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The inspiral of stellar-mass compact objects, like neutron stars or stellar-mass black holes, into
supermassive black holes provides a wealth of information about the strong gravitational-field regime via
the emission of gravitational waves. In order to detect and analyze these signals, accurate waveform
templates which include the effects of the compact object’s gravitational self-force are required. For
computational efficiency, adiabatic templates are often used. These accurately reproduce orbit-averaged
trajectories arising from the first-order self-force, but neglect other effects, such as transient resonances,
where the radial and poloidal fundamental frequencies become commensurate. During such resonances the
flux of gravitational waves can be diminished or enhanced, leading to a shift in the compact object’s
trajectory and the phase of the waveform. We present an evolution scheme for studying the effects of
transient resonances and apply this to an astrophysically motivated population. We find that a large
proportion of systems encounter a low-order resonance in the later stages of inspiral; however, the resulting
effect on signal-to-noise recovery is small as a consequence of the low eccentricity of the inspirals.
Neglecting the effects of transient resonances leads to a loss of 4% of detectable signals.
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I. INTRODUCTION

In the prologue to his classic monograph, Chandrasekhar
[1] celebrates the simplicity of black holes (BHs). The Kerr
solution is defined by just two parameters: mass and spin.
Despite the baldness of the BH metrics, great intricacies
manifest in their properties. This is made evident when a
second body is introduced. The two-body problem in general
relativity (GR) is well studied. It is of paramount importance
for gravitational-wave (GW) astronomy, where binary sys-
tems are the dominant source of radiation. Correctly model-
ing the dynamics of these systems is necessary to interpret
and extract information from gravitational waveforms.
We have made progress in understanding the general

relativistic two-body problem in recent years. Bodies of
comparable mass can be studied using numerical relativity.
Rapid advances in this field have been made following
breakthroughs in 2005 [2–4]; it is now possible to simulate
hundreds of orbits [5]. However, the computational cost
of numerical-relativity simulations means that other
approaches must be used to generate the large number
of waveforms required for GW detection and analysis.
Analytic relativity approaches such as post-Newtonian
(PN) theory [6,7], which can be used to model the early
inspiral where the gravitational field is still relatively weak,

and the effective-one-body formalism [8–11], which can
incorporate merger and ringdown, allow us to generate less
expensive waveform approximants. These approximants
can be calibrated to match numerical-relativity results for
improved accuracy [12–16], and the resulting waveforms
allow us to understand comparable-mass binary BHs.
Stellar-mass BH mergers are targets for ground-based

GW detectors, such as Advanced LIGO [17] and Advanced
Virgo [18], the in-construction KAGRA [19], and the
proposed Einstein Telescope [20]. The first direct obser-
vations of GWs came from the coalescences of two stellar-
mass BHs [21–23], and analysis of their properties [23–25]
(plus subsequent inferences about their astrophysical origin
[23,26] and tests of GR [23,27,28]) relied upon our
knowledge of binary BH waveforms.
Systems of unequal masses are more challenging to

evolve numerically as they complete a larger number of
orbits, and it is necessary to resolve two different scales.
Calculations can instead be performed perturbatively. The
paradigm unequal-mass system has a stellar-mass BH
orbiting a supermassive BH (SMBH), such as those
expected to be found at the centers of galaxies [29–31].
These extreme-mass-ratio inspirals (EMRIs) produce
GWs that are a promising signal for space-borne detectors
like the evolving Laser Interferometer Space Antenna
(eLISA) [32,33]. EMRIs provide a chance to measure
the properties of SMBHs [34,35], their evolution [36,37]*cplb@star.sr.bham.ac.uk
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and environment [38,39], and also test for deviations from
the predictions of GR [40,41]. To detect and analyze
EMRI signals we must have waveforms for generic orbits
which are accurate for the ∼104–105 cycles of the inspiral.
To improve our understanding of extreme-mass-ratio

systems, efforts are concentrated on modeling the gravita-
tional self-force [42–44]. In the test-particle limit, the
smaller body follows an exact geodesic of the SMBH’s
spacetime. Including the effects of the smaller body’s finite
mass, the background spacetime is perturbed. The back-
reaction from this deformation alters the small body’s
orbital trajectory, and can be modeled as a self-force that
moves the body from its geodesic. The self-force can be
divided into two pieces, dissipative and conservative
[42,45]. The former encapsulates the slow decay of the
orbital energy and angular momentum (constants of the
motion in the test-particle limit) through radiation of GWs.
The latter shifts the orbital phases inducing precession. The
dissipative piece is time asymmetric and has the larger
effect on the evolution of the orbital phase; the conservative
piece is time symmetric and has a smaller influence on the
phase, although this can accumulate over many orbits.
Being able to accurately model the influence of the self-
force allows us to create reliable waveform models.
Flanagan and Hinderer [46] highlighted a previously

overlooked phenomenon that occurs in the general relativ-
istic two-body problem, that of transient resonances.
Geodesic orbits in GR have three associated frequencies:
the radial frequency Ωr, the polar frequency Ωθ and the
azimuthal frequency Ωϕ.

1 The first two describe libration
and the third rotation (except in the case of polar orbits
where Ωθ also describes rotation) [48]. In the weak-field
limit, these all tend towards the Keplerian frequency; in the
strong-field regime they may differ significantly. For
EMRIs, the evolution time scale is much longer than the
orbital period such that the motion of the smaller body is
approximately geodesic over orbital time scales. The
inspiral of the orbit can be approximated as a series of
geodesics using the osculating element formalism [49,50].
During this evolution, the frequencies may become com-
mensurate: resonances occur when the radial and polar
frequencies are rational multiples of each other:

ν≡ Ωr

Ωθ
¼ nθ

nr
; ð1Þ

where nr and nθ are integers (with no common factors).
During resonance, terms in the self-force that usually
average to zero can combine coherently, significantly
impacting the orbital motion [51].

Resonances involving the azimuthal motion do not
produce a comparable effect because of the axisymmetry
of the background spacetime. However, both θ–ϕ reso-
nances [52] and r–ϕ resonances [53] can lead to extrinsic
effects; the GWs from such systems are not emitted
isotropically and the imbalance produces a kick velocity
that is, in some cases with moderate mass ratios, sufficient
to eject the central BH from its host [54].
Geodesic motion in Kerr spacetime can be described by

use of the action-angle formalism [48]. We consider a body
of mass μ orbiting a BH of mass M, with η ¼ μ=M ≪ 1,2

and describe the motion in the directions of the standard
Boyer-Lindquist coordinates ft; r; θ;ϕg [55] using gener-
alized angle variables qα ¼ fqt; qr; qθ; qϕg [56]. We denote
the first integrals of the geodesic motion, the generalized
action variables, by Jα. These are some combination of the
energy per unit mass E and the axial angular momentum
per unit mass Lz of the orbit, which arise from isometries of
the metric in t and ϕ, and the Carter constant per unit mass
squared Q [57], which is related to the separability of the
equations of motion in r and θ. The system evolves
following [46]

dqα
dλ

¼ ωαðJÞ þ ηgð1Þα ðqr; qθ; JÞ þOðη2Þ; ð2aÞ

dJα
dλ

¼ ηGð1Þ
α ðqr; qθ; JÞ þOðη2Þ; ð2bÞ

where λ is Mino time [58], and the forcing functions gð1Þα

and Gð1Þ
A originate from the first-order self-force.3 By

working with λ instead of proper time τ, the radial and
polar motions decouple. At zeroth order in the mass ratio
we recover the limit of purely geodesic motion: the
integrals of the motion are actually constants and the
angle variables evolve according to their associated
frequencies ωα.
The leading-order dissipative correction to geodesic

motion is calculated following the adiabatic prescription

[56]: by dropping the forcing term gð1Þα (and all higher-order

terms) and replacing the forcing term Gð1Þ
α with hGð1Þ

α iqr;qθ ,
its average over the 2-torus parametrized by qr and qθ [62].

For most orbits this is sufficient,Gð1Þ
α is given by its average

value plus a rapidly oscillating component [63]. However,
this averaging fails when the ratio of frequencies is the ratio
of integers. In this case the trajectory does not ergodically
fill the 2-torus, but instead traces out a 1-dimensional
subspace.4 There are then contributions to the self-force

that no longer average out beyond hGð1Þ
A iqr;qθ . Intuitively,

1In the strong-field regime, it is possible to have isofrequency
pairings, where two different orbits share the same orbital
frequencies [47]. The evolution of the frequencies still differ,
such that orbital trajectories can be reconstructed from the
frequencies.

2To first order, the mass ratio η is the same as the symmetric
mass ratio μM=ðμþMÞ2.

3For a discussion of the second-order self-force, see [59–61].
4For illustrations, see Grossman, Levin and Perez-Giz [64].
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we expect that this effect is more important for ratios of
small integers since when the integers are large the orbit
comes close to all points on the 2-torus.
In this work we seek to characterize the importance of

these resonances for the purposes of modeling EMRIs. The
amplitude of expected signals is below the level of noise in
a space-based GW detector. However, systems remain
in band for many hundreds of thousands of cycles and
so may be detected using a matched filter, provided we
have sufficiently accurate waveform templates. Ensuring
the accuracy of EMRI templates requires calculating the
impact that passing through a resonance has on the orbital
evolution and discovering for which resonances this is
significant.
We show how the properties of resonances can be

understood from the properties of the orbit. The effects
of passing through resonance depend sensitively on the
phase at resonance, making them difficult to predict with-
out detailed calculation. The low-order resonances, such as
the 1∶2 and 2∶3 resonances, can leave a noticeable imprint
on the waveform. However, since most EMRIs have a low
eccentricity when passing through these resonances, we
find that for an astrophysical population of EMRIs there
should not be a significant reduction in detectable signals
when using adiabatic waveforms. The effect of resonances
on parameter estimation is yet to be investigated.
In Sec. II, we formulate the specific problem: that of

geodesic motion in Kerr spacetime, perturbed by the
gravitational self-force. We then study generic properties
of transient resonances in Sec. III, detailing their location in
parameter space, the time scales over which they affect the
motion and the resulting GW flux enhancements. Specific
examples are considered to illustrate the effects of reso-
nances in Sec. IV, before finally turning to an astrophysical
population in Sec. V. Our conclusions can be found
in Sec. VI.
We use geometric units with G ¼ c ¼ 1 throughout. We

always useM for the mass of the central SMBH and a as its
Kerr spin parameter. We also use the dimensionless spin
a� ≡ a=M; we take the convention that 0 ≤ a� < 1. We
assume a standard cosmology with ΩΛ ¼ 0.7, Ωm ¼ 0.3
and H0 ¼ 70 km s−1Mpc−1 and do not expect the exact
details of the cosmology to significantly alter our
results [65].

