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We consider stationary, axially symmetric toroids rotating around spinless black holes, assuming the
general-relativistic Keplerian rotation law, in the first post-Newtonian approximation. Numerical inves-
tigation shows that the angular momentum accumulates almost exclusively within toroids. It appears that
various types of dragging (antidragging) effects are positively correlated with the ratio MD=m (MD is the
mass of a toroid, andm is the mass of the black hole)—moreover, their maxima are proportional toMD=m.
The horizontal sizes of investigated toroids range from c. 50 to c. 450 of Schwarzschild radii RS of the
central black hole; their massMD ∈ ð10−4m; 40mÞ, and the radial size of the system is c. 500 RS. We found
that the relative strength of various dragging (antidragging) effects does not change with the mass ratio, but
it depends on the size of toroids. Several isoperimetric inequalities involving angular momentum are shown
to hold true.
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I. INTRODUCTION

There are three principal aims of this paper.
We have found recently two new weak field effects that

affect angular velocities of gaseous disks rotating around
spinless black holes [1,2]. They appear in the first post-
Newtonian approximation (1PN), in addition to the well-
known geometric dragging of frames. One of them—we
call it antidragging, since it works against the dragging of
frames—is proportional to the speed of sound of gas. The
other depends on a combination of gravitational and
centrifugal potentials, that strictly vanishes for weightless
disks. All 1PN corrections strictly vanish for uniformly
rotating disks, but they are nonzero for the important case
of the Keplerian rotation.
We shall address in this paper the following question:

what are the principal physical properties of a (Keplerian)
rotating toroidal-black-hole system, that are responsible
for the strength of various dragging (antidragging) effects?
One can expect—by appealing to the behavior of test
particles in the Kerr geometry—that robust dragging
phenomena should be associated with compact systems
that possess a lot of angular momentum. Our investigation
shows that this intuition is incorrect and that the relevant
characteristic is the mass ratio MD=m, where MD is the
mass of a toroid and m is the mass of the black hole. We
find an interesting universality: the maxima of the com-
bined, normalized in a suitable sense, (1PN) corrections,
as well of their constituents—the geometric dragging, the

antidragging, and the centrifugal one [2]—are simply
proportional to MD=m, for a fixed extension of a toroid.
We have studied polytropic disks for two classes of
polytropes; the universality appears in all examples, but
some numerical coefficients depend (albeit rather weakly)
on the equation of state of the fluid.
An interesting question is the influence of a rotating

environment onto the central black hole. There are
reports—for a rigid rotation [3,4] and the constant specific
angular momentum [5]—that the black hole can carry a
substantial amount of the angular momentum. We assume a
general-relativistic version of the Keplerian rotation law
[2]. It comes as a surprise that one can have compact
systems with a large amount of angular momentum,
where central black holes practically do not participate
in rotation—their spin parameters are smaller than 10−4,
and they carry less than one-millionth of the total angular
momentum.
Finally, there exist several inequalities that must be

obeyed by quasilocal characteristics of apparent horizons.
S. Dain extended these by formulating local estimates onto
local angular momentum of rotating bodies and proved
them, under somewhat stringent conditions [6,7]. We show
that they are in fact satisfied.
The order of the rest of this paper is as follows. In the

next section, we formulate axial perturbations of the
conformal Schwarzschild geometry, that describe toroids
rotating around a spinless black hole. The basic idea is
to build systems such that the gravity of toroids is
negligible—compared to the gravity of the central black
hole—close to the event horizon, and the gravitational
potential is small within the bulk of rotating matter. The
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rotation is ruled by the general-relativistic Keplerian law.
Section III shows the first post-Newtonian approximation
to equations of motion. Section IV is dedicated to the
quasilocal description of the system, in particular to defining
the concept of the apparent horizon, its mass, and its angular
momentum.We briefly describe the essence of the numerical
method in Sec. V. Section VI brings main numerical results
concerning various 1PN corrections to the angular velocity;
we emphasize again the unexpected universality of these
effects. Section VII addresses the issue of distribution of the
angular momentum. It appears that the black hole spin
parameter aS ≡ cjS=m2 is very small; the central black hole
is almost Schwarzschildean. Only a tiny fraction of the total
angular momentum can be attributed to the black hole; this is
commented on and explained therein. In Sec. VIII, we
review Dain’s results on estimations of the angular momen-
tum. Tables I and II allow one to find out that the angular
momentum can be bounded, as postulated in Ref. [6]. The
last section summarizes obtained results.
We assume throughout the paper the gravitational con-

stant G ¼ 1. There is a scaling freedom that allows us to
treat the speed of light c as a free parameter. We adjust the
speed of light c and the coordinate extension of the disk, in
Secs. VI–VIII, so that the whole system has an (approxi-
mate) areal size of 500RS, and the inner edges of the
investigated disks are located between 50RS–475RS (again
approximately). The total asymptotic massMD þm ranges
between m and 40m. We take care to construct numerical
solutions that are in the 1PN regime within the stationary
toroids.

II. AXIAL PERTURBATIONS OF THE
CONFORMAL SCHWARZSCHILD GEOMETRY

Einstein equations, with the signature of the metric
ð−;þ;þ;þÞ, read

Rμν − gμν
R
2
¼ 8π

c4
Tμν; ð1Þ

where Tμν is the stress-momentum tensor. The metric is
given by

ds2 ¼ −e
2ν
c2ðdx0Þ2 þ r2e

2β

c2

�
dϕ −

Aϕ

r2c3
dx0

�
2

þ e
2α
c2ðdr2 þ dz2Þ: ð2Þ

Here, x0 ¼ ct is the rescaled time coordinate, and r, ϕ, z are
cylindrical coordinates. We assume axial and equatorial
symmetry and stationarity—thus metric functions ν, α, β,
and Aϕ depend only or r and z—and employ the stress-
momentum tensor of the perfect fluid

Tαβ ¼ ρðc2 þ hÞuαuβ þ pgαβ; ð3Þ

where ρ is the baryonic rest-mass density, h is the specific
enthalpy, and p is the pressure. The greek indices range
from 0 to 3, and the latin indices change from 1 to 3. The
4-velocity uα ¼ dxα

cdτ along the world line of fluid particles
(here, τ is their proper time) is normalized: gαβuαuβ ¼ −1.
We introduce ut ≡ u0=c. The coordinate (angular) velocity
of the fluid reads ~v ¼ Ω∂ϕ, where Ω ¼ uϕ=ut.
We assume the polytropic equation of state pðρ; sÞ ¼

KðsÞργ , where s is the specific entropy of fluid and γ is
a constant. Then, one has hðρ; sÞ ¼ KðsÞ γ

γ−1 ρ
γ−1. The

entropy is assumed to be constant.
We shall study small stationary, cylindrically symmetric,

perturbations of the Schwarzschild spacetime, with the
angular momentum being carried by a rotating disk of fluid.
We consider the following geometry in the conformal
(cylindrical) coordinates,

ds2 ¼ −ðdx0Þ2
�
fþ
f−

�
2

þ ðf−Þ4ðdr2 þ dz2 þ r2dϕ2Þ

− 2
Aϕ

c3
ðr; zÞdϕdx0; ð4Þ

where the two functions fþ and f− are defined as

fþ ¼ 1þ U
2c2

; f− ¼ 1 −
U
2c2

: ð5Þ

Here, the gravitational potential U is a superposition of the
central term (− m

R) and UD, induced by the disk:

U ¼ −
m
R
þ UD: ð6Þ

Henceforth, R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
.

