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In this paper, we show that a rigidly rotating string can extract the rotational energy from a rotating black
hole. We consider Nambu-Goto strings stationary with respect to a corotating Killing vector with an
uniform angular velocity ω in the Kerr spacetime. We show that a necessary condition of the energy-
extraction process is that an effective horizon on the string world sheet, which corresponds to the inner light
surface, is inside the ergosphere of the Kerr black hole and the angular velocity ω is less than that of the
black holeΩh. Furthermore, we discuss global configurations of such strings in both of a slow-rotation limit
and the extremal Kerr case.
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I. INTRODUCTION

It is well known that the rotational energy of black
holes can be extracted, and various mechanisms of the
energy extraction have been proposed: the Penrose process
caused by a particle fragmentation [1,2], superradiance
with amplifying incident waves for various fields [3–7],
the Blandford-Znajek process in electromagnetic fields
around a rotating black hole [8], and so on.1 Extracting
energy plays an important role in astrophysics as well as in
general relativity.
In this paper, we show that the rotational energy can be

extracted from a rotating black hole by a rigidly rotating
string twining around it. Strings are interesting objects in
several contexts; for example, in cosmology cosmic strings
will be important probes of the early universe, and in string
theory, of course, strings themselves are so fundamental to
construct the theories. The current system may be fasci-
nating as a simple example of interacting systems of a
string and a black hole and furthermore various extended
objects and black objects [11–13]. In addition, this is
expected to be a toy model of magnetic flux around a
rotating black hole. As is clear from the stress-energy
tensor of the Maxwell field, magnetic flux has magnetic
tension. To study some phenomena in which magnetic
tension is essential but magnetic pressure is not so
significant, one may substitute magnetic flux with strings.
Energy-extraction mechanism by strings from this perspec-
tive were discussed in Refs. [14,15].
We consider stationary Nambu-Goto strings with respect

to a corotating Killing vector characterizing a frame
rotating with a constant angular velocity ω, which is a
linear combination of stationary and axisymmetric Killing

vectors, in the Kerr spacetime. Such rigidly rotating strings
in stationary axisymmetric spacetimes were studied in
Ref. [16,17], where for ω ¼ 0, particularly, explicit analytic
solutions were obtained. Here, we will focus on the induced
geometry on the string world sheet in order to reveal the
nature of the energy extraction in detail.
In general, if a system is assumed to be rigidly rotating,

the locus where its rotational velocity will exceed the speed
of light emerges. The surface on which the velocity
coincides with the speed of light is called as “light cylinder”
or “light surface” more generally. In stationary cases, it
becomes the stationary limit surface at which the norm of
the corotating Killing vector is zero and beyond which the
Killing vector becomes spacelike.
Similarly, for a rigidly rotating string such surface will be

reflected in an effective Killing horizon on the induce
geometry of the string world sheet. Because dynamics of
the string is governed by its induced metric, the effective
horizon determined by the induced metric acts as a causal
boundary for the stationary region on the world sheet such
that the stationary Killing vector is timelike with respect to
the induced metric. However, whether an effective horizon
exists or not depends on the actual configuration of the string
determined by the equations of motion. If the string
configuration does not reach the light surface, for instance,
no effective horizon emerges on the string world sheet. The
aim of this paper is to explore a rigidly rotating string on
which the effective horizon exists with an energy flow. This
implies that the string should be regularly passing through
the light surface and extending far beyond. It turns out that
such strings are characterized by two parameters: the angular
velocity and the angular momentum flux (i.e., torque).
The reason why the effective horizon is significant is as

follows. Even if the string is extending far beyond, a
segment of the string beyond the effective horizon can
never affect causally the other segment remaining in the
stationary region. This means that we should be uncon-
cerned about the segment of the string beyond the effective

*kinoshita@phys.chuo‑u.ac.jp
†igata@rikkyo.ac.jp
‡ktanabe@rikkyo.ac.jp
1For example, the magnetic Penrose process [9]. See also

Ref. [10] and references therein.
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horizon to solve string dynamics in the stationary region.
The string is regarded as an “open” string, which has
different end points, in its causal patch where dynamics can
be determined by initial conditions prepared in the sta-
tionary region. If there is energy flux on this “open” string,
the energy can be transferred from the inner end point near
the rotating black hole to the outer end point (or infinity) far
from the black hole. Thus, we accomplish net energy
transfer across the stationary region causally connected on
the string world sheet.
The paper is organized as follows. In Sec. II we examine

the induced geometry of rigidly rotating strings and the
conditions that there exists an effective horizon. As a result,
we obtain a parameter space of the angular velocity and the
angular momentum flux in which physically reasonable
string configurations can exist and show that energy-
extraction process occurs. We discuss global structures
of such strings in Sec. III. In a slow-rotation approximation,
where both of a black hole and a string are slowly rotating,
we analytically study global solutions, and then in the
extremal Kerr case we show various global configurations
obtained by numerically solving the equations of motion.
Unless otherwise specified, Newton’s constant GN and the
speed of light c are set to unity in this paper.

II. RIGIDLY ROTATING STRING
IN THE KERR SPACETIME

A. Effective horizon and regularity condition

The metric of the Kerr spacetime in the Boyer-Lindquist
coordinates is given by

gμνdxμdxν ¼ −dt2 þ 2Mr
Σ

ðdt − asin2θdϕÞ2 þ Σ
Δ
dr2

þ Σdθ2 þ ðr2 þ a2Þsin2θdϕ2; ð1Þ

where

Σ ¼ r2 þ a2cos2θ; Δ ¼ r2 þ a2 − 2Mr: ð2Þ

The larger root of ΔðrÞ ¼ 0 yields the radius of the event
horizon rh ≡M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
. The angular velocity of

the event horizon is Ωh≡a=ða2þr2hÞ. The radius of the
ergosphere, characterized by gtt ¼ 0, is rergoðθÞ≡M þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2cos2θ

p
. Note that the greek indices, μ and ν,

are used for spacetime components.
In this background, we consider the stationary rotating

string of which the world sheet is tangent to the corotating
Killing vector

ξμ ¼ ð∂tÞμ þ ωð∂ϕÞμ; ð3Þ

where a constant ω is the angular velocity of the rotating
frame. Thus, the string is rigidly rotating with the angular
velocity ω. This string is embedded as

ϕ ¼ ωtþ φðσÞ; r ¼ rðσÞ; θ ¼ θðσÞ; ð4Þ

where we have synchronized the time coordinate of the
string world sheet with t in the Boyer-Lindquist coordi-
nates. The induced metric on the string world sheet is
given by

habdσadσb ¼ −
�
1 −

2Mr
Σ

ð1 − ωasin2θÞ2 − ω2ðr2 þ a2Þsin2θ
�
dt2 þ 2φ0sin2θ

�
ωðr2 þ a2Þ − 2Mr

Σ
að1 − ωasin2θÞ

�
dtdσ

þ
�
Σ
�
r02

Δ
þ θ02

�
þ ðr2 þ a2Þ2 − a2Δsin2θ

Σ
sin2θφ02

�
dσ2; ð5Þ

where the prime denotes derivative with respect to σ. Note
that the latin indices, a and b, are used for the world sheet
components. We have defined the induced metric as
hab ≡ gμν∂aXμ∂bXν, where XμðσaÞ denote the embedding
functions of the string. This metric admits the stationary
Killing vector ξa ¼ ð∂tÞa that is induced from ξμ. Indeed, the
Killing vectors ξμ and ξawith respect to the spacetimemetric
and the induced metric are directly related to each other as
ξa∂aXμ ¼ð∂tÞμþωð∂ϕÞμ ¼ ξμ. It turns out that the norm of
ξawould vanish. A locus of such effective (Killing) horizons
on the string world sheet is determined by

