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We propose a space-based gravitational wave (GW) detector consisting of two spatially separated, drag-
free satellites sharing ultrastable optical laser light over a single baseline. Each satellite contains an optical
lattice atomic clock, which serves as a sensitive, narrowband detector of the local frequency of the shared
laser light. A synchronized two-clock comparison between the satellites will be sensitive to the effective
Doppler shifts induced by incident GWs at a level competitive with other proposed space-based GW
detectors, while providing complementary features. The detected signal is a differential frequency shift of
the shared laser light due to the relative velocity of the satellites, and the detection window can be tuned
through the control sequence applied to the atoms’ internal states. This scheme enables the detection of
GWs from continuous, spectrally narrow sources, such as compact binary inspirals, with frequencies
ranging from ∼3 mHz–10 Hz without loss of sensitivity, thereby bridging the detection gap between space-
based and terrestrial optical interferometric GW detectors. Our proposed GW detector employs just two
satellites, is compatible with integration with an optical interferometric detector, and requires only realistic
improvements to existing ground-based clock and laser technologies.
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I. INTRODUCTION

The first direct detections of gravitational waves
(GWs) by the Laser Interferometer Gravitational Wave
Observatory (LIGO) [1,2] heralds the dawn of a new era of
astrophysics. The culmination of a century-long search
[1–10], GW detection is now emerging as a new tool with
which to study the Universe, illuminating previously
invisible astrophysical phenomena. In parallel, the develop-
ments of laser cooling and the laser frequency comb have
given rise to optical atomic clocks with accuracies and
stabilities at the 10−18 level [11–15]. As clock precision
continues to improve, there is growing interest in the
prospect of using optical atomic clocks for GW detection
[10,16,17]. In this work we outline a proposal for a new
GW detector based on Doppler-shift measurements
between two spacecraft containing optical lattice atomic
clocks linked over a single optical baseline. This detector
offers broad tunability of narrow band sensitivity in the
mHz—Hz frequency range. As GW astronomy matures,
such a detector can therefore serve as a different type of
observatory for gravitational waves that can be comple-
mentary to existing concepts, much like there are applica-
tions for both large and narrow field-of-view telescopes in
electromagnetic astronomy. We analyze the prospects for
GW detection and characterization using our clock-based

scheme, including a comparison of the sensitivity of
this technique to other proposed space-based detectors.
We highlight new and complementary GW measurement
capabilities provided by space-based optical atomic clocks,
and discuss the prospects for integrating our scheme with
existing proposals.
While there is little doubt that LIGO and other terrestrial

detectors will observe numerous additional GW events in
the coming years, terrestrial detectors are only sensitive to
GWs with frequencies above ∼10 Hz, due to seismic and
Newtonian noise [1,3,18,19]. The desire to observe a wider
range of astrophysical phenomena over longer length and
time scales has motivated proposals of larger scale, space-
based GW detectors [16–23]. There are a wide variety of
existing and proposed techniques [1–10,24], all of which
rely on the same GW effect, namely the periodic change in
proper distance between two points in space [25]. This
effect results in modulation of the arrival times of photons
sent over an electromagnetic baseline, which corresponds
to effective changes in relative position and velocity.
The differences between the various techniques lie in the
detection methods, the physical quantity that is being
locally measured, and the susceptibility to different noise
sources, making particular schemes better suited for spe-
cific GW frequency ranges.
The existing and proposed space-based GW detectors

can be broadly classified in two categories. The first are
optical interferometric detectors analogous to LIGO in
space, such as the proposed Laser Interferometer Space
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Antenna (LISA) [18] and Evolved-LISA [19], which would
be composed of three spacecraft forming either a two or
three arm Michelson interferometer, with roughly equal
length arms to reduce susceptibility to laser frequency
noise. These GW detectors rely on large photon fluxes to
split the optical interference fringe down to the required
sensitivities, and detect signals in a broad frequency band
determined by the detector arm length and residual accel-
eration noise of the satellites [18,19].
The second class of space-based GW detectors relies

on stable internal frequency references, such as Doppler
tracking of distant spacecraft [7–10]. These detectors
search for changes in the frequency of electromagnetic
waves due to effective Doppler shifts arising from passing
GWs. Doppler tracking of spacecraft has been successfully
employed to set the existing limits on milliHertz gravita-
tional wave events [7–10]. Because the sensitivities of this
class of detector are generally limited by the stability of the
frequency reference rather than the photon flux [10,26],
there is a clear motivation to improve the internal frequency
references used for GW detection through the adoption of
atomic physics techniques, such as either atomic interfer-
ometry (AI) [20–23] or optical lattice atomic clocks, as
described here.
A GW detector composed of two satellites carrying

optical lattice atomic clocks and sharing a single laser over
an optical link can measure shifts in the rate of optical
phase change by comparing the laser frequency to an
atomic degree of freedom on both ends of the baseline.
Such a detector is therefore similar to the Doppler tracking
method of GW detection [7–10,17], in that it is sensitive to
changes in the apparent relative velocities of the reference
masses, rather than changes in the apparent relative
distance. An important advantage of the atomic clock
scheme over other Doppler tracking methods is that one
has full control over the frequency references. As a result,
synchronized measurement sequences can be applied at
both ends of the baseline to cancel laser frequency noise
[21,27–30]: thus the atomic clock technique requires only
two spacecraft, not three, and the differential measurement
is entirely limited by the internal atomic transition, not the
stability of the local oscillator used to probe it [10–15].
Furthermore, dynamical decoupling (DD) control sequen-
ces can be applied to the internal states of the atoms
[31,32], extending the range of GW frequencies to which
the detector can be maximally sensitive, from milliHertz to
tens of Hertz, without requiring any physical changes to the
detector. This key feature provides a tunable, narrow band
GW detector for tracking evolving GW sources such as
inspiraling black hole or neutron star binaries, and bridging
the spectral gap between space-borne and terrestrial optical
interferometric GW detectors [1–3,18,19].
Due to the Doppler-based measurement scheme and high

quality factor of atomic clock transitions, the optical power
requirements on the link between satellites differ from

those of optical interferometer GW detectors, as discussed
below. In addition, quantum techniques such as atomic spin
squeezing and entangled states [33–35] offer the potential
for future improvements in sensitivity, detection band-
width, and spectral range. Finally, because optical atomic
clocks are currently the most accurate frequency referen-
ces [11–15], and can provide improved sensitivity to
beyond-standard-model phenomena that may couple to
atomic properties such as mass, charge, and spin [36–39],
there is already considerable motivation to develop space-
hardy optical clocks, and to integrate them with other
proposed GW detectors.

