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Working by analogy, we use the description of light fluctuations due to random collisions of the radiating
atoms to figure out why the reduction of the coherence for light propagating a cosmological distance in the
fluctuating background space is negligibly small to be observed by the stellar interferometry.
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I. INTRODUCTORY REMARKS

With general relativity (GR), space-time became a
dynamical variable. So it is natural to assume that the
background space undergoes quantum fluctuations that
affect the matter fields propagating in it. Taking into
account that in view of the basic principles of quantum
mechanics (QM) and GR, an inevitable uncertainty is
expected to attend the measurement of any distance
[1–14], one might suggest that the wavelength of the
propagating wave undergoes fluctuations as well. On
dimensional grounds, one could parametrize these fluctua-
tions as δλ ¼ βlαPλ

1−α, where β is a numerical factor of
order unity, and two particular values of α that have more or
less clear physical motivations are α ¼ 2=3 [9,11,13] and
α ¼ 1=2 [14]. Based on this fact, an intriguing idea for
detecting the space fluctuations was proposed in [15]. The
idea is to consider a phase incoherence of light coming to us
from extra-Galactic sources. The authors of [15] noticed
that although the frequency fluctuation δω ¼ 2πδλ=λ2 is
small, the product tω that enters the plane wave can acquire
appreciable shift, tδω, when t is large enough. The
approach put forward in [15] oversimplifies the actual
physical situation in that the authors judge the light
coherence basically on the basis of the superposition of
two monochromatic plane waves, one of which acquires the
phase shift, tδω, and conclude that when this phase shift
approaches π, an interference fringe pattern should be
destroyed. Because of this approach one finds an enormous
effect, one of the reasons for which is clearly the absence of
an actual working model for estimating the degree of
coherence. The attempt to merely reduce the phase shift
tδω by saying that the fluctuations must add up more
slowly—say as

ffiffiffiffiffi
tω

p ðδω=ωÞ (see Sec. III)—does not justify
this approach. In view of the above comments, let us notice
that the concept of chaotic light [16] might be useful for
qualitative understanding of the actual effects of back-
ground space fluctuations on the light beam. For this
reason, let us first recall some basic points concerning

the coherence of light, which is subjected to the random
process of collisions of the radiating atoms.

II. COHERENCE OF THE FLUCTUATING LIGHT
CAUSED BY THE COLLISIONS OF THE

RADIATING ATOMS

Usually, the atoms of the radiating medium undergo
random collisions with each other. On the other hand, the
total field coming from this atomic gas is a superposition of
a huge number of fields, Einzelwellen, one for each
radiating atom. When the radiating atom undergoes a
collision, the phase of the radiated field suffers a random
jump. As the collisions have a random nature, the
Einzelwellen acquire random phases: eiθjðtÞ. The
correlation function at a fixed point (some distance away
from the radiating source), where the time dependence of
the field is measured, takes the form [16]

hΦ�ðtÞΦðtþ τÞi ¼ NhΦ�
jðtÞΦjðtþ τÞi

¼ NhΦ�
jðtÞΦjðtþ τÞi

0
hei½θjðtþτÞ−θjðtÞ�i;

ð1Þ
where one has taken into account that the phase angles of the
waves from different atoms have the different random values
and the cross terms give a zero average contribution,
respectively. The correlation function for the beam as awhole
is thus determined by the Einzelatom contributions. In
Eq. (1), N stands for the number of atoms, the average is
understood in the statistical sense, and the subscript 0
indicates the correlation function in the absence of collisions.
To estimate the correlation function over the random-phase
angles inEq. (1), let us notice that this quantity depends on the
collision probability, which in general can be written as
Wðτ=τ0Þ, where τ0 stands for the mean period of a free flight.
That is, dτWðτ=τ0Þ is the probability of the atom to move
freely in the time interval τ; τ þ dτ. The phase angle of an
Einzelwelle jumps to a random value after its source
atom suffers a collision and the average in Eq. (1) sub-
sequently vanishes. So, the average over the random-phase
angles in Eq. (1) depends on the number of collisions and can
be estimated immediately by the probability density as*maziashvili@iliauni.edu.ge
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hΦ�ðtÞΦðtþ τÞi ¼ hΦ�ðtÞΦðtþ τÞi0
Z