Fðr; θÞ≡ −htt ¼ 1 −
2Mr
Σ

ð1 − ωasin2θÞ2

− ω2ðr2 þ a2Þsin2θ ¼ 0: ð6Þ

Its condition can be rewritten as

ΔðrÞ ¼ ½a − ða2 þ r2Þω�2
ð1 − aωsin2θÞ2 sin2θ: ð7Þ

This condition, indeed, implies that the norm of the Killing
vector with respect to the spacetime metric vanish, namely
gμνξμξν ¼ 0, as well as the induce metric. Therefore, the
surfaces that Fðr; θÞ ¼ 0 represents are nothing but sta-
tionary limit surfaces in terms of the rigid rotation with the
angular velocity ω. In general, Fðr; θÞ ¼ 0 has two positive
roots in terms of r like a metric of a black hole with
cosmological constant. The inner surface and the outer one
correspond to so-called inner light sphere and outer light
cylinder, respectively. Note that, ifω is sufficiently large, the
two light surfaces will merge into one connected light
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surface. In this case the number of positive roots of
Fðr; θÞ ¼ 0 can be less than 2 for a given θ.
We consider the rigidly rotating Nambu-Goto string. The

Nambu-Goto action for the string is

S ¼ −
Z

dtdσ
ffiffiffiffiffiffi
−h

p
¼

Z
dtdσL; ð8Þ

where h is the determinant of hab, and we have defined

L≡ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FΣ

�
r02

Δ
þ θ02

�
þ Δsin2θφ02

s
: ð9Þ

For simplicity, we have omitted an overall factor in the
above Lagrangian density, because it is irrelevant to
dynamics of the strings. It means that the tension of the
strings has been set to unity, or dynamics of the strings with
a unit tension has been described. Since this action does not
depend on φðσÞ explicitly, we have a conserved quantity
given by

q≡ ∂L
∂φ0 ¼

Δsin2θ
L

φ0: ð10Þ

The sign of q is directly connected with the sign of φ0
because Δ ≥ 0 outside the event horizon: q > 0 for φ0 < 0
and q < 0 for φ0 > 0. This quantity is interpreted as the
angular momentum flux flowing on the string world sheet
outwardly,2 and it is written as

q ¼
ffiffiffiffiffiffi
−h

p
Tσa∂aXμð∂ϕÞνgμν

¼ −
ffiffiffiffiffiffi
−h

p
½hσtgtϕ þ ðhσtωþ hσσφ0Þgϕϕ�; ð11Þ

where Tab ¼ −hab is the energy-momentum tensor on the
world sheet for the Nambu-Goto string. Similarly, the
outward energy flux is written as

ωq ¼ −
ffiffiffiffiffiffi
−h

p
Tσa∂aXμð∂tÞνgμν

¼
ffiffiffiffiffiffi
−h

p
½hσtgtt þ ðhσtωþ hσσφ0Þgϕt�: ð12Þ

Obviously, these angular momentum flux and energy flux
are respectively associated with the Killing vectors in the
Kerr spacetime, namely ð∂ϕÞμ and ð∂tÞμ, so that they are
conserved in terms of σ. Note that, if one wants to consider
a general value μ of the tension rather than unity, one
should replace q with μq.
Although the locus of the effective horizon is determined

by Fðr; θÞ ¼ 0, whether the effective horizon does actually
exist or not depends on the configuration of the string given
by the equations of motion. Let us see a condition for the
effective horizon to exist regularly on the string world
sheet. We can rewrite Eq. (10) as

r02

Δ
þ θ02 ¼ Δsin2θðΔsin2θ − q2Þ

q2ΣF
φ02: ð13Þ

The left-hand side of the above equation cannot be negative
outside the event horizon, i.e., Δ > 0. On the other hand,
the denominator in the right-hand side can change its sign
beyond the effective horizon Fðr; θÞ ¼ 0. Hence, the
numerator must be zero at the effective horizon and must
change its sign for the configuration of the string to extend
regularly beyond the effective horizon. At the effective
horizons Fðr; θÞ ¼ 0, we have the regularity condition

q2 ¼ Δsin2θ: ð14Þ

If the above condition is not satisfied at Fðr; θÞ ¼ 0, then
the induced geometry becomes singular there and the locus
determined by Fðr; θÞ ¼ 0 is a singularity rather than a
horizon. Note that, if we regard φ as a “time” coordinate
and ðdr=dφ; dθ=dφÞ ¼ ðr0=φ0; θ0=φ0Þ as a “velocity,” we
can interpret Eq. (13) as an equation of mechanical energy
for a particle in an effective potential on two-dimensional
curved space. In that sense the condition of Eq. (14) implies
“turning point” of the effective potential.
Now, we are interested in regular solutions of the string

passing through the effective horizon. Therefore, we will
require the string to satisfy the both conditions of Eqs. (6)
and (14). Solving the two conditions outside the event
horizon (r > rh), we have two branches of solutions in
terms of r (see Appendix A 1). The locus of the effective
horizon is

r�effðω; qÞ ¼
M

1� qω
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M

1� qω

�
2

− aða ∓ qÞ
s

; ð15Þ

and

sin θ�eff ¼ jqj=½Δðr�effÞ�1=2; ð16Þ

where q½a − ða2 þ r2Þω� > 0 is satisfied if the upper sign is
chosen and q½a − ða2 þ r2Þω� < 0 is satisfied if the lower
sign is chosen. Note that, for simplicity, we have restricted
the domain to the interval 0 ≤ θ ≤ π=2 because the current
system is symmetric under θ → π − θ. Since the branches
of r�eff are related to each other in q → −q such as
r−effðω; qÞ ¼ rþeffðω;−qÞ, we shall focus on rþeffðω; qÞ in
what follows.
In order to satisfy 0 ≤ sin2 θþeff ≤ 1, it turns out that ω lies

in the intervals

ω0ðqÞ < ω ≤ ωπ=2ðqÞ ðq > 0Þ;
ωπ=2ðqÞ ≤ ω < ω0ðqÞ ðq < 0Þ; ð17Þ

where2Here, “outward” means r0 > 0.
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ω0ðqÞ≡ −
1

q
; ð18Þ

ωπ=2ðqÞ≡ a − q

2M2 − qða − qÞ þ 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ða2 − q2Þ

p : ð19Þ

One of the bounds for the angular velocity ω0ðqÞ
corresponds to rþeff → ∞ and θþeff → 0, and the other

ωπ=2ðqÞ corresponds to rþeff ¼Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2− ða2−q2Þ

p
and

θþeff ¼ π=2. If q ¼ 0, the bound of the angular velocity of
the string, ωπ=2ðqÞ, and the radius of the effective horizon,
rþeff , will coincide with the angular velocityΩh and radius rh
of the event horizon on the equatorial plane, respectively.
When ω ¼ 0, the radius of the effective horizon coincides
with that of the ergosphere, namely rþeffð0; qÞ ¼ rergoðθþeffÞ.
It is worth noting that, becausewe can find that the sign of

∂rþeff=∂ω depends only on the sign of q (see Appendix A 1),
both of rþeffðω; qÞ and θþeffðω; qÞ are monotonic functions of
ω for a given q. The regions determined by Eq. (17) are
whole regions allowed for ðrþeff ; θþeffÞ to exist (we will later
depict the regions in Figs. 1 and 3).

