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The recently reported gravitational wave events GW150914 and GW151226 caused by the mergers
of binary black holes [Abbott et al., Phys. Rev. Lett. 116, 221101 (2016); Phys. Rev. Lett. 116, 241103
(2016); Phys. Rev. X 6, 041015] provide a formidable way to set constraints on alternative metric theories
of gravity in the strong field regime. In this paper, we develop an approach where an arbitrary theory of
gravity can be parametrized by an effective coupling Geff and an effective gravitational potential ΦðrÞ.
The standard Newtonian limit of general relativity is recovered as soon as Geff → GN and ΦðrÞ → ΦN .
The upper bound on the graviton mass and the gravitational interaction length, reported by the
LIGO-VIRGO Collaboration, can be directly recast in terms of the parameters of the theory that allows an
analysis where the gravitational wave frequency modulation sets constraints on the range of possible
alternative models of gravity. Numerical results based on published parameters for the binary black
hole mergers are also reported. The comparison of the observed phases of GW150914 and GW151226
with the modulated phase in alternative theories of gravity does not give reasonable constraints due to
the large uncertainties in the estimated parameters for the coalescing black holes. In addition to these
general considerations, we obtain limits for the frequency dependence of the α parameter in scalar tensor
theories of gravity.
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I. INTRODUCTION

In September and December 2015, the LIGO-VIRGO
Collaboration reported on the direct detection of
gravitational-wave (GW) signals from coalescing binary
black hole (BH) systems [1,4]. This has opened new
opportunities in gravity research and has begun the era of
gravitational wave astronomy. In particular, this achieve-
ment can be considered as the first direct probe of metric
theories of gravity in the regime of strong fields and
relativistic velocities. The individual masses of the merging
BHs at the beginning of the collision were 29þ6

−4 M⊙
and 36þ4

−5 M⊙ for the September signal and 14:2þ8.3
−4.2 M⊙

and 7.5þ2.3
−2.3 M⊙ for the December signal. Specifically, the

GW150914 signal was emitted by a rapidly evolving
dynamical binary that merged in a fraction of a second

with an observed variation of the period _Pb ranging from
∼ − 0.1 at fGW ∼ 30 Hz to ∼ − 1 at fGW ∼ 132 Hz. The
frequency and amplitude of the GW151226 signal was
observed over 55 cycles spanning a range in frequency
from 35 to 450 Hz. Using the templates created from
numerical relativity, the data are consistent with the merger
of two compact objects into a merged black hole with
masses of ∼65:3þ4.1

−3.4 M⊙ and ∼21:8þ5.9
−1.7 M⊙, respectively.

In this process, the energy emitted in the form of GW
amounts to 3.0þ0.5

−0.4 M⊙ and 1.0þ0.1
−0.2 M⊙, and the velocity v

reached the value ∼0.5c at the time of the merger. In
particular, the signal from GW150914 exhibits the typical
behavior predicted by the coalescence of compact systems
where inspiral, merger, and ringdown phases are traversed
[5]. The LIGO-VIRGO Collaboration has analyzed the
three regimes adopting a parametrized analytical family
of inspiral-merger-ringdown waveforms [6–11]. The signal
is divided in terms of frequency: the early to late inspiral
regime from ∼20 Hz to ∼55 Hz; the intermediate region
from ∼55 Hz to ∼130 Hz; and the merger-ringdown region
from ∼130 Hz until the end of the waveform. The simplest
and fastest parametrized waveform model that is currently
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available [12] sets bounds on the physical effects based on
the inspiral phase only, where a calibrated post-Newtonian
(PN) treatment is sufficient. For the later phases, phenom-
enological coefficients fitted to numerical relativity wave-
forms are used. In this paper, we discuss the possibility
to set constraints on extended theories of gravity via the
modified inspiral phase.
It is worth noting that the existence of GWs confirms

metric theories of gravity, among them general relativity
(GR), but there is ample room for other possibilities
(see [1] for a detailed discussion). Any extended theory
of gravity can be parametrized by means of a suitable
post-Newtonian parametrization where the governing
parameter is the effective gravitational coupling constant
Geff and the effective gravitational potential ΦðrÞ. Both
these quantities are functions of the radial coordinate that
influence the phase of the GW signal. In other words, the
GW waveform could, in principle, single out the range of
possible gravitational metric theories that are in agreement
with the data.
The paper is organized as follows. In Sec. II, we discuss

