likely to be captured in the sensitivity
band of ground-based detectors. In the search for BBHs,
therefore, we have to use the full IMR waveforms as
templates. Over the past decade, two classes of IMR wave-
form models have been developed: effective-one-body mod-
els calibrated to numerical relativity simulations (EOBNR)

and phenomenological models. Since EOBNR is formulated
in the time domain as a set of differential equations,
generation of those waveforms are computationally much
more expensive than generation of frequency-domain wave-
forms. Therefore, for the purpose of the GW data analysis,
Pürrer [13,14] has recently built a Fourier-domain reduced
order model that faithfully represents the original EOBNR
model [15,16]. On the other hand, a series of the phenom-
enological models have been developed, and those were also
constructed in the frequency domain. The first phenomeno-
logical model was PhenomA [17–19] that was designed to
model the IMR waveforms of nonspinning BBHs, and this
model was extended to an aligned-spin system in PhenomB
[20] by adding the effective spin parameter χ. The thirdmodel
was PhenomC [21] that was also designed for aligned-spin
BBHs, and extended to a precessing system in PhenomP [22].
The most recent phenomenological model is PhenomD [23].
Thismodel is also designed for aligned-spinBBHs but covers
much wider ranges of mass (up to mass ratios of 1∶18)
and spin (up to jχj ∼ 0.85) than any other phenomenological
models. Recently, it has been shown that PhenomD can
perform very well for BBH searches, losing less than 1% of
the recoverable signal-to-noise ratio [24]. Therefore, we use
PhenomD for the waveforms of aligned-spin BBHs in
this work.1
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1The recent version of EOBNR reduced order model was also
calibrated in wide parameter ranges up to mass ratios of 1∶100
and spins of −1 ≤ χi ≤ 0.99 [14].
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We study the efficiency of nonspinning waveform tem-
plates in GW searches for aligned-spin BBH signals by
investigating the fitting factor. The fitting factor is defined as
the best-match between a normalized signal and a set of
normalized templates [25]. For the GW data analysis
purposes, the fitting factor is considered to evaluate the
search efficiency. Since the detection rate is proportional to
ρ1=3, a FF≃ 0.97 corresponds to a loss of detection rates of
∼10%. Similar works have been carried by several authors
in the past few years. Using the post-Newtonian waveform
model, Ajith [26] calculated fitting factors for several
binaries with masses of M ≤ 20 M⊙. He found that the
spin value of the signal clearly separated the population of
binaries producing a poor fitting factor from those produc-
ing a high fitting factor (see Fig. 11 therein). Dal Canton
et al. [27] also calculated fitting factors for BH-neutron star
(NS) binaries with masses of M ≤ 18 M⊙, and they also
found a clear separation between the two populations (see
Fig. 8 therein). In the same paper, the authors showed that
this behavior was due to the fact that the template parameter

space is physically bounded as η ≤ 0.25 (see Figs. 5 and 6
therein). A similar work has also been performed by
Privitera et al. [28] for BBH systems with 10 M⊙ ≤ M ≤
30 M⊙ and m1=m2 ≤ 4 using the PhenomB waveforms
[20]. They found that a nonspinning template bank achieved
fitting factors exceeding 0.97 over a wide region of
parameter space, spanning roughly −0.25 ≤ χ ≤ 0.25 over
the entire mass range considered in their work (see Fig. 1
therein). Recently, the work of [28] has been extended to
higher-mass systems M ≤ 50 M⊙ by Capano et al. [29]
using the EOBNR waveforms [16]. On the other hand,
several works have used precessing signals to test non-
spinning and aligned-spin template banks [30–33].
In this work, we revisit the issues on the effectualness of

nonspinning templates for aligned-spin BBH signals.
Although the template bank used for current Advanced
LIGO searches covers the binary masses up to 100 M⊙
[34,35], the previous works have only considered low-mass
systems. We therefore extend the study to high-mass
systems up to M ¼ 100 M⊙ and compare our result with

FIG. 1. Fitting factors obtained by using nonspinning templates for aligned-spin BBH signals. The spin value of the signal is given in
each panel. The signals with negative spins can have higher fitting factors than those with positive spins.
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those of the previous works. The purpose of this work
is to examine the efficiency of a nonspinning bank for
aligned-spin signals in a wide mass range. To this end we
investigate the range in spin over which the nonspinning
bank has fitting factors larger than 0.965 varying total mass
and mass ratio of the signal.