II. THE PROBLEM OF EMRI TRANSIENT
RESONANCES

The evolution of an extreme-mass-ratio (η ≪ 1) system
is slow. Instantaneously, the motion of the orbiting mass
can be described as geodesic, with the integrals of the
motion changing on time scales of many orbital periods. It
is therefore necessary to develop an understanding of the
Kerr geodesics (Sec. II A; those familiar with calculating
orbits in Kerr may skip this section). Transient resonances
occur when the radial and polar frequencies become

commensurate (Sec. II B); we analyze the behavior of
resonances within the osculating element framework,
where the trajectory is described by a sequence of geo-
desics that each match onto the motion at a particular
instance (Sec. II C). The osculating elements formalism
allows for the orbital evolution to be driven by a force, here,
a particular model for the self-force (Sec. II D) and its
adiabatic average (Sec. II E). In following sections, we
study the differences between the adiabatic and full orbital
evolutions.

A. Kerr geodesics

Central to understanding transient resonances is a knowl-
edge of orbits in Kerr spacetime, and hence we begin with
details of evolving Kerr geodesics. The geodesic equations
may be written as [1,57]

dt
dλ

¼ aðLz − aEsin2θÞ þ r2 þ a2

Δ
T ; ð3aÞ

dr
dλ

¼ �
ffiffiffiffiffiffi
Vr

p
; ð3bÞ

dθ
dλ

¼�
ffiffiffiffiffiffi
Vθ

p
; ð3cÞ

dϕ
dλ

¼ Lz

sin2θ
− aEþ a

Δ
T ; ð3dÞ

where Δ ¼ r2 − 2Mrþ a2; the signs of the r and θ
equations can be chosen independently, and we have
introduced potentials

T ¼ Eðr2 þ a2Þ − aLz; ð4aÞ

Vr ¼ T 2 − Δ½r2 þ ðLz − aEÞ2 þQ�; ð4bÞ

Vθ ¼ Q − cos2θ

�
a2ð1 − E2Þ þ L2

z

sin2θ

�
: ð4cÞ

As an affine parameter, we have used Mino time which is
related to the proper time τ by [58]

τ ¼
Z

r2 þ a2cos2θdλ: ð5Þ

UsingMino time allows us to decouple the r and θmotions.
We only consider bound motion [66]: the radial motion

covers a range rp ≤ r ≤ ra, where the turning points are the
periapsis rp and apoapsis ra. Drawing upon Keplerian
orbits we parametrize the motion using

r ¼ pM
1þ e cosψ

; ð6Þ

introducing eccentricity e, (dimensionless) semilatus rec-
tum p and relativistic anomaly ψ [67,68]. While r oscillates
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between its maximum and minimum values, ψ increases
secularly, increasing by 2π across an orbit. The polar
motion covers a range θ− ≤ θ ≤ π − θ−. We also para-
metrize this motion in terms of an angular phase χ,
according to [69]

cos θ ¼ cos θ− cos χ: ð7Þ

While ψ and χ are 2π periodic they are not the canonical
action-angle variables [70]; they are, however, easy to
work with.
The geodesic motion can equally be described by

fE;Lz;Qg or fp; e; θ−g [70]. Converting between them
requires finding the solutions of Vr ¼ 0 and Vθ ¼ 0. We
employ a slightly different parameter set of fp; e; ιg where
we have introduced the inclination [71,72]

tan ι ¼
ffiffiffiffi
Q

p
Lz

: ð8Þ

This is 0 ≤ ι < π=2 for prograde orbits and π=2 < ι ≤ π for
retrograde orbits. Equatorial orbits (θ− ¼ π=2) have ι ¼ 0
or π and polar orbits (θ− ¼ 0) have ι ¼ π=2. While
formulas exist for conversion between the different param-
eters, these are complicated and uninsightful, so we do not
reproduce them here.5

B. Orbital resonances

The radial and polar orbital periods in Mino time are
given by

Λr ¼ 2

Z
ra

rp

1ffiffiffiffiffiffi
Vr

p dr ¼
Z

π

−π

dλ
dψ

dψ ; ð9aÞ

Λθ ¼ 4

Z
π=2

θ−

1ffiffiffiffiffiffi
Vθ

p dθ ¼
Z

π

−π

dλ
dχ

dχ: ð9bÞ

The orbital frequencies are thus [73]

ϒr ¼
2π

Λr
; ϒθ ¼

2π

Λθ
: ð10Þ

The geodesic equations for coordinate time t and azimuthal
angle ϕ are just functions of r and θ, hence their evolutions
can be expressed as Fourier series [68]

dt
dλ

¼
X
kr;kθ

Tkr;kθ exp ½−iðkrϒr þ kθϒθÞλ�; ð11aÞ

dϕ
dλ

¼
X
kr;kθ

Φkr;kθ exp ½−iðkrϒr þ kθϒθÞλ�: ð11bÞ

The (0,0) coefficients in these series give the average
secular rate of increase of these quantities. We define

Γ ¼ T0;0; ϒϕ ¼ Φ0;0 ð12Þ

to act as Mino-time frequencies. We can now convert to
coordinate-time frequencies with [68]

Ωr ¼
ϒr

Γ
; Ωθ ¼

ϒθ

Γ
; Ωϕ ¼ ϒϕ

Γ
: ð13Þ

Transient resonances occur when the radial and poloidal
motions are commensurate, when

ν ¼ ϒr

ϒθ
¼ Ωr

Ωθ
¼ nθ

nr
ð14Þ

is the ratio of small integers. At this point, any Fourier
series like those in Eq. (11) goes from being an expansion
in two frequencies to being an expansion in a single
frequency [74].
For a general nonresonant orbit there is no fixed

correlation between the radial and polar coordinates.
After a sufficiently long time, the trajectory comes arbi-
trarily close to every point in the range of motion (with
rp ≤ r ≤ ra and θ− ≤ θ ≤ π − θ−); on account of the orbital
precession, the whole space is densely covered. This does
not happen on resonance, as the radial and polar motions
are locked together such that we can express one as a
function of the other, and so the trajectory keeps cycling
over the same path. The points visited are controlled by the
relative phases of the r and θ motions. To represent this, we
use the r phase at the θ turning point ψθ− ¼ ψðχ ¼ 0Þ.
Varying ψθ− across its full range allows every point in the
range of motion to be reached. Hence averaging over all
values of ψθ− for resonant orbits is equivalent to averaging
over the ψ–χ 2-torus for nonresonant orbits.
One might be concerned about the nature of resonances

following the inclusion of the self-force: true geodesic
motion only exists at zeroth order in η and, while it is a
good approximation over short time scales, for small η there
is a small disparity. The conservative piece of the self-force
induces extra precession which leads to a slight shift in the
orbital frequencies [75].6 The dissipative piece causes the
frequencies to evolve and, hence, the resonance cannot
persist for multiple orbits (without some feedback

5In practice we find turning points numerically.

6The Kolmogorov-Arnold-Moser (KAM) theorem states that
when an integrable Hamiltonian (i.e. the case for motion in Kerr)
is subject to a small perturbation the form of the orbits is
preserved albeit slightly deformed [76,77]. This should ensure
that, in general, there are only small shifts in the orbital
frequencies. However, the KAM theory is only valid for suffi-
ciently incommensurate orbits: close to resonance it does not
apply [77]. This is a further reason why resonances merit an in-
depth investigation.
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coupling). In effect, we are really considering a period of
time about the resonant crossing. The instantaneous orbital
frequencies oscillate back and forth around their averaged
values. However, there is a time span when the frequencies
are consistently close to being commensurate. During this
time, the trajectory appears similar to a resonant trajectory,
filling only a smaller region of the parameter space. It is this
time period that is of interest for transient resonances [74].

C. Osculating elements and forced motion

For generic EMRIs, there are two characteristic time
scales: the fast orbital motion, related to the fundamental
frequencies ∼1=Ω, and the slow inspiral, related to the
change in fundamental frequencies ∼Ω= _Ω, where an over-
dot denotes a derivative with respect to coordinate time t.
These, along with the resonance time scale, are discussed
more in Sec. III A. The two-time-scale nature of the
problem makes it ideally suited to the method of osculating
elements [49,50]: on short time scales, we analyze the
unperturbed system resulting in geodesic motion, and then
the long-term evolution is described by a sequence of
instantaneous geodesics.
We require, at each instant in time, that the chosen

geodesic matches the true position and velocity of the
particle. This amounts to a specific choice of the orbital
shape parameters (for example, the set fE;Lz;Qg or the
generalized action variables Jα) and some initial phases at
t ¼ t0 (for example, the set fψ0; χ0;ϕ0g). Collectively,
these are referred to as osculating elements and we denote
them by IAðtÞ, making explicit the variation with time. For a
sequence of geodesics of a background spacetime, where
the evolution is forced by some external acceleration (in our
case from the self-force), we can calculate the evolution of
the osculating elements _IA. The specific equations for
motion in Kerr are derived by Gair et al. [50].

D. Gravitational self-force model

To follow the evolution of the inspiral we must have a
means of prescribing the forcing acceleration which causes
the orbit to deviate from a single geodesic. We work
directly with the gravitational self-force, using the same PN
approximation as Flanagan and Hinderer [46]. For com-
parison, Flanagan, Hughes and Ruangsri [51] use a
Teukolsky-equation calculation of GW fluxes to account
for the inspiral due to radiation reaction.
The self-force model uses the first-order PN terms of the

dissipative self-force formulated in Flanagan and Hinderer
[78] and the conservative force formulated in Iyer and Will
[79], and Kidder [80]. Since only the first PN terms are
used, this prescription is of limited validity in strong fields.
Both pieces of the self-force are computed assuming that
the SMBH’s spin is small: the dissipative piece contains
terms toOða2�Þ and the conservative piece toOða�Þ. This is
suboptimal for high spins. We also find that this particular

implementation of the self-force model marginally over-
estimates the adiabatic inspiral rate with respect to direct
PN evolutions by a factor of Oð1Þ, even for systems in the
weak field and with low values of the spin. While this
approximate self-force is not perfect, it should serve as a
guide for the behavior of the full self-force, allowing us to
assess the qualitative impact of resonances on EMRI
detection.