B. Equations of motion and boundary conditions

We have seen the position of the string in the spacetime
is determined so that the configuration of the string should
regularly extend over the effective horizon on the induced
geometry. We will show that the regularity conditions can
determine the first derivative, also. It follows that we
can obtain boundary conditions enough to solve the
equations of motion for the string at the effective horizon.
Once we have required rigidly rotating strings to enter
into the effective horizon, their boundary conditions are
determined.
The action (8) still has the degree of freedom arising

from coordinate transformation of the spatial world sheet
coordinate σ. This means that one can choose σ for one’s
own convenience. With taking σ as an affine parameter
(i.e., L ¼ −1), the equations of motion for rðσÞ, θðσÞ, and
φðσÞ are

FΣ
Δ

r00 þ 1

2

�
FΣ
Δ

�
;r
r02 þ

�
FΣ
Δ

�
;θ
r0θ0 −

ðFΣÞ;r
2

θ02

−
Δ;r

2
sin2θφ02 ¼ 0; ð20Þ

FIG. 1. Parameter spaces for the stationary strings that pass through the effective horizon regularly in the case of (a) a ¼ 0.5 (left),
(b) a ¼ 0.9 (center), and (c) a ¼ 1.0 (right) in the unitM ¼ 1, which are shown by the shaded regions in the upper plots. Each region is
enclosed by ω0ðqÞ (blue solid lines) and ωπ=2ðqÞ (red solid lines). The lower plots show contours of rþeff and θþeff in the case where

positive energy extraction occurs. The dashed lines denote the contours of sin θþeff ¼ 0.98,
ffiffiffi
3

p
=2, 1=

ffiffiffi
2

p
, 1=2, 0.1 from the top to the

bottom in each plot. The solid gray lines denote the contours of (a) rþeff ¼ 2, 1.98, 1.95, 1.92, 1.89, 1.87; (b) rþeff ¼ 1.9, 1.8, 1.7, 1.6, 1.5,
1.4; (c) rþeff ¼ 1.9, 1.7, 1.5, 1.3, 1.1, from the top to the bottom.
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FΣθ00 −
ðFΣÞ;θ
2Δ

r02 þ ðFΣÞ;rr0θ0 þ
ðFΣÞ;θ

2
θ02

− Δ sin θ cos θφ02 ¼ 0; ð21Þ

and

Δsin2θφ0 ¼ −q; ð22Þ
which corresponds to Eq. (10). Note that we have used a
comma to denote a partial derivative with respect to a
spacetime coordinate, such as F;r ¼ ∂rF.
Since Fðr; θÞ in the equations of motion vanishes at the

effective horizon, we should require conditions for the
solutions to be regular. At σ ¼ σ0 such that rðσ0Þ ¼ r�eff
and θðσ0Þ ¼ θ�eff , the regularity for the equations of motion
yields�

F;r

2
r02 þ F;θr0θ0 −

F;r

2
Δθ02

�����
σ¼σ0

¼ Δ;r

2Σ

����
σ¼σ0

; ð23Þ

�
−
F;θ

2Δ
r02þF;rr0θ0 þ

F;θ

2
θ02

�����
σ¼σ0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ−q2

p
qΣ

����
σ¼σ0

; ð24Þ

where we have used sin θ�eff ¼ jqj=½Δðr�effÞ�1=2. If
ðΔ;rF;r − 2F;θ cot θÞjσ¼σ0

> 0, we obtain boundary condi-
tions for the first derivatives of rðσÞ and θðσÞ as

r02jσ¼σ0
¼

"
Δ;rF;r − 2F;θ cot θ
2ΣðF2

;r þ F2
;θΔ−1Þ

þ 1

2Σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

;r þ 4Δcot2θ
F2
;r þ F2

;θΔ−1

s #�����
σ¼σ0

; ð25Þ

θ02jσ¼σ0
¼

2
4− Δ;rF;r − 2F;θ cot θ

2ΔΣðF2
;r þ F2

;θΔ−1Þ

þ 1

2ΔΣ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

;r þ 4Δcot2θ
F2
;r þ F2

;θΔ−1

s 3
5
������
σ¼σ0

; ð26Þ

where the relative sign between r0ðσ0Þ and θ0ðσ0Þ
should be positive because of ΣðF2

;rþΔF2
;θÞr0θ0jσ¼σ0

¼
ðΔ;rF;θþ2ΔF;r cotθÞjσ¼σ0

> 0. Note that we can solve
the equations ofmotion outward or inward from the effective
horizon σ ¼ σ0 when we choose r0ðσ0Þ > 0 or r0ðσ0Þ < 0
respectively.

C. Parameter regions of physical solutions:
energy extraction

Provided that parameters ω and q are given in the
allowed regions, we have two sets of the boundary
conditions fr; θ; r0; θ0g for each branch of r�eff and can
obtain regular string solutions at least near the effective

horizon. Since the angular momentum flux q and the energy
flux ωq have been defined to be positive when their
directions are outward, q > 0 and ωq > 0 can respectively
describe processes of extracting the angular momentum and
the energy from the black hole. If one is interested in the
energy extraction for example, the string solutions with
ωq > 0 are important. However, even though the string
configurations are regular, all of them cannot describe
physical processes. Only one of the branches of solutions
can describe physically reasonable process, while the other
describes unphysical but time-reversal process.
As a simple and intuitive manner to discriminate the

physical process, wewill argue total thermodynamic system
constituted of the string and the rotating black hole. We
suppose the total energy and total angular momentum
conservation are satisfied for the total system. Then,we have

dMBH

dt
þ ωq ¼ 0;

dJBH
dt

þ q ¼ 0; ð27Þ

whereMBH and JBH are the mass and angular momentum of
the black hole. The first law of black hole thermodynamics3

yields

dSBH
dt

¼ 1

T

�
dMBH

dt
−Ωh

dJBH
dt

�
¼ q

T
ðΩh − ωÞ; ð28Þ

where T is the Hawking temperature. Since physical
processes should satisfy dSBH=dt ≥ 0, this implies that ω ≤
Ωh for q ≥ 0 and ω ≥ Ωh for q ≤ 0. Therefore, the physi-
cally reasonable solutions seem to be those of the rþeff branch.
The induced geometry on the string world sheet offers

further insights into criteria for determining physical
process. Now, ðt; σÞ component of the induced metric
can be rewritten as

htσ ¼
φ0sin2θ

Σ
fΔað1 − ωasin2θÞ

− ðr2 þ a2Þ½a − ωðr2 þ a2Þ�g: ð29Þ
At the effective horizon, σ ¼ σ0, we evaluate it as

htσjσ¼σ0
¼ −L

q½a − ða2 þ r2Þω�
ΔðrÞð1 − ωasin2θÞ

����
σ¼σ0

: ð30Þ

Since L < 0, Δðr�effÞ > 0, and 1 − ωasin2θ�eff > 0 (see
Appendix A 3 for detail), we have htσ > 0 for
q½a−ða2þr2Þω�>0 and htσ<0 for q½a−ða2þr2Þω�<0

3The first law of black hole thermodynamics for the Kerr black
hole is given by dM ¼ TdSþ ΩhdJ, where the temperature T,
entropy S, angular momentum J, and angular velocity Ωh are
defined by

T¼ Δ;rðrhÞ
4πðr2hþa2Þ ; S¼ 2πMrh; J¼ aM; Ωh ¼

a
r2hþa2

:
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at the effective horizon. This indicates that solutions of the
rþeff branch have htσ > 0 and those of the r−eff branch
have htσ < 0 at the effective horizon. The sign of htσ is
associated with whether the Killing horizon generated by
ξa ¼ ð∂tÞa on the world sheet becomes black-hole-type for
htσ > 0 or white-hole-type for htσ < 0. We can simply
understand it as follows. At the effective horizon, two
future-directed null vectors with respect to the induced
metric are given by

