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Critical collapse of a spherically symmetric domain wall is investigated. The domain wall is made of a
minimally coupled scalar field with a double well potential. We consider a sequence of the initial data
which describe a momentarily static domain wall characterized by its initial radius. The time evolution is
performed by a full general relativistic numerical code for spherically symmetric systems. In this paper, we
use the maximal slice gauge condition, in which spacelike time slices may penetrate the black hole horizon
differently from other widely used procedures. In this paper, we consider two specific shapes of the double
well potential, and observe the Type II critical behavior in both cases. The mass scaling, subcritical
curvature scaling, and those fine structures are confirmed. The index of the scaling behavior agrees with the
massless scalar case.
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I. INTRODUCTION

Solutions for the Einstein equations and their nonlinear
dynamics have rich structure and behavior, and they have
been extensively investigated in many aspects for a century.
After numerical techniques were established, research on
the nonlinear dynamics has been developed a lot, and still
continues to attract much attention up to the present date.
The critical collapse, which was first observed by Choptuik
[1] for the spherically symmetric massless scalar system
with numerical simulation, is one of the most interesting
discoveries in nonlinear gravitational dynamics. After
Choptuik’s discovery, many researchers have discovered
the critical collapse in several systems such as axisym-
metric gravitational wave collapse [2,3], spherically sym-
metric gravitational collapse of a perfect fluid [4,5], and
collapse of collisionless matter particles [6].
Let us consider a collapsing system whose initial data are

characterized by a parameter p, and suppose that a black
hole is finally formed for the solutions with p > p�
(supercritical), while it is not the case for p < p�
(subcritical). The critical behavior can be observed near
the threshold of the black hole formation p ∼ p�. It has
some characteristic features of the intermediate state of the
gravitational collapse and the behavior of the black hole
mass in the supercritical region. The intermediate state of
the gravitational collapse around the threshold does not
depend on how to parametrize the initial data, and it is
called a critical solution.
Here, we focus on the so-called Type II critical collapse

associated with a discrete self-similar critical solution
(see, e.g., a review paper [7] for general cases). In this
case, the black hole mass in the supercritical region obeys
the scaling law with a periodic fine structure as follows:

lnMBH ¼ ν ln jp − p�j þ cþ fðln jp − p�jÞ, where c is a
constant, and fðxÞ is a periodic function satisfying
fðxþϖÞ ¼ fðxÞ. The index ν and periodϖ take universal
values irrespective of the parametrization of the initial data.
An example of this type is the spherically symmetric
massless scalar system [1,8], and we obtain ν ∼ 0.377
and ϖ ∼ 4.6 in this case.
Scaling lows can be also observed not only in the

supercritical region but also in the subcritical region for
some physical quantities. Garfinkle reported the following
scaling laws of the maximum values of the curvature
invariants at the origin of a spherical system: jRjmax ∝
jp − p�j−2ν and jRμνRμνjmax ∝ jp − p�j−4ν, where ν is the
index of the black hole mass scaling [9]. It has been
revealed that such rich phenomena of the critical collapse is
related to the structure of the phase space [10,11]. Other
related works are summarized in a review paper [7].
Finding universal phenomena in complicated nonlinear

dynamics is important and useful to understand character-
istic features of the theory. The critical collapse may reflect
a universal feature of gravitational theory. Investigation into
the critical collapse may provide not only deep under-
standing of gravitational theory but also astrophysical
implication. For instance, the threshold for the black hole
formation is particularly important for the primordial black
holes. Some of the primordial black holes would have been
formed in the early universe as a result of near critical
collapse. Therefore, the scaling behavior would be impor-
tant and useful to predict the mass spectrum of the number
density of the primordial black holes [12].
Choptuik discussed the critical collapse of the scalar

field with a polynomial potential [13], and concluded that
the polynomial potential is irrelevant under the critical
collapse, because the kinetic term of the scalar field
dominates under the discrete self-similar spacetime. That
is, if the critical behavior is realized for the scalar field
with a polynomial potential with a discrete self-similar
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spacetime as the intermediate state, it is expected that the
scaling law is identical to the massless case. However, in
general, it is nontrivial if the critical collapse with a discrete
self-similar spacetime is actually realized or not with a
polynomial potential. In fact, as is reported in Refs. [14,15],
the critical collapse of the massive scalar system can be
different from the massless case depending on the relative
value of the mass of the scalar field to the physical scale
characterizing the initial data.
In this paper, we simulate spherically symmetric