E. Adiabatic evolution

Beyond geodesic motion in the Kerr spacetime, a test
particle follows an accelerated trajectory determined by
Eq. (2). This may be approximated by the adiabatic

prescription [56] by dropping the forcing term gð1Þα (and

all higher-order terms) and replacing Gð1Þ
α with its average

over the 2-torus parametrized by qr and qθ, hGð1Þ
α iqr;qθ

[62,81]. The averaged force can be computed from the
radiative field [58,82–84]. This piece is purely dissipative
[85] and determines how the inspiral evolves due to the
radiation of GWs.
To construct an adiabatic trajectory we need the 2-torus-

averaged fluxes of our osculating elements. To guarantee
consistency, we average our instantaneous self-force.
Computing an average of a quantity over the fqr; qθg is
trivial if it is parametrized in terms of these variables,

�
dX
dλ

�
qr;qθ

¼ 1

ð2πÞ2
Z

2π

0

Z
2π

0

dX
dλ

dqrdqθ: ð15Þ

However, we are using ψ and χ, as these are simpler to
evolve; furthermore, we compute instantaneous coordinate-
time fluxes _X, not Mino-time fluxes. Changing variables
gives an average of [62]

�
dX
dλ

�
qr;qθ

¼ 1

ΛrΛθ

Z
2π

0

Z
2π

0

�
dψ
dt

�
−1
�
dχ
dt

�
−1

×

�
dt
dλ

�
−2 dX

dλ
dψdχ ð16Þ

¼ 1

ΛrΛθ

Z
2π

0

Z
2π

0

�
dψ
dt

�
−1
�
dχ
dt

�
−1

×

�
dt
dλ

�
−1

_Xdψdχ: ð17Þ

This average describes the Mino-time rate of change of the
quantity X over an orbit. To convert to a coordinate flux of
the averaged quantity, we simply divide by the period Γ
[51], defining

h _Xiqr;qθ ¼
1

Γ

�
dX
dλ

�
qr;qθ

: ð18Þ
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It is convenient to calculate Γ as

Γ ¼
�
dt
dλ

�
qr;qθ

; ð19Þ

using Eq. (17), as this allows us to eliminate Λr and Λθ

from the calculation.7 The averaged fluxes successfully
describe the leading-order secular evolution of the trajec-
tory (as illustrated in Fig. 1).
The combination of a full instantaneous evolution and an

adiabatic evolution allows us to systematically study the
effect of transient resonances on EMRIs over the course of
an inspiral. Before approaching this problem, we first
investigate the properties of the resonances themselves.

III. PROPERTIES OF TRANSIENT RESONANCES

The first step in studying the effect of transient reso-
nances is to locate orbital parameters for which the
frequencies are commensurate. We can calculate the
frequencies and so we are left with the problem of solving
Ω ¼ nrΩr − nθΩθ ¼ 0 numerically. When considering the
full parameter set of fp; e; ι; a�; νg, it is apparent that the
search for resonances becomes expensive as a consequence
of the dimensionality. It is therefore useful to have a guide of
where to look. In Appendix A we build a simple approxi-
mate model as a starting point for the numerical search. The
resonances occur at relatively small periapses, correspond-
ing to regions of strong-field gravity. Having located where
in an inspiral we can expect to encounter a transient
resonance, we must now consider its impact. In Sec. III
A we determine the characteristic time scales describing
resonance, and in Sec. III B we calculate the impact of
passing through a resonance on the evolution of the orbit.

A. Time scales

When analyzing resonances it is useful to refer to a
number of characteristic time scales. We always use
coordinate time t for these, as this corresponds to what
is measured by an observer at infinity. Translation to
Mino time can be done with an appropriate factor of Γ.
We use the orbital period T, the evolution time scale τev, the
precession time scale τpres and the resonance time scale τres.
The simplest time scales are the orbital periods

Tr ¼ 2π=Ωr, Tθ ¼ 2π=Ωθ and Tϕ ¼ 2π=Ωϕ. These are
the shortest in our set. We use T to denote a time scale of
the same order as the orbital periods.
We define the evolution time scale as

τev ¼
ν

_ν
; ð20Þ

where an overdot denotes a derivative with respect to t. In
general, away from resonance, we take ν≡ Ωr=Ωθ < 1.
This time scale sets the period over which there is a
significant change in the frequencies. It acts as an inspiral
time scale. It is long in all cases we study, τev ∼OðT=ηÞ. It
is this property which makes EMRIs interesting, as we can
follow the waveform for many cycles, accruing high signal-
to-noise ratios (SNRs). This is also what allows us to use
the adiabatic prescription, as it means the trajectory moves
slowly through different orbital parameters.
We use the precession time scale

τpresðtÞ ¼
2π

jΩðtÞj ; ð21Þ

with ΩðtÞ ¼ nrΩrðtÞ − nθΩθðtÞ, where the frequencies are
calculated instantaneously and the integers are for the
resonance of interest. This time scale becomes infinite
exactly on resonance, but decreases as we get further from
resonance, eventually becoming OðTÞ. It measures the
relative precession rate of the radial and polar motions and
hence gives an indication of how long it takes to fill the
entire ψ–χ 2-torus.
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FIG. 1. The evolution of the orbital parameters E (left), Lz (center) and Q (right) under the full (solid line) and adiabatic (dashed)
models for an illustrative EMRI system that does not encounter any significant resonances. The inset plots show the behavior on short
time scales, where the fast orbital oscillations can be seen. This system has μ ¼ 10 M⊙, η ¼ 3 × 10−6, a� ¼ 0.95, initial semilatus
rectum p0 ¼ 7.5, initial eccentricity e0 ¼ 0.7, initial inclination cos ι0 ¼ 0.5 and redshift z ¼ 0.204.

7We compute these integrals using a 300 × 300 grid of fψ ; χg
values and employing a Newton-Cotes approximation in each
dimension. The procedure requires Oð105Þ separate evaluations
of the derivatives at each time step of an evolution, and so is
computationally expensive to perform. However, the adiabatic
derivatives vary on much longer time scales than the orbital
motion (see Sec. III A), and so in practice, we can interpolate.
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We also use the resonance time scale (cf. [86])

τres ¼
�

2π

jh _Ωð0Þiq0 j

�
1=2

: ð22Þ

Here _Ωð0Þ is the rate of change ofΩ at resonance, which we
take to be at t ¼ 0. The instantaneous _Ω depends upon the
orbital phase and oscillates about its mean trend over an
orbit. We are interested in the averaged behavior, not the
periodic modulations about this, which is why we use the
time average h _Ωiq0 ; here we use q0 to represent a phase that
varies over an orbit with period of order T.8 Close to
resonance, ΩðtÞ is well approximated by a first-order
Taylor expansion, decreasing linearly with time; hence
we make the approximation

jΩðtÞj≃ jh _Ωð0Þiq0 tj: ð23Þ
The resonant time scale should give an indication of the
time over which we expect the effects of the resonance to be
felt [74]. Consider the phase of the Mino-time Fourier
expansion on resonance; neglecting the constant, the
resonant Fourier component has form

φnr;−nθ ≃ ðnrϒr − nθϒθÞλþ ðnr _ϒr − nθ _ϒθÞλ2 þ… ð24Þ
Typically, the first term is nonzero and this gives the
familiar oscillation. On resonance, it is zero, leaving the
next-order term to govern the behavior [46,86]. Only once
we have moved far enough away from resonance for the
first term to dominate the second do we recapture the
nonresonant behavior. The first term (translating fromMino
time to coordinate time) sets τpres, the second sets τres.
Since we have argued that the effect of resonance can be

thought of as a consequence of not densely covering the
ψ–χ 2-torus, we might expect that τpres, as well as τres,
could be used for setting the resonance duration: the
resonance ends once sufficient time has elapsed that the
2-torus could be filled. This is indeed the case. Let tpres be
the time taken to fill the torus, then

tpres ¼ τpresðtpresÞ≃ 2π

jh _Ωð0Þiq0tpresj
; ð25Þ

using Eq. (21) and Eq. (23). Rearranging and using Eq. (22)
gives

tpres ≃ τres: ð26Þ
The two time scales are equivalent: we preferentially use
τres to denote the resonance width. It is shorter than
the inspiral time scale, but longer than an orbital period,

τres ∼Oðη1=2τevÞ ∼Oðη−1=2TÞ [46,50]; it therefore acts as a
bridge between the two time scales [56].
Since we shall be considering Fourier decompositions, in

anticipation of future results, we also define a time scale for
the sth resonant frequency harmonic

τres;s ¼
�

2π

jsh _Ωð0Þiq0 j

�
1=2

: ð27Þ

This assumes that s is a nonzero integer.

B. Resonant flux enhancement

Evolving through a resonance can lead to an enhance-
ment (or decrement) of fluxes relative to the adiabatic
prescription. After crossing the resonance region, the
orbital parameters are different from those calculated from
an adiabatic evolution. Flanagan and Hinderer [46] gave an
expression for this deviation. If we denote the orbital
parameters by Ia ¼ fE;Lz;Qg, then the change across
resonance is

ΔIa ¼ η
X
s≠0

Fð1Þ
a;s

�
2π

jsh _Ωiq0 j

�
1=2

× exp

�
i

�
sκ̂0 þ

π

4
sgns _Ω

��
: ð28Þ

Here κ̂0 is the phase on resonance, which sets the resonant

trajectory in the r–θ plane similarly to ψθ− , and Fð1Þ
a;s is the

sth harmonic of the first-order self-force on resonance,
defined such that9

dIa

dt
¼ η

X
s

Fð1Þ
a;sðIÞ expðisqÞ þOðη2Þ: ð29Þ

A derivation is presented in Appendix B, which contains a
more comprehensive explanation of the various terms. This
employs matched asymptotic expansions to track the
evolution through resonance, following the approach of
Kevorkian [87].
To explain the form of this expression we substitute in

our expression for the resonance width from Eq. (27),

ΔIa ¼ η
X
s≠0

Fð1Þ
a;sτres;s exp

�
i

�
sκ̂0 þ

π

4
sgns _Ω

��
: ð30Þ

Schematically, this can then be understood as the magni-
tude of the forcing function on resonance ∼ηFa;s multiplied
by the time on resonance ∼τres;s and a function that varies
with the phase κ̂0. Averaging over all values of κ̂0 is
equivalent to averaging over all values of ψθ− , and has the

8On resonance, we are interested in the relative r–θ orbital
phase (ψθ− or equivalent), which sets the resonant trajectory in the
r–θ plane, but not the exact phase of the orbit around this loop.

9Since the geodesic equations decouple in Mino time rather
than coordinate time, this is true only in an average sense.
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same effect as averaging over the ψ–χ 2-torus [81]; this
gives an average discrepancy relative to the adiabatic
evolution of

hΔIaiκ̂0 ¼ 0; ð31Þ

exactly as expected.
Knowing where resonances are found in parameter

space, how long they last, and how great an effect they
are likely to have, enables us to study and interpret the
observable effects of resonances on EMRI waveforms
(Sec. IV) and the population of observable inspi-
rals (Sec. V).