ξa ¼ ð∂tÞa; χa ¼ hσσð∂tÞa − 2htσð∂σÞa: ð31Þ

It turns out that ξa is outgoing null vector and χa is ingoing
one if htσ > 0, whereas ξa is ingoing null vector and χa is
outgoing one if htσ < 0. Coordinates on the world sheet can
be freely chosen, and dynamics of the string dose not
explicitly depend on the world sheet coordinates, so that a
time coordinate on the world sheet has little physical
meaning in general. However, because we have identified
the time coordinate on the world sheet with the Boyer-
Lindquist time t on the spacetime, time evolutions on the
world sheet described by this time t have physical mean-
ings. When ξa associated with the physical time t generates
the white-hole-like effective horizon, we should provide
information at the effective horizon whenever we solve
time evolutions in terms of t. It means that these configu-
rations will be never realized unless specific conditions
continue to be provided. On the other hand, when ξa

generates the black-hole-like effective horizon, we do not
need any conditions at the effective horizon to solve time
evolutions because it is located in the causal future.
Therefore, such configurations can be naturally realized
by time evolutions without any specific initial conditions or
any information beyond the stationary region.
Parameter spaces for the rigidly rotating strings of the

rþeff branch are shown in Fig. 1. Allowed regions in ðω; qÞ
space, which is given by Eq. (17), are enclosed by ω0ðqÞ
and ωπ=2ðqÞ. In the rþeff branch, the energy-extraction
process, ωq>0, corresponds to the region 0<ω≤ωπ=2ðqÞ
for q > 0. If q > 0, rþeffðω; qÞ is monotonically decreasing
in terms of ω because ∂rþeff=∂ω < 0 (see Appendix A 1). As
we have mentioned, the effective horizon coincides with
the ergosphere when ω ¼ 0, that is, rþeffð0; qÞ ¼ rergoðθþeffÞ.
It means that rþeff is always less than rergo in the interval
0 < ω ≤ ωπ=2ðqÞ for q > 0. In addition, ωπ=2ðqÞ can be
rewritten as

ωπ=2ðqÞ ¼
2Ma

r3 þ a2rþ 2Ma2
− q

r
r3 þ a2rþ 2Ma2

; ð32Þ

where r should satisfy ΔðrÞ ¼ q2. Since the first term
monotonically decreases for r ≥ rh and equals Ωh when
r ¼ rh, we have ωπ=2ðqÞ ≤ Ωh for q ≥ 0 with equality if
and only if q ¼ 0. As a result, we can conclude that a
necessary condition for the energy extraction is that the

effective horizon on the string should enter the inside of the
ergoregion and the angular velocity of the string should be
less than that of the black hole. It is obvious that the
parameter region where the energy extraction can occur
becomes wider as the Kerr parameter a is larger, and it
vanishes for a ¼ 0. In the (ω, q) plane the power of the
extractionωq is described by the area of the rectanglewhose
sides are ω axis and q axis. For a fixed ω, the power will
become larger as θþeff closes to the equatorial plane. For a
fixed θþeff , it will be maximized as ω becomes about half of
the black hole angular velocity Ωh. Figure 2 shows explicit
examples of the string configurations in the parameter
region where the energy extraction occurs. We can see that
the strings extend sufficiently far from the black hole,
while the effective horizons of them are located inside the
ergoregion.
The effective horizon on the induced geometry emerges

when the rigidly rotating string regularly passes through a
light surface on the spacetime. For a given ω, the effective
horizon is uniquely determined, whereas there are several
possibilities for the light surfaces; the inner light sphere
near the black hole and the outer light cylinder exist, or the
single connected light surface does. Therefore, even in the
rþeff branch one should be careful about which light surface
the string is passing through. We find critical angular
velocities ω�

c (ω−
c < 0 < ωþ

c ), at which the inner and outer
light surfaces merge on the equatorial plane, is given by
the extrema of ωπ=2ðqÞ, namely ω�

c ¼ ωπ=2ðq�c Þ such that
dωπ=2=dqjq¼q�c ¼ 0 (see Appendix A 2 for detail). The
topology of the light surface changes at ω ¼ ω�

c , while the
configurations of the string may continuously deform in
terms of the two parameters (ω, q). Hence, the parameter
region can be classified into the following three categories
based on the light surface passed by the string: (i) the
inner light sphere near the black hole when ω−

c ≤ ω ≤ ωþ
c

and qþc ≤ q ≤ q−c , (ii) the outer light cylinder when
ω−
c ≤ ω ≤ ωþ

c and q ≤ qþc , q ≥ q−c , and (iii) the connected
light surface when ω ≤ ω−

c , ω ≥ ωþ
c . In addition, the points

(ω�
c , q�c ) are the critical points at which the three regions

join. A sketch of the parameter region is depicted in Fig. 3.
It is worth noting that in the region for ωq > 0, which we
have been interested in, the effective horizon on the string is
the inner light sphere. We can confirm that, when the
energy extraction occurs, the string is regularly passing
through the inner light sphere and is twining around the
black hole.
This result indicates that the energy extraction can occur

when the string enters the inside of the ergoregion, and
relations between the event horizon and the string con-
figuration such as whether the string would intersect with
the event horizon are irrelevant. This is not surprising
logically. Outward flux conveying energy to infinity,
physically, cannot propagate with exceeding the speed of
light. Such energy flux must depend only on its causal past.
By the definition of the event horizon, the causal past of
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energy flux which can reach to infinity does not include the
event horizon. Hence, the event horizon is irrelevant to
occurrence of the energy extraction by outward energy flux.

III. GLOBAL CONFIGURATIONS

In this section, we discuss global configurations of the
regular string extracting the rotational energy from a Kerr
black hole in two regimes: One is a slow-rotation regime
a ≪ M and the other is the extremal case a ¼ M.

A. Slow-rotation approximation

For general string configurations with ω ≠ 0, we do not
have analytic solutions of the equations of motion. To study
analytically some global properties of rigidly rotating string
configurations, we perform perturbation analysis of the
equations of motion by supposing that the rotation of the
Kerr black hole is slow, namely a ≪ M. This perturbation
analysis can be regarded as extensions of the work [17] to
rigidly rotating string configurations with ω ≠ 0 in the
slow-rotation regime. We use the same gauge with the one
adopted in Ref. [17] for usefulness of comparison with it.
Thus the string configuration is given by the embedding
t ¼ τ þ ηðrÞ, ϕ ¼ ωtþ φðrÞ, and θ ¼ θðrÞ.4 The resultant
equations of motion are

�
dφ
dr

�
2

¼ Gq2

Δ2sin4θ
; ð33Þ

1ffiffiffiffi
G

p d
dr

�
ΣFffiffiffiffi
G

p dθ
dr

�
¼ cos θ

Δsin3θ
Z; ð34Þ

where
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FIG. 2. Examples of the string configurations which can extract positive energy from the black hole forM ¼ 1, a ¼ 1=2 and q ¼ 1=4.
The left panel shows global configurations of the strings for various angular velocities ω. As ω is larger, the pitch along z axis tends to be
shorter. The right panel shows an enlarged view near the black hole. Each end point of the string inside the ergoregion (the shaded
region) corresponds to the locus of the effective horizon. As ω is larger, the locus of the effective horizon tends to be close to the
equatorial plane. Coordinates have been taken as ðx; zÞ ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ sinϕ; r cos θÞ.

FIG. 3. Sketch of the parameter region for a typical a
(0 < a < 1). The effective horizon on the string respectively
corresponds to (i) the inner light surface when ω−

c ≤ ω ≤ ωþ
c and

qþc ≤ q ≤ q−c , (ii) the outer light cylinder when ω−
c ≤ ω ≤ ωþ

c and
q ≤ qþc , q ≥ q−c , and (iii) the connected light surface when
ω ≤ ω−

c , ω ≥ ωþ
c . The critical point ðω�

c ; q�c Þ, where the three
regions join, is the extremum of ωπ=2ðqÞ.