how different theories of gravity can be parametrized by the
coupling constant and the gravitational potential. The main
differences of these theories with respect to GR can be
reduced to the effective dependence on the radial coor-
dinate. It is then straightforward to obtain the correspond-
ing phase modulation, and we will exemplarily do so in
Sec. III and compare with the observed data. Section IV is
devoted to the discussion of the Shapiro delay that can be
modulated according to the parameters of the given theory.
Discussion and conclusions are drawn in Sec. V.

II. EFFECTIVE GRAVITATIONAL CONSTANT
IN EXTENDED THEORIES OF GRAVITY

Alternative theories of gravity are extensions of GR
where higher order curvature invariants and/or additional
scalar fields are taken into account in the Hilbert-Einstein
gravitational action (see [13–16] for a comprehensive
review on the subject). If the gravitational Lagrangian is
nonlinear in the Ricci scalar or, more generally, in the
curvature invariants, the field equations become higher
than second order in the derivatives; it is for this reason that
such theories are often called higher-order gravitational
theories. In principle, one can take into account wide
classes of higher-order-scalar-tensor theories of gravity in
four dimensions [13].
With the emergence of the inflationary paradigm, these

theories have gained heightened attention as they can
provide solutions to the shortcomings of the standard
cosmological model. These are, for example, the horizon
problem, the density fluctuation problem, the dark matter
problem, the exotic relics problem, the thermal state
problem, the cosmological constant problem, the singu-
larity problem, and the time scale problem [17–21].
Furthermore, the presence of scalar fields is important also

in multidimensional gravity, such as Kaluza-Klein theories
and in the effective action of string theory. In this
framework, the strength of gravity, given by the local
value of the gravitational coupling, depends on time and
location. For example, the Brans-Dicke theory that is the
most used scalar-tensor theory of gravity [22] includes
the hypothesis suggested by Dirac of the variation of the
gravitational coupling with time [23]. As a consequence,
scalar-tensor theories do not satisfy the strong equivalence
principle (EP) as the variation of the gravitational constant
Geff—which is, in general, different from GN , the standard
Newton gravitational constant—implies that local gravita-
tional physics depends on the scalar field strength. Theories
that present such a feature are called nonminimally coupled
theories.
In these theories, the gravitational coupling is deter-

mined by the form of the Lagrangian. We can have two
physically interesting situations which could be tested by
experiments:
(1) When GeffðrÞr→∞ → GN , the Newton gravitational

constant and GR are recovered.
(2) The possibility that gravitational coupling is not

asymptotically constant; i.e., Geff is always varying
with the epoch and _Geff=Geff jnow ≠ 0.

The variability of the gravitational coupling can be tested
by three classes of experiments:

(i) Through observations of Solar System dynamics.
In fact, several weak-field tests of GR are based on
planetary motion and dynamics of self-gravitating
objects nearby the Sun. Deviations from classical
tests are possible probes for the variation of the
gravitational coupling.

(ii) Through binary pulsar systems. To obtain informa-
tion from these systems, it has been necessary to
extend the post-Newtonian approximation, which
can be used only in the presence of a weakly
gravitationally interacting n-body system, to strong
gravitationally interacting systems. The estimation
of _G=G is 2 × 10−11 per year [24,25].

(iii) Through gravitational lensing observations of
distant galaxies [26].

Concerning the solar system tests, the most stringent
limits are obtained by Lunar Laser Ranging (LLR) com-
bined with accurate ephemeris of the solar system. LLR
consists of measuring the round-trip travel time of photons
that are reflected back to Earth from mirrors located on the
Moon; the change of round-trip time contains information
about the Earth-Moon system. The round-trip travel time
has been investigated for many years, and the best estimates
for _G=G range from 0.4×10−11 yr−1 to 10−11 yr−1 [24,27].
However, none of these tests probes the strong field regime
which, up to now, could not be investigated at all.
Besides the variation of the gravitational coupling, it is

well known that a wide class of these theories gives rise
to Yukawa-like corrections, r−1e−mr in the gravitational
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potential [15]. Here, the parameter m is an effective mass
related to the additional degrees of freedom in the gravi-
tational action. Specifically, an additional scalar field is
introduced by the corresponding Klein-Gordon equation of
the form □ϕ − dVðϕÞ=dϕ ¼ 0 that has to be added to the
standard set of Einstein field equations. In the static case,
the Klein-Gordon equation reduces to