II. SENSING GRAVITATIONAL WAVES
USING OPTICAL LATTICE

ATOMIC CLOCKS

OurproposedGWdetector, illustrated inFig. 1, consistsof
two drag-free satellites in heliocentric orbit (A and B),
separated by a length d and connected over a single optical
link using conventional optical telescopes. Each satellite
contains its own optical lattice atomic clock [11–13,40], and
its own ultrastable laser [41]. The laser in satellite B is kept
phase locked to the light sent from satellite A over the optical
link, such that the two lasers function as a single ultrastable
clock laser shared between the two satellites. In each satellite
the lattice confining the clock atoms is created using the
standingwave formedby retroreflecting amagicwavelength
laser [11–13] off of a mirror mounted on a free-floating
reference mass, such that the atoms are strongly confined in
the reference frame of the free mass and are therefore in free
fall, despite their confinement. Drag-free masses have been
studied in great detail by the LISA collaboration, and this
technology iscurrentlyundergoing testingandverification in
the LISA Pathfinder spacemission [42,43]. The phase of the
clock lasers in each satellite is kept referenced to the same
mirror using interferometry [44] to cancel out any relative
motion of the lasers or optics with respect to the atoms. To
cancel the radiation pressure exerted on the free mass by the
lattice and clock beams, a set of equal power, counter-
propagating lasers are incident on the opposite sides of the
free masses. For a 1 kg mass and a 1 W lattice beam, the
remaining acceleration noise from the quantum radiation
pressure shot noise of the lattice, clock, and compensation
beams is far below theGWdetector noise floor at frequencies
of interest [45].
Operation of the GW detector consists of a synchronous

comparison between the two optical lattice atomic clocks.
The frequency of laser A is compared to the clock
transition in the atoms in satellite A using spectroscopic
read-out, such as Ramsey spectroscopy. Synchronization
signals are transmitted to satellite B, so that an identical
measurement is performed on the atoms in satellite B
using laser B, which is phase locked to laser A. Both
Ramsey measurements are performed with the same
interrogation time T. The Ramsey phases accumulated
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by the atoms in each satellite are recorded, and can then be
compared over a standard communication channel.
Because the satellites effectively share a single laser
and the two measurements are offset by the time required
for the laser light to travel from A to B, any laser
frequency noise is a common mode for the two measure-
ments, resulting in the same additional acquired phase in
each clock, and is thus rejected. This method of laser
frequency noise rejection has been previously utilized in
optical atomic clocks to cancel laser noise arising from the
Dick effect, and thereby achieve the quantum projection
noise limit [27,28,30]; it has also recently been proposed
for use in AI-based GW detectors [21].
A passing plus-polarized GW of strain amplitude h and

frequency fGW, propagating along the z axis perpendicular
to the optical link between the satellites, periodically
changes the apparent distance between the free masses
A and B, as measured by the null geodesic of the optical
link. If the light sent from satellite A to B is used as
reference clock light, its frequency will experience a
Doppler shift that indicates the GW-induced effective
relative motion of the two satellites. Hence the atoms in
satellite B experience a local oscillator of a different optical
frequency than the atoms in satellite A, and accumulate a
different Ramsey phase. When the two clocks are com-
pared, they appear to have “ticked” at different rates, with

the maximum fractional frequency difference between the
two clocks given by

s≡ δν

ν
¼ h

���� sin
�
πfGW

d
c

�����; ð1Þ

where c is the speed of light (see Appendix A for
derivation). Note that s ¼ h for the optimal clock spacing
d ¼ λGW=2, where λGW ¼ c=fGW is the GW wavelength.
When compared to an optical interferometric GW detector
such as LISA [18,19], with total optimized arm length d,
the fractional frequency difference s between two optimally
spaced clocks is equivalent to the fractional change in
differential arm length experienced by the optical interfer-
ometer. At GW frequencies other than the optimal fre-
quency the magnitude of the detectable signal is determined
by the inherent sensitivity of the specific setup, as captured
by the detector’s transfer function T ðfÞ [10,46] and
susceptibility to noise (see Appendix B). As discussed
below, the noise floor of optical interferometric detectors is
fundamentally limited by white phase noise arising from
photon shot noise [19], while the noise floor of the clock
detector is dominated by white frequency noise arising
from atom projection noise [47]. This fundamental physical
difference motivates the present consideration of the former
as a detector of changes in phase, and the latter as a detector

FIG. 1. Proposed gravitational wave detector (not to scale). Our detector consists of two identical drag-free satellites, A and B,
separated from each other by a distance d along the x axis. Each satellite contains a free-floating reference mass, an ultrastable laser, and
a strontium optical lattice clock. A mirror is mounted on the free mass and is used to define the standing wave of light forming the optical
lattice and confining the Sr atoms. Some of the laser light from satellite A (orange, dashed line) is sent to satellite B. The light first passes
through an acousto-optic modulator driven at frequency fA, which offsets the frequency of the light reaching photodiode 2B in satellite B
and enables the phase locking of laser B to laser A through heterodyne detection. Vibrations and thermal drifts of the optics on each
satellite can be corrected locally by feeding back on the beat notes at 2fA;B on photodiodes 1A;B. Light from laser B (blue, dotted line) is
sent back to satellite A to verify the phase lock, to maintain pointing stability, and to enable operation in the reverse mode, with laser A
locked to laser B. A plus-polarized gravitational wave propagating along the z axis induces relative motion between the two free masses
(see Appendix A), which can be detected using a clock comparison measurement protocol. The satellite configuration and orbit shown
here is intended only for illustration of the basic concepts of our detector. A more sophisticated orbital pattern could be employed to
increase the rate of rotation and sweep the detector pattern over a larger region. Additional satellites and optical links could also be used
for improved sensitivity and localization of GW sources.
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of changes in frequency, so that the detector transfer
functions can be directly compared. We emphasize that
while both types of detector can, in principle, express their
measurement in terms of either phase or frequency, the
respective fundamental physical noise floors and signal to
noise ratios are unchanged.
The transfer function T ϕðfÞ for optical interferometric

GW detectors such as LISA is frequency independent for
GW frequencies below c=2d, but scales as T ϕðfÞ ∝ 1=f2GW
at higher frequencies where the photon transit time is
longer than a half period of the GW [18,19]. Because the
1 mHz—1 Hz frequency range is of primary interest for
space-based detectors [18–21], T ϕðfÞ sets a maximum arm
length for an optical interferometer on the order of ∼1 ×
109 meters. In contrast, because the clock GW detector
compares the local laser frequency at the two satellites and
is thus only sensitive to the effective relative velocity of the
satellites, the transfer function T νðfÞ of the clock GW
detector scales as T νðfÞ ∝ f2GW × T ϕðfÞ due to the time
derivative relating position (phase) to velocity (frequency).
Therefore, T νðfÞ ∝ f2GW for fGW < c=2d, but is frequency
independent at higher frequencies1[10]. We are interested
in GW frequencies of ∼mHz and above; thus we propose a
clock GW detector with a baseline length d ¼ 5 × 1010 m,
setting the minimum frequency that can be detected at the
detector’s peak sensitivity to be c=2d ≈ 3 mHz. Note that a
LISA-like baseline length of 5 × 109 meters could be used
for the clock GW detector without sacrificing sensitivity at
GW frequencies above ∼30 mHz.