4Note that ηðrÞ means a gauge choice for a time coordinate τ
on the world sheet, and one can choose ηðrÞ so that the induced
metric becomes diagonal in these world sheet coordinates, for
example. However, the following equations of motion by using
only quantities associated with the spacetime coordinates are
independent of the gauge choice on the world sheet.
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Z ¼ q2 − ðq2 − Δsin2θÞ
�
1 −

Δð1 − a2ω2sin4θÞ
ΣF

�
; ð35Þ

G ¼ ΣFsin2θ
Δsin2θ − q2

�
1þ Δ

�
dθ
dr

�
2
�
: ð36Þ

Note that Δ, Σ, and F have been defined in the previous
section. We can reduce Eqs. (20)–(22) to the above equa-
tions of motion with a transformation of variables such
as dθ=dr ¼ θ0=r0, dφ=dr ¼ φ0=r0, and so on. The solutions
of Eqs. (33) and (34) forω ¼ 0which are regularly crossing
the ergospherewere obtained analytically in Ref. [16]. They
are explicitly written as

θðrÞ ¼ θ0;

φ�ðrÞ ¼ � a

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p log

�
r − rh þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

r − rh

�
; ð37Þ

where θ0 is the integration constant related to q as q ¼
�asin2θ0 and a constant term within φ�ðrÞ has been
discarded thanks to the axisymmetry.
Here we consider string configurations with ω ≠ 0 in the

slow-rotation regime. We can define two regions in the Kerr
spacetime as

far region∶ r − rh ≫ M;

near region∶ r − rh ≪ M2=a: ð38Þ

Note that the slow-rotation regime a ≪ M allows us to take
an overlap region between the far and near regions as
M ≪ r − rh ≪ M2=a. Furthermore we assume the follow-
ing scalings for ω and q:

ω ¼ Oða=M2Þ; q ¼ OðaÞ; ð39Þ

which mean that the strings, also, are slowly rotating. In
this setting, we can neglect the black hole and regard the
spacetime as a flat spacetime in the far region at the leading
order. At the near region, we can solve Eqs. (33) and (34)
by perturbation analysis in the a=M expansions. The outer
light cylinder is not located in the near region and the inner
light sphere is not in the far region, so that we should obtain
regular solutions in each region and match the near-region
solutions with the far-region solutions in order to have
globally regular solutions.

1. Far region

At the far region the equations of motion reduce to those
in the flat spacetime. The general solutions of Eqs. (33) and
(34) in the flat spacetime were obtained by Ref. [17] in
cylindrical coordinates as

zðρÞ ¼ p
2ω

�
arcsin

B − 2ω2ρ2

C
þ z0

�
; ð40Þ

φðρÞ¼�1

2

�
arcsin

Bρ2−2q2

Cρ2
þωqarcsin

B−2ω2ρ2

C
þφ0

�
;

ð41Þ
where

B≡ 1 − p2 þ q2ω2; C≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4ω2q2

q
; ð42Þ

and z0, φ0, and p are integration constants. The coordinates
z and ρ can be identified with z ¼ r cos θ and ρ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ in the Boyer-Lindquist coordinates, respec-

tively. The constant p corresponds to the momentum flux
per unit length along the cylinder, and the constants z0 and
φ0 are appropriate offsets for the positions. They should be
determined by matching with near-region solutions later.
The string in the flat spacetime can have only one effective
horizon, which we identify with the outer light cylinder, at
ρ ¼ ω−1 since F ¼ 1 − ω2ρ2. The string configuration in
the flat spacetime given by the solutions (40) and (41) is
constrained to lie in ρ− ≤ ρ ≤ ρþ, where ρ� defined by

ρ� ≡ 1

ω

ffiffiffiffiffiffiffiffiffiffiffiffiffi
B� C

2

r
ð43Þ

are turning points of string configurations.5 If we require
the regularity condition on the outer light cylinder, we have
ρþ ¼ ρ− ¼ ω−1 with qω ¼ 1. Such regularity condition
constraints the configuration of regular strings completely
on the outer light cylinder, and it cannot be extended from
the outer light cylinder. We are now interested in the string
configurations which extend into the inside of the outer
light cylinder and reach the inner light sphere to extract the
rotation energy of the Kerr black hole. Therefore, we will
not impose the regularity condition at the outer light
cylinder, and instead, consider solutions satisfying

ρþ < ω−1: ð44Þ

Such solutions never reach the outer light cylinder, and their
string configurations can be regular without satisfying the
regularity condition on the outer light cylinder. The con-
dition (44) is regarded as that for p. As we will see below, p
obtained by matching actually satisfies the condition.

2. Near region

Next, in the near region, we perturbatively solve the
equations of motion (33) and (34) in the a=M expansions.

5This constraint is equivalent to the constraints for the argu-
ment of arcsin in Eqs. (40) and (41), namely −1≤ ðB−2ω2ρ2Þ=
C≤ 1 and −1 ≤ ðBρ2 − 2q2Þ=ðCρ2Þ ≤ 1.
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With a ¼ 0 and ω ¼ 0 the solution of Eqs. (33) and (34) is
given by

θðrÞ ¼ θ0; φðrÞ ¼ 0; ð45Þ
which is derived from Eq. (37) with a ¼ 0 and leads to
q ¼ 0. Assuming this solution as a zeroth-order solution,
we expand φðrÞ, θðrÞ, q, and ω as

θðrÞ ¼ θ0 þ θ2ðrÞ
�
a
M

�
2

þ θ4ðrÞ
�
a
M

�
4

þ � � � ;

φðrÞ ¼ φ1ðrÞ
�
a
M

�
þ φ3ðrÞ

�
a
M

�
3

þ � � � ; ð46Þ

q ¼ q1

�
a
M

�
þ q3

�
a
M

�
3

þ � � � ;

ω ¼ ω1

�
a
M

�
þ ω3

�
a
M

�
3

þ � � � : ð47Þ

We solve the equations of motion order by order under
these expansions with the regularity condition that the
solution is regular at the inner light sphere r ¼ r�eff . As we
have seen, this regularity condition gives the boundary
conditions for string configurations at the inner light
sphere. Expanding r�eff in terms of a=M yields

r�eff ¼ 2M − ½M ∓ q1ð1 − 4Mω1Þ�
a2

2M2
þOða4=M3Þ:

ð48Þ
Thus the regularity condition, for example, requires that
θ2ðrÞ, θ4ðrÞ and so on should be regular at r ¼ 2M in the
a=M expansions. In contrast, since the positions of the inner
light surface and the event horizon are degenerate at the zeroth
order in the a=M expansions, the function φ1ðrÞ can be
singular in logarithm at r ¼ 2M in the Boyer-Lindquist
coordinates due to the rotation effect of the black hole.
Thus we need not impose the regularity of the functions
φ1ðrÞ, φ3ðrÞ and so on, at r ¼ 2M. Then, by solving
Eqs. (33) and (34) with the regularity condition in the
a=M expansions, at the leading order we have regular
solutions in the near region as