ð∇2 −m2Þϕ ¼ 0; ð1Þ
where the effective mass m is given by the minimum of
the potential VðϕÞ. The solution of Eq. (1) is a Newtonian
potential corrected by a Yukawa-like term that, as in the
Klein-Gordon case, disappears at infinity, allowing one to
recover the Newtonian limit and Minkowski flat spacetime.
In general, most alternative gravities have a weak field

limit that can be expressed in the form (see also [28,29])

ΦðrÞ ¼ −
GNM
r

�
1þ

Xn
k¼1

αke−r=rk
�
¼ −

GeffM
r

; ð2Þ

where GN is the value of the gravitational constant as
measured at infinity and rk is the interaction length of the
kth component of the non-Newtonian corrections (see also
[30,31]). See Refs. [30,31], for a general discussion of this
last equation containing the non-Newtonian corrections.
Clearly, the standard Newtonian potential is restored as

soon as Geff → GN , which means e−r=rk → 0 at infinity.
The amplitude αk of each component is normalized to the
standard Newtonian term, and the signs of the αk coef-
ficients indicate whether the corrections are attractive or
repulsive [32].
For the simplicity of the estimations, one can truncate to

the first term of the expansion series in Eq. (2).1

One then obtains a potential for the form

ΦðrÞ ¼ −
GNM
r

½1þ α1e−r=r1 �; ð3Þ

where the influence of non-Newtonian terms can be para-
metrized through the constants ðα1; r1Þ. For asymptotically
large distances, where r ≫ r1, the exponential term tends to
0 and consequently the gravitational coupling tends to the
limiting value GN . In the opposite case when r ≪ r1, the
exponential term tends to unity; consequently, by differ-
entiating Eq. (3) and comparing with the gravitational force
measured in laboratory experiments, one can get

Glab ¼ GN

�
1þ α1

�
1 −

r
r1

��
≃GNð1þ α1Þ; ð4Þ

where Glab ¼ 6.67 × 10−8 g−1 cm3 s−2 is the standard
Newton gravitation constant precisely measured in

Cavendish-like experiments and where GN and Glab are
identically the same in the standard gravity. However, the
inverse square law is asymptotically valid, but the measured
coupling constant is different by a factor of (1þ α1).
For self-gravitating systems, any correction involves a

characteristic length that acts at a certain scale. The range of
the characteristic scale rk corresponds to Compton’s length

rk ¼
ℏ

mkc
ð5Þ

and is identified through the mass mk of a pseudoparticle.
Accordingly, in the weak energy limit, fundamental theo-
ries attempting to unify gravity with other forces introduce
extra particles with mass which may carry the further
degrees of freedom of the gravitational force [33].
There have been several attempts to constrain rk and αk

(and hence mk) by experiments on scales in the range
1 cm < r < 108 cm, using a variety of independent and
different techniques [34–36]. The expected masses for
particles which should carry the additional gravitational
force are in the range10−13 eV<mk < 10−5 eV.Given these,
one can obtain the following estimates for the parameters:

jα1j ∼ 10−2; r1 ∼ 104–105 cm: ð6Þ
Assuming that the dilaton is an ultrasoft boson that carries the
scalar mode of gravitational field, one obtains a length scale
of∼1022–1023 cm, if themass range ism ∼ 10−27–10−28 eV.
This length scale is necessary to explain the flat rotation
curves of the spiral galaxies. Furthermore, very long baseline
interferometry observations impose a limit of α ∼ 1.4 × 10−2

[37]. On the other hand, binary-pulsar data place a limit
from 10−2 to 10−4 on α [38–41].
However, new limits from GW150914, reported in [1],

give as an upper limit for the graviton massmg ≤ 10−22 eV
and rg ≥ 1018 cm for the related Compton length. We
obtain the same limit also for GW151226. These exper-
imental numbers open new interesting perspectives in the
present debate as soon as the above mk and rk are
interpreted. Below, we will discuss how Geff and ΦðrÞ
could be constrained according to the GW150914 and
GW151226 data. As we will see, such constraints can be
interpreted, at fundamental level, as the above effective
mass mk and interaction length rk.