III. EXPECTED SENSITIVITY

The optical lattice clock GW detector is fundamentally
limited by quantum projection noise of the atomic read out,
which determines the stability of the differential frequency
measurement. We consider two clocks separated by a
distance d, sharing a clock laser over the optical link with
a laser linewidth ΔL, which is limited by current optical
cavity technology to ΔL ≥ 20 mHz, an order of magnitude
broader than the natural atomic line width ΔA [31,41]. We
assume that the clocks are atom projection noise limited,
and that there is perfect single shot readout of each atom’s
final internal state following the Ramsey sequence. As the
two clocks effectively share a single clock laser, laser noise
is common mode and the Ramsey free precession time T
can be extended considerably beyond the laser coherence
time [27,28,30]. Here we assume T can be pushed out to the
radiative lifetime of the clock transition, Tmax ¼ 1=ð2πΔAÞ.
Note that reaching Tmax also requires the suppression of
atomic interactions to avoid collisional broadening and
many-body losses, which can be accomplished by loading
the atoms into a three-dimensional optical lattice with one

atom per site. In addition we assume that the atom lifetime
in the lattice exceeds Tmax. Thus for N atoms in each clock
and a series of optimized Ramsey measurements, each with
precession time Tmax, and a total measurement time τ, the
smallest detectable fractional frequency difference σmin
between the two clocks, and hence the smallest measurable
GW-induced strain with our scheme, is given by

σminðτÞ ¼
δνmin

ν

����
τ

¼
ffiffiffiffiffiffi
ΔA

p

ν
ffiffiffiffiffiffiffiffiffiffiffi
2πτN

p ; ð2Þ

where ν is the frequency of the optical clock transition [47].
To analyze the achievable GW sensitivity using this
technique, we consider a next-generation strontium-87
optical lattice clock, as 87Sr has the narrowest demonstrated
clock transition linewidth [11,47]. The 87Sr 1S0 − 3P0

clock transition is at ν ¼ 430 THz, and the transition
linewidth is ΔA ¼ 1 mHz, yielding Tmax ¼ 160 s [48].
Current work is experimenting with the loading of
104–105 87Sr atoms from a degenerate Fermi gas into a
three-dimensional optical lattice [49] to achieve record-
long coherence times. With improved lattice power and
engineering, one may expect a strontium optical lattice
clock to operate with ∼107 atoms. Taking N ¼ 7 × 106

atoms yields a minimum detectable fractional frequency
difference of σmin ¼ 1.1 × 10−20=

ffiffiffiffiffiffi
Hz

p
. Although this rep-

resents a 4 order of magnitude improvement over demon-
strated clock stability [14], the use of correlated noise
spectroscopy, along with anticipated large improvements
in the atom number, coherence time, and improved laser
linewidth, helps realize this gain. Note that because σmin
can only be achieved using measurements with optimal
Ramsey precession time Tmax ¼ 160 s, our detector is
spectrally narrow band and thus is not well suited for
the detection of short burst GWs. Nonetheless, as we
discuss below, our detector should be well suited for the
detection of GWs emanating from a variety of continuous,
spectrally narrow sources, such as compact binary inspirals.

IV. DETECTOR NOISE FLOOR AND DYNAMICAL
DECOUPLING SEQUENCES

At low frequencies the detector noise floor is dominated
by residual acceleration noise of the free reference masses.
This noise has been carefully analyzed by the LISA
collaboration [18,19,42,43], and a 1=f2 scaling of the
sensitivity is anticipated up to a frequency cutoff of
∼3 mHz. Our detector experiences the same acceleration
noise, resulting in the same scaling of the signal-to-noise
ratio. At higher frequencies atom projection noise domi-
nates, which for fixed T is frequency independent.
However, optimal sensitivity, s ¼ σmin, is achievable
using a Ramsey sequence only if half the period of the
GW is longer than or equal to Tmax, as shown in panel 1 of
Fig. 2(a). As illustrated in panel 2 of Fig. 2(a), the signal

1Here we have set aside the “blind-spot” frequencies, present
for all optical GW detecters, that occur when λGW ¼ d.
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from higher frequency GWs partially averages out over the
course of a single Ramsey measurement of length Tmax,
giving rise to reduced sensitivity at higher frequencies. For
this particular spectroscopic read-out, the reduction scales
as 1=f, just as for an optical interferometry-based detector.
However, the spectroscopic sequence can be changed on
demand without any additional changes to the detector. In
order to search for GWs of frequency fGW > 1=2Tmax, a
Ramsey interrogation time of T 0 ¼ 1=2fGW can be used
[panel 3 of Fig. 2(a)]. This results in a reduction in GW
sensitivity for all frequencies fGW ≥ 1=2Tmax by a factor offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 0=Tmax

p
due to the shorter coherent interrogation time.

Therefore the strain sensitivity envelope for optimally
chosen Ramsey sequences at each fGW scales as

ffiffiffi
f

p
at

high frequencies, as shown by the dashed orange line in
Figs. 2(b) and 2(c).

Fortunately, quantum metrology techniques can be
applied to achieve optimal, frequency-independent GW
sensitivity at higher frequencies. As illustrated in panel 4 of
Fig. 2(a), by using a DD sequence consisting of a Ramsey
sequence combined with a train of periodically spaced
π-pulses matched to the frequency of the GW [31,32],
it is possible to remain sensitive to a GW with frequency
fGW > 1=2Tmax while still interrogating for Tmax, such that
the sensitivity is still given by Eq. (2) in a narrow frequency
band around fGW. Assuming high-fidelity π-pulses can be
performed, the optimal GW sensitivity σmin can be reached
for frequencies up to the Rabi frequency for the clock
transition, which for conservative local clock laser inten-
sities can exceed Ωmax ≈ 100 Hz. Utilizing DD sequences
with ∼3 × 103 π-pulses or fewer, it is therefore possible to
remain maximally sensitivity to GWs with frequencies

FIG. 2. Measurement protocols and comparison of gravitational wave sensitivities. (a) (1) A Ramsey pulse sequence performed on the
atomic clock transition can be used to detect a GW with fGW ¼ 3 mHz, for which a half period matches the atomic linewidth limited
interrogation time Tmax ¼ 160 s. From top to bottom, we depict the effect of a GW on the relative position of the two satellites
(A and B), the sign of the Doppler shift induced on the transmitted laser light, the accumulated clock signal s [see Eq. (1)], and the pulse
sequence (the pink dotted line indicates the atom state readout). (2) The same Ramsey pulse sequence as in panel 1 will measure a
reduced signal for a GW of frequency fGW ¼ 500 mHz, because the fast Doppler-shift oscillations will average out. (3) A series of
shorter Ramsey sequences with T 0 ¼ 1 s can be used to detect a fGW ¼ 500 mHz GW, with a reduced sensitivity due to the shorter
coherent interrogation time. (4) A DD sequence with 159 periodic π-pulses separated by T 0 ¼ 1 s can instead be employed to detect a
GW with fGW ¼ 500 mHz, resulting in the same total accumulated signal s as the Ramsey measurement for fGW ¼ 3 mHz as shown in
panel 1. (b) Noise-limited strain sensitivity of our detector to a monochromatic GW using a Ramsey sequence with interrogation time
Tmax ¼ 160 s (orange filled region), and a Ramsey sequence with T 0 ¼ 1 s (green filled region). The Ramsey sensitivity envelope for
optimized Ramsey sequences at each GW frequency is shown (orange dashed line), and the projected strain sensitivity of LISA is plotted
for comparison [18]. The clock GW detector consists of one clock per satellite, each with 7 × 106 atoms, with the baseline length
optimized for fGW ≥ 3 mHz, giving d ¼ 5 × 1010 m. (c) Noise-limited strain sensitivity of our detector to a monochromatic GWusing a
DD sequence with 159 periodic π-pulses with total interrogation time Tmax ¼ 160 s (purple filled region), and the DD sensitivity
envelope for optimized DD sequences at each GW frequency (thick purple line). In both Fig. 2(b) and 2(c) the strain sensitivities
corresponding to panels 1–4 in Fig. 2(a) are highlighted. The clock GW detector has narrow regions of reduced sensitivity for each
measurement sequence when the time between pulses, (Tmax, T 0), is an integer multiple of a GW period. The polarization and direction
of propagation of a GW can also change the measurable signal for LISA and the clock GW detector. All sensitivity curves and envelopes
are averaged over all polarizations and directions of propagation of the GWs (see Appendix B).
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up to ∼10 Hz. These DD sequences are similar in spirit
to the “signal recycling” cavity that is used in the LIGO
GW detector to enhance sensitivity in a tunable narrow
bandwidth [3,50]; however such a recycling scheme is
impossible for a much longer baseline space-based optical
interferometer like LISA due to optical diffraction. We note
that similar “resonant” pulse sequences have also been
recently proposed for use in AI detectors [51]. The broad
frequency range over which our proposed clock GW
detector can be tuned and remain maximally sensitive is
well suited for the study of binary inspirals and mergers,
which chirp upward in frequency as the two bodies spiral
inwards at an increasing rate [1,2]. Once an ongoing GW
event has been detected, the spacing of the π-pulses in the
DD detection sequence can be “chirped” along with the
signal to remain optimally sensitive to the particular event
throughout its evolution.