∞

τ
dξWðξ=τ0Þ: ð2Þ

This equation implies that the atoms that have experienced
collisions make no contribution to the correlation function. It
can be readily understood. Namely, recalling that
during the collision the Einzelwelle can acquire an
arbitrary phase within the interval ð−π; πÞ, the average value
of the phase under the assumption that NcðτÞ≡
N
R
τ
0 dξWðξ=τ0Þ ≫ 1 (hereNc denotes the number of atoms

that have experienced collisions before the elapse of a time τ)
results in

hcos θi ¼ 1

Nc

XNc

j¼1

cos θj

¼ 1

2π

XNc

j¼1

2π

Nc
cos θj ≃ 1

2π

Z
π

−π
dθ cos θ ¼ 0: ð3Þ

We are now in a position to address the question posed in the
title of this article.

III. COHERENCE OF THE LIGHT AFFECTED BY
THE METRIC FLUCTUATIONS

Let us now apply the lessons learned from the previous
section for estimating the degree of light coherence in the
presence of background metric fluctuations. Equation (2)
can readily be applied to our problem. As we are dealing
with small fluctuations of the gravitational field, it implies
the linearized equations of motion and we can assume that
the effect of background space fluctuations are mutually
independent for each Einzelwelle. The phase fluctua-
tions for Einzelwellen, starting from the zero value,
are growing with time in a stochastic manner. The meaning
of the

R∞
τ dξWðξ=τ0Þ function for the problem we are

dealing with is as follows. Roughly, for a given instant
of time, the phase fluctuations are uniformly occupying
some interval1 ð−δθðτÞ; δθðτÞÞ. The suppression of the
correlation function is negligible for δθðtÞ ≪ π and
becomes appreciable when δθðτÞ becomes ≃π; see
Eq. (3). In view of this judgment, the functionR
∞
τ dξWðξ=τ0Þ may be understood as the probability that,
before the elapse of a time τ, the size of the phase
fluctuation (for Einzelwelle) will be comparable to
2π. Furthermore, one can notice that the physics we are
dealing with is quite analogous to Brownian motion [17],
and assuming that the probability distribution has the
Gaussian form with the mean square value of fluctuation
proportional to time, one can write an explicit form ofR∞
τ dξWðξ=τ0Þ and make estimations. Here τ0 stands for

the time scale at which the root of the mean square
fluctuation becomes comparable to 2π. Let us notice that
the precise form of Wðξ=τ0Þ is less important for our
discussion. One just needs to convince himself that the
function

R∞
τ dξWðξ=τ0Þ becomes very small as τ

approaches τ0 and is very close to unity for τ ≪ τ0.
However, for the sake of further simplicity and clarity,
we will not follow this way, but rather take a more
straightforward approach.
Let us first estimate the scale τ0 in Eq. (2). As it was

mentioned above, it denotes the time during which the root
of the mean square value of the phase shift becomes of the
order of 2π. With respect to the discussion put forward in
[15], the frequency fluctuation of the order of δω≃ lαPω

1þα

is understood to take place at each wavelength, that is,
sequentially with the time intervals ω−1. Hence, during the
time interval τ, the phase undergoes n ¼ τω steps of
fluctuations. As the fluctuations add up randomly, the
phase shift accumulated during the τ0 will not be
τ0δω≡ ω−1δωn, but rather [17]

ω−1δω
ffiffiffiffiffiffiffiffi
τ0ω

p ¼ 2π; ⇒ τ0 ¼
ð2πÞ2þ2α

β2l2αP ω1þ2α : ð4Þ

In what follows wewill assume that at a time τ the phases of
Einzelwellen, θj, uniformly occupy the region
ð−δθðτÞ; δθðτÞÞ, where δθðτÞ ¼ ω−1δω

ffiffiffiffiffiffi
τω

p
. Though this

assumption might seem more natural for the problem under
consideration, it should be remarked that in deriving
Eq. (4), we have not used precisely this form of probability
distribution. This assumption, that the phase undergoes the
fluctuations at constant intervals of time ω−1 apart, in such
a way as to have the probability at each occasion given by
the uniform distribution,