III. CONSTRAINING Geff AND ΦðrÞ
BY GW150914 AND GW151226

Starting from the above considerations, it is possible
to constrain Geff and ΦðrÞ by the GW parameters reported
for the events GW150914 and GW151226. Before this, let
us review the post-Newtonian approximation required to
perform this kind of analysis. Specifically, let us compute
the 3.5PN approximation that is relevant for our analysis
[42,43]. In particular, PN waveform models at the 3.5PN
order are developed, e.g., in [44].

1This assumption is not applicable in some cases where
additional corrections are taken into account.
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To compare the theoretical waveforms with experimental
sensitivities, we write the Fourier transform of the two GW
strains hþ, h× as

hþ ¼ AeiϕþðfÞ c
r

�
GeffM
c3

�5
6 1

f
7
6

�
1þ cos2i

2

�
; ð7Þ

h× ¼ Aeiϕ×ðfÞ c
r

�
GeffM
c3

�5
6 1

f
7
6

cos i; ð8Þ

where i is the inclination angle of the line of sight and the
constant A has the value

A ¼ 1

π
2
3

�
5

24

�1
2

: ð9Þ
The phase ϕþ is given as

ϕþðfÞ ¼ 2πf

�
tc þ

r
c

�
− φc −

π

4
þ 3

4

�
GeffM
c3

8πf

�
−5
3

;

ð10Þ
where φc and tc are the value of the phase and the time at
coalescence, respectively. Furthermore the phases of the
two strains are directly related, ϕ× ¼ ϕþ þ π

2
.

An accurate computation of the phase going well beyond
the Newtonian approximation is crucial for discriminating
the signal of a coalescing binary from the noise. Therefore
one has to give the PNcorrection to the phase (10). To exploit
the signal present in the detector, and thus detect sources at a
further distance, an accurate theoretical prediction on the
time evolution of the waveform is required.
To calculate the PN corrections, we write the equation of

motion in a more general form,

dvi

dt
¼ −

GeffM
r2

�
ð1þAÞ x

i

r
þ Bvi

�
þO

�
1

c8

�
; ð11Þ

such that it has a term proportional to the relative separation
xi and a term proportional to the relative velocity vi in the
center of mass frame. Here, the effective gravitational
constant is not given by the standard Newton constant,
but by Geff ¼ GNð1þ αÞ.
Explicit expressions for the functions A and B are

extremely long and are given in Ref. [45]. We proceed by
considering the following relation for the frequency-domain
phase:

ϕ ¼ 2πftc − φc −
π

4

þ 3

128η

�
π
MfGeff

c3

�
−5
3 X7
i¼0

φiðΘÞ
�
π
MfGeff

c3

�i
3

; ð12Þ

where φiðΘÞ are the PN expansion coefficients that are
functions of the intrinsic binary parameters. The information
on the spin χi (with i ¼ 1, 2) is incorporated via the relations