V. COMPARISON TO OTHER PROPOSALS

In Figs. 2(b) and 2(c) we plot a comparison of the strain
sensitivities of the clock GW detector and the proposed
LISA mission [18,19], using Ramsey and DD sequences,
respectively. The LISA GW detector uses optical interfer-
ometry, a proven concept for which extensive design and
testing has already been performed. Furthermore, the LISA
GW detector provides broadband sensitivity as plotted in
Fig. 2(b), in contrast to our clock GW detector, which
makes a narrow band measurement at a frequency selected
by the applied control sequence. We therefore consider
our proposal as complementary to the LISA mission; we
envision that an optical clock GW detector could be
integrated with, and operated parallel to, a LISA optical
interferometer without reducing the sensitivity of either
GW detector. As an example of the advantages of such a
hybrid detector, following the detection of an ongoing
binary inspiral at mHz frequencies by LISA, the clock GW
detector enables continued observation of the event as the
frequency rises out of the detection bandwidth of LISA, all
the way through the final moments of the merger, or until it
becomes detectable by terrestrial GW detectors. In addi-
tion, LISA could greatly benefit if next-generation optical
lattice atomic clocks are made ready for space, as the
ultrastable lasers locked to the clocks would provide the
best possible local oscillator for the optical interferometer.
AI GW detectors have been proposed with comparable

predicted sensitivities to both LISA and our optical atomic
clock proposal, for similar baseline lengths, and requiring
only two satellites [20,21]. Importantly, the atoms in an AI
GW detector are completely unconfined, and hence there
is no need for drag-free reference masses as the atoms
themselves are in free fall. However, the AI proposal also
requires that the atoms be cooled to picoKelvin temper-
atures [52], as the measurement is made using the motional
states of the atoms. In contrast, our clock-based scheme
requires drag-free satellite technology, but this enables

the loading of atoms at microKelvin temperatures into
the ground state of the optical lattice [11]. Furthermore,
other than the recent resonant AI detector [51], to date
AI proposals have primarily focused on a measurement
scheme that involves repeatedly imprinting the phase of the
optical field onto the motional degrees of freedom of the
atoms using light propagating back and forth between
the satellites, ultimately yielding an anticipated sensitivity
curve more similar to that of optical interferometric GW
detectors than that of Doppler-shift-based detectors [20,53].

VI. ANALYSIS OF OPTICAL POWER
REQUIREMENTS

Photon shot noise is a considerable fraction of the noise
budget of other space-based GW detector proposals [19].
We now analyze the requirements on transmitted optical
power so that the sensitivity of the optical atomic clock
GW detector is limited only by atom projection noise
at frequencies above 3 mHz. We restrict our analysis to
the fundamental case of GW detection using Ramsey
sequences. Photon shot noise enters the clock GW detector
through noise on the phase-locked loop (PLL) used to lock
laser B to the light arriving from laser A, with the phase
error variance of the loop given by

δϕ2 ≈
hνB
ηPB

þ ΔL

B
; ð3Þ

where PB is the power from laser A that is received at
satellite B, η is the detector quantum efficiency, ΔL is the
linewidth of each laser, and B is the PLL bandwidth [54].
The first term results from photon shot noise on the optical
link, while the second term arises from phase excursions of
laser B due to the finite loop bandwidth. To keep lasers A
and B coherent at all times the PLL must not undergo phase
cycle slips, requiring δϕ2 ≪ 1. An additional requirement
is that the optimal loop bandwidth Bopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηPBΔL=ðhνÞ

p
,

found by minimizing δϕ2, must be larger than the
GW frequency to be detected so that the loop can respond
to the GW signal. In the limits of long measurement time
and large Rabi frequency relative to the optimal loop
bandwidth, Boptτ ≫ 1, Bopt ≪ ΩR, the noise floor due to
both atom projection noise and photon shot noise for a
continuous series of uninterrupted Ramsey measurements
is then given by (see Appendix C for derivation)

σ2ðτÞ ¼ 1

ð2πνÞ2Tτ
�
1

N
þ T

τ

ffiffiffiffiffiffiffiffiffiffiffi
hνΔL

ηP

s �
: ð4Þ

Because the photon shot noise (second term) in Eq. (4)
scales with 1=τ2, a well-known result for Doppler tracking
GW searches [10], while the atom projection noise term
scales as 1=τ, the atom projection noise dominates over
photon shot noise at sufficiently long averaging times, and
Eq. (4) reduces to Eq. (2) when T ¼ Tmax. For example,
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taking ΔL ¼ 30 mHz, η ¼ 0.5, and the averaging time to
be at most 1 day, we find that the received optical power at
satellite B must exceed PB ≳ 3 pW in order for the clock
detector to be atom projection noise limited. At 1 day of
averaging, the minimum detectable strain of a continuous
GW with a frequency between 3 mHz and 10 Hz is then
hmin ≈ 3.7 × 10−23. For long optical baselines, the power
received at satellite B is related to the power transmitted
from satellite A by PB ¼ PAðπR2ν=dcÞ2, where R is the
radius of the telescope used on both satellites [46]. Hence
for R ¼ 30 cm and the proposed satellite separation of
d ¼ 5 × 1010 m, the clock GW detector requires a trans-
mitted power of PA ≳ 50 mW. If the clock GW detector
sensitivity were to be improved by increasing the atom
number, the full gain in sensitivity could be realized by
either increasing the optical power in order to reach the
lower projection noise floor in the same averaging time, or
by simply averaging for longer.
The noise floor given in Eq. (4) is for a series of

continuous Ramsey measurements with no dead time, which
could be achieved through the interleaved operation of two
clocks on each satellite [55–57]. However, if we restrict the
detector to a single optical lattice clock per satellite, detector
operation may require a small but finite dead time between
subsequent measurements, which can introduce additional
susceptibility to differential laser noise through a process
known as the Dick effect [58]. Because the PLL is kept
running continuously, it can bridge the dead time between
subsequent Ramsey sequences, suppressing the differential
laser noise so long as the loop bandwidth is kept above the
Rabi frequency, which acts as a low-pass filter for the atomic
response. However, this places additional requirements on
the optical power received at satellite B. In particular, if
ΩR ≪ Bopt, and in the limit of sufficiently large dead time
TD ≫ 1=Bopt (see Appendix C), Eq. (4) becomes

σ2 ¼ 1

ð2πνÞ2Tτ
�
1

N
þ 2

r
hν
ηPB

ΩR

�
; ð5Þ

where r ¼ T=ðT þ TDÞ is the duty cycle. This yields the
intuitive condition that in order to remain atom projection
noise limited the number of photons received at satellite B
during the Ramsey control pulses must be larger than the
number of atoms N used in each run of the measurement,
bounded by the condition for high-fidelity π=2 pulses,
ΩR ≫ ΔL. Taking ΔL ¼ 30 mHz, ΩR ¼ 1 Hz, η ¼ 0.5,
and r ¼ 0.9, we find that the received optical power at
satellite B must exceed PB ≳ 10 pW, which for the detector
dimensions given previously yields PA ≳ 150 mW, compa-
rable to the∼1 Wof transmitted power required by the LISA
detector [18,19].