φ�
1 ðrÞ ¼ φ0

1 −
q�1 ½log ðr − 2MÞ − log r�

2Msin2θ0
; ð49Þ

θ2ðrÞ ¼ θ02 −
5Mrω2

1 sin 2θ0
6

−
r2ω2

1 sin 2θ0
12

−
11M2ω2

1 sin 2θ0
3

log
r
2M

−Mω1ð1 − 2Mω1Þ sin 2θ0
�
Li2ð1 − r=2MÞ

þ 1

2

�
log

r
2M

�
2
�
; ð50Þ

where φ0
1 and θ

0
2 are integration constants and Li2ðxÞ denotes

the polylogarithm function. For simplicity, we will omit the
constant terms φ0

1 and θ02 hereafter, because they can be
absorbed by the constant terms in the zeroth-order solutions.
The second and third terms in the right-hand side of Eq. (50)
imply the breakdown of the near-region solution at
r ¼ OðM2=aÞ. The regularity condition for θ2ðrÞ at the
inner light sphere requires

q1 ¼ q�1 ≡�Mð1 − 4ω1MÞsin2θ0: ð51Þ

In Eq. (50) we have already used this condition. We note that
the above condition is identical to the regularity conditionq2 ¼
Δsin2θjr¼r�eff

of Eq. (14) at the effective horizon in the a=M
expansions.
Let us confirm some properties shown in the previous

section for the near-region solution under the slow-rotation
approximation. The regular near-region solutions with
q1 ¼ q�1 correspond to the r�eff branches. The condition
(51) yields

q ¼ �4M2ðΩh − ωÞsin2θ0 þOða3=M2Þ; ð52Þ

where we have used Ωh ¼ a=ð4M2Þ þOða3=M4Þ. For
ω < Ωh, the r

þ
eff branch has a positive q and the r−eff branch

has a negative q. As we have seen, the physically reasonable
solution is given by q1 ¼ qþ1 , and q1 ¼ q−1 gives its time-
reversal solution. Indeed we can see that the physically
reasonable solution has the positive energy flux at the inner
light surface only when the inner light surface is located in
the ergoregion. The energy flux at the inner light surface is
given by

ωq ¼ ω1a2

M
ð1 − 4Mω1Þsin2θ0 þOða4=M4Þ

¼ 4M2ωðΩh − ωÞsin2θ0 þOða4=M4Þ: ð53Þ

The locus of the ergosphere is

rergoðθ0Þ ¼ 2M −
a2cos2θ0

2M
þOða3=M2Þ: ð54Þ

Using Eq. (51) we have

rergoðθ0Þ − rþeff ¼ 4a2ω1ð1 − 2Mω1Þsin2θ0 þOða3=M2Þ
¼ 8M3ωð2Ωh − ωÞsin2θ0 þOða3=M2Þ:

ð55Þ
Thus the positive energy flux is realized only if rergo > rþeff .
Note that the solutions in the rþeff branchwith2 > 4Mω1 > 1

have the negative energy flux although their inner light
surfaces are inside the ergoregion. This is because such
solutions are rotating faster than the Kerr black hole and
supplying the angular momentum to the black hole. One
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interesting observation on the energy flux is the fact that
the maximum energy flux is realized when the angular
velocity of the string is half of the horizon angular velocity as
ω ¼ Ωh=2 for a given θ0. This is the same situation with the
Blandford-Znajek process for force-free magnetosphere [8].

3. Matching

Let us perform the matching of the far-region and near-
region solutions to see the global configuration of the
solution. The behavior of the far-region solution in the
overlap region, M ≪ r − rh ≪ M2=a, can be obtained
by using the a=M expansions to the far-region solution
(40) and (41). Then we find that the conditions for the
matching are

p ¼ cos θ0 þOða=MÞ; z0 ¼
π

2
þOða=MÞ;

φ0 ¼ −
π

2
þOða=MÞ: ð56Þ

Under these conditions we can match the regular near-
region solution with the far-region solution consistently.
Furthermore, for this value of p, the outer turning point ρþ
satisfies the condition (44)

ρþ ¼ M sin θ0
aω1

<
M
aω1

ð57Þ

except for the string on the equatorial plane θ0 ¼ π=2. This
means that the solution with 0 < θ0 < π=2 can start from the
inner light sphere which is located inside the ergoregion, and
extend to the infinity without reaching the outer light
cylinder in the slow-rotation limit. As a result, we can
extract the rotational energy of the Kerr black hole to the
infinity by the rigidly rotating regular strings. This is the
result just obtained by perturbation analysis in the slow-
rotation approximation. However, we will see that similar
properties hold also even in not slow-rotation regime below,
and it means that the extraction of the rotational energy from
the Kerr black hole without touching the outer light cylinder
by the rigidly rotating regular strings can generally occur.

B. The extremal Kerr background

We focus on the global configuration of the stationary
rotating string extracting the rotational energy from the
extremal Kerr black hole. As shown in Sec. II, since the
area in ðω; qÞ space in which the string extracts positive
energy becomes maximum in a ¼ M, then we expect to see
the difference of the string configuration obviously due to
the choice of the parameters.
Figure 4 shows the global configurations of the sta-

tionary rotating string on a constant-t slice that carries
positive energy from the extremal black hole. Inside the
corresponding parameter region, we have selected the six
sets of the values ðωM;q=MÞ ¼ ð0.2; 0.4Þ, (0.35, 0.15),
(0.08, 0.6), (0.08, 0.4), (0.2, 0.15), and (0.08, 0.15), which

are in order of decreasing the amount of the energy flux.
Note that the string with ðωM; q=MÞ ¼ ð0.2; 0.4Þ is the
closest to the string with the maximum efficiency of the
energy extraction. The string in each figure crosses over
the effective horizon at ðr; θ;ϕÞ ¼ ðrþeff ; θþeff ; 0Þ, which is
shown as the connection of two colored lines, and extends
from the event horizon to a far region. We can conclude that
for each set of the parameters the string is twining around
the black hole6 and extending to the infinity along the
rotational axis when the energy extraction occurs.
Let us introduce the cylindrical coordinates ðρ;ϕ; zÞ that

are defined as ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ. The global configura-

tion of the string apart from the black hole is characterized
by three characteristics: the “size” in ρ direction; the
“pitch” in z direction; and the “frequency” of ρðσÞ in
terms of ϕ, which we have defined as the proper length in ρ
direction at the maximum value of ρðσÞ; the proper length
in z direction during one period of the oscillation of ρðσÞ;
and the number of the oscillation of ρðσÞ during one period
of the oscillation of ϕðσÞ, respectively.
These characteristics are related to the parameters ðω; qÞ

as follows. As seen in Fig. 4, the size becomes smaller with
increasing ω or decreasing q. The pitch in z direction
becomes shorter with increasing ω. The frequency of ρðσÞ
in terms of ϕ decreases as ω or q increases.
When the string goes apart from the black hole,

dynamics of the string seems to be well described by that
in the flat spacetime as well as in the slow-rotation case. In
fact, the behaviors of the string in Fig. 4 are similar to those
in the flat spacetime in Ref. [18]. Let us examine the above
characteristics by using the general solutions of the rigidly
rotating string in the flat spacetime, which have been
already shown in Eqs. (40) and (41). Since the corotating
Killing vector exists among the Kerr and flat spacetime, ω
and q in the parameters characterizing the solutions can be
identified in the both spacetimes. However, the transla-
tional vector along the z direction is no longer a Killing
vector in the Kerr spacetime, so that a quantity correspond-
ing to p cannot be conserved. As seen previously, p in a far
region should be determined by solving the equations of
motion near the black hole. Because the rigidly rotating
strings have the energy flux ωq≲ 0.15 at most when the

6On constant-t slices in the Boyer-Lindquist coordinates the
string seems to be twining around the event horizon endlessly
without crossing it, that is, φðσÞ will diverge as rðσÞ goes to rh.
However, it does not mean that the string can never penetrate the
event horizon because these time slices intersect with the event
horizon only at the bifurcation surface. In fact, the logarithmic
divergences which have appeared in the exact solution (37) and
the approximate solution (49) for φðσÞ originate from the regular
behavior of Δdφ=dr at r ¼ rh, so that the string can be across the
event horizon on other time slices in horizon-penetrating coor-
dinates such as the Eddington-Finkelstein coordinates. In general,
we expect that the physically reasonable solutions in the rþeff
branch can naturally penetrate the (future) event horizon while
they cannot be across the (past) white hole horizon.
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energy extraction occurs, we will read some characteristic
quantities from the exact solutions in the flat spacetime
assuming ωq is small. The size given by ρþ of Eq. (43)

becomes ρþ ≃ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2

p
=ω and the pitch given by the

factor in the front of the first term of Eq. (40) becomes p=ω.
Since the factor of the second term of Eq. (41) represents a
phase shift, the frequency becomes ∼ðωqÞ−1. If we suppose
p≃ cos θþeff following the result in the slow-rotation
approximation, the behaviors of the characteristics
observed in Fig. 4 seem to be explained.