ϖðθÞ ¼
�
ω=2δω for − δω=ω ≤ θ ≤ δω=ω

0 if jθj > δω=ω
;

leads to a somewhat more complicated picture. In this case,
for the probability WnðθÞdθ that after a time τ ¼ nω−1 the
phase of the Einzelwelle will be found in the interval
ðθ − dθ=2; θ þ dθ=2Þ, one arrives at the expression [17]

WnðθÞ ∝
Z

∞

−∞
dξ
�
sin ξ
ξ

�
n
cos

�
ξθω

δω

�
:

It would be more precise to estimate the mean square
fluctuation of the phase as a function of time by using this
distribution, but when δω=ω is very small, such rigor and
precision are needless for our discussion. Moving on, for
the suppression factor of the correlation function, one finds

1It would be more natural to assume the Gaussian distribution
(having the width 2δω=ω) instead of the uniform one, but for the
accuracy of our discussion it is less essential.
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hcos θi ¼ 1

2δθðτÞ
Z

δθðτÞ

−δθðτÞ
dξ cos ξ ¼ sin δθðτÞ

δθðτÞ : ð5Þ

From Eq. (5) one sees that the suppression is appreciable
when τ becomes of the order of τ0 and is negligibly small
for τ ≪ τ0.
Now let us see what other corrections due to background

space fluctuations might be expected and then summarize
the overall effect on the light coherence coming from a
distant (extended) source.
The light signal from astrophysical sources can be

described by the (spherical) wave packet [18]

Φðt; rÞ ¼
Z

∞

−∞
dωΞðωÞ e

i½kðωÞr−ωt�

r
;

where the function ΞðωÞ is understood to differ appreciably
from zero only within a narrow range, ω̄ − Δω < ω <
ω̄þ Δω, around a mean frequency ω̄. Here we assume the
modified dispersion relation kðωÞ, which is understood as a
consequence of the background space fluctuations. The
frequency fluctuation δω≃ lαPω

1þα indicates that the
amplitude ΞðωÞ can be known approximately. Taking into
account the random nature of fluctuations, one can estimate
the average value of the amplitude as

AðωÞ ¼
Z

∞

−∞
dξ

ΞðξÞffiffiffiffiffiffi
2π

p
δω

e−
ðξ−ωÞ2
2δω : ð6Þ

It is worth mentioning that in general a small perturba-
tion of the Fourier coefficients may cause a huge cumu-
lative effect that must be properly regularized before using
it as a physically meaningful result [19]. As a simple
illustrating example, let us consider the function

fðtÞ ¼
X∞
n¼0

an cosðntÞ;

and assume that its coefficients are perturbed in the
following way: ~an ¼ an þ ε=n for n ≥ 1 and a0 ¼ ~a0.
It is plainly seen that the net difference between the
coefficients with respect to the metric l2,

�X∞
n¼0

ð ~an − anÞ2
�
1=2

¼ ε

�X∞
n¼1

1

n2

�
1=2

¼ ε
ffiffiffiffiffiffiffiffiffiffi
π2=6

q
;

can be made arbitrarily small at the expense of ε. On the
other hand, the deviation of the perturbed function

~fðtÞ − fðtÞ ¼ ε
X∞
n¼1

cosðntÞ
n

;

may be arbitrarily large as for t ¼ 0 this series merely
diverges. So, in practice for reading the field through the

Fourier modes this effect should not be taken as a physical
one but rather one needs some (optimal) method of
regularization [19]. We will not face this sort of problem
in what follows, but nevertheless it is instructive as it can
become the source of the similar misconception entailed in
the paper [15].
In van Cittert–Zernike formalism [18], for estimating the

degree of coherence, one is integrating out the amplitude

Āðt; rÞ ¼
Z
ω̄−Δω

ω̄þΔω

dωAðωÞeif½kðωÞ−kðω̄Þ�r−½ω−ω̄�tg;

so that the wave signal is treated as a monochromatic
wave with frequency ω̄, wave number kðω̄Þ, and variable
amplitude Ā,

Φðt; rÞ ¼ Āðt; rÞ e
i½kðω̄Þr−ω̄t�

r
: ð7Þ

With a good accuracy the source can be thought of as a
plain (2D) object. Dividing the source into small elements
dσm and denoting byΦm1ðtÞ and Φm2ðtÞ the signals coming
from this element at the telescope apertures, respectively,
for the correlation function between the light signals Φ1ðtÞ
and Φ2ðtÞ one finds

hΦ1ðtÞΦ�
2ðtÞi ¼

X
m

hΦm1ðtÞΦ�
m2ðtÞi;

where one takes into account that

hΦm1ðtÞΦ�
n2ðtÞi ¼ 0; for m ≠ n:

As different source elements are mutually incoherent, that
means that there is no correlation between Φm1ðtÞ and
Φn2ðtÞ whenm ≠ n [the same argument was used in Eq. (1)
as well]. It is worth noticing that here hi stands for time
averaging. Using an explicit expression (7), for the corre-
lation function one finds

hΦm1ðtÞΦ�
m2ðtÞi ¼ hĀmðt; rm1ÞĀ�

mðt; rm2Þi
eikðω̄Þðrm1−rm2Þ

rm1rm2

:

Then under the assumption

jrm2 − rm1j ≪ jkðω̄þ ΔωÞ − kðω̄Þj−1; ð8Þ

one usually makes the following approximation [20]:

Āmðt; rm1ÞĀ�
mðt; rm2Þ ≈ Āmðt; rm1ÞĀ�

mðt; rm1Þ
≈ Āmðt; rm2ÞĀ�

mðt; rm2Þ:

Let us notice that in the standard case the auxiliary
condition (8) is nothing else but the requirement of the path
difference to be less than the duration of the wave packet
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Δt≃ Δω−1. It ensures the overlapping of the waves arising
from the wave packet (7) after passing through the
apertures. Hence, the interference effect takes place when
this condition is satisfied. In the case of a modified
dispersion relation, which for the problem under consid-
eration will take the form (here γ is a numerical factor of
order unity)

ωðkÞ ¼ kþ γlαPk
1þα þ � � � ; ð9Þ

the velocity of the wave (7) is shifted as [21]

vðω̄Þ ¼ dω
dk

����
ω̄

¼ 1þ γðlPω̄Þα þ � � � ;

and therefore the coherence condition

jrm2 − rm1j
vðω̄Þ ≪ Δω−1

no longer coincides with Eq. (8),

jrm2 − rm1j ≪
1

Δωj1 − γlαPΔωαj ;

but the corrections are so small that they do not represent
any serious interest for the problem we are discussing.
Namely, the corrections are controlled by the ratio ðlP=λ̄Þα,
where λ̄ is a wavelength of the light coming from high-
redshift objects to the interferometer. (In a most optimistic
case, one can take λ̄≃ 10−8 cm [22–25]).
So ultimately, the correlation function takes the form

hΦm1ðtÞΦ�
m2ðtÞi ¼ hĀmðt; r̄ÞĀ�

mðt; r̄Þi
eikðω̄Þðrm1−rm2Þ

rm1rm2

;

where r̄ denotes the distance from the source to the
telescope. The quantity hĀmðt; r̄ÞĀ�

mðt; r̄Þi, which charac-
terizes the radiation intensity from the element dσm, with
a good accuracy may be assumed to be uniform over
the source. Therefore, the corrections to the degree of
coherence, characterized by the quantity [18]

�X
j

hĀjðt; r̄ÞĀ�
jðt; r̄Þi

r2j1

�−1=2

×

�X
n

hĀnðt; r̄ÞĀ�
nðt; r̄Þi

r2n2

�−1=2

×
X
m

hĀmðt; r̄ÞĀ�
mðt; r̄Þi

eikðω̄Þðrm1−rm2Þ

rm1rm2

; ð10Þ

due to amplitude fluctuations (6) are negligibly small.
Consider now the additional factor that comes from

Eq. (2). The result given by Eq. (2) can immediately be

applied to the spatial correlation function by replacing
τ → jrm2 − rm1j, which is of the order of the distance
between the apertures. Namely, the discussion above this
equation can readily be generalized to the stellar radiation
by replacing the atoms with the elements dσm. With no loss
of generality, let us assume that rm2 > rm1. The wave (7),
that starts from the element dσm, may have an arbitrary
random phase, eiθmðtÞ, when it reaches the point rm1. We can
simplify the discussion and hold from the outset that the
amplitude of this wave is constant as the radiation intensity
determined by this amplitude in the expression of the
coherence degree is assumed to be uniform over the whole
source [see the discussion above Eq. (10)]. During the time
τ needed for this wave to reach the point rm2, the phase may
take on some other random value eiθmðtþτÞ. So, one arrives
basically at the expression (1). The key observation here is
that the time scale for the accumulation of the effect is set
by the path difference and not by r̄ itself, as it was deemed
in [15]. Another important characteristic scale is τ0; see
Eq. (4). The ratio of these two time scales looks as follows:

τ

τ0
≃ distance between the apertures

λ̄

�
lP
λ̄

�
2α

≪ 1: ð11Þ

So the suppression factor is very close to 1; see Eq. (5).
The effect of the modified dispersion relation kðω̄Þ in

Eq. (10) is negligibly small [20]. The above discussion
already accounts for the light speed alteration because of
the modified dispersion relation, but this question can be
considered in a somewhat more generic context. Namely,
one can model the problem by wave propagation in a
randomly inhomogeneous medium,

ðnðrÞ∂2
t − ΔÞΦðt; rÞ ¼ 0; ð12Þ

where the randomly fluctuating refractive index has the
form nðrÞ ¼ 1þ εðrÞ [26]. Let us notice that this equation
bears a close similarity with that one describing the scalar
field propagation in a weak gravitational field of the form

ds2 ¼ ½1þ 2UðrÞ�dt2 − dr2;

namely,

f½1 −UðrÞ�∂2
t − ΔgΦðt; rÞ ¼ 0:

One could try to go further and study the electromagnetic
wave propagation in the fluctuating background on the
basis of the general equation [27]

∇μð∇μAν −∇νAμÞ ¼ ∇μ∇μAν þ gναRμ
δμαAδ ¼ 0;

which follows after using the gauge fixing ∇μAμ ¼ 0 and
the relation
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ð∇μ∇ν −∇ν∇μÞAα ¼ −Rα
δμνAδ;

but so far there is almost no clue motivating this study in the
context of stellar interferometry [26].

IV. CONCLUDING REMARKS

From Eq. (11) it follows that the effect becomes
appreciable when τ=τ0 ≳ 1. That, loosely speaking, might
be achieved either by reducing the wave length signifi-
cantly or increasing the distance between the apertures
enormously. Even if one takes λ̄≃ 10−13 cm [25], the
distance between apertures should be ≳100 km for the
suppression factor to manifest itself. Also, there is an
important relation that should be taken into account.
Namely, for observing the diffraction pattern, in the tele-
scope with distance d between the apertures, it is required
that the following relation take place [18],

d≃ λ̄ r̄
ρ
;

where ρ denotes the linear size of the source. Combining it
with the condition τ=τ0 ≳ 1, one arrives at the relation

λ̄≲ lP

�
r̄
ρ

�
1=2α

: ð13Þ

This relation puts a stringent bound on λ̄ that can be seen
immediately by taking α ¼ 1=2 and unrealistically opti-
mistic values r̄ ¼ H−1

0 ≈ 1028 cm (present value of the
cosmological horizon) and ρ ¼ 105 cm. For those values
one finds λ̄≲ 10−10 cm.

To summarize, we used a working model of the chaotic
light for describing the cumulative effect, which was
envisaged in [15]. The basic steps of the discussion are
as follows: The source is represented by the small radiating
elements. The cross terms in the correlation function
(which determines the degree of coherence) give a zero
average contribution. The correlation function is thus
determined by the sum of correlation functions for separate
radiating elements. The effect of background space fluc-
tuations is described by the overall factor that accounts for
the statistical average over the randomly acquired phases
for each radiating element. For estimating this factor in a
semiqualitative manner, an important role is played by the
time scale at which the random phases become of the order
of π. [The phase of the emitted light by an atom can be
altered arbitrarily due to collisions, while the phase
fluctuation of the light due to background space perturba-
tions is tiny at a time of the order of ðlPωÞα.] If the phases
acquired in a random way can take on arbitrary values, then
this average factor becomes zero; see Eq. (3). [For this
reason, the contribution of the atoms that have experienced
collisions drops out of the correlation function; see Eq. (2).]
The effect for realistic parameters turns out to be negligibly
small as is plainly seen from Eq. (13). Also, one may
address various Planck-scale corrections to the coherence
effect [28,29], but from the standpoint of present (or near-
future) observations they seem to be less interesting.
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