Let us point out that in the metric (4) the lapse function
N ≡ fþ

f−
and the shift vector Xi ¼ ð0; 0;−Aϕ=c3Þ are ϕ

independent.
We shall say that perturbations are small, if

jUDj=c2 ≪ 1. In addition, we require that within the
volume V of a rotating disk m=ðRc2Þ ≪ 1; the two facts
imply jUj=c2 ≪ 1 inside a disk. Then, it is legitimate to
perform the approximation procedure—the expansion in
powers of 1=c2. It appears that the line element (4) leads to
stationary equations that coincide, in the 1PN approxima-
tion, with stationary equations corresponding to the 1PN
approximation of the metric (2). Thus, the two approaches
are equivalent up to the 1PN order.
The case, when the disk’s potential UD and the metric

function Aϕ do vanish, yields strictly the Schwarzschild
line element. In this case, the parameter m is just the
asymptotic mass, the event and apparent horizons coincide,
and they are located at Rh ¼ m=ð2c2Þ. We should point that
the metric (4) is more convenient than (2), because it is
easier to describe horizons of black holes in the class of
conformal deformations of the Schwarzschild metric than
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in the general metric (2). This description can be regarded
as a version of the effective field approximation. Another
application of the conformal factorization of the metric can
be found in Ref. [8], where post-Newtonian equilibria of
corotating neutron star binaries are investigated.
It is well known that equations of the stationary Einstein

hydrodynamics are not closed; this is similar to the
stationary Newtonian hydrodynamics. One needs to impose
an additional closure assumption—a general-relativistic
version of the “rotation curve” known in the Newtonian
hydrodynamics—in order to complete the system. In the
Newtonian case, one defines directly the rotation curve—
the angular velocity Ω—as a prescribed function of the
distance from the rotation axis. If the z axis is the symmetry
axis, then Ω ¼ ΩðrÞ.
Rotation curves—angular velocities as functions of

coordinates—emerge in the context of general relativity
as solutions of the following three-step procedure. We
define ω≡ r−2Aϕ. First, notice that

j≡ c2uϕut ¼
v2

ðΩ − ω
c2Þð1 − v2

c2Þ
; ð7Þ

where

v2 ≡ r2
�
Ω −

ω

c2

�
2

e−4U=c2 ð8Þ

can be interpreted as the angular momentum per unit
inertial mass [9]. The resulting system is integrable if j
depends only on the angular velocity Ω, j≡ jðΩÞ [10–13].
In the second step, one needs to specify jðΩÞ, in order to
close the description of a stationary system. There are few
options in the existing literature, from the simple linear
function jðΩÞ ¼ AðΩ − BÞ, where A and B are constants
[10,13], to recent nonlinear proposals of Refs. [2,14,15].
We adopt, following Ref. [2], the rotation law

jðΩÞ≡ w
4
3Ω−1

3

1þ 3
c2 w

4
3Ω2

3 þ 4Ψ
c2
: ð9Þ

Here, w and Ψ are parameters that shall be determined at
each step of the post-Newtonian expansion. This choice
yields the Keplerian rotation law in the Newtonian limit [2];
therefore, we sometimes refer to (9) as the “general-
relativistic Keplerian rotation law.”
The rotation curves Ωðr; zÞ can now be recovered—in

the final step—from the equation

w
4
3Ω−1

3

1þ 3
c2 w

4
3Ω2

3 þ 4Ψ
c2

¼ v2

ðΩ − ω
c2Þð1 − v2

c2Þ
: ð10Þ

We would like to note that the rotation law (9) leads to a
new prediction, that was absent in Ref. [1], namely to the
centrifugal correction − 3

2c2 Ω0ð− m
~r þ U0D þ Ω2

0 ~r
2Þ to the

angular velocity—see Eq. (23) in the next section and
explanations therein. It is interesting also that the weight-
less disk of dust rotating according to (10) satisfies exactly
the Einstein equations within the Schwarzschild space-
time [2].

III. 1PN EQUATIONS WITHIN A ROTATING DISK

The 1PN equations for rotating fluids have been derived
in Refs. [1] and [2], on the basis of an earlier work [16]. In
this section, we present a brief description of the reasoning.
The metric becomes, assuming jUj ≪ c2,

ds2 ¼ −
�
1þ 2U

c2
þ 2U2

c4

�
ðdx0Þ2 − 2c−3Aϕdx0dϕ

þ
�
1 −

2U
c2

�
ðdr2 þ dz2 þ r2dϕ2Þ; ð11Þ

its spatial part is conformally flat.
The 1PN approximation can be valid if jUj ≪ c2.
We split different quantities (ρ, p, h, U, and vi) into their

Newtonian (denoted by subscript 0) and 1PN (denoted by
subscript 1) parts. This splitting reads, for the specific
enthalpy h, the density ρ, the angular velocity Ω, the
quantity Ψ, and the potential U,

h ¼ h0 þ c−2h1; ð12aÞ

ρ ¼ ρ0 þ c−2ρ1; ð12bÞ

Ω ¼ Ω0 þ c−2vϕ1 ; ð12cÞ

Ψ ¼ Ψ0 þ c−2Ψ1; ð12dÞ

U ¼ −
m
R
þ U0D þ c−2U1: ð12eÞ

The angular velocity becomes Keplerian,

Ω0 ¼
w

r3=2
; ð13Þ

in the Newtonian limit. Let M0D ¼ R
V dVρ0, where dV is

the geometric volume element, denote the Newtonian mass
of the disk. It appears from numerical analysis that the
parameter w is close to

ffiffiffiffi
m

p
, if M0D ≪ m. We expect

(basing on numerics and partial analytical results) that in
general

ffiffiffiffi
m

p
≤ w ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþM0D

p
[17].

Notice that, up to the 1PN order,

1

ρ
∂ip ¼ ∂ih0 þ c−2∂ih1þOðc−4Þ; ð14Þ

where the 1PN correction h1 to the specific enthalpy can be
written as h1 ¼ dh0

dρ0
ρ1. For the polytropic equation of state,

this gives h1 ¼ ðγ − 1Þh0ρ1=ρ0.
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One can obtain the Bernoulli equations at the 0PN and
1PN orders, using the foregoing splitting into Newtonian
(0PN) and 1PN parts.
The 0PN Bernoulli equation reads

h0 −
m
R
þ U0D þ Ω2

0r
2 ¼ Ψ0; ð15Þ

whereΨ0 is a constant that can be interpreted as the binding
energy per unit mass. At the Newtonian level, this is
supplemented by the Poisson equation for the gravitational
potential,

ΔU0D ¼ 4πρ0; ð16Þ

where Δ denotes the flat Laplacian.
The component Aϕ of the shift vector satisfies the

following equation:

ΔAϕ − 2
∂rAϕ

r
¼ −16πr2ρ0Ω0: ð17Þ

The 1PN correction U1 to the potential is obtained by
solving the equation

ΔU1 ¼ 4π½ρ1 þ 2p0 þ ρ0ðh0 − 2U0 þ 2r2Ω2
0Þ�: ð18Þ

The mass of a disk, including the 1PN correction, is given
by the volume integral