II. GW DATA ANALYSIS

In signal processing, if a signal of known shape is buried
in stationary Gaussian noise, the matched filter can be the
optimal method to identify the signal. For the GWs emitted
from merging BBHs, since there exist various models that
can produce accurate full IMR waveforms, the matched
filter can be employed in the BBH searches. If a detector
data stream xðtÞ contains stationary Gaussian noise nðtÞ
and a GW signal sðtÞ, the match between xðtÞ and a
template waveform hðtÞ is determined by

hxjhi ¼ 4Re
Z

∞

flow

~xðfÞ ~h�ðfÞ
SnðfÞ

df; ð1Þ

where the tilde denotes the Fourier transform of the time-
domain waveform, SnðfÞ is the power spectral density
(PSD) of the detector noise, and flow is the low frequency
cutoff that depends on the shape of SnðfÞ. In this work, we
consider a single detector configuration and use the zero-
detuned, high-power noise PSD with flow ¼ 10 Hz [36].
Using the relation in Eq. (1), the signal-to-noise ratio ρ
(SNR) can be determined by

ρ ¼ hsjĥi; ð2Þ
where ĥ≡ h=hhjhi1=2 is the normalized template. When
the template waveform h has the same shape as the signal
waveform s, the matched filter gives the optimal SNR as

ρopt ¼ hsjsi1=2: ð3Þ
If the template has a different shape, the SNR is reduced to

ρ ¼ FF × ρopt; ð4Þ
where FF is the fitting factor defined as the best-match
between a normalized signal and a set of normalized
templates [25].
To fully describe the wave function of an aligned-

spin BBH system, we need 11 parameters except the
eccentricity. Those are five extrinsic parameters (luminosity
distance of the binary, two angles defining the sky position
of the binary with respect to the detector, orbital inclination,
and wave polarization), four intrinsic parameters (compo-
nent masses and spins), the coalescence time tc, and
the coalescence phase ϕc. However, since the extrinsic
parameters only scale the wave amplitude, and we work
with the normalized wave function, we do not need to
consider the extrinsic parameters in our analysis. In

addition, the inverse Fourier transform of the match can
give the output for all possible coalescence times at
once, and we can maximize the match over all possible
coalescence phases by taking the absolute value of the
complex-valued output (see [37] for more details).
Therefore, we need only the intrinsic parameters (m1,
m2, χ1, χ2) in our analysis, and those are the input
parameters of PhenomD.
On the other hand, it is often more efficient to treat the

effect of aligned-spins with a single spin parameter rather
than the two component spins because the two spins are
strongly correlated [21,26,38–40]. For this purpose, the
spin effects in the phenomenological models are para-
metrized by an effective spin χ:

χ ≡m1χ1 þm2χ2
M

: ð5Þ

The value of χ can be determined simply by choosing
χ1 ¼ χ2 ¼ χ in the PhenomD wave function.2 Thus,
our signal waveform is given by hs ¼ hðm1; m2; χÞ ¼
hPhenomDðm1; m2; χ; χÞ, while the nonspinning templates
are given by ht ¼ hðm1; m2Þ ¼ hPhenomDðm1; m2; 0; 0Þ.
In this work, we define the overlap P by the match

between the signal ĥs and the template ĥt maximized over
tc and ϕc:

P ¼ max
tc;ϕc

hĥsjĥti: ð6Þ

Thus, we can haveP ¼ 1 if the signal and the template have
the same shapes. Changing the mass parameters of the
nonspinning templates, we calculate the two-dimensional
overlap surface as

PðλÞ ¼ max
tc;ϕc

hĥsðλ0ÞjĥtðλÞi; ð7Þ

where λ0 denotes the true values of the mass and the spin of
the signal, and λ denotes the mass parameters of the
template. Then, in our analysis the fitting factor corre-
sponds to the maximum value in the overlap surface:

FF ¼ max
λ

PðλÞ: ð8Þ

On the other hand, in an actual search for BBHs the
template waveforms are discretely placed in the bank,
hence the fitting factor can be marginally reduced depend-
ing on the template density. Thus, the effective fitting factor
is obtained by

FFeff ¼ max
ht∈bank

PðλÞ: ð9Þ

2PhenomD is parametrized by a normalized reduced effective
spin χ̂ [23], but we can have χ̂ ¼ χ by choosing χ1 ¼ χ2.
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Typically, when one chooses a waveform model for the
search, the template bank is constructed densely enough
such that the mismatch between the templates and the
signal does not exceed 3% including the effect of the
discreteness of the template spacing, i.e. 1 − FFeff ≥ 0.97
[41,42]. In this work, however, we want to remove the
effect of discreteness on the fitting factor. To do so, we
choose sufficiently fine spacings in the template space
defined in theMc − η plane [43,44].3 For example, in order
to obtain FFeff for one signal, we repeat a grid search
around λ0 until we find the crude location of the peak point
in the overlap surface. Next, we estimate the size of the
contour P̄≡ P=Pmax ¼ 0.995, where Pmax is the maximum
overlap value in that contour (if the recovered mass
parameters are biased from λ0, then Pmax < 1), hence P̄
corresponds to the weighted overlap. Finally, we find
(almost) the exact location of the peak point by performing
a 31 × 31 grid search in the region of P̄ > 0.995, and the
overlap value at the peak point is regarded as FF.
Once a fitting factor is determined through the above

procedure, we can measure the systematic bias, which
corresponds to the distance from the true value λ0 to the
recovered value λrec:

b ¼ λrec − λ0: ð10Þ

Typically, the recovered parameters are systematically
biased from the true parameters if the incomplete template
waveforms are used. In our analysis, the incompleteness of
templates arises from neglecting the spin effect in the wave
function. As the efficiency of a template waveform model
for the search is evaluated by the fitting factor, its validity
for the parameter estimation can be examined by the
systematic bias.

III. RESULT

We choose as our target signals aligned-spin BBHs in the
parameter regions of m1; m2 ≥ 5 M⊙ðm2 ≤ m1Þ, M ≤
100 M⊙ and −0.4 ≤ χ ≤ 0.4. The signal waveforms are
generated by using PhenomD with χ1 ¼ χ2 ¼ χ. We con-
struct a template bank in the Mc − η plane with non-
spinning waveforms assuming χ1 ¼ χ2 ¼ 0 in PhenomD.
The templates are assumed to be placed densely enough so
that we can avoid the effect of the discreteness of the bank.
Using the nonspinning templates with an aligned-spin
signal we calculate the overlap surface that includes the
confidence region, and determine the fitting factor and the
systematic bias for the signal.

A. Fitting factor

In Fig. 1, we show the fitting factors for all of the BBH
signals. In each panel, the darkest region corresponds to the
signals that cannot achieve the fitting factor exceeding a
threshold of 0.965 beyond which a loss of detection rates
does not exceed ∼10%. We find that the signals with
negative spins can have higher fitting factors than those
with positive spins. If χ ¼ 0.3, only the highly asymmetric-
mass signals can have the fitting factors exceeding the
threshold. However, if χ ¼ −0.3, the fitting factors for
all of the signals can be larger than the threshold, and if
χ ¼ −0.4, about two third of the signals can have fitting
factors exceeding the threshold. In particular, if the signal
has a small spin in the range of −0.1 ≤ χ ≤ 0.1, the fitting
factor can be larger than 0.99 (the lightest region) for all of
the signals except those in the highly symmetric-mass
region. The range in spin over which all of the signals in our
mass range have fitting factors exceeding 0.965 is very
narrow, i.e., −0.3 ≤ χ ≤ 0. On the other hand, a few
binaries can achieve FF ≥ 0.965 in our spin range, and
we show several examples in Fig. 2.
In Fig. 3, we also show the fitting factors in the M − η

plane using the same color scales as in Fig. 1. In this figure,
we can interpret the pattern of the fitting factors more
easily. In the region of a negative spin, the fitting factor
tends to decrease as the total mass or the symmetric mass
ratio increases. On the other hand, in the region of a positive
spin, we can see a strong dependence of the fitting factor on
the symmetric mass ratio. In this case, the fitting factors in
the symmetric-mass region rapidly decrease with increas-
ing χ, especially, those with low masses can drop below the
threshold even with the small spin of χ ¼ 0.1. In Fig. 4(a),
we show some examples that show highly asymmetric
fitting factors between a positive and a negative spins. We
find that if χ > 0, the fitting factor suddenly falls off at a