VII. SOURCES OF FUTURE IMPROVEMENT

While our proposal already offers competitive sensitivities
in a complementary frequency range to other proposed

space-based GW detectors, there are also potential upgrades
that can be anticipated to further improve detector perfor-
mance. For example, while only two satellites and a single
optical baseline are fundamentally necessary to make our
detector operational, there are a number of scientific advan-
tages to using more arms or an array of two-arm detectors. A
clock network composed of a distributed array of spacecraft
with phase coherent optical links between nearest neighbors
could enable clocks in space to be compared over consid-
erably longer distances than a single baseline scheme, and
could also provide optimal sensitivity for arbitrarily polarized
GWs propagating in any direction, as well as the ability to
localize the GW source direction. In addition, as ground-
based optical atomic clocks become increasingly precise
there is growing motivation to build space-based clocks for
metrology, in order to avoid the gravitational redshifts caused
by seismic activity [47,59]. We emphasize that our GW
detection scheme is compatible with a space-based clock
network designed primarily for time-keeping and navigation.
We can also anticipate increases in the detection

bandwidth without sacrificing sensitivity by using spin-
squeezed and GHZ atomic states [33–35]. These entangled
quantum states can be used to bypass the standard quantum
limit for short interrogation times, and hence change the
sensitivity scaling with atom number from σmin ∝ 1=

ffiffiffiffi
N

p
,

as given inEq. (2), to σmin ∝ 1=N. Tomitigate thephoton shot
noise restrictions at short averaging times, more sophisticated
allocations of the atomic resources using phase estimation
protocols could also be employed [35]. Furthermore, in the
present proposal we focused exclusively on the 1 mHz line-
width, 1S0 − 3P0 transition in 87Sr.Theuseof correlatednoise
spectroscopy offers the prospect of switching to a different
isotope or atomic species with a narrower clock transition,
therebyincreasingthecoherent interrogationtimeandimprov-
ing the sensitivity to GWs [60,61]. Candidate atoms include
neutral Mg [62], or the bosonic isotopes 84Sr and 88Sr, where
the linewidth of the otherwise forbidden clock transition can
potentially be controlled using a second dressing laser [63].

VIII. OUTLOOK

We have proposed a GW detector consisting of two
satellites each containing an optical lattice atomic clock
linked by ultrastable optical laser light over a single
baseline. Synchronous clock comparisons allow detection
of GWs via the effective Doppler shift of the shared laser
light. With realistic projections for the atomic clock
performance, our detector is expected to provide compa-
rable strain sensitivity to that of other proposed space-based
GW detectors based on optical and atomic interferometers
[18–21], along with several complementary features. In
particular, our detector bridges the detection gap between
space-based and terrestrial optical interferometric GW
detectors through tunable, narrow band GW detection with
constant sensitivity over a broad frequency range from
∼3 mHz to 10 Hz, while also offering flexible laser power
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requirements for the spacecraft link, and requiring only
readily realizable atomic technology. We therefore antici-
pate that optical clock GW detectors can play a comple-
mentary role to optical interferometer detectors in both first
and future generation space-based GW missions. Beyond
GW detection, clocks also offer sensitivity to other funda-
mental physical and astronomical phenomena that may
couple to atomic properties such as mass, charge, and spin,
including searches for dark matter, violations of funda-
mental symmetries, and variations of fundamental con-
stants [36–39]. Key challenges to be addressed in future
works include the following: the development of optimized
clock measurement protocols tailored for GW sources of
interest, as well as spectral characterization and detection
feasibility studies of known GW sources; the design of
space-hardy, high-precision atomic clocks and ultrastable
lasers [40], which will also directly benefit other proposed
space-based GW detectors; detailed analysis of the noise
susceptibility of DD sequences requiring many operations
[64]; and the demonstration of quantum metrology tech-
niques involving entanglement to enhance both the sensi-
tivity and detection bandwidth of clock GW detectors.
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APPENDIX A: DERIVATION OF THE
EFFECTIVE DOPPLER SHIFT INDUCED
BY A PASSING GRAVITATIONAL WAVE

A passing GW induces periodic changes in the light
travel time between emitter and detector.2 In this section we
derive the magnitude of this effect as a function of the GW
amplitude, the orientation between the satellites and the
direction of propagation of the GW, and the distance

between the clocks. Similar analyses have been performed
for proposed detectors that utilize Doppler tracking [65]
and pulsar timing [6]. Our detection scheme involves only a
one-way link as in the case of pulsar timing, but with full
experimental control on both sites for the emission and
detection of the signal.
Weak gravitational fields are captured by a perturbed

metric gμν ¼ ημν þ hμν, where ημν is the Minkowski metric
and jhμνj ≪ 1 is a small perturbation. GWs are described in
the transverse traceless gauge by the metric

gμν ¼

0
BBB@

−1 0 0 0

0 1þ hþ h× 0

0 h× 1 − hþ 0

0 0 0 1

1
CCCA; ðA1Þ

where hþðt − z=cÞ and h×ðt − z=cÞ correspond to the two
polarizations of the wave, which travels in the z-direction.
For simplicity we first calculate the effect for a plus-
polarized plane wave with h ¼ hþ ¼ jhje−i2πfðt−z=cÞ, where
f is the frequency of the wave and jhj its amplitude
[arbitrary polarizations are restored with the substitution
jhj → jhþj cosð2ψÞ þ jh×j sinð2ψÞ, where ψ is the polari-
zation angle]. The line element for this metric is then

ds2 ¼ −c2dt2 þ ð1þ hÞdx2 þ ð1 − hÞdy2 þ dz2: ðA2Þ

We now consider the situation depicted in Fig. 3, where a
light signal is sent at time t from system A to system B,
which is at a distance d in the x-z-plane. A lightlike curve
is defined by ds2 ¼ 0. Parametrizing the curve by r with
x ¼ r sin θ, y ¼ 0 and z ¼ r cos θ, the coordinates for the
curve become (to lowest order in h)

cdt ¼
�
1þ 1

2
h sin2 θ

�
dr: ðA3Þ

As the signal is emitted at coordinate time t and travels
from A to B in a time t1 ¼ tþ d=c to lowest order in h, it
travels an apparent distance

FIG. 3. AGW incident along the z axis periodically changes the
light travel distance between A and B.