χs ¼
ðχ1 þ χ2Þ

2
; ð13Þ

χa ¼
ðχ1 − χ2Þ

2
ð14Þ

that appear in the functions φiðΘÞ.
The 3.5PN expansion coefficients are

φ0 ¼ 1; ð15Þ
φ1 ¼ 0; ð16Þ

φ2 ¼
3715

756
þ 55η

9
; ð17Þ

φ3 ¼ −16π þ 113δχa
3

þ
�
113

3
−
76η

3

�
χs; ð18Þ

φ4 ¼
15293365

508032
þ 27145η

504
þ 3085η2

72
þ
�
−
405

8
þ 200η

�
χ2a −

405

4
δχaχs þ

�
−
405

8
þ 5η

2

�
χ2s ; ð19Þ

φ5 ¼
�
1þ log

�
π
GeffMf

c3

���
38645π

756
−
65πη

9
þ δ

�
−
732985

2268
−
140η

9

�
χa þ

�
−
732985

2268
þ 24260η

81
þ 340η2

9

�
χs

�
; ð20Þ

φ6 ¼
11583231236531

4694215680
−
6848γE
21

−
640π2

3
þ
�
−
15737765635

3048192
þ 2255π2

12

�
ηþ 76055η2

1728
−
127825η3

1296

−
6848

63
log

�
64π

GeffMf
c3

�
þ 2270

3
πδχa þ

�
2270π

3
− 520πη

�
χs; ð21Þ

φ7 ¼
77096675π

254016
þ 378515πη

1512
−
74045πη2

756
þ δ

�
−
25150083775

3048192
þ 26804935η

6048
−
1985η2

48

�
χa

þ
�
−
25150083775

3048192
þ 10566655595η

762048
−
1042165η2

3024
þ 5345η3

36

�
χs: ð22Þ
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FIG. 1. Frequency-domain phase representation for GW150914 with masses m1 ¼ 36.2 M⊙, m2 ¼ 29.1 M⊙ and initial spins
χ1 < 0.7, χ2 < 0.8 [4]. The solid black curve is the GR prediction where α ¼ 0 and δφi ¼ 0. The red lines are α ¼ �0.01. The shaded
blue area is the range allowed for the δφi parameter in accordance with Table 1 of [5]. From left to right: the first on the left column
shows the phase at 0PN order, and the right one is for the 0.5PN order. The second on the left column is 1PN, while on the right there is
the 1.5PN. The third on the left column represents the phase at 2PN. On the right column, the phase at 2.5PN is shown. Finally, the fourth
on the left column shows the 3PN and on the right 3.5PN. Note that the error on the δφ7 is so large that it falls outside the scale. The inset
frequency ranges from 80 Hz to 90 Hz to illustrate the curves at these frequencies.
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FIG. 2. Frequency-domain phase representation for GW151226 with massesm1 ¼ 14.2 M⊙,m2 ¼ 7.5 M⊙ and initial spins χ1 < 0.7,
χ2 < 0.8 [2,3]. The solid black curve is the GR prediction where α ¼ 0 and δφi ¼ 0. The red lines are α ¼ �0.01. The shaded blue area
is the range allowed for the δφi parameter in accordance with Table 1 of [5]. From left to right: the first on the left column shows the
phase at 0PN order, and the right one is for the 0.5PN order. The second on the left column is 1PN, while on the right there is the 1.5PN.
The third on the left column represents the phase at 2PN. On the right column, the phase at 2.5PN is shown. Finally, the fourth on the left
column show the 3PN and on the right 3.5PN. The inset shows the frequency from 180 to 190 Hz.
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where φ0;…;φ7 indicate the 0;…; 3.5PN approximation,
respectively, γE ¼ 0.577 is the Euler-Mascheroni constant
[10], and we have used the common definitions

δ ¼ ðm1 −m2Þ
M

; ð23Þ

η ¼ ðm1m2Þ
M

; ð24Þ
where m1, m2 are the masses of the two compact objects.
In Figs. 1 and 2 we have plotted the frequency domain

phase representation of GW150914 and GW151226 and
show the effect of varying the δφi parameters as provided
by the single parameter analysis of [2,3,5]. Note that we
follow their naming convention in introducing the quan-
tities φ5l and φ6l that contain the logarithmic dependence
with frequency. In addition, the variation with the leading
order deviation α ¼ �10−2 is shown. The single parameter
analysis of [2] was performed by setting all but the
considered δφi to 0. In contrast, the multiple parameter
analysis was done by allowing all δφi to vary freely. The
latter leads to an error that is almost 1 order of magnitude
larger due to the additional degrees of freedom. We do not
consider GW150914 and GW151226 data for the multiple
parameter analysis performed in [2,5] due to the large error
bars in the δφi parameters.
For the masses, we have used the values as given in [3]

with m1¼ 36.2M⊙, m2 ¼ 29.1 M⊙ for GW150914, while
m1 ¼ 14.2 M⊙, m2 ¼ 7.5 M⊙ for GW151226. The initial
spins were only constrained to be less than χ1 < 0.7, χ2 <
0.8 [3,4], and for our analysis we have taken the values of
χ1 ¼ 0.7, χ2 ¼ 0.8. Additionally, we adopted the values
tc ¼ 0.43s for GW150914 and tc ¼ 1s for GW151226
[1,2,5] and set φc ¼ 0 for both.
Furthermore, we studied the sensitivity of our results by