0.4 0.2 0.0 0.2 0.4
0.96

0.97

0.98

0.99

1.00

FF

85, 5
65, 5
55, 10
45, 5
25, 5

m1 M , m2 M

FIG. 2. Examples that have the fitting factors larger than 0.965
in the spin range of −0.4 ≤ χ ≤ 0.4.

3In general, the overlap surface is obtained more efficiently
in the parameter space consisting of the chirp mass
(Mc ≡ ðm1m2Þ3=5=M1=5) and the symmetric mass ratio
(η≡m1m2=M2), so we take into account the parameters
Mc; η instead of m1, m2 in the overlap calculations.
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certain spin value, and the falling rate tends to slacken for
higher-masses.
Dal Canton et al. [27] showed that the sudden fall-off of

the fitting factor is associated with the physical boundary of
the template space. For the (positively) aligned-spin sig-
nals, the parameter value of η recovered by the nonspinning
templates increases as the spin of the signal increases.
However, in the parameter space of (Mc; η), the physical
value of η should be restricted to the range of 0 ≤ η ≤ 0.25.
Thus, the recovered value of η cannot exceed 0.25 even
though the signal has higher spins. For example, Fig. 4(b)
shows the recovered η (ηrec) as a function of χ for the same
binaries as in Fig. 4(a). If the true value of η is 0.25, ηrec is
already at the boundary at χ ¼ 0, hence always equal to
0.25 in the entire range of positive spins. In Fig. 4, we find
that the spin value at which the ηrec reaches 0.25 is
consistent with the one at which the sudden fall-off of
the fitting factor occurs. On the other hand, the post-
Newtonian waveforms are well behaved for 0 < η < 1.0
although the unphysical value of η implies complex-valued
masses. Boyle et al. [45] showed that the fitting factors for

high-mass systems above ∼30 M⊙ can be significantly
improved if η is allowed to range over unphysical values.
However, such the unphysical masses are not permitted in
the phenomenological models.

B. Comparing with other works

In Fig. 5, we represent the fitting factors in the η − χ
plane in a different way. We classify our binaries into low-
mass (M≤50M⊙), medium-mass (50M⊙≤M≤80M⊙),
and high-mass (80 M⊙ ≤ M) systems, and calculate the
mean fitting factors (F̄F) by averaging over M for each
system. Note that since we assume the minimum mass of
m2 to be 5 M⊙, the values of η start from 0.09 (top), ∼0.06
(bottom left), and ∼0.05 (bottom right), respectively. The
range of χ, in which F̄F ≥ 0.99, becomes smaller as η
increases. For the low-mass systems, the fitting factor
curves in the region of a positive spin rapidly drop to
zero. Dal Canton et al. [27] also described the fitting factors
in the same manner for BH-NS binaries with masses of
M ≤ 18 M⊙ (see Fig. 8 therein), and our result for the

FIG. 3. The same fitting factors as in Fig. 1 but described in the M − η plane.
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low-mass system shows the pattern of fitting factor similar
to their result in the region of a positive spin. However, in
the region of a negative spin, they had poor fitting factors,
and they pointed out that this is because the minimum NS
mass in the template bank is limited to 1 M⊙. In particular,
we find that the overall area with high fitting factors is
narrower for higher-mass systems. That means the non-
spinning bank has worse search efficiency for higher-mass
systems.
We also describe the fitting factors in the M − χ plane

in Fig. 6 and compare those with the result of Privitera
et al. [28]. While Privitera et al. considered low-mass
BBHs in the range of M ≤ 35 M⊙ with the initial LIGO
PSD [46] assuming flow ¼ 40 Hz, we take into account the
higher-mass binaries in the range of M ≥ 30 M⊙4 with the
Advanced LIGO PSD [36] assuming flow ¼ 10 Hz.