MD¼
Z
V
dV

1

c2
½ρ1þ2p0þρ0ðh0−2U0þ2r2Ω2

0Þ�þM0D:

ð19Þ

Finally, we have the Bernoulli equation of the 1PN order,

Ψ1 ¼ −h1 −U1 −Ω0Aϕ þ 2r2Ω2
0h0 −

3

2
h20

− 4h0U0 − 2U2
0 − 4r4Ω4

0; ð20Þ

where Ψ1 is a constant.
In vacuum, we are left with a pair of homogeneous

elliptic equations

ΔU ¼ 0; ΔAϕ − 2
∂rAϕ

r
¼ 0: ð21Þ

The system of equations (12)–(20) fully describes disk
configurations up to the 1PN order of approximation. It
follows from the metric (2) or (4); as we stressed before,
both approaches give the same set of equations. Notice that
these are integrodifferential equations with a free boundary;
the shape of a disk comes as a part of the solution. It will be
explained in the numerical section how to deal with such a
boundary problem. The second of Eqs. (21) can cause

difficulties for systems with matter located on the z axis; we
deal, however, with disks, and Eq. (21) is harmless.
The first post-Newtonian correction vϕ1 to the angular

velocity Ω is obtained from the perturbation expansion of
the rotation law (10) up to terms of the order c−2. One
arrives at [2]

vϕ1 ¼ −
3

2
Ω3

0r
2 þ 3Aϕ

4r2
− 3Ω0h0: ð22Þ

This can be written in a more geometric way. The
geometric circumferential radius of the circle r ¼ const,
z ¼ 0 around the rotation axis is given by ~r ¼
rð1 − U0=c2Þ þOðc−4Þ. Therefore, the angular velocity
reads

Ω ¼ Ω0 þ
vϕ1
c2

¼ w

~r3=2
−

3

2c2
Ω0

�
−
m
~r
þU0D þ Ω2

0 ~r
2

�

þ 3Aϕ

4~r2c2
−

3

c2
Ω0h0; ð23Þ

where the last three terms are 1PN corrections. Let us point
out that the antidragging term (− 3

c2 Ω0h0) is of the opposite

sign to the dragging term 3Aϕ

4~r2c2 [1].

IV. CHARACTERISTICS OF
THE BLACK HOLE HORIZON

The event horizon coincides, in the stationary case,
with the apparent horizon S [18], that is a two-surface S
embedded in the 3-hypersurface Σ defined by t ¼ const
such that

∇ini þ hijKij ¼ 0; ∇ini − hijKij > 0: ð24Þ

Here, ni is the unit normal to the surface S, Xi denotes the
shift vector, Kij ¼ 1

2N ð∇iXj þ∇iXjÞ is the extrinsic cur-
vature of Σ, hij ¼ gij − ninj is the induced metric on S, and
∇i means the covariant derivative on Σ. In our case, the
shift vector is given by Xi ¼ ð0; 0;−Aϕ=c3Þ. It is easily
seen that for the metric (4) the contribution of extrinsic
curvature vanishes (albeit some nondiagonal components
of Kij are nonzero); thus, the apparent horizon becomes
a minimal surface. The three-dimensional metric of Σ in
spherical coordinates is given by

ds23 ¼ ðf−Þ4ðdR2 þ R2dθ2 þ R2 sin2 θdϕ2Þ; ð25Þ

and we get from the minimal surface equation within Σ

∇ini ¼ 0: ð26Þ
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The two-surface S can be assumed to be ϕ independent, due
to the axial symmetry; it is given by the single equation
R ¼ RðθÞ. Its normal reads

nk ¼
f2−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð∂θRÞ2
R2

q ð1;−∂θR; 0Þ: ð27Þ

In explicit terms, Eq. (26) reads

1

R2f6−
∂R

2
64 R2f4−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð∂θRÞ2
R2

q
3
75þ 1

sin θR2f6−
∂θ

2
64sin θð−∂θRÞf4−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð∂θRÞ2
R2

q
3
75

¼ 0: ð28Þ

Equation (28) is a second-order differential equation for
the radial function RðθÞ. The boundary conditions are given
by ∂θRjθ¼0 ¼ ∂θRjθ¼π ¼ 0. Solving of Eq. (28) would be
numerically inexpedient, since the 3-metric gij is known
only numerically. Fortunately, numerical results show that
the impact of the disk onto the geometry around R ¼ Rh is
small. We investigated the behavior of UD at Rh for
four disk configurations with the outer edge at rout ¼ 1
and with the inner edges located at rin ¼ 0.1, 0.5, 0.75, and
rin ¼ 0.95. Disk masses exceeded the central mass by a
factor of 10. We found that the modulus of the potential UD
depends very weakly on the angle θ, and its maximal values
are 24.82 (for rin ¼ 0.1), 13.45 (for rin ¼ 0.5), 11.49 (for
rin ¼ 0.75), and 10.41 (for rin ¼ 0.95). (See one of the later
sections for a more detailed description of the assumed
data.) These values should be compared to the modulus of
the central potential m=Rh, which gives 2000 (we assumed
m ¼ 1 in these numerical calculations), that is roughly
values larger by 2 orders of magnitude. Thus, the potential
UD is relatively small, and it is almost constant at surfaces
R ¼ const; moreover, j∂RUDj=ðm=R2Þ ≈ 0, in the vicinity
of Rh ¼ m=ð2c2Þ.
We believe, based on the preliminary inspection of

Eq. (28), that the following hypothesis is true.
Conjecture.—If the disk potential and its derivatives are

small,

sup
V
ðjUDj; jR∂RUDjÞ ≪

m
2R

;

sup
V
ðj∂θUDj; j∂2

θUDjÞ ≪
m
R
; ð29Þ

in a vicinity of Rh ¼ m=ð2c2Þ, then the position of the
minimal surface is well approximated by Rh.
This Conjecture will be applied later on.

A. Area and mass of minimal surfaces

The metric induced on an axially symmetric two-surface
S, that is defined by R ¼ RðθÞ, reads

ds2ð2Þ ¼ f4−R2

��
1þ ð∂θRÞ2

R2

�
dθ2 þ sin2θdϕ2

�
: ð30Þ

The area of the two-surface is given by

AAH ¼ 2π

Z
π

0

dθR2 sin θf4−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂θRÞ2

R2

r
: ð31Þ

If the two-surface is minimal and it is located at
R ≈m=ð2c2Þ, then the area is approximated by

AAH ¼ m2

2c4
π

Z
π

0

dθ sin θ

�
16þ 16UDðR; θÞ

c2

�
: ð32Þ

In the case of the Schwarzschild black hole, one has the
strict equality AAH ¼ 16π m2

c4 . The Podurets-Misner-
Hawking-Geroch [19] mass of a black hole is defined as

MAH ¼ c2
ffiffiffiffiffiffi
AAH
16π

q
, which yields MAH ¼ m for the

Schwarzschild black hole. It is accepted in numerical
general relativity as a quasilocal mass measure of horizons
in self-gravitating systems [20]. We shall also employ that
mass. We will accept only those numerical solutions, where
the Podurets-Misner-Hawking-Geroch mass is close to
the Newtonian mass m, that is jm −MAHðSÞj ≪ m (see
Sec. VI). In such a case, the mass parameter m still can be
interpreted as the mass of the central black hole, and it
would be legitimate to use the above Conjecture.
In the 1PN approximation, the asymptotic mass of

configurations can be read off from the asymptotic behavior
of the superposition of potentials − m

R þ UD. As explained
above, the parameter m approximates the mass of the
central black hole; therefore, the asymptotics of UD can be
regarded as defining the mass of a rotating disk.