IV. SUMMARY AND DISCUSSION

We have studied rigidly rotating Nambu-Goto strings in
the Kerr spacetime and have shown that the rotational
energy of the black hole can be extracted by the strings.
The string configurations are characterized by two param-
eters: the angular velocity ω and the angular momentum
flux q. We have considered the string regularly passing
through a light surface and have analytically exhibited the
allowed region where such strings exist in the parameter
space (ω, q). We have found a necessary condition for the

FIG. 4. Snapshots of a stationary rotating string twining around the extremal Kerr black hole, a ¼ 1, in units whereM ¼ 1. The left in
each figure is a three-dimensional snapshot of the string at constant-t slice, where the plot range is 0 ≤ z ≤ 70 from the bottom to the top.
The right in each figure is the string configuration projected onto a constant-z slice. The solid lines colored with gray show the string
configuration in the inside of the effective horizon, which are twining around the event horizon. The solid lines colored with green,
yellow, purple, red, orange, and blue show the string configuration in the outside of the effective horizon. The plot in the upper right
corner gives the parameter region of ðω; qÞ with which positive energy extraction by the string occurs, where each colored point
identified with that of each string indicates to the parameter value in panels (a)–(f). Moreover, the arrangement of the points in the
parameter region is identified with that of the panels (a)–(f).
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energy extraction is that the effective horizon on the world
sheet caused by the rigid rotation will enter into the
ergoregion of the Kerr black hole and the angular velocity
of the rigid rotation is less than that of the black hole,
namely ω < Ωh. Moreover, global configurations of such
strings have been examined in a slow-rotating case
(a ≪ M) and the extremal case (a ¼ M). In the both
cases we have shown the rigidly rotating strings with
positive energy flux can start from the inner light sphere
inside the ergoregion and extend to the infinity. It turns out
that the energy extraction from the black hole can
generally occur.
The current mechanism of the energy extraction can be

briefly interpreted on the basis of the usual Penrose process
in the ergoregion (the analogy of the Penrose process was
mentioned in the literature [19]). As we have mentioned,
the effective horizon on the world sheet corresponds to a
stationary limit surface with respect to the corotating
Killing vector with angular velocity ω. Beyond the effective
horizon on the world sheet of the rigidly rotating string, the
Killing vector tangential to the world sheet becomes
spacelike. This does not mean that the proper motion of
line elements of the string may become superluminal. The
line elements cannot follow the superluminal Killing orbit
and the interval of the line elements continues to be larger,
that is, the string is not stationary but stretching in this
region. In general, if a string with a tension is stretching, its
potential energywill increase and the string should consume
an energy to stretch. However, the situation changes in the
ergoregion. Because the Killing energy can be negative in
the ergoregion, the string stretching can decrease its energy
similar to the fragmentation in the Penrose process for
particles. Hence, if the effective horizon on the string enters
into the ergoregion, the string can gain an energy by
stretching in the ergoregion and extract the energy to the
infinity. This extraction mechanism is quite simple and
general. For various other stringlike objects as well as
Nambu-Goto strings, it is expected that these mechanisms
of the energy extraction do work well.
It should be emphasized that the necessary condition of

the energy extraction is determined locally near the
effective horizon on a light surface but irrelevant of global
nature such as configurations of the string at the event
horizon or the infinity. This result is reasonable in the
following respects. This energy-extraction mechanism can
be regarded as a complex of different processes spatially
and temporally separated; “generation” of an energy in the
ergoregion, “transport” of the energy to the infinity, and
“disposal” of residues resulting from the energy gener-
ation. Precisely speaking, our necessary condition is a
condition for generation of the energy. In contrast,
existence of event horizons is helpful for the “disposal”
process because event horizons of black holes are cer-
tainly ideal disposal sites, but not so significant for the
“generation” process. Furthermore, in realistic situations

of the energy extraction from black holes only a single
object or phenomenon does not need to play a major role
in all of the above processes. For example, even though a
rigidly rotating string cannot entirely reach the infinity,
the energy extraction will be successful as long as the
string can reach sufficiently far from the black hole and
then transfer its energy to other objects without falling
back to the black hole. As a result, what is most essential
and primal in the energy-extraction mechanism is the
generation process in the ergoregion, and we expect this
fact may be true for various mechanisms of extracting the
rotational energy of black holes other than strings dis-
cussed in this paper.
Finally, let us quantitatively evaluate the energy-extrac-

tion rate dE=dt ¼ μqω for the string with a tension μ. It is
worth noting that this energy-extraction rate is irrelevant to
the mass scale of the central black hole, which is canceled
out, even though the mass scale determines the amount of
the rotational energy to extract. Thus, the string tension
dominates the energy-extraction rate via this mechanism.
We shall restore the fundamental constants GN and c, and
then we have the energy-extraction rate as

dE
dt

¼ 5.8 × 1051 erg=s

�
GNμ=c2

1.3 × 10−7

��
q=ac2

1=2

�

×

�
ω=Ωh

1=2

�
uðαÞ; ð58Þ

where uðαÞ≡ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
(0 ≤ uðαÞ ≤ 1) and α≡

ac2=GNM is the dimensionless Kerr parameter.7 The string
tension μc2 has been normalized by an observational upper
bound on the cosmic string tension [20]. Furthermore, it is
interesting and suggestive to apply magnetospheres around
a rotating black hole. We consider there are magnetic fields
B surrounding a rotating black hole. Total magnetic tension
μBc2 is roughly estimated by μBc2 ¼ 4πr2hB

2=μ0, where μ0
is the vacuum permeability. Suppose the magnetic field
B≃ 1015 G and the black hole mass M ≃ 10M⊙, we have
GNμB=c2 ≃ 10−7. This tension gives a maximum energy-
extraction rate ∼1051 erg=s as we have estimated, and this
value is comparable to the usual power caused by the
Blandford-Znajek process for the same magnetic field and
black hole mass. Thus we expect that the magnetic tensions
rather than the magnetic pressure may play an essential role
in the energy extraction by the Blandford-Znajek process in
black hole magnetosphere.

ACKNOWLEDGMENTS

We would like to thank Chulmoon Yoo and Tsuyoshi
Houri for helpful discussions. This work was supported by

7We have assumed the dimension of μ is ML−1 and the
dimension of a is L, where M and L respectively denote mass and
length.

KINOSHITA, IGATA, and TANABE PHYSICAL REVIEW D 94, 124039 (2016)

124039-12



JSPS KAKENHI Grants No. JP16K17704 (S. K.),
No. JP14J03387 (K. T.) and MEXT-Supported Program
for the Strategic Research Foundation at Private
Universities, 2014-2017 (T. I.).