varying the initial masses m1, m2 and initial spins χ1, χ2
within the errors and ranges obtained by [4]. We found that
the resulting changes were mostly quantitative, such as

altering the slopes of the curves, and that the qualitative
behaviors of the curves, such as the width of the constraints
given by different α, remained unchanged. Thus the results
plotted in Figs. 1 and 2 are representative of the possible
physical parameters reported in [4].
In Fig. 1, we show the frequency-domain phase repre-

sentation for GW150914 and as the shaded blue area the
constraints due to the δφi of the combined events, as provided
by [3] and given in Table I. The GR evolution is shown as the
black solid line, while the extended theory is marked in
the range of α ∈ ½−10−2;þ10−2� as red curves. We report on
the early inspiral range f ∈ ½20; 90� Hz and zoom in on the
range f ∈ ½80; 90� Hz in the inset. As one can observe, at all
the parameter orders the single parameter analysis does not
rule out jαj < 10−2.
The data of the second event, GW151226, are shown in

Fig. 2; due to the lower masses involved in the merger, the
frequency is much higher. Consequently, the inspiral
regime lasts until 450 Hz, and we show the phase in the
range f ∈ ½40; 200� Hz. Inspecting Eqs. (20) and (22), we
see that the variation with α is more pronounced for objects
with lower total mass M. Hence, in principle this event
could yield tighter constraints on the value of the allowed α.
To investigate the required tolerances, in Fig. 3we plot two

PN orders, 0 and 4, where, for GW151226, we have
decreased the variations by factors of 2,5, and 10. For the
PN terms of order 0, an increase by an order of magnitude
would be sufficient to set constraints on α. More promising
still are the higher order terms which, even with a factor of 5
improvement, would be able to set constraints on jαj < 10−3.
We stress that these results are obtained from the single

parameter analysis, while a more correct treatment would
have to adopt the uncertainties of the multiple parameter
analysis. Furthermore, we expect that as more GWs are
detected, the statistics on the combined posterior density
distributions [3] will improve, and we will be able to set
stronger constraints on these types of alternative theories of
gravity in the near future.

TABLE I. We report the frequency dependence of each parameter of Fig. 6 in [3], median, and 90% credible
regions. For each parameter we report the corresponding quantities for the combined signals of GW150914 and
GW151226 analyses as in [3,5].

Median
Waveform regime Parameter f-dependence GW150914þ GW151226

Early-inspiral regime δφ0 f−5=3 −0.05þ0.08
−0.1

δφ1 f−4=3 0.18þ0.31
−0.26

δφ3 f−2=3 0.11þ0.06
−0.18

δφ2 f−1 −0.05þ0.12
−0.21

δφ4 f−1=3 −0.6þ0.81
−0.82

δφ5l logðfÞ 0.27þ0.26
−0.4

δφ6 f1=3 −0.38þ0.49
−0.72

δφ6l f1=3 logðfÞ 2.66þ3.33
−3.53

δφ7 f2=3 1.48þ1.59
−1.73
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IV. CONSTRAINTS FROM THE SHAPIRO DELAY

In this section we obtain constraints from the Shapiro
delay using the relative time difference between observa-
tions at multiple frequencies. This allows one to infer
violations of the EP using the observed time delay from
astrophysical particle messengers like photons, gravitons,

or neutrinos [46–48]. To date, the strongest constraints on
the frequency dependence of the parametrized post
Newtonian (PPN)-γ parameter are obtained by observations
of fast radio bursts (FRBs) yielding ΔγðfÞ ∼ 10−9. In the
case of FRBs, the largest uncertainty is the signal
dispersion due to the poorly understood line-of-sight free