B. Angular momentum

Cylindrically symmetric stationary systems possess a
(spatial) Killing vector ημ, i.e. ∇μην þ∇νημ ¼ 0. The
angular momentum of a fluid rotating around the z axis
can be defined as follows [9]:

L ¼ 1

c

Z
V
tμT

μ
νηνdV

¼
Z
V
drdϕdzρðc2 þ hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g4

q
uϕut: ð33Þ

We use here cylindrical coordinates r, ϕ, and z; tμ is a
normal to the Cauchy hypersurface Σ. The integrand can be
expressed as a total divergence (using relevant Einstein
equations); applying the Gauss theorem, one can write
down the angular momentum as a sum of internal angular
momenta, associated to an internal two-surface S and to the
asymptotics [10,21]: L ¼ jS þ j∞.
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The angular momentum of a surface S, that is defined by
R ¼ RðθÞ, reads (up to the 1PN approximation)

jS ¼
Z

π

0

dθ
R4

8
sin3 θ

�
−∂Rωþ ∂θR∂θω

R2

�
f7−
jfþj

; ð34Þ

while the asymptotic angular momentum is given by

j∞ ¼ −
Z

π

0

dθ
8
R4 sin3 θð−∂RωÞ: ð35Þ

We shall calculate the angular momentum of a minimal
surface. Assuming that the above conjecture is valid,
that is R ≈m=ð2c2Þ, then ðf−Þ7 ≈ 27ð1 − 7UD=ð4c2ÞÞ ¼
128ð1 − 7UD=ð4c2ÞÞ, and jf−j ≈ jUDj=ð2c2Þ. Thus, the
angular momentum becomes

jS¼−16
Z

π

0

dθR4 sin3θ

�
∂Rω−

1

R2
∂θR∂θω

�
1−7

UDðr;θÞ
4c2

jUDj
c2

:

ð36Þ

If the angular dependence of the minimal surface is
“moderate,” so that terms with ∂θR can be neglected, then
taking into account that jUDj=c2 ≪ 1, we get

jS ¼ −16
Z

π

0

dθR4 sin3 θ
∂Rω
jUDj
c2

: ð37Þ

This can be further simplified, since R ≈m=ð2c2Þ. We
obtain finally

jS ¼ −
m4

c6

Z
π

0

dθ
sin3 θ∂Rω

jUDj
: ð38Þ

The total angular momentum of a rotating fluid is approxi-
mated, up to the 1PN order, by

L ¼
Z

drdϕdzΩ0r3ρ0

þ 1

c2

Z
drdϕdzρ0ðΩ3

0r
5 − 6Ω0r3U þ r3vϕ1 − rAϕÞ

þ 1

c2

Z
drdϕdzðρ1 þ p0Þr3Ω0: ð39Þ

The asymptotic value of the angular momentum can be
obtained directly or (preferably) from j∞ ¼ L − jS.

V. DESCRIPTION OF THE NUMERICAL METHOD

The numerical method used in this paper was described
in Ref. [1]. It is a variant of the old fashioned (but working)
self-consistent field (SCF) scheme. The solution represent-
ing the disk is found in three stages. In the first one, a
strictly Newtonian configuration is obtained. In this stage,

each iteration of the SCF method consists in solving the
Poisson equation (16) for the gravitational potential and,
subsequently, the Euler-Bernoulli equation (15) that yields
the specific enthalpy corresponding to a given gravitational
potential. The Newtonian solution is parametrized by the
values rin and rout of the inner and outer equatorial radii of
the disk, respectively—we fix the coordinate size of the
disk. Further data include the maximum value of the density
within the disk, the value of the central mass m, and the
polytropic exponent. These parameters allow one to estab-
lish the values of the constants K, Ψ0, and w in each of the
subsequent iterations.
In the second stage, we compute the potential Aϕ,

solving Eq. (17). The result depends on previously obtained
ρ0 and Ω0.
The third stage is again an iterative one. In each iteration, a

post-Newtonian correction U1 is found by solving Eq. (18).
Given the new value of U1, we obtain the correction to the
specific enthalpy h1 from Eq. (20). There is a degree of
freedom in this step that is connected with the choice of
constant Ψ1 in Eq. (20). At the Newtonian stage, the
analogous constant Ψ0 is fixed by the geometrical require-
ment on the size of the disk (setting the inner and outer
equatorial radii) and the remaining data (the maximum value
of the density, the value of the central mass m, and the
polytropic exponent). It seems that at the first post-
Newtonian level, one can choose the constant Ψ1 freely.
In Ref. [1], the value of Ψ1 was fixed by requiring that the
correction to the specific enthalpy h1 vanishes at the
outermost point of the disk, i.e., at the outer equatorial
radius. We found that this choice yields solutions that
conform with the post-Newtonian assumptions only in a
limited range of parameters. The choice that we employ here
is to require that the post-Newtonian correction h1 (or,
equivalently, ρ1) vanishes at the point where the Newtonian
density ρ0 attains its maximum value. It seems to be a slight
change, but it yields acceptable solutions for a much broader
range of parameters. This fact probably conveys an impor-
tant message, that in this kind of general-relativistic free
boundary problem with which we are dealing, the maximal
(baryonic) mass density should always be a part of the given
data. Note also that the apparent freedom of choosing the
value of the constant Ψ1 is yet another manifestation of the
nonuniqueness of the post-Newtonian expansion with
respect to stationary systems [2].
In summary, we adopted following input data: the

coordinates of the inner and outer boundaries of the disk,
the maximal mass density, and a functional form of the
rotation law and of the equation of state. That is, we assume
p ¼ Kργ, but the specific value of the coefficient K is a part
of a solution. Similarly, the parameters w and Ψ in the
rotation law—see Eq. (10)—are established after finding
the Newtonian (or 1PN) disk configuration.
Technical aspects of our numerical method are quite

standard; they are described in Ref. [1]. We work in
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spherical coordinates ðR; θ;ϕÞ. For convenience, we also
define μ ¼ cos θ. Equations (16), (17), and (18) are solved
using appropriate Green functions that are expanded in
Legendre polynomials.
Equations (16) and (18) have the form of a Poisson

equation ΔΦ ¼ fðR; μÞ that has to be solved assuming
that the solution vanishes at infinity. We compute the
solution Φ as

ΦðR; μÞ ¼ −
1

2

XN
j¼0

PjðμÞ
�

1

Rjþ1
EjðRÞ þ RjFjðRÞ

�
; ð40Þ

where

EjðRÞ ¼
Z

R

0

dR0R0jþ2

Z
1

−1
dμ0Pjðμ0ÞfðR0; μ0Þ; ð41Þ

FjðRÞ ¼
Z

∞

R
dR0 1

R0j−1

Z
1

−1
dμ0Pjðμ0ÞfðR0; μ0Þ: ð42Þ

Equation (17) has the form

ΔAϕ −
2∂rAϕ

r
¼ gðR; μÞ; ð43Þ

which is directly related to the vectorial Poisson equation
(cf. Ref. [1]). The solution Aϕ that vanishes at infinity can
be found as