2One can expect an additional effect due to the time dilation
induced by the GW itself. However, this effect is of second order
in GW strain amplitude h, and is therefore vanishingly small
when compared to the sensitivity of current clocks.
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DAB ¼ c
Z

t1

t
dt0 ¼

Z
d

0

�
1þ 1

2
hð1 − cos2 θÞ

�
dr; ðA4Þ

where the GW is parametrized by h¼hðtþr=c−rcosθ=cÞ.
In terms of the indefinite integral of the wave, H(t), the
above expression becomes

DAB ¼ cðt1 − tÞ

¼ dþ c
2
ð1þ cos θÞ

�
HðtÞ −H

�
tþ d

c
ð1 − cos θÞ

��
:

ðA5Þ

In flat space the distance traveled by the light would just
be given by d, but the presence of the GW periodically
changes the apparent length of the light path. In Doppler
tracking techniques, the signal is reflected back to A and
measured there. Here, instead, we consider measurement
directly on B. The rate of change gives a Doppler shift
of the signal σ ≡ _DAB=c ¼ Δν=ν, where ν is the optical
frequency,

s ¼ Δν
ν

¼ 1þ cos θ
2

�
hðtÞ − h

�
tþ d

c
ð1 − cos θÞ

��
: ðA6Þ

This apparent Doppler shift is the signal to be detected.
The effect is maximized for θ ¼ π=2, i.e. for the detector
aligned perpendicularly to the GW, while the signal
disappears for θ ¼ 0, i.e. in the direction of propagation
of the GW. Similarly to interferometric detection schemes,
the frequency shift is due to transversal motion of test
bodies as the GW is passing.
From Eq. (A6), we can see that when using a single

shared local oscillator to compare two clocks positioned
a distance d apart in the plane (θ ¼ π=2) of a passing GW
of amplitude jhj and wavelength λGW ¼ c=f, the clocks
appear to tick at different rates, with the maximum
fractional frequency difference between the two clocks
given by

smax ¼ jhj
���� sin

�
π

d
λGW

�����: ðA7Þ

Note that the detector is insensitive to GWs with wave-
lengths that match a multiple of the baseline d.

APPENDIX B: DETECTOR SENSITIVITY

For space-based detectors, the effect of geometric factors
on the sensitivity is typically described by the transfer
function T ðfÞ, which captures the detector response to
specific GW frequencies [66]. We can express Eq. (A6) in
Fourier space, which gives

~sðfÞ ¼ 1

2
~hðfÞð1 − ei2πfd=cÞ; ðB1Þ

where the tilde denotes the Fourier transform ~sðfÞ ¼R
dtei2πftsðtÞ. The expression multiplying ~h in Eq. (B1)

depends only on the geometry of the detector and gives
rise to its geometric transfer function, which is
T νðfÞ ¼ jð1 − ei2πfd=cÞ=2j2 ¼ sin2ðπfd=cÞ. It is different
than for the case of phase detectors in two ways: we
consider only a single one-way link between two satellites,
and are sensitive to frequency, i.e. changes in the phase of
the light. For detectors sensitive to phase, the additional
derivative results in the transfer function T ϕðfÞ ¼
sinc2ðπfd=cÞ [67]. A comparison between the transfer
functions of a phase and a frequency detector for an
otherwise identical geometry is shown in Fig. 4.
The actual measured signal for the clock-based detector

depends on the measurement scheme used for the atoms. A
long integration time T increases the sensitivity [see Eq. (2)
in the main text], but is limited by the atomic linewidth. The
signal acquired for a clock measurement between t0 and
t0 þ T is therefore

s̄ ¼ 1

T

����
Z

Tþt0

t0

dtsðtÞ
���� ¼

����
Z

∞

−∞
dtFðt0 − tÞsðtÞ

����; ðB2Þ

where FðtÞ is a window function that captures the
measurement sequence of duration T. For a Ramsey
measurement (ignoring the finite pulse durations), the
window function is just FðtÞ ¼ 1=T for t ∈ ½−T; 0�
and FðtÞ ¼ 0 otherwise. For a continuous GW with
hðtÞ ¼ jhj sinð2πftþ φÞ, this gives

10 4 10 3 10 2

1

0.1

0.01

0.001

Frequency (Hz)

T
ra

ns
fe

r
F

un
ct

io
n

FIG. 4. Transfer functions for a detector sensitive to changes in
frequency, T νðfÞ (red curve), as compared to a detector sensitive
to phase, T ϕðfÞ (blue dotted curve). Frequency measurements
yield the maximal signal for f ¼ ðnþ 1=2Þc=d, n ∈ N0, while
the sensitivity is drastically reduced for f < c=ð2dÞ. In contrast,
phase measurements become significantly less sensitive for
frequencies f ≳ c=ð2dÞ, even without the presence of noise.
Here the distance between satellites is d ¼ 5 × 1010 m, as in the
main text.
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s̄ ¼ jhj
πfT

���� sin
�
πf

d
c

�
sinðπfTÞ

× cos

�
πf

�
2t0 þ

d
c
þ T

�
þ φ

�����: ðB3Þ

As we consider a continuous signal, we can adapt the
starting time of the measurement to account for φ and thus
set the argument of the cosine to 0 to give

s̄ ¼ jhj
���� sin

�
πf

d
c

�
sincðπfTÞ

����: ðB4Þ

The sine term in Eq. (B4) captures the light-travel time
between the two satellites, while the sinc function
appears due to integration for a time T. Equivalently, we
can describe the measurement by a transfer function
T TðfÞ ¼ T νðfÞsinc2ðπfTÞ, as can also be seen by using
directly the Fourier transform of Eq. (B2). Ideal sensitivity
is achieved only for the frequency f ¼ 1=ð2TÞ and distance
d ¼ cT. For higher frequency GWs, the signal strength
is reduced due to the finite integration time T. Reducing
the integration time to T 0 < T gives an ideal signal at
2fT 0 ¼ 1, but causes the atomic clocks to be less sensitive
due to atom projection noise.
Using dynamical decoupling allows the detector to be

ideally sensitive at frequencies other than 1=ð2TÞ. Instead
of the integrated signal given in Eq. (B2), the detection is
performed with a window function FddðtÞ, such that

s̄dd ¼
����
Z

∞

−∞
dtsðtÞFddðt0 − tÞ

����: ðB5Þ

The window function is defined by the particular
dynamical decoupling sequence that is utilized. For
our purposes, we use the periodic dynamical decoupling
sequence with n π-pulses, given by TFddð−tÞ¼ΘðtÞþ
2
P

n
k¼1ð−1ÞkΘðt−kT=nÞþð−1Þnþ1Θðt−TÞ, where ΘðxÞ

is the Heaviside step function. Adapting the measurement
time such that φþ πfd=c ¼ π=2, the signal becomes

s̄dd ¼ jhj
���� sin

�
πf

d
c

�
sinc

�
πf

T
n

�

×
1

n

Xn
k¼1

ð−1Þkþ1 sin
�
πfð2k − 1ÞT

n

�����: ðB6Þ

With DD, the signal is maximized for f ¼ n=ð2TÞ, but is
reduced for other frequencies. Thus DD is ideal to select
a specific frequency at which the detector is maximally
sensitive. The minima closest to the main peak occur at
f ¼ ðn� 1Þ=ð2TÞ; we thus define the detector bandwidth
as Δf ≈ 1=T. Outside this frequency range the detector can
still operate, but with a reduced sensitivity.
Restoring the angular dependence as in Eq. (A6), and

averaging over all angles and polarizations, we get

s̄dd ¼ jhhij
�����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
−

1

ð2πf d
cÞ2

þ sinð4πf d
cÞ

2ð2πf d
cÞ3

s
sinc

�
πf

T
n

�

×
1

n

Xn
k¼1

ð−1Þkþ1 sin

�
πfð2k − 1ÞT

n

������; ðB7Þ

where hhi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jh×j2 þ jhþj2

p
=

ffiffiffi
2

p
is the mean GW

amplitude.