Therefore, our result cannot be directly compared with
their result. However, we find that the overall pattern of the
fitting factors in our result is similar to the result of [28]
(see, Fig. 1(a) therein). The top panel in Fig. 6 shows very
asymmetric fitting factors between the regions of a positive
and a negative spins. For positive spins, the fitting factor
contours gradually increase as the total mass increases, and
this is roughly consistent with the result of [28]. On
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(b)
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FIG. 4. Fitting factors and recovered η (ηrec) for several
binaries. When χ > 0, the fitting factor suddenly falls off at a
certain spin value (a). ηrec cannot exceed the physical boundary
0.25 (b). The spin value at which ηrec reaches 0.25 is consistent
with the one at which the sudden fall-off of the fitting factor
occurs.

FIG. 5. Mean fitting factors (F̄F) described in the η − χ plane
for the low-mass (top), medium-mass (bottom left), and high-
mass (bottom right) systems, respectively. The mean fitting factor
is calculated by averaging over M.

FIG. 6. Mean fitting factors (F̄F) described in the M − χ plane
for all of the binaries with M ≥ 30 M⊙ (top), symmetric-mass
binaries with m1=m2 ≥ 2 (bottom left), and asymmetric-mass
binaries for which ηrec < 0.25, respectively. The mean fitting
factor is calculated by averaging over η.

4Since we have only few samples in the range ofM < 30 M⊙,
we do not include the results for those binaries in this figure.
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the contrary, for negative spins, the range of χ, in which the
signals have high fitting factors, is much larger than the
case for positive spins in the low-mass region, but that
becomes smaller as the total mass increases. We already
showed that the discrepancy between the two spin regions
is caused by the physical boundary of the template space.
To see this concretely, we select only the symmetric-mass
binaries with m1=m2 ≤ 2 and show their results in the
bottom left panel in Fig. 6. We find that the discrepancy is
more pronounced compared to the result of the top panel.
We also choose the asymmetric-mass binaries for which
ηrec does not reach the physical boundary, i.e., ηrec < 0.25,
and show their results in the bottom right panel. As
expected, we can see nearly symmetric fitting factors
between the regions of a positive and a negative spins.
Especially, in this case, most of the binaries can have
mean fitting factors greater than 0.965. That means, in
the nonspinning template search for aligned-spin BBH
signals, most of the signals, that have the masses of
M ≤ 100 M⊙ and the spins of −0.4 ≤ χ ≤ 0.4, have high
fitting factors exceeding the threshold 0.965 if only the
binary has the asymmetric masses such that ηrec does not
reach 0.25.

C. Systematic bias of the recovered parameter

Once a detection is made in the search pipeline, the
parameter estimation pipeline conducts post-processing
with the data stream, that contains the GW signal. The
purpose of the parameter estimation analysis is to extract
the parameters of a signal with high accuracy [42]. The
results of the parameter estimation are given by the
posterior probability density functions for the parameters
[10,47,48]. Usually the posterior probability distribution is
sampled by the Markov-chain Monte Carlo or nested
sampling methods [48]. However, these algorithms are
computationally intensive. In the high SNR limit, the Fisher
matrix method can be used to approximate the statistical
error in the parameter estimation [49–53] (for more details
refer to [54] and references therein).
On the other hand, in the search, parameters of a signal

can also be inferred from the identified template param-
eters, but the recovered parameters can be significantly
biased from the true parameters. In this subsection, we
show how much the recovered parameter is biased depend-
ing on the spin of the signal. In Fig. 7, we show the
fractional bias (bλ=λ) as a function of χ. Here, as concrete
examples we select several asymmetric-mass binaries that
satisfy ηrec < 0.25. In the top panel, as χ increases the bias
for η also increases, and the dependence of the bias on χ is
stronger for a positive spin than a negative spin. On the
contrary, in the bottom left panel, the bias forMc decreases
with increasing χ, and that exhibits a similar dependence on
χ between a positive and a negative spins. The biases
incorporated in the two mass parameters can be well
understood by describing those in terms of a total mass.