AϕðR; μÞ ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q XN
j¼1

1

jðjþ 1ÞP
1
jðμÞ

×

�
1

Rj CjðRÞ þ Rjþ1DjðRÞ
�
; ð44Þ

where

CjðRÞ¼
Z

R

0

dR0R0jþ1

Z
1

−1

dμ0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−μ02

p P1
jðμ0ÞgðR0;μ0Þ; ð45Þ

DjðRÞ ¼
Z

∞

R
dR0 1

R0j

Z
1

−1

dμ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ02

p P1
jðμ0ÞgðR0; μ0Þ: ð46Þ

Symbols Pj and P1
j denote Legendre polynomials and

associated Legendre polynomials of the first order, respec-
tively. Assuming equatorial symmetry, one can show that
all above integrals with P2jþ1 and P1

2j, j ¼ 0; 1; 2;…
vanish.
The above formulas are exact for N → ∞. In our

applications, we set N ≈ 100. The integrals are computed
on a spherical grid assuming a piecewise linear interpola-
tion of fðR; μÞ and gðR; μÞ. In most cases, the resulting
integrals can be then computed analytically. Otherwise,
Simpson’s rule is used.

The last ingredient of the numerical method is directly
related to the fact that we are dealing with the free-
boundary problem. In the first stage—at the Newtonian
level—one ensures that no negative values of h0 appear in
the solution. At all grid points where Eq. (20) yields a
negative value of h0, we set h0 ¼ 0. This defines the shape
of the disk at each iteration step.
A similar procedure has to be implemented at the 1PN

stage. The cutoff is applied to ρ1. Whenever ρ0 þ ρ1=c2

would become negative, we set ρ1 ¼ −c2ρ0. Note that, in
practice, corrections ρ1 and h1 are related by

ρ1 ¼
1

Kγ
ρ2−γ0 h1: ð47Þ

Thus, ρ0 ¼ 0 implies ρ1 ¼ 0 provided that h1 remains
finite.
We use a numerical grid consisting of 200 zones in the

radial direction and 800 zones in the angular one. It is
important to note that disks which are relatively light
in comparison to the central mass (i.e., MD ≪ m) become
slim. Consequently, it is crucial to provide sufficient
angular resolution also in those cases. In a general case,
our grid covers in the angular direction the region
0 ≤ μ ≤ 1. For thin disks, we confine ourselves to 0 ≤ μ ≤
1=2 or even 0 ≤ μ ≤ 1=10, keeping the same number
of 800 angular zones. For example, for an elongated disk
with rin=rout ¼ 1=10 and MD=m ≈ 10−4, we get the maxi-
mal height of the disk above the symmetry plane z ¼ 0,
hmax ≈ 0.01rout. In our setup, this corresponds to approx-
imately 100 angular zones occupied by the disk. This
procedure was also tested for the purely Newtonian case in
Ref. [22], where a disk with a relative thickness of the
order of 1=1000 was computed, using up to L ¼ 400
Legendre polynomials and numerical grids spanning up to
5000 × 5000 nodes.
To some extent, the correctness of our numerical

procedure can be tested by computing suitable virial
identities. Such identities were derived in Ref. [23]. In
Ref. [23], we also provided examples of convergence tests
of our numerical method.

VI. NUMERICS: MASS RATIO AND DRAGGING
OF ROTATING SYSTEMS

A. Introductory remarks

We show in this section that maximal values of the
total dragging and its constituents simply scale with the
total mass, up to the 1PN order. We define normalized
post-Newtonian corrections: the total ST ≡ jvϕ1=ðc2Ω0Þj
[see (22)] correction and its constituent components—the

dragging (geometric) term Sg ≡ j 3Aϕ

4~r2Ω0c2
j, the antidragging

term Sad ≡ j 3h0c2 j, and the centrifugal term Sc ≡
j 3
2c2 ð− m

R þU0D þ Ω2
0 ~r

2Þj. It will appear that their maximal
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values almost linearly depend on the mass functional MD.
We take care to ensure that the calculation is done well
within the post-Newtonian regime: the modulus of the 1PN
correction to the metric within tori, 2jUj=c2, is usually
smaller (or much smaller) than 0.01 and reaches 0.05 only
for heaviest disks.
We assume in the numerical analysis that maximal

values of ST, Sg, Sad, and Sc can occur only at the equatorial
plane z ¼ 0. These functions satisfy elliptic equations; see
(17) for the equation for Aϕ, take into account that Sad ∝ h0,
and notice that Sc is a linear function of the enthalpy density
h0 [see (15)]. The function h0 satisfies the equation

Δh0 ¼ −4πρ0 −Ω2
0r: ð48Þ

We believe that by invoking the maximum (minimum)
principle—specifically, the moving planes method [24]—
one can prove that maximal points exist at z ¼ 0.
Taking that into account, and exploiting the axial

symmetry, one would need to find the maximal values
of ST, Sg, Sad, and Sc in the line interval (rin, rout) within the
equatorial section of the disk. That is a formidable but
feasible numerical task.
We shall investigate disks extending from the innermost

equatorial circle corresponding to rin ¼ 0.1, 0.4, 0.5, 0.6,
0.75, and 0.95 to the outermost equatorial circle rout ¼ 1.
The results are comprised in ten diagrams and two tables—
each of the graphs demanded at least two dozen numerical
solutions.
It is useful to translate coordinate distances onto geo-

metric ones, using RS, the Schwarzschild radius of the
central black hole. It is assumed in all numerical calcu-
lations that the central mass is equal to 1 and the speed of
light is such that c2 ¼ 1000. The distance areal scale is thus
defined by its Schwarzschild radius RS ¼ 2=c2 ¼ 1=500,
that corresponds to the isotropic coordinate radius R ¼
1=2000. We constructed our toroids in limits of the 1PN
order of approximation, which means that conformal
factors f [see the metric (4)] are close to unity within
the volumes of toroids. Thus, the areal radius of the
innermost equatorial circle rin is given by RðrinÞ ¼
rinf2ðrinÞ ≈ rin. Therefore, inner areal radii of investigated
toroids change from about 50 times RS (for rin ¼ 0.1) to
475RS (for rin ¼ 0.95). The coordinate boundary of the
whole system is located at rout ¼ 1, and that corresponds to
the areal size of (approximately) 500 RS.
We observe that the geometric contribution sup Sg to the

total dragging is essentially independent of the distance of
the disk from the central black hole, sup Sg ¼ βMD=m,
where the proportionality coefficient β depends weakly
only on the ratio MD=m and β ∈ ð0.2; 0.5Þ × 10−3.
The antidragging sup Sad and centrifugal sup Sc terms

strongly depend on the disk’s distance from the black hole;
they dominate at distances of the order of 50RS and are

dwarfed by the geometric dragging effect represented by
sup Sg at the distance of 300RS.