APPENDIX C: DERIVATION OF OPTICAL
POWER REQUIREMENTS

Our proposed detector utilizes a PLL to lock laser B in
satellite B to the light sent from laser A in satellite A, such
that the two lasers function as a single ultrastable clock
laser shared between the two satellites. Such a setup allows
for correlated noise spectroscopy [27,28,30], which enables
the Ramsey interrogation time T to be extended far beyond
the laser coherence time (1 s) out to the atomic radiative
lifetime (160 s). While laser frequency noise arising from
the laser linewidth ΔL can be eliminated using this
technique, shot noise on the optical link and the finite
bandwidth of the PLL gives rise to relative phase noise
between laser A and B. Here we analyze the power
requirements stemming from the individual laser line-
widths, dead time between measurements, Rabi frequency,
and shot noise in the PLL. Because of the differential
measurement, our system can be viewed as a single clock
probed by a laser with noise given by the fractional relative
frequency between laser A and B, y ¼ δν=ν, and we denote
the uncertainty in the relative frequency as

σ2y ¼ hδ̄ν2i=ν2; ðC1Þ

where δ̄ν ¼ ð1=τÞ R t0þτ
t0 δνðtÞdt is the average relative

frequency in a measurement window of time τ. The above
expression is the true variance of the average frequency; in
practice the Allan variance (or two-sample variance) is a
more practical measure of the frequency instability [68].
We can express the integral again as a convolution with a
window function hðtÞ, which captures the sensitivity to
frequency noise during a measurement of duration τ:
σ2y ¼ hðR∞

−∞ dthðt0 − tÞyðtÞÞ2i, or in Fourier space

σ2y ¼
Z

∞

0

dfj ~HðfÞj2SyðfÞ; ðC2Þ

where we expressed the variance in terms of the one-sided
power spectral density SyðfÞ and the noise transfer function
of the measurement, given by the Fourier transform
~HðfÞ ¼ R

dtei2πfthðtÞ. The window function hðtÞ is deter-
mined by the applied spectroscopy sequence, including the
Rabi frequency and pattern of the applied atomic control
pulses, the dead time between subsequent sequences, and
number of averaged measurements. In contrast, the noise
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spectrum SyðfÞ is completely independent of the measure-
ment protocol, and is instead determined by the design of
the PLL, the individual laser linewidths, and the optical
power received at satellite B.
We first consider SyðfÞ, using a simple model which

captures the main features of a PLL (for a detailed analysis
of phase-locked loops and various loop designs, see
Refs. [54,69]). We assume that the laser phase ϕB is
updated in a time step tk according to ϕB

kþ1 ¼ ϕB
kþ

ϕcorr
k , where ϕcorr

k is an applied correction based on the
outcome of the heterodyne measurement of lasers A and B.
The demodulated outcome is a signal i ∝ sinðϕA − ϕBÞ
with a shot noise contribution n. For small phase
differences δϕ ¼ ϕA − ϕB and a loop bandwidth B, the
correction in the loop is ϕcorr

k ¼ B
R tkþ1=B
tk δϕk þ nðtkÞ.

Without shot noise, this loop would give ϕB
kþ1 → ϕA

k in
the limit of arbitrarily large bandwidth. However, the shot
noise restricts the bandwidth, as it increases with larger B.
For times t ≫ 1=B, we can treat the steps as infinitesimal
and obtain a loop differential equation _δϕ ¼ −Bδϕ − νþ
BnðtÞ, where ν is the laser frequency. Writing this in
Fourier space, we obtain the noise power spectral density

SφðfÞ ¼
ΔL

ð2πfÞ2 þ B2
þ hνB2

ηPBðð2πfÞ2 þ B2Þ ; ðC3Þ

where B is the loop bandwidth, ΔL is the linewidth of the
two lasers, PB is the received power from satellite A at
the PLL photodetector, and η is the detection efficiency.
The first term is due to white frequency noise from the two
laser linewidths, which is suppressed in the PLL within the
bandwidth B, while the second term is the photon shot
noise of the optical link, which sets the noise floor for the
heterodyne detection in the PLL. The bandwidth of the loop
can be optimized to minimize the additional phase noise,
which gives the optimal bandwidth Bopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηPBΔL=ðhνÞ

p
.

The noise transfer function j ~HðfÞj2 in Eq. (C2) depends
on the precise details of the spectroscopy sequence. For the
sake of brevity and clarity we restrict our present analysis
to Ramsey measurements. We note that for spectroscopic
sequences other than Ramsey, additional susceptibility to
photon shot noise can be introduced [64]. DD operation
may therefore require additional optical power than
Ramsey, and will be studied in detail in future works.
The sensitivity function hðtÞ describes the response of the
atoms to frequency fluctuations [70], and for Ramsey
interrogation it is given by hðtÞ ¼ 1 during the free
precession period of length T, and hðtÞ ¼ sinðΩRtÞ
(hðtÞ ¼ − sinðΩRtÞ) during the first (second) π=2 pulse,
where ΩR is the Rabi frequency. The total measurement
consists of n repetitions of Ramsey interrogations. Each
interrogation cycle is of duration Tc ¼ T þ TD þ 2tp,
where TD is the dead time, r ¼ T=Tc is the duty cycle,
tp is the pulse duration and τ ¼ nTc is the total

measurement time. For π=2 pulses, tp ¼ π=ð2ΩRÞ, the
noise transfer function is then

j ~HðfÞj2 ¼ 1

n2T2

Ω2
R

ðð2πfÞ2−Ω2
RÞ2

�
ΩR

πf
sinðπfTÞ

þ2cos

�
πfTþ π2

f
ΩR

��
2 sin2ðπfnTcÞ
sin2ðπfTcÞ

: ðC4Þ

Here, the last term captures the finite dead time in between
measurements, which can significantly alter the scaling of
the noise with averaging time. We therefore consider two
cases, that of zero dead time (TD ¼ 0), and that of finite
dead time (TD > 0). The transfer functions for three
representative cases are plotted in Fig. 5.
If there is no dead time and forΩR ≫ B, the noise transfer

function in Eq. (C4) simplifies dramatically to become
j ~HðfÞj2 ¼ sinc2ðπfTÞ and the integral can be computed
analytically to give

R∞
0 dfsin2ðπfτÞ=ðð2πfÞ2þB2Þ¼

ð1−e−BτÞ=ð8BÞ. Including the atom projection noise given
in the main text, the overall variance in frequency measure-
ment for r ¼ 1 is therefore

σ2 ¼ 1

ð2πνÞ2Tτ
�
1

N
þ 1 − e−Bτ

2τ=T

�
ΔL

B
þ hν
ηPB

B

��
: ðC5Þ

For optimized loop bandwidth Bopt and in the limit Bτ ≫ 1,
the above expression becomes

σ2 ¼ 1

ð2πνÞ2Tτ
�
1

N
þ T

τ

ffiffiffiffiffiffiffiffiffiffiffi
hνΔL

ηPB

s �
: ðC6Þ

In this limit, the contribution from laser phase noise
averages down as σ2L ∝ 1=τ2, consistent with other

FIG. 5. Transfer function capturing the sensitivity to frequency
fluctuations, Eq. (C4). The blue dashed curve shows the case for
n ¼ 10 measurements with no dead time and ΩR ¼ 100 Hz. The
orange and red curves show the transfer functions for n ¼ 10, and
r ¼ 0.8, withΩR ¼ 100 Hz (orange curve) and ΩR ¼ 10 Hz (red
dashed curve), and the Ramsey time T ¼ 1 s. Spikes appear due
to the Dick effect at frequencies f ¼ r=T. The transfer function
attenuates frequencies aboveΩR and thus acts as an effective low-
pass filter.