IV. THE IMPACT OF RESONANCES ON EMRIS

Having built an understanding of the properties of
transient resonances, we now consider their impact on
GW signals. In Sec. IVAwe discuss our chosen waveform
generation scheme, giving a demonstration of its accuracy
for evolutions which avoid low-order resonances in
Sec. IV B. In Sec. IV C we detail the impact of resonances
on the match between waveforms computed from adiabatic
and fully instantaneous evolutions, and in Sec. IV D we
look at the changes in orbital parameters across resonance.

A. Waveform model and analysis

One of the targets of pre-eLISA research is to generate a
bank of waveform templates fhðt;ΘiÞg across a range of
parameter space fΘig. These can be compared to data to
search for the presence of GWs. Templates must accurately
reproduce what we expect to observe in nature, without
being too computationally expensive. Ideally, we would
like to use waveform templates from EMRI systems that are
evolved under the instantaneous self-force model, but these
are computationally challenging. The alternative is to use
cheaper adiabatic waveforms, but these do not include the
effect of resonances. To assess the impact of this choice, we
compare data sðt; Θ̄Þ generated using the full self-force
model (Sec. II C) to templates hðt;ΘÞ generated using our
2-torus averaged self-force model (Sec. II E).
To generate gravitational waveforms, we employ the

numerical kludge (NK) method of Babak et al. [88],
augmented to include evolution of the positional elements.
We first compute inspiral trajectories and then separately
(and not necessarily consistently) calculate the GW emis-
sion sourced by a compact object moving along that
trajectory. This is quicker and easier to calculate than
waveforms using Teukolsky-based methods (currently the
most accurate prescription available) and yet gives similar
results; agreement between Teukolsky-based and the best
NK waveforms is typically 95% or higher for a variety of
orbits [88,89].
Following the NK method, we first compute the inspiral

trajectory of the compact object around a central Kerr BH

with evolution driven by the dissipative part of self-force
either calculated instantaneously or following the adiabatic
prescription. We then map the Boyer-Lindquist coordinates
to spherical polar coordinates in Minkowski, facilitating the
use of a flat-spacetime waveform generation technique, the
standard quadrupole formula [90].
We expect these NK waveforms to be sufficiently

accurate for our purposes, given the approximate (PN,
low-spin) self-force model (Sec. II D). Results can be
straightforwardly refined as developments are made in
computing more comprehensive self-force models.
The similarity of two waveforms, sðtÞ and hðtÞ, can be

evaluated using the noise-weighted inner product [91]

ðsjhÞ ¼ 2

Z
∞

0

~sðfÞ ~h�ðfÞ þ ~s�ðfÞ ~hðfÞ
SnðfÞ

df; ð32Þ

where ~sðfÞ represents the Fourier transform of sðtÞ and
similarly for ~hðfÞ, and SnðfÞ is the one-sided noise power
spectral density (PSD) [92].10

We use the analytic approximation for the eLISA PSD of
Amaro-Seoane et al. [33]. Following the success for the
LISA Pathfinder mission [94], this sensitivity should be
achievable in a future mission.
We wish to test whether there exists some set of

parameters Θ such that the resulting adiabatic waveform
is sufficiently similar to the full waveform. We do this by
evaluating the SNR for each (normalized) waveform
template,

ρ½h� ¼ max
t

ðsjhÞffiffiffiffiffiffiffiffiffiffiffiðhjhÞp : ð33Þ

We maximize over the time offset for the template to find
the best fit to the data. If a template exactly matches the
data, it would produce an SNR of

ffiffiffiffiffiffiffiffiffiffiðsjsÞp
, hence the

overlap

O½h� ¼ max
t

ðsjhÞffiffiffiffiffiffiffiffiffiffiðsjsÞp ffiffiffiffiffiffiffiffiffiffiffiðhjhÞp ; ð34Þ

which ranges from 0 to 1 provides a convenient indication
of how well matched the template is to the data.

B. The nonresonant case

Before investigating the impact of resonances on an
EMRI signal, we first compare results from the full
instantaneous evolution and the 2-torus averaged adiabatic
evolution over 2 yr for an inspiral which avoids any

10We use cubic interpolation to construct NK waveforms with
identical time sampling. A Planck-taper window function [93] is
applied to reduce unwanted spectral leakage in the Fourier
transforms.
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significant resonances. Example evolutions of the orbital
parameters E, Lz and Q are shown in Fig. 1, which shows
that the adiabatic evolution closely matches the full
evolution on longer inspiral time scales. The inset plots
show the start of the evolution, on a time scale associated
with the orbital motion of the compact object; the 2-torus
averaging explicitly smooths out the visible structure on
this scale. The two approaches are in good agreement.
Using the two trajectories, we can calculate the corre-

sponding NK waveforms. The two waveforms exhibit good
agreement in both amplitude and phase across the entire
duration. We find an overlap O ¼ 0.993, illustrating that
adiabatic models can safely be used when resonances are
not encountered.

C. The effect of resonances: Dephasing and overlap

We now study a system that does pass through a
resonance during its 2 yr evolution. Specifically, we choose
the initial conditions to be the same as in Sec. IV B, but
with an initial semilatus rectum p0 ¼ 7.85. This system
passes through the 2∶3 resonance; the effect is to cause a
shift in the orbital parameters (and hence the fundamental
frequencies) that is not replicated by the adiabatic evolu-
tion, thus resulting in a rapid dephasing of the waveforms.
To illustrate the dephasing, we calculate as a function of

time t the shortened overlap between the two models,
defined as the overlap obtained by including only the part
of the waveform within Δt of t. We choose Δt such that
we can calculate 25 nonoverlapping shortened overlaps.
Before the resonance occurs, the adiabatic model provides
a good match to the full evolution, but the overlap is
reduced near to the resonance and never fully recovers
afterwards. This is shown in Fig. 2, which is centered on the
time at which the full evolution crosses the 2∶3 resonance.
Also shown is the shortened overlap computed between the
full evolution and a different adiabatic evolution that is
chosen to match the full evolution at the end of the
integration. In this case, we see similar behavior: the
adiabatic waveform has a high overlap where it is con-
structed to match the full evolution, but this is disrupted by
the resonance. Passing through resonance can adversely
affect the overlap of adiabatic templates.
To be able to detect signals, we must have templates

which match the signals. We have seen that overlaps
between adiabatic and full instantaneous evolutions
dephase following a resonance. However, this does not
necessarily mean that no adiabatic evolution has a high
overlap with the observed signal. It is possible that a
difference between the instantaneous and adiabatic wave-
forms could be ameliorated by changing the parameters of
the template Θ. In this case, the waveform mismatch would
not limit detectability of the signals, but would lead to
errors in parameter estimation, a stealth bias caused by
incorrect waveforms [95]. We leave an investigation into
the impact of transient resonances on parameter estimation

to future work.11 However, we consider the possibility of
obtaining better waveform matches by varying the param-
eters of the EMRI.
The large parameter space of adiabatic waveforms,

coupled with the expensive nature of our 2-torus averaging
routine, renders a brute-force approach prohibitively expen-
sive. For this preliminary investigation, we focus on a small
subset of parameters that we suspect will produce a large
overlap, and make the assumption that a good adiabatic
model exactly matches the full model at some time tmatch.
This reduces the search to a 1-parameter family of wave-
forms that can easily be computed concurrently with the
full evolution.
The problem of searching over adiabatic templates now

reduces to the task of choosing appropriate values of tmatch.
To demonstrate how changing the matching time affects the
overlap, we use 5τres after each resonance of interest,
namely the low-order 1∶2 and 2∶3 resonances.12 These
matching times lie in a portion of the evolution that is not
affected by a resonance, and so should allow for a large
overlap with the adiabatic model for that region of the

FIG. 2. The overlap computed between the full evolution and
an adiabatic evolution for an illustrative EMRI system with
p ¼ 7.85, as a function of time, including only the parts of the
waveforms within some Δt of t, arbitrarily chosen to give 25
independent (nonoverlapping) calculations. The time t ¼ tres is
when the full evolution crosses the 2∶3 resonance
(p≃ 7.67, e≃ 0.674, cosðιÞ≃ 0.497).

11If resonances were successfully included in the waveforms
used for parameter estimation, the sharp nature of jumps may help
construct precise inferences of the source parameters [96].

12We adjust the values of tmatch so that they correspond to times
of apoapsis. This ensures that the adiabatic model intersects with
the full instantaneous model close to the center of its oscillatory
envelope, as demonstrated by the inset plots in Fig. 1. This
generally obtains better matches than if we match close to the
extrema of the envelope, which are less representative of the
average behavior.
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inspiral. For comparison, we also consider templates that
match at the start and end of the evolution, and that match
exactly on each of the resonances.
We have computed this family of adiabatic evolutions for

our illustrative resonance. In Fig. 3, we plot the difference
in the orbital parameters (E, Lz and Q) between the various
trajectories and the adiabatic evolution that matches at the
start. The jumps in the orbital parameters due to the 2∶3
resonance can be clearly seen, as can the fast orbital
oscillations present in the full instantaneous evolution
but absent in the adiabatic evolutions.
None of the adiabatic models presented here give a

particularly high overlap with the entire signal, because of
the effects of the resonance. In this case, the best-performing
adiabatic model was that which matched at the end, giving
O ¼ 0.677, while the model that matches at the start gives

only O ¼ 0.207. These are similar overlaps from to the
adiabatic evolutions matched before and after resonance
respectively. These values can be explained qualitatively by
the relative lengths of the adiabatic-like regions on either side
of the resonance in the full evolution (69.8%of the inspiral is
post-resonance): there is not an exact equivalence because of
the frequency dependence of the PSD.
If we could construct an adiabatic model that includes

the jump across resonances, it may give a good overall fit to
the signal.