B. Partial dragging effects

In Figs. 1–3, we plot the dependence of the maximal
value of the normalized dragging, antidragging, and cen-
trifugal 1PN corrections on the relative mass MD=m. The
equation of state is p ¼ Kρ4=3. There are a few dozen
solutions corresponding to each of the three systems with
the inner radii rin situated at 0.1,0.4, and 0.6. Numerical
data suggest that the quantities sup Sg, sup Sad, and sup Sc
are linear functions of the relative massMD=m. We display
the results in three diagrams. In Fig. 1, the ratio MD=m is
smaller than 0.001; in Fig. 2, we haveMD=m < 1; while in
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FIG. 1. The normalized 1PN corrections sup Sg (red lines),
sup Sad (blue lines), and sup Sc (green lines), within the symmetry
plane of the disk, put on the vertical axis—in the function of the
mass ratio MD=m ≤ 0.001 (displayed on the abscissa). The inner
disks’s boundaries are located at rin ¼ 0.1 (solid lines), 0.4
(broken lines), and 0.6 (dotted lines), respectively. The equation
of state p ¼ Kρ4=3.
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FIG. 2. The same as in Fig. 1, but with disk masses in the
interval ð0; mÞ.
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Fig. 3, the disk mass changes between 0 and 40 of the
central mass. In each case, there is an approximately linear
behavior.
We observe that the slope coefficient of the geometric

dragging quantity sup Sg=MD is only weakly dependent
on the position of a disk—it changes slightly with the
change of the inner radius rin. In contrast to that, the
slopes of the antidragging and centrifugal objects
sup Sad=MD and sup Sc=MD are quite sensitive to the disk
location; they become significantly smaller with the
increasing distance from the central black hole. For the
case rin ¼ 0.1, we have supSad > sup Sc > sup Sg; clearly,
the antidragging effect dominates, for all masses within
the range MD ∈ ð10−4m; 40mÞ. With the increase of the

distance, the picture reverses; at rin ¼ 0.6, we have
sup Sg > sup Sc > sup Sad. One can notice, choosing two
disks of the same mass but with different inner boundaries,
that the value of sup Sad at rin ¼ 0.6 is about one-half of its
value at rin ¼ 0.1.
One can read from these diagrams that for the equation

of state p ¼ Kρ4=3 and MD < 10−3m, the correction
sup Sg ≈ 4 × 10−3MD=m (see Fig. 1); the same equation
of state corresponds to sup Sg ≈ ð2.8 − 3.2Þ × 10−3MD=m,
where MD ∈ ðm; 40mÞ (see Fig. 3).
This analysis yields similar results also for disks with

the polytropic equation of state p ¼ Kρ5=3 (see Figs. 4–6),
with several notable differences. In the mass interval
M∈ ð0;10−3Þm and rin ¼ 0.1, we observe Sg > Sc > Sad,
while the centrifugal term sup Sc dominates at rin ¼ 0.1 for
higher disk masses. The antidragging related object sup Sad
exceeds the geometric part sup Sg only for MD > 0.4m,
again only at rin ¼ 0.1. When rin ¼ 0.4 or 0.6, then always
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FIG. 3. The same as in Fig. 1, but with disk masses in the
interval ðm; 40mÞ.
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FIG. 4. The normalized 1PN corrections sup Sg (red lines),
sup Sad (blue lines), and sup Sc (green lines), within the
symmetry plane of the disk, put on the ordinate—in the
function of the mass ratio MD=m ≤ 0.001 (displayed on
the abscissa). The inner disks’ boundaries are located at
rin ¼ 0.1 (solid lines), 0.4 (broken lines), and 0.6 (dotted
lines), respectively. The equation of state is p ¼ Kρ5=3.
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FIG. 5. The same as in Fig. 4, but with disk masses in the
interval ð0; mÞ.
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FIG. 6. The same as in Fig. 4, but with disk masses in the
interval ðm; 40mÞ.
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geometric effects dominate over centrifugal ones, and those
antidragging ones are the weakest of all.

C. Total dragging: A linear function of relative mass

In Figs. 7 and 8, we plot the dependence of the maximal

value of the normalized 1PN correction ST ¼ vϕ
1

Ω0c2
on the

relative mass MD=m.
We have found several dozens of solutions correspond-

ing to each of the four systems with the inner radii rin
situated at 0.1,0.5,0.75, and 0.95. Again, it appears that
sup ST is a strictly linear function of the relative mass. For
the sake of clarity, we show corresponding results in two
diagrams. In Fig. 7, for the equation of state p ¼ Kρ4=3, the
mass of the disk is smaller than 5m. The most interesting
feature of these plots is that the steepest lines correspond to

the farthest disk; for a fixed mass of disks, the maximal
value of the normalized correction ST increases with the
increase of rin.
In Fig. 8, which corresponds to the equation of state

p ¼ Kρ5=3, the disk mass changes between 0 and 20m. The
steepness of the lines is almost the same as in the Fig. 7, and
again the steepest lines correspond to the farthest disk.
A closer inspection in the regime of light disks, with

masses significantly smaller than the central mass, reveals a
more complex picture (see Fig. 9). For light disks—our
rough estimate is MD < 0.2m—the normalized dragging
sup ST for disks with inner boundaries located at rin may
decrease with the increase of rin, and then it can start to
increase. The value of the critical radius rcr, where the
behavior changes, depends on the massMD, but is probably
smaller than half of the central mass. In the situation
displayed on Fig. 9, we observe that sup STðrin ¼ 0.1Þ
(solid line) intersects with sup STðrin ¼ 0.5Þ (long broken
line), at masses (roughly) 0.01 m and 0.12m. That means
that disks with masses in the interval ð0.01m; 0.12mÞ are
characterized by functions sup ST that are not monotonic as
functions of rin, in the region 0.1 < rin < 0.5.
This behavior is due to the rapid growth of the anti-

dragging term sup Sad with the increase of mass that
compensates a moderate growth of the dragging quantity
sup Sg (compare Figs. 1 and 2), for disk masses that are
small enough. That would cause the falloff of the normal-
ized correction sup ST in an interval of small radii rin.

VII. ANGULAR MOMENTUM:
LOCAL VERSUS TOTAL

In this section, we address issues concerning the drag-
ging at the black hole horizon and the distribution of
angular momentum in systems with rotating rings. Let us
recall that Nishida and Eriguchi [3] applied the rotation law
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FIG. 7. The maximum of the normalized 1PN correction
vϕ
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Ω0c2

within the disk (on the ordinate) in the function of the asymptotic
mass of the diskMD (plotted on the abscissa), for disks with inner
boundaries located at rin ¼ 0.1, 0.5, 0.75, and 0.95, respectively.
The equation of state is p ¼ Kρ4=3.
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FIG. 8. The same as in Fig. 7, but for the equation of state
p ¼ Kρ5=3.
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FIG. 9. The values of sup ST are put on the ordinate, while disk
masses are put on the abscissa. The two lines corresponding to
rin ¼ 0.1 (solid line) and rin ¼ 0.5 (broken line) cross around
MD ¼ 0.11m. The equation of state is Kρ4=3.
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jðΩÞ ¼ AðΩ − BÞ. They found, in particular, that the
angular momentum of the central black hole can vanish
and—more generally—its internal spinning parameter aS
can be both negative and positive. For some configurations,
one would have jaSj > 1, and the dragging function Aϕ