GRAVITATIONAL WAVE DETECTION WITH OPTICAL … PHYSICAL REVIEW D 94, 124043 (2016)

124043-11



Doppler tracking detectors [10]. As a result, the photon shot
noise averages down faster than the atom projection noise,
and at long averaging times atom projection noise dominates
(see Fig. 6).
Zero dead time clock operation has been realized using

interleaved measurements of two clocks [55–57]. However,
if our detector is restricted to only a single clock per
satellite, detector operation will likely include a small but
finite time between subsequent measurements, which
introduces additional noise through a process known as
the Dick effect [58]. For the clock GW detector, the dead
time results in aliasing down of the high frequency noise
in the PLL, resulting in differential frequency noise in
the two-clock comparison, which can limit the differential
clock stability. We emphasize that this differential Dick
noise is distinct from the aliased laser frequency noise
traditionally referred to as Dick noise. While traditional
Dick noise is also present in each individual clock making
up the detector, it is common mode and is canceled out in
the synchronous comparison. In order to account for the
differential Dick noise due to finite dead time (TD > 0),
integration over the full transfer function has to be
performed. This was done using numeric integration for
a finite number of measurements n, and analytically for the
limit n → ∞.
Any finite dead time will alias the high frequency

differential laser noise in the PLL into differential white
frequency noise, resulting in a Dick noise term which scales
as σ2D ∝ 1=τ. Because this term averages down more slowly
than the σ2L ∝ 1=τ2 term in Eq. (C6), at some finite number
of measurements, nD, σD will begin to dominate over σL.

Numerical integration of Eq. (C2), with Eqs. (C3) and (C4)
for finite n, and in the limits ΩR ≫ Bopt, TD ≫ 1=ΩR,
and T ≫ TD, yields σ2D ≈ ðn=nDÞ × σ2L, where nD ≈ 1=
ð2πTDBoptÞ. Therefore, for n sequential measurements the
differential Dick noise can be safely ignored for small
enough dead times, with the condition nTD ≪ 1=ðBoptÞ,
while in the limit of many measurements, the Dick noise
always dominates.
For current individual optical lattice clocks TD ≈ 1 s,

and TD ≫ 1=Bopt. In this case, and in the limit of many
measurements, the full integral in Eq. (C2) with Eqs. (C3)
and (C4) can be evaluated analytically using the property of
the Fejér kernel: FðxÞ ¼ sin2ðnxÞ=ðsin2ðxÞnÞ → πδðxÞ on
x ∈ ½−π=2; π=2�. The resulting frequency uncertainty from
laser noise becomes

σ2L ¼ 8Ω2
RB

ð2πνÞ2τT2

X∞
k¼0

ΔL
B þ hν

ηPB
B

ð2π kr
T Þ2 þ B2

1

ðð2π kr
T Þ2 −Ω2

RÞ2

×

�
ΩR sinðπkrÞ þ 2π

kr
T
cosðπkrþ 2πtpkr=TÞ

�
2

:

ðC7Þ

The contribution from laser phase noise now averages
down more slowly, σ2L ∝ 1=τ, thereby competing directly
with atom projection noise. However, the Rabi frequency
ΩR used in the Ramsey sequence can be used as a low-pass
filter on the atomic response in order to limit the suscep-
tibility to high frequency noise resulting from the Dick
effect, as shown in Fig. 5. As long as the PLL bandwidth
Bopt is kept above ΩR, the PLL can bridge the dead time
between subsequent Ramsey sequences, suppressing the
differential laser noise, and the noise spectrum experienced
by the atoms is simply the photon shot noise from the
PLL detection during the Ramsey control pulses. For
ΩR ≪ Bopt, Eq. (C7) then simplifies to (now again includ-
ing atom projection noise)

σ2 ¼ 1

ð2πνÞ2Tτ
�
1

N
þ 2

r
hν
ηPB

ΩR

�
: ðC8Þ

This corresponds to the intuitive condition that the
number of photons received at satellite B during the
Ramsey control pulses must be larger than the number
of atoms N used in each run of the measurement.

APPENDIX D: TIME CONSTRAINTS FOR
NARROW BAND SIGNAL OBSERVATION

The narrow band nature of the clock detector means that
averaging and observation time are fundamentally limited
by the duration of the GW at the specific frequency of
interest. Compact binary inspirals produce continuous
GWs which experience a chirp towards higher frequencies,
given by [71,72]

102 103 104 105 106 107

10 24

10 22

10 20

[s]

FIG. 6. Fractional frequency instability as a function of
averaging time τ as given in Eq. (C6), for the case of zero dead
time (r ¼ 1). The red curves correspond to an atomic linewidth
ΔA ¼ 1 mHz as in the main text, while the blue curves are for a
narrower atomic transition with ΔA ¼ 10 μHz. The thick and
dashed lines differ by the received optical power: 95 pW (red
thick line), 10 nW (blue thick line) and 1 μW (blue and red
dashed lines). The dotted lines show the atom projection noise
limit as given in Eq. (2) of the main text. For short averaging
times photon shot noise dominates and the noise scales with 1=τ,
while at long averaging times atom projection noise dominates
and the noise scales as 1=

ffiffiffi
τ

p
.
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_f ¼ 96

5
π

�
πGMc

c3

�
5=3

f11=3; ðD1Þ

where G is the gravitational constant and Mc ¼
ðm1m2Þ3=5=ðm1 þm2Þ1=5 is the effective chirp mass of a
binary system with masses m1 and m2. The number of GW
cycles in a time t ∈ ½t1; t2� small compared to the GW
period is dncyc ¼ fdt, or ncyc ¼

R f2
f1

dff= _f. Assuming
f2 − f1 ≈ 1=Tmax, we find that the time the GW is within
this frequency range is given by

τGW ¼ ncyc
f

≈ 2.5 × 1010 s

�
10 mHz

f

�
8=3

�
2.6 M⊙
Mc

�
5=3

;

ðD2Þ

where M⊙ ¼ 2 × 1030 kg is the solar mass, and we have
normalized Mc to the mass value for an inspiral of two
objects with m1 ¼ m2 ¼ 3 M⊙. For such sources, and for
frequencies in the ∼10 mHz range, the GW has an
essentially fixed frequency over hundreds of years. For
heavier sources, however, τGW can be much shorter; for a
black hole binary as detected by LIGO (m1 ¼ 36 M⊙,
m2 ¼ 29 M⊙) we have τGW ≈ 15 years in the above
frequency range around f ¼ 10 mHz. For optimal GW
detection, we require τav < τGW, which is reasonable for
most sources expected in the frequency range of interest.
We also note that this is not a strict limitation for a source
with a known frequency chirp, as the measurement
sequence can be easily adapted to chirp the detection
window along with the source.
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