D. The effect of resonances: Jump sizes

As explained in Sec. III B and illustrated in Fig. 3, the
full instantaneous evolution undergoes a rapid change in
the orbital parameters (with respect to the adiabatic
evolution) when passing through resonance. The size of
the jump influences the subsequent orbital evolution.
To extract the magnitude of this jump from the trajectory

data, we must account for the fast orbital oscillations as
well as the general average (adiabatic) evolution [97]. We
first computed the difference ΔIa ≡ Ia

full − Ia
ad½tmatch ¼

tres� between the orbital parameters calculated using from
the full instantaneous evolution and from an adiabatic
evolution matched to the parameters at resonance. We then
fit linear bounds to the oscillating envelope, both before
and after the resonance, using data 5τres to 10τres away.
These are averaged to give general pre- and post-resonance
trends, which are extrapolated to the time of resonance. The
difference at the time of resonance gives an estimate for the
jump ΔIa

jump in orbital parameter Ia.13 Figure 4 illustrates
how the size of the jump is calculated.
The absolute size of the resonance jump is often not

particularly useful, especially when comparing different
systems. Instead, we use the fractional enhancement
relative to the adiabatic evolution,

0.0 0.5 1.0 1.5 2.0
6

4

2

0

2

t yr

E
10

6

0.0 0.5 1.0 1.5 2.0

60

40

20

0

20

t yr

L
z

10
6

0.0 0.5 1.0 1.5 2.0
40

20

0

20

40

60

80

t yr

Q
10

6

full adiabatic matched at start adiabatic matched at 2:3 resonance adiabatic matched after 2:3 resonance adiabatic matched at end

FIG. 3. The differences in orbital parameters E (left), Lz (center) andQ (right) between each evolution scheme and the adiabatic model
that matches at the start. The solid line shows the full evolution and the dashed lines show the different adiabatic evolutions, which match
the full evolution at different times throughout the inspiral (numbers in parentheses give the overlap with the full evolution): at the start
(0.207), at the 2∶3 resonance (0.432), after the 2∶3 resonance (0.258) and at the end (0.677).
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FIG. 4. The difference in energy between the instantaneous
model and adiabatic model that matches at the 2∶3 resonance,
scaled by the magnitude of the 2∶3 resonance jump. The apparent
thickness of the line is because of oscillations on the short orbital
time scale, which are too fast to be resolved on the plotted scale.
The dashed green (yellow) lines show the bounding fits to the
data before (after) the resonance, used to numerically estimate the
size of the jump. The dotted red line indicates the computed size
of the jump. The time axis is centered on the 2∶3 resonance and is
scaled by the resonance time scale τres.

13As a cross-check, comparable values for the jump are
obtained by averaging (over an integer number of radial and
poloidal orbits) the flux on a resonant geodesic [97].
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δIa ¼ ΔIa
jump

_Ia
adðtresÞτres

: ð35Þ

Relative enhancements may be of the order of a few
percent.
The jump in orbital parameters depends sensitively on

the relative phase of radial and poloidal motions. This can
be illustrated using an ensemble of orbits with different
orbital phases ψθ− . According to Eq. (30), the jumps should
oscillate as a function of the phase q.14 Therefore, assuming
that the lowest harmonic dominates, plotting a jump in
one parameter against another should trace out an ellipse.
We find that this is the case; in Fig. 5 we plot resonant
jumps as a function of the phase q constructed from the
ΔEjump–ΔQjump ellipse. The jumps in E and Lz are
approximately in phase, but those in Q are found to be
offset [51]; this means that for every value of q, there is
always a resonance jump in at least one parameter.
Let us now consider jumps for systems other than our

illustrative 2∶3 resonance. We expect nearly circular orbits
to encounter smaller jumps than more eccentric orbits [46]
because they have a smaller r–θ 2-torus, meaning that
resonant orbits come closer to every allowed point, nearer
approximating a nonresonant orbit. In Fig. 6, we show the
root-mean-square (over a grid of a� and cos ι values)
relative resonant jump for the semilatus rectum p as a
function of eccentricity e for a selection of low-order
resonances. The other orbital shape parameters show a

similar trend with increasing eccentricity [97]. Across the
grid of a� and cos ι values there may be an order of
magnitude variation, but the same general trends are
observed. Larger eccentricities do give rise to larger jumps,
matching our expectations and Teukolsky-based calcula-
tions by Flanagan, Hughes and Ruangsri [51].
We also expect that the effects of passing through

resonance depend upon the particular resonance.
Intuitively, we would expect that when nθ and nr are large,
the effects of resonance will be small, since the orbit comes
close to all points on the 2-torus. We have already seen that
this is the case, as the adiabatic evolution is a good match to
the instantaneous evolution up until it hits a resonance
which is the ratio of small integers (like 2∶3). In Fig. 7 we

FIG. 5. The magnitude of the resonance jump for our illus-
trative system as a function of the extracted phase parameter q
(cf. Fig. 3 of [51]). The jump is relative to the adiabatic change in
each parameter across resonance. The individual jumps as well as
a sinusoidal fit are plotted for the energy E, angular momentum
Lz and Carter constant Q.

FIG. 6. Relative flux enhancements for the semilatus rectum p,
as a function of e, marginalized over a� and cos ι by taking the
root mean square of a grid of values. Resonances with nθ ¼ 1 (2;
3) are colored blue (gold; red). The 2∶3 resonance has the largest
relative flux enhancement.

FIG. 7. Relative flux enhancements for the semilatus rectum p
marginalized over a� and cos ι by taking the root mean square.
Resonances with nθ ¼ 1 (2; 3) are colored blue (gold; red) and
use circular (square; triangular) points.

14The overlaps for all of these different phases are similar,
clustering around 0.7, as expected from matching the post-
resonance region of the waveform.
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plot the root-mean-square (over a� and cos ι) relative
resonant jump for the semilatus rectum as a function of
the resonance ratio ν for various nθ, the eccentricity is set to
e ¼ 0.95 to emphasize the variation.
While we might naively expect jumps with nθ ¼ 1 to be

greatest, we see that this is not the case. Instead the nθ ¼ 1
and nθ ¼ 2 jumps form a single continuum: we can treat
1:x resonances as de facto 2∶2x resonances. This suggests
that more insight into resonance jumps could be gained
from considering the motion across two radial periods, even
for resonances with nθ ¼ 1. Moving beyond nθ ¼ 2, we see
that the magnitude of jumps decreases rapidly for nθ ¼ 3
[51]. For larger nθ, jumps are so small that cannot
accurately calculate them.

V. ASTROPHYSICAL IMPLICATIONS

Strong resonances can limit our ability to recover SNR
from waveforms using adiabatic templates; they partition
the inspiral, splitting up the total SNR into different
adiabatic regions, which may be individually undetectable.
In order to assess the impact of this on future GWmissions,
we need to analyze the waveforms from a population of
detectable EMRIs. In Sec. VA, we detail our procedure for
generating an astrophysically motivated distribution of
EMRIs, before turning to the effect of resonances on the
detectability of EMRIs in Sec. V B.

A. Sample EMRI population

The EMRI event rate depends on the exact composition
of the population of compact objects around each SMBH,
the stellar density profile for each species of compact
object, and the mass and spin of each SMBH [98], all of
these properties are highly uncertain, even for our own
Galaxy. Here, we sketch out a model which includes most
of the important effects, which should suffice for illustrat-
ing the potential impact of transient resonances on the rate
of detection.

1. Population model

To generate a representative EMRI population, we need
to establish plausible distributions for the parameters
defining the EMRI: the properties of the orbiting compact
objects, the properties of the central SMBHs, and the
properties of the orbits.
EMRIs require a compact object such as a white dwarf, a

neutron star or a stellar-mass BH to orbit around a SMBH.
Main-sequence stars are tidally disrupted before they can
complete the inspiral [99,100]. We expect the EMRI event
rate to be dominated by BHs as the most massive species of
compact object [101]. First, as BHs are more massive than
white dwarfs or neutron stars, their GW signal is louder
[34,102] and hence detectable EMRIs can come from a
larger volume. Second, dynamical friction in the dense
nuclear star clusters [103,104] also leads to mass

segregation, causing the most massive objects concentrate
closer to the SMBH [105–107]. We therefore expect BHs to
dominate the inner regions of nuclear star clusters, making
them the most probable candidate to inspiral. We adopt a
fiducial mass for the compact object of μ ¼ 10 M⊙,
corresponding to a typical mass for stellar BHs
[23,108–110].15
We take the central object to be a typical SMBH at the

center of a galaxy [29,30]; we are interested in galaxies that
possess a SMBH with a mass in the range ð104–107Þ M⊙,
as these give rise to EMRIs in the frequency band of space-
based GW detectors [32,33]. We consider the EMRI event
rate as the combination of two pieces: the comoving
number density of SMBHs in the Universe, which is the
same as that of galaxies if we assume all galaxies host a
single SMBH [111,112], and the intrinsic event rate per
SMBH R, the number of inspiral events per unit time for a
given galaxy.
The comoving number density of galaxies is challenging

to estimate because of the effects of local structure in the
Universe, the evolution of that structure, and properties of
the SMBHs themselves. We simplify the problem by
assuming a homogeneous distribution that does not evolve
with redshift, which is reasonable for the typical scales
considered by GW detectors. We also neglect correlations
between the SMBHmass and spin [113–115], and impose a
power-law scaling relation for the comoving number
density

dn
d lnM

¼ n0

�
M
M0

�
β

: ð36Þ

There is significant uncertainty in the SMBH mass func-
tion, but this simple functional form is found to be in good
agreement with observations from the Sloan Digital Sky
Survey for the mass range of interest; we use β ¼ 0

and n0 ¼ 0.002 Mpc−3 for SMBHs withM < Oð107 M⊙Þ
[36,116].
Simple estimates of the intrinsic rateR have been carried

out using Monte-Carlo methods to count the number of
compact objects from isothermal distributions that spiral in
to a SMBH without plunging [117]. The result is a scaling
law for each species of compact object of the form

RðMÞ ¼ R0

�
M
M0

�
α

; ð37Þ

where M is the mass of the SMBH and M0 ¼ 3 × 106 M⊙
is a fiducial mass. Hopman [118] finds that α ¼
f−0.15;−0.25;−0.25g for BHs, neutron stars and respec-
tively, with respective event ratesR0 ¼ f400; 7; 20g Gyr−1

for each component, showing how BHs dominate the event

15If the ∼30 M⊙ BHs of GW150914 [23,24] are common,
then this would enhance the EMRI rate.
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rate. Amaro-Seoane and Preto [119] studied the effects of
mass segregation on the intrinsic EMRI event rate, using
direct-summation N-body simulations to calibrate a
Fokker-Planck description for the bulk properties of the
stellar distribution. They found a better fit for the power-
law spectral index for BHs of α ¼ −0.19, which we use
here. The simple power-law description does not incorpo-
rate the effects of either resonant relaxation [120–122] or
anomalous relaxation [123,124], ignores the spin of the
SMBH [125], and assumes that theM–σ [126,127] relation
holds for all SMBH masses (cf. [128–132]). Each of these
is likely to impact the event rate, but Eq. (37) can still be
used as a rough guide to the expected number of events.
Combining the intrinsic event rate with the comoving

number density, the mass of the SMBH for the EMRI
population is then sampled from a power law with a
probability distribution function fðMÞ ∝ Mαþβ−1.
We distribute the SMBH’s dimensionless spin a� uni-

formly between its limiting values of 0 and 1. X-ray
measurements show that SMBH spins can take a range
of values [133–136]; there is an observed preference for
larger (>0.9) spin values, but this may be a selection effect
[137]. Therefore, the uniform prior is a safe choice given
our ignorance of the true distribution. The direction of the
spin is uniformly distributed across the surface of the unit
sphere.
We distribute SMBHs uniformly throughout the