would vanish at the horizon. Ansorg and Petroff [4]
assumed the constant angular velocity within the disk,
and they also obtained central black holes with jaSj > 1.
Our results are given in Table I. The internal spinning

parameter aS is contained within the range ð10−4; 10−10Þ.
That means that the central black hole can be safely
approximated by a Schwarzschild black hole. We already
proved that the metric function Aϕ can have only isolated
zeros [1]; that is, it cannot vanish at the horizon of the black
hole. There is an apparent discrepancy between our results
and those of Refs. [3–5]. This can be ascribed mainly to the
fact that our central black hole is inherently spinless, in
contrast to what was assumed in quoted papers, in which
central black holes possessed their own internal spin. We
think, however, that a different choice of the rotation law—
the uniform rotation [4], the constant j adopted by Shibata
[5], and the linear law jðΩÞ ¼ AðΩ − BÞ [3], within the
fully general-relativistic equilibrium instead of the
Keplerian rotation law (9) in the perturbation equilibrium
(up to the 1PN order)—also played a role. It might happen
that for the post-Newtonian descriptions with Ω ¼ const or
j ¼ const the apparent horizon’s spinning parameter would
be much larger than observed here. We cannot exclude
also that the fully general-relativistic equilibria with the
Keplerian law (9) would have values of aS exceeding 1.
Figure 10 shows the dimensionless spinning parameter

for the whole spacetime, a∞ ≡ cj∞
M2 , where M is the total

mass read off from the asymptotic behavior of the total
potential −m

R þ UD. Let us remark that for the
Schwarzschild black hole a∞ ¼ 0, while for the extremal
Kerr black hole, a∞ ¼ 1. All nonextremal Kerr black holes
have 0 < a∞ < 1. In our case, we have values of a∞ that

are large for disks heavier than the black hole and that are
small in the opposite case, when MD ≪ m. Our numerical
data clearly demonstrate that the spinning parameter in
non-Kerr stationary configurations can be significantly
larger than 1.
The most significant observation is that only a tiny

fraction jS of the angular momentum is deposited within
the central black hole. The ratio jS=j∞ varies from 10−6 for
the disk closest to the center, with the equatorial inner edge
located at rin ¼ 0.1 (which corresponds to about 50 RS), to
10−12 for systems with the equatorial inner edge placed at
rin ¼ 0.95 (that corresponds to about 475 RS).

VIII. ANGULAR MOMENTUM AND
ISOPERIMETRIC INEQUALITIES

We shall start with a compendium on various concepts of
mass and mass densities. In formula (3), the baryonic mass
density ρ appears. It plays the role of an integration factor,
ensuring the conservation of the baryonic current ρuμ:
∇μðρuμÞ ¼ 0. The volume integral

R
V dVρ is the baryonic

mass—a quantity that is conserved. In the Newtonian limit,
the baryonic mass coincides with asymptotic mass, but
within General Relativity the asymptotic (Bondi-Einstein-
Landau-Lifschitz-Freund-Trautman-Arnowit-Deser-Misner)
mass (see Ref. [25] for a discussion) is distinct from the
baryonic mass. In our foregoing considerations, we always
dealt with the conserved (ADM) asymptotic mass [18]. One
defines also the rest energy density e≡ ρðc2 þ hÞ − p ¼
ρc2 þ p

γ−1, the total rest energy Er ≡ R
V dVe [26], and the

related rest mass MrðVÞ≡ 1
c2
R
V dVe (see, for instance,

Ref. [26]).
One defines the momentum density Jν ≡ tμT

μ
ν. It is well

known that perfect fluids with the polytropic exponent
γ ≤ 2 satisfy the dominant energy condition e ≥

ffiffiffiffiffiffiffiffiffi
JkJk

p ≡
jJj [18], that reduces in our case to the inequality

e ≥
ffiffiffiffiffiffiffiffiffiffi
JϕJϕ

q
: ð49Þ

It was already shown that—assuming the dominant
energy condition, conformal flatness, and a kind of con-
vexity—the total rest mass MrðVÞ can be bounded by
2c2lðVÞ, where l is a geodesic size of the configuration
[27–32]. These are special cases, but they are in a sense
more general than is needed for our purpose, since their
derivation does not require the assumption of stationarity,
adopted in this paper; it is enough to guarantee that the
configurations are momentarily static. On the other hand,
one needs a regular center and a kind of convexity, that can
be obeyed by rotating stars but which is not valid for
rotating toroids. Thus, application of estimates of the type

MrðVÞ ≤ 2c2lðVÞ ð50Þ
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FIG. 10. Asymptotic values of the spin parameter a∞ ≡ cj∞
M2 ,

where M ¼ mþMD is the asymptotic mass.
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—bounding the rest mass in terms of geodesic radii—to
toroidal systems would require a renewed analysis.
Dain recently investigated two other size measures,

related to the so-called radius RSY of Schoen and Yau
[33]. One of them is defined as

R0 ≡ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
V jηjdV

q
πRSY

; ð51Þ

while the other is given by

R̂≡ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
V jηjdV

q
πROM

; ð52Þ

here, ROM is a modification of the RSY measure due to
N. Ó. Murchadha [34]. They are formulated in terms of
quantities relating entirely to toroids; they do not assume
convexity, and they can be applied to systems investigated
in this paper.
The total angular momentum can be written as

L ¼ c−1
R
V Jνη

νdV ¼ c−1
R
V JϕdV. The application of

(49) to the definition of the angular momentum (33) gives
a string of inequalities

jLj ≤ 1

c

Z
V
jJjjηjdV ≤

1

c
sup
V
jηj

Z
V
jJjdV ≤ csup

V
jηjMrðVÞ:

ð53Þ

In the last inequality, we have used the assumption that
the data satisfy the dominant energy condition. Provided
that MrðVÞ ≤ 2c2lðVÞ and that we are in the perturbative
regime (which means that the conformal factor is close to
1), we get supV jηj ≈ RðVÞ, where RðVÞ ¼ C=ð2πÞ is the
areal size of a toroid: its circumference C divided by 2π.
This leads to the inequality, that is valid for rotating
toroids, supposing conformal flatness and the perturba-
tive regime,

jLzj ≲ 2c3RðVÞlðVÞ: ð54Þ

This derivation of (54) is analogous to that of S. Dain
[6,7] for axially symmetric systems, without postulating
stationarity, but assuming an isoperimetric inequality as
in (50).
Dain has got another bound onto a local angular

momentum within a finite volume, that does not require
postulating any isoperimetric inequalities but instead
assumes constant density bodies, of the form

~R2 ≥ δ
1

c3
jLj: ð55Þ

Here, δ ¼ 24
π3

is a coefficient of the order of unity, and
~R ¼ R̂ or ~R ¼ R0. We have to note that, unfortunately,

rotating disks are not characterized by constant mass
densities.
M. Khuri obtained a similar upper bound, dropping the

assumption of constant density but imposing a stronger
energy condition and a strong untrapped condition [35].
Tables I and II show results of our numerical calcula-

tions. Columns 1 and 3 show values of angular momentum
of the whole system and of the black hole, respectively;
clearly, the angular momentum deposits in peripheral
regions. Column 2 shows values of the control parameter

cp ≡
R
S
d2S

4πR2
S
; all its entries should be close to 1, since that

means that the horizon is indeed located at the coordinate
radius R ≈ m

2c2, as assumed in the numerical calculation.
Column 4 shows the mass of the disk in terms of the central
mass m. The last column presents the coordinate height of
the disk. Let us remind the reader that we assumed
c2 ¼ 1000.
The validity of (54) is expected, since it can be proven in

the 1PN order of approximation, but the fact that it is
satisfied with a huge margin may be interpreted as sug-
gesting the universality of the isoperimetric inequality (50).
The geometry inside toroids is approximately Euclidean,

and hence the Schoen and Yau radius RSY is roughly equal
to one-half of the min ð1