FIG. 3. Two PN orders for GW151226, 0 (left) and 4 (right), with errors in δφi improved (from top to bottom) by factors of 2,5, and 10.
The scales have increased in order to more clearly show the curves.
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electron population [48]. The fact that this uncertainty is
completely avoided for gravitational waves makes them an
appealing messenger to test EP violations.
The Shapiro gravitational time delay is caused by the

slowing passage of light as it moves through a gravitational
potential (3) as

Δtgrav ¼ −
1þ γ

c3

Z
ro

re

ΦðrÞdr; ð25Þ

where γ is the (theory dependent) PPN parameter and ro
and re are the positions of the observer and the source of
emission. Let us conservatively assume a short burst of
emission; that is, all wave frequencies are emitted at the
same instant. Now given the observed signal duration for
GW150914 of ∼0.2s, we can obtain an estimate for the
frequency dependence of γ and α, respectively. In the
absence of other dispersive propagation effects, e.g., due to
Lorentz invariance violation (see also [49,50]), we obtain
an upper limit for Δα=Δf.
For example, in scalar tensor theories the γ PPN

parameter is expressed in terms of the nonminimal coupling
function of a scalar field, equivalently, in terms of the α
parameter, that is (for more details see [51]),

γ − 1 ¼ −
ðf0ðφÞÞ2

fðφÞ þ 2½f0ðφÞ�2 ¼ −2
α2

1þ α2
: ð26Þ

In this case, the delay (25) takes the form

Δtgrav ¼ −
�
2 −

2α2

1þ α2

�
=c3

Z
ro

re

ΦNðrÞð1þ αe−r=r1Þdr;

ð27Þ

of which the most important contribution comes from the
term linear in α,

Δtgrav ≃ −2α=c3
Z

ro

re

ΦNðrÞe−r=r1dr: ð28Þ

It is evident that for r1 ≫ re, ro the value for Δα=Δf is
just half the constraint that can be set on Δγ=Δf using the
usual Shapiro delay. Thus with the same assumptions for
the potential encountered by the gravitons as [47] (corre-
sponding to a Shapiro delay of 1800 days), we can set the
limit jαð250 HzÞ − αð35 HzÞj < 1.3 × 10−9.
It is important to note that this seemingly tight limit

relates to the frequency dependence only; e.g., if we have
α ¼ α0 þ αðfÞ, the constant term α0 is entirely uncon-
strained by this experiment. However, knowledge of
Δα=Δf can be used to extrapolate measurements of the
absolute value of α across the spectrum and thus extend
their range of validity.

V. DISCUSSION AND CONCLUSIONS

The GW150914 and GW151226 signals [1,3] show the
inspiral and merger regimes and GW150914 is also
observed in the ringdown phase. Here we have analyzed
the inspiral data for GW150914 and GW151226, using an
extended post-Newtonian approximation. We would like to
underline that corrections coming from alternative gravity
to the standard relativistic equations and waveforms
describing binary black hole systems are negligible up to
2.5PN order (see, e.g., [45]).
However, since, as we have demonstrated, extended

theories of gravity give rise to an effective gravitational
coupling constant Geff , the post-Newtonian dynamics of
any metric formalism can be obtained straightforwardly for
the lowest order deviation parameter α ¼ const. The
recently detected gravitational waveforms of GW150914
and GW151226 can thus give constraints on the theory.
Using the fact that the gravitational wave frequencies are

modulated through Geff , we have shown that this modu-
lation will change the phase of the detected gravitational
signal. Our conclusions are in agreement with [52] who
found that GW150914 and GW151226 do not place strong
constraints on the theory of gravity, since the parameters of
the merging black holes are not measured with high enough
precision. However, improved statistics on the deviations
δϕi could remedy this shortcoming in the future.
Moreover, we have used the Shapiro delay of GW150914

to set an upper limit jαð250 HzÞ − αð35 HzÞj < 1.3 × 10−9.
Although this result was obtained for scalar tensor theories,
this applies for all theories where the PPN-γ is at least
quadratic in α.
The constraints provided by GW150914 and GW151226

on GR and, in general, metric theories of gravity, are
unprecedented due to the nature of the sources and the
strong field regime. However, they have not reached high
enough precision to definitively discriminate among con-
curring theories. Furthermore, in order to extract new
physical effects, one would need a wide range of GW
waveforms beyond the standard forms adopted for GR and
allow for polarizations beyond the standard × and þ
modes [53].
Finally, more stringent bounds could be obtained

by combining results from multiple GW observations
[11,54–56]. Given the rate of coalescence of binary black
holes as inferred in Ref. [57,58], we are looking forward to
the upcoming joint observation surveys from advanced
LIGO and VIRGO experiments.
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