Universe. We sample redshift of the source uniformly from
comoving volume out to maximum redshift of zmax ¼ 1.5,
beyond which we cannot detect EMRIs. Sources are
uniformly distributed across the sky.
To describe the orbit we need to specify the inclination

distribution, the eccentricity distribution and the phase at
periapsis. The inclination is uniformly distributed across all
orientations (uniform in cos ι); the poloidal and azimuthal
phases at periapsis are uniform between 0 and 2π. The
eccentricity distribution is more complicated.
Eccentricities for EMRIs are uncertain, and depend

strongly on the formation scenario being considered.
Here, we adopt a fit to a distribution computed using
Monte-Carlo simulations by Hopman and Alexander [138],
who model the scattering process of compact objects onto
inspiral orbits around a 3 × 106 M⊙ Schwarzschild BH.
We assume this can be extended to provide a rough estimate
of the distribution around SMBHs of other masses and
spins. At the point in the inspiral when the orbital period
takes a fiducial value T0 ¼ 104 s, we find that the Monte-
Carlo eccentricity probability distribution function is well
described by a power law with an exponential cutoff

fðeÞ ∝
	 ðem − eÞbðem−epÞ exp ½bðe − emÞ� 0 ≤ e ≤ em
0 Otherwise

;

ð38Þ

where em ¼ 0.81 is the maximum observed eccentricity,
ep ¼ 0.69 is the peak of the distribution, and b ¼ 11 is the
exponential index [97]. The mean eccentricity at this period
is 0.60, slightly below that expected for a thermal distri-
bution. Significant eccentricity is retained as EMRIs enter
the eLISA frequency band [124].
To evolve the orbits, we start with orbital periods of T0

and then use the analytic kludge (AK) prescription of
Barack and Cutler [34]. This is similar to the NK approach,
but uses a series of Keplerian ellipses rather than Kerr
geodesics. Evolution of the orbit includes the effects of
periapse precession, Lense-Thirring precession, and radi-
ation reaction calculated using PN expressions.16 AK
waveforms are less computationally expensive than NK
waveforms, allowing us to simulate a large population of
EMRIs. We follow inspirals until the last stable orbit
(LSO).17 Each of these systems is then evolved backwards
for some time tinsp, chosen uniformly from the range ½0; tlife�
for a mission lifetime tlife, and the expected GWs are
calculated using the AK formalism.

2. Population results

The estimated size of the EMRI population can be by
evaluating from [140]

NEMRI ¼
Z

zmax

z¼0

Z
Mmax

M¼Mmin

Rtlife
dn

d lnM
dVc

dz
d lnMdz; ð39Þ

where VcðzÞ is the comoving volume at redshift z, and
limits zmax ¼ 1.5, Mmin ¼ 104 M⊙ and Mmax ¼ 107 M⊙
are chosen to encompass the range of detectable signals.
For a mission lifetime of tlife ¼ 2 yr, the integral gives a
total of 6330 EMRI systems. This is a lower bound for
NEMRI as we are neglecting EMRIs that merge outside the
observation window but nevertheless accumulate sufficient
SNR during this time to be observable.
A given EMRI is classified as observable if its SNR

exceeds some threshold value ρthres. Calculating SNRs from
the generated AK waveforms, assuming 6 laser links and
using the eLISA PSD [33], we find 513 detectable events
across the mission for ρthres ¼ 15 (cf. [33,65,101]). The

16While the AK approach does include these relativistic
effects, it does not capture the full nature of the evolution: for
example, it assumes that the angle between the orbital angular
momentum and the SMBH spin is constant [34], whereas
radiation reaction should push the orbital plane towards being
antialigned [78]. The approximate nature of the AK evolution
should not effect our results more than the uncertainty in the
initial conditions for EMRI orbits (for example, how loss-cone
dynamics are modified by the SMBH’s spin [125]).

17The LSO is determined numerically by calculating the roots
of VrðrÞ ¼ 0, which we denote in ascending order by
r4 ≤ r3 ≤ rp ≤ ra, and stopping the evolution when r3 ¼ rp,
which designates the orbit as marginally stable. This ignores the
(small) influence of the self-force [139].
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FIG. 8. Parameter distributions at plunge for our detectable EMRI systems (dashed outline), alongside those of the undetectable
systems (solid outline). For the system parameters, the ordinate-axis values are the probability of a system being found in a particular
bin, given that they are either detectable or undetectable. In the final plot for the SNR, we show the number of systems in each bin. The
SNRs quoted here are calculated using the AK model and we assume a detection threshold of ρthres ¼ 15.
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parameter distributions for the mass and spin of the SMBH,
the orbital shape parameters at plunge, the redshift of the
source, and the length of the observation tinsp are shown in
Fig. 8, to be contrasted with the distributions of the 5820
systems with an SNR less than 15, which are also shown.
The mass distribution for detectable EMRIs is peaked

such that the typical GW frequency occurs at the base of the
eLISA noise PSD. Systems at higher redshifts start to tail
off because the GW amplitude scales inversely to the
luminosity distance; by z ¼ 1.5, the distribution of detect-
able EMRIs with eLISA has essentially vanished. Eccentric
prograde orbits around SMBHs with larger spins tend to
produce larger SNRs because the periapsis in such systems
can get much closer to the SMBH, and so the GWs are
intrinsically louder. This effect also causes the detectable
EMRIs to have smaller values of p at plunge, as observed in
its distribution.
EMRI systems within our populations have small eccen-

tricities at plunge than initially due to the circularizing
effect of GWs [141]. For detectable systems, the mean
eccentricity is 0.05 and the maximum is 0.4, 85% have
e < 0.1. In Sec. III B, we found a strong eccentricity
dependence on the magnitude of the resonant flux enhance-
ments. We therefore expect typical resonant jumps in these
astrophysical systems to be much less than 1%, and so the
resultant dephasing to be relatively weak. We now analyze
the 513 systems using our NK models to check for the
impact of resonances.

B. Loss of signal-to-noise ratio

We can study the effect of resonances, by comparing the
adiabatic evolution to the full instantaneous evolution; a
loss in SNR will reduce the number of detected events. For
each inspiral, we denote the longest period of time tad in
which neither the 1∶2 nor the 2∶3 resonance is encoun-
tered. From the results of Sec. IV C, we expect the
recovered overlap to be approximately given by the
proportion of time spent in a resonance-free region, that
is tad=tinsp. This assumes that there is perfect overlap in the
absence of a resonance and zero overlap across a resonance,
with all times during the inspiral contributing equally. In
Fig. 9 we plot the difference between the computed
maximum overlap and the value expected from the time
between resonances, highlighting the number of resonances
Nres each system encounters.
A small proportion of systems have overlaps below the

expected value (approximately 4% have values less than
−0.05). This might be caused by higher-order resonances
disrupting the evolution, in which case tad should be
smaller and the systems would lie on the expectation line.
However, a more likely explanation is that a suboptimal
matching time tmatch was used, and a larger overlap is
achievable with a different choice of adiabatic evolution.
Roughly 30% of the systems lie within 0.05 of the

expected value. The vast majority of these are not

significantly disrupted by resonances, and produce overlaps
approaching unity. For the smallest (most extreme) mass
ratios, the inspiral rate is slow, and so the systems do not
encounter either the 1∶2 or 2∶3 resonances during their
lifetime. Meanwhile, for the largest (least extreme) mass
ratios, the EMRIs encounter both resonances close to
plunge. In each case, there is a long resonance-free region,
allowing a high overlap to be recovered.
The remaining 66% of systems have overlaps above the

level expected if resonances lead to significant dephasing.
These occur at low and intermediate values of the mass
ratio, where the inspiral rate is slow enough that the low-
order resonances are encountered in the middle of the
observation window, and the resulting value of tad is small.
For these EMRIs, resonances are not as important as
expected. Some of these could be because of fortuitous
phases on resonance corresponding to small resonance
jumps. The most likely explanation for the lack of impact is
because of the low eccentricities of our population, this
means that the magnitude of the resonant flux enhance-
ments are small (and in most cases negligible).
Even assuming that all overlap reductions are due to

transient resonances (neglecting contributions from imper-
fectly selected adiabatic waveforms), the overall effect on
the population is not significant. To illustrate this, we plot
the AK SNRs in Fig. 10, multiplied by the maximum
recovered overlap to account for the loss in SNR caused by
passing through resonance. The total number of detectable
systems decreases from 513 to 492, a loss of 4%. If we
increase the threshold ρthres, the fractional reduction in the
number of detectable systems gets even smaller. We
therefore conclude that resonances do not cause sufficient

FIG. 9. The difference between the maximum overlap and the
expected value tad=tinsp, as a function of the mass ratio for our
population of 513 EMRI signals. Each system encounters either 0
(circles), 1 (squares) or 2 (triangles) resonances during the
observation window tinsp, with tad the largest time spent by the
inspiral without encountering any resonances.

IMPORTANCE OF TRANSIENT RESONANCES IN … PHYSICAL REVIEW D 94, 124042 (2016)

124042-15



waveform dephasing across a population of EMRIs for the
detection rate to be appreciably diminished.

VI. CONCLUSION

Transient resonances in EMRIs are an important con-
sideration in waveform modeling due to the high propor-
tion of expected systems encountering a low-order
resonance in the later stages of inspiral [86]. Passing
through resonance can lead to an enhancement or decre-
ment in the radiated fluxes associated with orbital evolu-
tion, which in turn leads to a jump in the orbital parameters
across the resonance. Including the signature of resonances
is necessary for optimal analysis of EMRI signals.
The duration of resonances and their effect on orbital

parameters can be calculated. However, this requires a
self-force model. We have made use of a low spin, first-
order PN self force. This is of limited validity and so the
results should be taken as qualitative estimates; however,
the self-force model should suffice for illustrating the
potential effects of resonances.
The resonant jump in the orbital parameters depends

upon the orbital phase on resonance. This makes it difficult
to predict, without detailed calculation, the evolution of an
inspiral. The magnitude of the jump depends upon the order
of resonance and the orbital eccentricity. The 2∶3 and 1∶2
resonances have the largest effects, and higher-order
resonances are less important. Crucially, jumps are smaller
for lower eccentricity orbits. High eccentricity EMRIs may
encounter jumps in their orbital parameters of a few
percent, leading to rapid dephasing of their waveforms
compared to those from an adiabatic evolution.
Amongst a population of sources, unmodeled resonances

could diminish detection prospects. However, because of

the circularizing effects of GW emission, by the time that
the most important resonances are encountered, the orbital
eccentricity is low. Therefore, the overall effect on SNR
recovery is small, and there is not a significant reduction in
the number of detectable EMRIs.
While it may not be essential to model resonances to

detect (at least a subpopulation of) EMRIs, an unresolved
question here is how resonances would affect parameter
estimation. Systematic biases may be introduced if inac-
curate templates are used; equally, the distinctive features
of resonances may allow more precise measurements to be
made. Developing a more accurate self-force model is
required for a complete quantitative understanding of the
effects of transient resonances.
Adiabatic waveform models can still be used for EMRIs

away from resonance. Therefore, it may be possible to
stitch together waveforms from a sequence of adiabatic
evolutions, if the phase on resonance and the magnitude of
the self-force can be predicted with sufficient accuracy.18

Such hybrid models merit further study as relatively simple
ways of incorporating resonance effects into adiabatic
models.
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APPENDIX A: LOCATION OF RESONANCES

We can find the location of resonances by numerically
solving Ω ¼ nrΩr − nθΩθ ¼ 0. Figure 11 shows the semi-
latus rectum, eccentricity and (cosine of the) inclination
angle of the ν ¼ 2=5 resonance surface for a BH of spin
a� ¼ 0.95. This is almost planar, inspiring us to look for a
simple description that can help guide our search for
resonance locations. Brink, Geyer and Hinderer [142]
provide series expansions for the location of resonances

FIG. 10. Histogram showing the probability distribution func-
tion for the detectable EMRI SNRs, as calculated using the AK
formalism (solid outline) and modified by the maximum adia-
batic overlap (dashed outline). The tail below ρthres ¼ 15 in-
dicates the detections lost because of resonances.