APPENDIX:A DERIVATIONS OF VARIOUS
QUANTITIES

1. Locus of the effective horizon

As we have seen in Sec. II, for given ω and q, the
conditions for the effective Killing horizon are given by

ΔðrÞ ¼ ½a − ða2 þ r2Þω�2
ð1 − aωsin2θÞ2 sin2θ; ðA1Þ

and the regularity condition

ΔðrÞsin2θ ¼ q2; ðA2Þ

in Eqs. (7) and (14). If ΔðreffÞ ¼ 0, that is, reff ¼ rh, we
have q ¼ 0 immediately. It results in θeff ¼ 0 and arbitrary
ω, or ω ¼ Ωh and arbitrary θeff. Hereafter we assume that
Δ > 0, namely the effective horizon is located outside the
event horizon reff > rh. Eliminating sin2 θ from the above
equations, we have

q2ðΔ=q2 − aωÞ2 ¼ ½a − ða2 þ r2Þω�2: ðA3Þ

This is a quartic equation in terms of r and its positive
roots will give the radius of the effective horizon. If
q½a − ða2 þ r2Þω� > 0, then two roots of Eq. (A3) are

r ¼ M
1þ qω

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

M
1þ qω

�
2

− aða − qÞ
s

: ðA4Þ

If q½a − ða2 þ r2Þω� < 0, then two roots of Eq. (A3) are

r ¼ M
1 − qω

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

M
1 − qω

�
2

− aðaþ qÞ
s

: ðA5Þ

Requiring the conditions (A2) and 0 ≤ sin2θ ≤ 1 we can
exclude the roots with the lower sign among the above four
roots, as we will see later, so that we have the radius of the
effective horizon

r�eff ≡ M
1� qω

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

M
1� qω

�
2

− aða ∓ qÞ
s

: ðA6Þ

For each blanch r ¼ r�eff , the polar angle of the effective
horizon θ�eff is given by

sin2θ�eff ≡ q2

Δðr�effÞ
: ðA7Þ

As an important property of r�effðω; qÞ, we have

∂r�eff
∂ω ðω;qÞ ¼∓ q

Mr�eff
ð1�qωÞ2

��
M

1�qω

�
2

−aða∓ qÞ
�
−1=2

;

ðA8Þ

in which q only can change its sign. Thus, it turns out that
r�eff is a monotonic function of ω for a fixed q.
We show the exclusion of the roots r ¼ rex, where

rex ≡ M
1� qω

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M

1� qω

�
2

− aða ∓ qÞ
s

: ðA9Þ

When q ¼ 0, rex ≥ rh holds only ifM ¼ a. In this case the
equation (A3) becomes degenerate and then we have
rex ¼ r�eff ¼ rh ¼ M. Since we are interested in the roots
r ¼ rex such that rex ≠ r�eff , we assume q ≠ 0 hereafter. To
satisfy rex > 0 leads to a ∓ q > 0 and M=ð1� qωÞ > 0.
Therefore, we have the following inequality:

a ∓ q
2
≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aða ∓ qÞ

p
≥ rex; ðA10Þ

where we have used ðAþ BÞ=2 ≥
ffiffiffiffiffiffiffi
AB

p
for A ¼ a and B ¼

a ∓ q in the former inequality, and Aþ B ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
for

A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aða ∓ qÞp

and B ¼ M=ð1� qωÞ − rex in the latter
inequality. In addition, M ≥ a yields

M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 þ q2

q
≥ aþ jqj > a ∓ q

2
: ðA11Þ

As a result, we have M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 þ q2

p
> rex. Since

ΔðrÞ is a monotonically increasing function of r for r > rh,
we have q2 > ΔðrexÞ. This cannot satisfy the regularity
condition (A2) clearly, so that we can rule out r ¼ rex.

2. Critical point

The rigid rotations in a black hole spacetime generally
yield two light surfaces, which are the inner light sphere
and the outer light cylinder. However, if the angular
velocity becomes sufficiently large, the two light surfaces
will merge into a single connected light surface. We
consider the critical case in which the two light surfaces
touch each other.
Now, we focus on the equatorial plane, θ ¼ π=2. For a

given ω, the radii of the light surfaces are determined by
fðr;ωÞ ¼ 0, where we have defined

fðr;ωÞ≡ rFðr; π=2Þ
¼ −ω2r3 þ ð1 − a2ω2Þr − 2Mð1 − aωÞ2: ðA12Þ

The critical radius rc and angular velocity ωc such that the
two light surfaces merge are given by the following
conditions:
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fðrc;ωcÞ ¼ 0;
∂f
∂r ðrc;ωcÞ ¼ 0; ðA13Þ

which means that two positive roots of fðr;ωÞ ¼ 0 should
be degenerate.
On the equatorial plane, the radius of the effective

horizon, reff , should satisfy

fðreff ;ωÞ ¼ 0; ΔðreffÞ ¼ q2: ðA14Þ

Since fðr;ωÞ is a quadratic function in terms of ω, the
equation fðr;ωÞ ¼ 0 has two roots

ω�ðrÞ≡ 2Ma
r3 þ a2rþ 2Ma2

� rΔ1=2

r3 þ a2rþ 2Ma2
: ðA15Þ

Note that we find ωþðrÞ > 0 and ω−ðrÞ ≤ Ωh for r ≥ rh.
Then, the latter condition ΔðreffÞ ¼ q2 yields r ¼ reffðqÞ≡
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ða2 − q2Þ

p
, so that we obtain the relation

between ω and q on the equatorial plane (θeff ¼ π=2)

ωπ=2ðqÞ ¼
a − q

2M2 − qða − qÞ þ 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ða2 − q2Þ

p ;

ðA16Þ

as shown in Eq. (19). Here, we have taken ωπ=2ðqÞ ¼
ω−ðreffÞ for q ≥ 0 and ωπ=2ðqÞ ¼ ωþðreffÞ for q < 0 in
order to belong to the rþeff branch. Differentiating Eq. (A14)
with respect to q and evaluating them at the effective
horizon, we have the following identities:

∂rf
dreff
dq

þ ∂ωf
dωπ=2

dq
¼ 0; Δ;r

dreff
dq

¼ 2q: ðA17Þ

As a result, we have

dωπ=2ðqÞ
dq

¼ − 2q∂rf
Δ;r∂ωf

����
ðr;ωÞ¼ðreff ;ωπ=2Þ

: ðA18Þ

Because ∂rf¼ 0 at the critical point r ¼ rc as we have seen,
we have proven that if the effective horizon coincides with
the critical radius, namely reff ¼ rc, then dωπ=2ðqÞ=dq ¼ 0.

3. Monotonicity and positivity

Now, we shall prove 1 − ωasin2θ > 0 at the effective
horizon r ¼ r�eff . We have

∂
∂ω ½Δðr�effÞ − aωq2�

¼∓ q

�
Δðr�effÞ þ

2Mr�eff
ð1� qωÞ2

�
r�eff −M

1� qω
1� qωþ q2ω2

�

×

�
r�eff −

M
1� qω

�
−1
��

1

2
� qω

�
2

þ 3

4

�	
; ðA19Þ

where each term in the braces is positive.8 Thus,
Δð1 − ωasin2θÞ at r ¼ r�eff is a monotonic function of ω
for a fixed q, and whether it is monotonically increasing or
decreasing depends on the sign of q. SinceM ≥ a, we have
a2 − q2 − 2M2 < 0. It leads to

a2 − q2 − 2M2 < 0 < 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 þ q2

q
⇔aða − qÞ < 2M2 − qða − qÞ þ 2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 þ q2

q
:

ðA20Þ

Because the right-hand side of the last inequality is positive
if q < 0, we obtain

ωπ=2ðqÞ ¼
a − q

2M2 − qða − qÞ þ 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ða2 − q2Þ

p
<

1

a
for q < 0: ðA21Þ

Furthermore, as we have shown in the previous subsection,
we obtain

ωπ=2ðqÞ ¼ ω−ðreffÞ ≤ Ωh ≤
1

2a
<

1

a
for q ≥ 0: ðA22Þ

As a result, we conclude that

½Δðr�effÞ − aωq2�jω¼ωπ=2ðqÞ ¼ q2½1 − aωπ=2ðqÞ� > 0:

ðA23Þ

Note that, even though ωπ=2ðqÞ has been defined only for
the rþeff branch, the above result can be applied to the r−eff
branch because the r�eff branch is related to each other
q → −q.
From Eqs. (A19) and (A23), we have proven that

1 − ωa sin2 θ > 0 at r ¼ r�eff for arbitrary q.

8r�eff ≥ M ≥ Mð1� qωÞ=ð1� qωþ q2ω2Þ.
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