When the spin is positively aligned with the orbital angular
momentum, the spin-orbit coupling makes the binary’s
phase evolution slightly slower, hence delays the onset of
the plunge phase, as compared to its nonspinning counter-
part [55]. On the contrary, in the antialigned case, the
phase evolution becomes slightly faster, and the plunge is
hastened. Consequently, for a given starting GW frequency,
a positively (negatively) aligned-spin increases (decreases)
the length of the waveform, as compared to the nonspinning
case. Therefore, positively (negatively) spinning systems
can be recovered by lower (higher) mass nonspinning
templates. We clearly describe this in the bottom right
panel, showing the bias for the parameterM as a function of
χ. Interestingly, we find that the systematic bias for M
almost linearly depends on χ in our spin range. In addition,
all of the results seem to have similar fractional biases
(bM=M) for a given χ even though their masses are very
different.
In Fig. 8, we show the fractional biases (B≡ bM=M) for

the signals with the spins of χ ¼ −0.4;−0.2, 0.2, and 0.4.
The red color indicates a negative bias while the blue color
indicates a positive bias. We find that the magnitudes of
biases are similar between the red and the blue in the
asymmetric-mass region (η≲ 0.15), while those are smaller
for the positive spins in the symmetric-mass region
(η≳ 0.15). As expected, the difference in the symmetric-
mass region is due to the fact that for the positive spins ηrec

is restricted by the physical boundary, and thereby the
correspondingMrec has smaller biases. We also find that the
contours B ¼ 30;−30 in the top panels are consistent with
the contours B ¼ 15;−15 in the bottom panels, and this
indicates a linear relation between B and χ. Finally, we find
that in the asymmetric-mass region all of the fractional
biases are comparable for a given χ independently of the
total mass. For example, we have 15ð30Þ≲ B ≲ 17ð35Þ
for χ ¼ −0.2ð−0.4Þ.

FIG. 7. Systematic bias (bλ=λ) as a function of χ for η (top),Mc
(bottom left), and M (bottom right), respectively.
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IV. SUMMARY AND DISCUSSION

We investigated the efficiency of nonspinning templates
in GW searches for aligned-spin BBHs. We considered the
signals with moderately small spins in the range of
−0.4 ≤ χ ≤ 0.4. We employed as our waveform model
PhenomD, and we set the spins to zero for the nonspinning
waveforms. Using the nonspinning templates, we calcu-
lated the fitting factors of the aligned-spin BBH signals in a
wide mass range up to ∼100 M⊙. The results are summa-
rized in Figs. 1 and 3 in the m1 −m2 plane and M − η
plane, respectively. The signals with negative spins can
have higher fitting factors than those with positive spins. If
χ ¼ 0.3, only the highly asymmetric-mass signals can have
the fitting factors exceeding the threshold 0.965. However,
if χ ¼ −0.3, the fitting factors for all of the signals can be
larger than the threshold. The discrepancy between the
regions of a positive and a negative spin is due to the fact

that the template parameter space is physically restricted to
η ≤ 0.25 so that the recovered value of η (ηrec) cannot
exceed 0.25. We demonstrated this by choosing the
asymmetric-mass binaries that satisfy ηrec < 0.25, and
showing the nearly symmetric fitting factors for those
binaries between the two regions. We classified our binaries
into low-mass, medium-mass, and high-mass systems and
calculated the mean fitting factor by averaging over M in
the η − χ plane, and found that the overall area with high
fitting factors is narrower for higher-mass systems. The
mass parameters recovered by the nonspinning templates
are significantly biased from the true parameters of the
aligned-spin signals.
In this work, we revisited the issues on the effectualness

of nonspinning templates in aligned-spin BBH searches
that were addressed in several works for low-mass BBHs.
We obtained a similar result to those of the previous works
and found that the nonspinning bank has worse search
efficiency for higher-mass systems. Overall, we obtained a
very narrow range in spin (−0.3 ≤ χ ≤ 0) over which the
nonspinning bank has fitting factors exceeding 0.965 for all
of the aligned-spin signals in our mass range. Moreover, the
fitting factors given in this work should be a bit lowered if
the discreteness of template spacing is considered in our
analysis. Therefore, our study demonstrates the ineffectual-
ness of the nonspinning bank and emphasizes the necessity
of aligned-spin templates in the current Advance LIGO
searches for aligned-spin BBHs.
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