18This may be possible using interpolation schemes [75] if
there is sufficient numerical data available for calibration.
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in the limit of equatorial orbits for small spin and
eccentricity. We do not follow this approach of trying to
find analytic expressions for the resonance surface; the
expressions become complicated when venturing away
from limiting cases. Instead, we build an approximate
phenomenological model and fit this to the resonance
plane. This should be useful for designating the region
in which resonance could be expected. To locate them
precisely, it is necessary to solve Ω ¼ 0 numerically; the
approximate model gives a suitable starting point.
The resonant semilatus rectum for any particular spin

and resonance ratio can be well approximated as

pðe; ι; a�; νÞ≃ A
1þ BeþD cos ι
1 − C expðeÞ : ðA1Þ

The coefficients fA;B;C;Dg depend upon the spin and the
particular resonance; they can be approximated as

Aða�; νÞ≃ a0
1þ a1ν − a2ν2 − a3νa2�
1þ a4ν − ð1þ a4Þν2

; ðA2Þ

Bða�; νÞ≃ b0ð1 − b1νÞ expð−b2νÞð1 − b3a�Þ; ðA3Þ

Cða�; νÞ≃ c0; ðA4Þ

Dða�; νÞ≃ d0½1 − expða�Þ�½1 − d1 expðνÞ�: ðA5Þ

This gives us a total of 12 parameters for our fit. Whilst this
may sound large, if we were fitting an expansion to
quadratic order in combinations of fe; ι; a�; νg we would
have 15 parameters.19 Our optimized parameters are

a0 ¼ 5.9854; a1 ¼ 3.4116; a2 ¼ 0.9253;

a3 ¼ 0.1959; a4 ¼ 4.8846; b0 ¼ 0.7692;

b1 ¼ 1.4752; b2 ¼ 1.4861; b3 ¼ 0.5974;

c0 ¼ 0.02332; d0 ¼ 0.7968; d1 ¼ 0.3115:

ðA6Þ

These were fitted for all possible resonances with nr ¼ 2–7
as well as the 9∶10, 19∶20, 49∶50 and 99∶100 resonances;
with SMBH spins of a� ¼ 0.01–0.999; for orbits with
eccentricities e ¼ 0.01–0.99, and inclinations cos ι ¼
−0.999999–0.999999.
Using this approximation, the maximum error in p for a

given a� and ν is typically ∼10% and less than 1 in absolute
terms. The relative error in the semilatus rectum is
illustrated in Fig. 12. The largest fractional error is
∼50%, this is for a� → 1 and ν → 0, and corresponds to
small p, such that the absolute error is still small. Taking
the root mean square across e and ι, the fractional error for a
given a� and ν never exceeds 9% and is typically less
than 4%.

APPENDIX B: ASYMPTOTIC SOLUTION FOR
PASSAGE THROUGH RESONANCE

The impact of passing through resonance on the evolu-
tion can be modeled analytically using asymptotic expan-
sions [143]. Solutions for the motion are constructed far
away from resonance and these are matched to a transition
region in the vicinity of resonance [74,144]. By comparing
the matched solution, which incorporates the effects of
resonance, with the results of an adiabatic evolution, it is
possible to estimate the discrepancy in the orbital param-
eters. This determines the difference in the orbital phase
between the two approaches. If this error is sufficiently
small, then it is safe to ignore the effects of the resonance;
however, only a small difference is needed to impact the
subsequent waveform, since the error accumulates over the
subsequent observation of ∼Oðη−1Þ cycles [46]. We derive
formulas which can be used to calculate the discrepancy in
the orbital parameters.
The following derivation is reproduced from Berry

[136]. It is based upon the analysis of Kevorkian [87];
small adjustments have been made to adapt to the specific
problem of GW inspiral, but the general argument is
unchanged.20 A similar derivation can be found in van
de Meent [53].
We model the system using action-angle variables.

We are only concerned with the r and θ motions, so we
have a 2-dimensional system. We perform a canonical
transformation to isolate the resonant combination

FIG. 11. Location of the 2=5 resonance surface for an a� ¼
0.95 BH in terms of orbital semilatus rectum p, eccentricity e and
inclination ι.

19We find that this does not give as good a fit as our function.

20The same two-time-scale theory underpins the analysis
of Hinderer and Flanagan [56], but this explicitly ignores
resonances.
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q ¼ nrqr − nθqθ [53,74]. This becomes one of the new
angle variables, the other variable q0 can be either qr or qθ
(as, on resonance, varying one necessarily changes the
other). We use J as the conjugate action variable to q and
ω ¼ nrωr − nθωθ as its frequency. Similarly, we use J0 as
the action variable conjugate to q0. The system evolves
through resonance slowly, on an evolution time scale, so we
parametrize it in terms of a slow time parameter

~λ ¼ ηλ: ðB1Þ

The orbits of q0 proceed with the fast time λ; since this is
much more rapid than the evolution we are interested in, it
is safe to average over it. We are not interested in the fine-
grained fast oscillations caused by changes in q0. For this
analysis we consider the reduced problem of evolving q
and J.
At resonance ~λ ¼ ~λ⋆ and ωð~λ⋆Þ ¼ 0. We assume that the

frequency has a simple zero and can be expanded as

ωð~λÞ ¼ ϖ1ð~λ − ~λ⋆Þ þϖ2ð~λ − ~λ⋆Þ2 þ… ðB2Þ

The frequency is actually a function of the angle variables,
but since these evolve with ~λ it is safe to write it as a
function of the slow time.21

Using the slow time, the equations of motion (2) become

dq

d~λ
¼ ωðJÞ

η
þ
X
s

gð1Þs ðJÞ expðisqÞ þOðηÞ; ðB3aÞ

dJ

d~λ
¼

X
s

Gð1Þ
s ðJÞ expðisqÞ þOðηÞ; ðB3bÞ

where we have rewritten the forcing terms as Fourier series
and adapted the forcing functions to those appropriate for q
and J. We solve these before resonance and then match to
solutions in the transition regime about resonance.

1. Solution before resonance

To find a solution away from the resonance, we
decompose the problem to be a function of two time scales
[144]. We use the slow time ~λ and, as a proxy for the fast
time,

Ψ ¼
Z

λ

0

ωðητÞdτ ¼ 1

η

Z ~λ

0

ωð~τÞd~τ: ðB4Þ

From this

ω ¼ dΨ
dλ

: ðB5Þ

In terms of these two variables, we can build ansatz
solutions

qðλ; ηÞ ¼ Ψþ q0ð~λÞ þ ηq1ðΨ; ~λÞ þOðη2Þ; ðB6aÞ

Jðλ; ηÞ ¼ J0ð~λÞ þ ηJ1ðΨ; ~λÞ þOðη2Þ: ðB6bÞ

We can also write a series expansion for the frequency,
since it is affected by the self-force too,

ωðλ; ηÞ ¼ ω0ð~λÞ þ ηω1ð~λÞ þOðη2Þ: ðB7Þ

In the limit of η → 0 we are left with a constant frequency
ω0ð0Þ. The higher-order terms are identified below by
matching terms in the series expansions of the equations of
motion. Taking the two time scales as independent, we may
write the time derivative to OðηÞ as

FIG. 12. Relative error in the approximate semilatus rectum compared to the accurate numerical result as a function of BH spin a� and
resonance ratio ν. The left panel shows the maximum relative error and the right shows the root-mean-square error; in both cases we are
marginalizing over eccentricity and inclination.

21In effect we are defining ωð~λÞ≡ ω½Jð~λÞ�.
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d
dλ

¼ ω0

∂
∂Ψþ ηω1

∂
∂Ψþ η

∂
∂ ~λ : ðB8Þ

Using the two-time-scale decomposition to replace the
time derivatives in the equations of motion, and substituting
in the ansatz expansions gives, to first order,

ω0 þ ηω1 þ η
∂q0
∂ ~λ þ ηω0

∂q1
∂Ψ

¼ ωðJ0Þ þ η
dω
dJ

J1 þ η
X
s

gð1Þs ðJ0Þ exp ½isðΨþ q0Þ�;

ðB9aÞ

η
∂J0
∂ ~λ þ ηω0

∂J1
∂Ψ ¼ η

X
s

Gð1Þ
s ðJ0Þ exp ½isðΨþ q0Þ�:

ðB9bÞ

Averaging Eq. (B9b) over Ψ gives22

∂J0
∂ ~λ ¼ Gð1Þ

0 ðJ0Þ: ðB10Þ

This describes the adiabatic evolution, hence we can
identify J0ð~λÞ with (the lowest-order piece of) the
adiabatic solution [56]. If we similarly average
Eq. (B9a), we find

ω0 þ ηω1 þ η
∂q0
∂ ~λ ¼ ωðJ0Þ þ η

∂ω
∂J hJ1iΨ þ ηgð1Þ0 ðJ0Þ:

ðB11Þ

From this we can identify the terms that originate from
the frequency and, matching by order in η, obtain

ω0 ¼ ωðJ0Þ; ðB12aÞ

ω1 ¼
∂ω
∂J hJ1iΨ: ðB12bÞ

This leaves

∂q0
∂ ~λ ¼ gð1Þ0 ðJ0Þ ðB13Þ

q0 ¼ κ0 þ
Z ~λ

0

gð1Þ0 ½J0ðτÞ�dτ; ðB14Þ

where κ0 is the constant of integration. We now have
expressions for the lowest-order terms in the expansions.