2
ðrout − rinÞ; hÞ; it is easy to check

that R2
SY ≫ 1

c3 jLj for all systems that are described in
Table I, while R2

SY ≪ 1
c3 jLj for configurations listed in

Table II. Both measures R0 and R̂ are much greater than RSY
[they are of the order of RðVÞ, or of the radius of the great

TABLE I. The asymptotic angular momentum (the first col-
umn) and the black hole angular momentum for disks with rin ¼
0.1 (the third column). The fourth column gives the disks’s mass
in units of the central mass m. The second column displays the
area of the central black hole in terms of RS ≡ 2m=c2. The last
column is the maximal height of the disk.

L AAH=16π jS MD hmax

0.6880 0.9972 6.034 × 10−10 1.493 0.3922
1.006 0.9959 1.339 × 10−10 2.156 0.3922
1.351 0.9945 2.459 × 10−9 2.848 0.4269
1.723 0.9931 4.018 × 10−9 3.561 0.4529
2.119 0.9917 6.065 × 10−9 4.290 0.4728
2.539 0.9903 8.644 × 10−9 5.032 0.4883
2.981 0.9888 1.180 × 10−8 5.783 0.5012
3.445 0.9873 1.557 × 10−8 6.544 0.5120
6.071 0.9798 4.543 × 10−8 10.43 0.5211
9.174 0.9722 9.539 × 10−8 14.42 0.5515
12.72 0.9645 1.709 × 10−7 18.50 0.5688
16.70 0.9568 2.755 × 10−7 22.64 0.5799
21.09 0.9490 4.134 × 10−7 26.84 0.5878
25.89 0.9413 5.886 × 10−7 31.11 0.5935
31.08 0.9335 8.051 × 10−7 35.43 0.6014
36.67 0.9258 1.067 × 10−6 39.82 0.6044
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circle of the toroid], and the inequality ([6]) holds true for
both of them and for all systems displayed in the two
Tables. That might be regarded as surprising, since—as we
pointed out above—stationary self-gravitating toroids do
not satisfy the basic condition of Ref. [6], that the mass
density is constant; that probably means that a better
analytic estimate should be available under much weaker
suppositions.

IX. CONCLUDING REMARKS

We have demonstrated that in Keplerian systems con-
sisting of a rotating toroid and a spinless black hole, the
black hole can be (essentially) Schwarzschildean—almost
all angular momentum is deposited within the toroid. This
is true for a large spectrum of systems, for disk masses
MD ∈ ð10−4m; 40mÞ (m is the black hole mass). That
observation would mean that there is a need to do a more
careful interpretation of those astrophysical objects with
black holes where the Keplerian rotation curve is observed.
The standard practice is to assume that the black hole is
Kerr-like and that the toroid is testlike, that is its self-
gravity can be neglected. Our results suggest that an
alternative picture is plausible, with the central black hole
being Schwarzschildean and the disk carrying angular
momentum and self-gravitating, even for light disks,
MD=m ≪ 1.

Our numerics suggests that there is a need to include all
three weak field components of the general-relativistic
effects [2] in gaseous disks circulating around a spinless
black hole. The geometric (frame-dragging) effect becomes
dominating at relatively large distances; the two other
effects can contribute up to 50% even at distances R ≈
500RS and even for light disks, MD ≪ m.
One of the main surprises in this investigation is the fact

that all weak general-relativistic components (dragging,
antidragging, and the centrifugal) scale with MD=m; their
maximal values are proportional toMD=m. The same is true
concerning the total 1PN correction to the angular velocity.
We do not know any simple explanation of that fact. Why a
fairly complicated normalized post-Newtonian correction
ST (or its normalized compounds: dragging Sg, antidrag-
ging Sad, and centrifugal Sc) should have maximal values
that almost linearly depend on the mass functional MD?
This scaling would mean that the Dopplerian width of
spectral lines, of general-relativistic origin, emitted by
sources corotating with Keplerian stationary disks scales
proportionately to MD=m. This opens, in principle at least,
a new observational method for estimating masses in such
objects.
The mathematical problems related to stationary rotat-

ing polytropes are known as free boundary problems.
There are numerical approaches that might inspire the
future mathematics of such systems; we should mention
here the pioneering work of Hachisu [36], Eriguchi and
Nishida [21], and others [37]. They are analyzed—with
emphasis on the convergence of the SCF approaches—in
the recent work of Price et al. [38]. Hachisu [36] pointed
out the necessity to include the maximal value of the fluid
mass density, for rotating Newtonian polytropes, in the
catalog of assumed data for the self-consistent field
method. Our work brings a new technical element—that
the maximal (baryonic) mass density should be a part of
given data (at least up to the 1PN order), in addition to the
rotation law, the equation of state, and information on
spatial extendibility. Little is known about mathematical
setting of rotating self-gravitating systems within general
relativity.
Finally, we confirmed the validity of estimates formu-

lated by S. Dain [6]. They imply, in particular, that the
angular momentum is located mostly in peripherals of
rotating black-hole-toroidal systems; this is consistent with
the numerical results reported above.
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TABLE II. The asymptotic angular momentum (the first col-
umn) and the black hole angular momentum for disks with rin ¼
0.95 (the third column). The fourth column gives the disks’s mass
in units of the central massm. The second column depicts the area
of the central black hole radius in terms of RS ≡ 2m=c2. The last
column is the maximal height of the disk.

L AAH=16π jS MD hmax

1.530 0.9988 4.176 × 10−11 1.145 0.033391
2.563 0.9983 1.048 × 10−10 1.722 0.033395
3.775 0.9977 2.037 × 10−10 2.302 0.033395
5.061 0.9971 3.435 × 10−10 2.885 0.033395
6.503 0.9965 5.287 × 10−10 3.470 0.033395
8.062 0.9959 7.632 × 10−10 4.059 0.033395
9.733 0.9953 1.051 × 10−9 4.650 0.033395
11.15 0.9947 1.396 × 10−9 5.243 0.033395
13.39 0.9942 1.800 × 10−9 5.839 0.033395
15.37 0.9936 2.269 × 10−9 6.438 0.033395
17.45 0.9930 2.804 × 10−9 7.040 0.033395
19.62 0.9924 3.409 × 10−9 7.645 0.033395
21.88 0.9918 4.086 × 10−9 8.252 0.033395
24.23 0.9912 4.839 × 10−9 8.862 0.033395
26.67 0.9906 5.670 × 10−9 9.474 0.033395
29.20 0.9901 6.583 × 10−9 10.09 0.033395
31.81 0.9895 7.579 × 10−9 10.70 0.033395
34.50 0.9889 8.661 × 10−9 11.33 0.033395
37.28 0.9883 9.832 × 10−9 11.95 0.033395
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