Subtracting the s ¼ 0 components from Eq. (B9b) leaves

ω0

∂J1
∂Ψ ¼

X
s≠0

Gð1Þ
s ðJ0Þ exp ½isðΨþ q0Þ�: ðB15Þ

This can be solved to give

J1 ¼ hJ1iΨ þ 1

ω0

X
s≠0

Gð1Þ
s ðJ0Þ exp ½isðΨþ q0Þ�

is
: ðB16Þ

We can do the same for Eq. (B9a) to obtain

q1 ¼ hq1iΨ þ 1

ω0

X
s≠0

gð1Þs ðJ0Þ exp ½isðΨþ q0Þ�
is

: ðB17Þ

To find the constants of integration, hq1iΨ and hJ1iΨ, it
is necessary to extend the analysis to second order in η.
This shows that hJ1iΨ is the first-order component
of the adiabatic solution. We do not need explicit forms
for later calculations, so we will not proceed further.
We have successfully constructed the pre-resonance
solution.

2. Solution near resonance

Near to resonance, we consider an interior layer expan-
sion [144]. As explained in Sec. III A, evolution near
resonance proceeds on a time scale intermediate between
the slow and fast times. We therefore introduce a rescaled
time

λ̂ ¼
~λ − ~λ⋆
η1=2

¼ η1=2ðλ − λ⋆Þ: ðB18Þ

As for the before resonance solution, we can create a
series expansion; however, now we expand in terms of
η1=2 [46]

qðλ̂; ηÞ ¼ q̂0ðλ̂Þ þ η1=2q̂1=2ðλ̂Þ þOðηÞ; ðB19aÞ

Jðλ̂; ηÞ ¼ Ĵ0 þ η1=2Ĵ1=2ðλ̂Þ þOðηÞ: ðB19bÞ

The series expansion for the frequency, Eq. (B2), can be
rewritten as

ωðλ̂Þ ¼ η1=2ϖ1λ̂þ ηϖ2λ̂
2 þOðη3=2Þ: ðB20Þ

Proceeding to write the equations of motion in terms of
the rescaled time gives

22The ansatz is constructed such that J0 ≡ hJ0iΨ and
q0 ≡ hq0iΨ.
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dq

dλ̂
¼ ϖ1λ̂þ η1=2ϖ2λ̂

2

þ η1=2
X
s

gð1Þs ðĴ0; ~λ⋆Þ expðisq̂0Þ þOðηÞ; ðB21aÞ

dJ

dλ̂
¼ η1=2

X
s

Gð1Þ
s ðĴ0; ~λ⋆Þ expðisq̂0Þ þOðηÞ: ðB21bÞ

From the equations of motion we can match terms by
their order in η1=2. At zeroth order we find

Ĵ0 ¼ ϱ̂0 ðB22Þ

is constant, and

q̂0 ¼ κ̂0 þ
ϖ1λ̂

2

2
; ðB23Þ

where ϱ̂0 and κ̂0 are the constants of integration. Using
these, we can build the next-order terms

q̂1=2 ¼ κ̂1=2 þ
ϖ2λ̂

3

3
þ gð1Þ0 ðϱ̂0Þλ̂

þ
X
s≠0

gð1Þs ðϱ̂0Þ expðisκ̂0Þ
Z

λ̂

0

exp

�
isϖ1τ

2

2

�
dτ;

ðB24Þ

Ĵ1=2 ¼ ϱ̂1=2 þGð1Þ
0 ðϱ̂0Þλ̂

þ
X
s≠0

Gð1Þ
s ðϱ̂0Þ expðisκ̂0Þ

Z
λ̂

0

exp

�
isϖ1τ

2

2

�
dτ;

ðB25Þ

introducing integration constants q̂1=2 and ϱ̂1=2. Both
the above expressions involve the complex Fresnel
integral [145], the details of which are given in the
following section. We have now constructed the interior
solution.

3. The complex Fresnel integral

The solution for the motion in the interior region near to
resonance involves the integral

Wðλ̂Þ ¼
Z

λ̂

0

exp

�
isϖ1τ

2

2

�
dτ: ðB26Þ

The complex Fresnel integral is

YðzÞ ¼
Z

z

0

exp

�
iπx2

2

�
dx ¼ CðzÞ þ iSðzÞ; ðB27Þ

where CðzÞ and SðzÞ are the cosine and sine Fresnel
integrals [145], and hence

Wðλ̂Þ ¼
ffiffiffiffiffiffiffiffiffi
π

sϖ1

r
Y
� ffiffiffiffiffiffiffiffiffi

sϖ1

π

r
λ̂

�
: ðB28Þ

We are interested in the asymptotic behavior for
jλ̂j → ∞. The complex Fresnel integral has the limit [145]

lim
jzj→∞

YðzÞ ∼ sgnzffiffiffi
2

p exp

�
iπ
4

�
−

i
πz

exp

�
iπz2

2

�
; ðB29Þ

where

sgnz ¼
	
1 z > 0

−1 z < 0
: ðB30Þ

Hence,

lim
jλ̂j→∞

Wðλ̂Þ ∼ sgnλ̂ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffi
π

jsϖ1j
r

exp

�
sgnðsϖ1Þ

iπ
4

�

þ 1

isϖ1λ̂
exp

�
isϖ1λ̂

2

2

�
: ðB31Þ

4. Matching solutions

To complete our solution we must match the pre-
resonance solution of Sec. B 1 with the near-resonance
solution of Sec. B 2. This is achieved by rewriting the pre-
resonance solution in terms of the rescaled time λ̂ and
comparing this with the near-resonance solution expanded
in the limit of λ̂ → −∞.
To rewrite the pre-resonance solution, we begin with the

fast phase parameter

Ψðλ̂Þ ¼ Ψ⋆
η

þϖ1λ̂
2

2
þ η1=2

ϖ2λ̂
3

3
þOðηÞ: ðB32Þ

Using this together with Eqs. (B14) and (B17) in Eq. (B6a),
the angle variable is

qðλ̂; ηÞ ¼ Ψ⋆
η

þϖ1λ̂
2

2
þ κ⋆ þ η1=2

ϖ2λ̂
3

3

þ η1=2gð1Þ0 ðJ⋆Þλ̂þ
η1=2

ϖ1λ̂

X
s≠0

1

is
gð1Þs ðJ⋆Þ

× exp

�
is

�
Ψ⋆
η

þϖ1λ̂
2

2
þ κ⋆

��
þOðηÞ; ðB33Þ

where we have defined J⋆ ≡ J0ð~λ⋆Þ and κ⋆ ¼ κ0 þR ~λ⋆
0 gð1Þ0 ½J0ðτÞ�dτ, and used Eq. (B20) to substitute for ω.
The action variable is similarly determined by using
Eqs. (B10) and (B16) with Eq. (B6b) to give
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Jðλ̂; ηÞ ¼ J⋆ þ η1=2Gð1Þ
0 ðJ⋆Þλ̂þ

η1=2

ϖ1λ̂

X
s≠0

1

is
Gð1Þ

s ðJ⋆Þ

× exp

�
is

�
Ψ⋆
η

þϖ1λ̂
2

2
þ κ⋆

��
þOðηÞ: ðB34Þ

We can now compare this to the near-resonance expan-
sion with the integral replaced by the limiting form given
in Eq. (B31).
At zeroth order, we immediately obtain

κ̂0 ¼
Ψ⋆
η

þ κ⋆; ðB35Þ

ϱ̂0 ¼ J⋆: ðB36Þ
These fix the integration constants. The more interesting
result is now found by comparing the Oðη1=2Þ terms.
Equating the angle variable expressions and canceling
terms gives

κ̂1=2 ¼
X
s≠0

gð1Þs ðϱ̂0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

2jsϖ1j
r

exp

�
i

�
sκ̂0 þ

π

4
sgnsϖ1

��
:

ðB37Þ
Similarly, for the action variable

ϱ̂1=2 ¼
X
s≠0

Gð1Þ
s ðϱ̂0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2jsϖ1j
r

exp

�
i

�
sκ̂0 þ

π

4
sgnsϖ1

��
:

ðB38Þ
We now have a matched solution through resonance.
Having constructed the solution, we see that the lowest-

order evolution corresponds to the adiabatic solution; the
deviations come in at the following order. When we switch
from the pre-resonance solution to the post-resonance
solution, there is a change in the sign of λ̂. Therefore,
when matching the post-resonance solution ϱ̂1=2 and κ̂1=2
also change sign: there is a change of

Δq ¼ 2η1=2κ̂1=2; ðB39Þ
ΔJ ¼ 2η1=2ϱ̂1=2 ðB40Þ

across the resonance [87]. We are not particularly interested
in the deviation in J, of greater concern is the change in the
orbital parameters fE;Lz;Qg. Assuming that there is a
smooth transformation that maps between J and these,

then, to lowest order, we can calculate the deviation relative
to the adiabatic prescription by substituting the forcing

functions Gð1Þ → Gð1Þ
a , where Gð1Þ

a describes the evolution
of Ia through the effects of the self-force. This result is
quoted by Flanagan and Hinderer [46]. The change in the
orbital parameters is determined by the forcing functions,
hence it is essential to have an accurate self-force model.
As a final step in understanding our result, we switch

from Mino time to coordinate time. An appropriate
redefinition of the forcing functions can be done by scaling
by Γ, we define

Fð1Þ
a ¼ Gð1Þ

a

Γ
; ðB41Þ

such that the equation of motion becomes
�
dIa

dt

�
q0
¼ η

X
s

Fð1Þ
a;sðIÞ expðisqÞ þOðη2Þ: ðB42Þ

Here we have made the averaging over q0 explicit to show
that the equation is only defined as an orbital average: not
only does our asymptotic expansion average out oscilla-
tions over an orbit in q0, but in converting from λ to t we
have used Γ which is an orbital average. From Eq. (B2), we
recognize that

ϖ1 ¼
∂ω
∂ ~λ ¼ Γ2

η
h _Ωiq0 : ðB43Þ

We have used the averaged form of _ΩðtÞ as this is
appropriate. Using these to adapt Eqs. (B38) and (B40),
we obtain

ΔIa ¼ η
X
s≠0

Fð1Þ
a;sðI⋆Þ

�
2π

jsh _Ωiq0 j

�
1=2

× exp

�
i

�
sκ̂0 þ

π

4
sgns _Ω

��
ðB44Þ

¼ η
X
s≠0

Fð1Þ
a;sðI⋆Þτres;s

× exp

�
i

�
sκ̂0 þ

π

4
sgns _Ω

��
; ðB45Þ

using Eq. (27) and representing the values on resonance of
E, Lz and Q with I⋆.
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