domain wall collapse of a scalar field with a double well
potential. Dynamics of a spherically symmetric domain
wall has been investigated in Ref. [16] on the flat back-
ground. It has been shown that a black hole can be formed
by gravitational collapse of the domain wall in Ref. [17].
Astrophysical implication of the primordial black holes
from domain wall collapse is discussed in Ref. [18].
Recently, it was reported that mass scaling appears in the
domain wall collapse and the index of the scaling agrees
with the index in the massless scalar system [19]. While,
the fine structure has not been confirmed yet. As is noted
above, depending on the value of the parameter for the
potential, there is a possibility to obtain different behavior
from the Type II critical behavior. Therefore, in this paper,
we adopt different parameter sets from those in
Ref. [19], and discuss whether the mass scaling and the
fine structure appear.
One remarkable feature of our work is in the gauge

condition for time slices. In many papers about the critical
collapse, the areal polar gauge condition or null coordinates
are used. In the areal polar gauge, the black hole horizon is
identified by the vanishing lapse function. Therefore, time
slices cannot penetrate the black hole horizon. In the case of
null coordinates, the apparent horizon is foliated by null
surfaces starting from the outer-boundary in the asymptotic
region. While, in our case, we get a foliation of spatial
sections of the apparent horizon. There are a few papers in
which a similar gauge condition to ours is used [6,15,
20–23]. In these papers, and also in this paper, the black
hole mass is defined by the half of the areal radius of the
apparent horizon at the moment of the apparent horizon
formation. Obviously, the definition of the black hole mass
depends on the time slice. However, in spite of this fact, the
critical behavior appears, as is reported in Refs. [6,15,20]. It
should be noted that, the areal radius of the apparent
horizon with a spatial section is, of course, different from
the areal radius of the event horizon near the null infinity.
Therefore, scaling behaviors of these two horizons should
be independently discussed and compared with each other.
This paper is organized as follows. In the next section,

we explain our formulation and numerical schemes. Initial
data for the numerical simulation is shown in Sec. III. In
Sec. IV, we provide our numerical results, and discuss the

mass scaling, fine structure and curvature scaling.
Section V is devoted to a summary and discussion.
Throughout this paper, we use the geometrized units in

which the speed of light and Newton’s gravitational
constant are one, respectively.

II. FORMULATION AND NUMERICAL
SCHEMES

A. Formulation

We consider the Einstein-scalar system with a double
well potential whose Lagrangian is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

−
1

2
∇μΦ∇μΦ − VðΦÞ

�
; ð2:1Þ

where gμν is the metric tensor, R is the Ricci scalar and Φ is
a scalar field. VðΦÞ is the double well potential given by

VðΦÞ ¼ λ

24
ðΦ2 − σ2Þ2; ð2:2Þ

where λ and σ are constant parameters. We focus on
spherically symmetric spacetimes, whose line element is
described by

ds2 ¼ −α2ðt; rÞdt2 þ ψ4ðt; rÞfγðt; rÞ−2ðdrþ rβðt; rÞdtÞ2
þ γðt; rÞr2dΩ2g; ð2:3Þ

where dΩ2 is the solid angle element, and ψ , α, β, and γ
are independent functions of t and r. Under this ansatz, the
3-metric γij is expressed as follows:

γij ¼ ψ4diagðγ−2; γr2; γr2sin2θÞ: ð2:4Þ

The extrinsic curvature Kij of each time slice can be
expressed by using the two independent components K ≡
γijKij and A≡ ðKθθ − 1

3
KγθθÞ=ðψ4r2Þ.

Substituting the metric form (2.3) into the Einstein
equations and the equation of motion for the scalar field,
we get the following time evolution equations:

ð∂t − rβ∂rÞψ ¼ 1

6
ψð3β þ rβ0 − αKÞ; ð2:5Þ

ð∂t − rβ∂rÞK ¼ α

�
1

3
K2 þ 6

A2

γ2
þ 8πΠ2 − 8πVðΦÞ

�

− ψ−4γ2
�
Δαþ 2α0

�
ψ 0

ψ
þ γ0

γ

��
; ð2:6Þ

ð∂t − rβ∂rÞγ ¼ −2αA −
2

3
rγβ0; ð2:7Þ
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ð∂t − rβ∂rÞA ¼ αKA − 2α
A2

γ
−
2

3
rAβ0 þ ψ−4

�
−
1

6
γ3ðΔα − 3α00Þ − 1

3
αγ3

�
Δψ
ψ

− 3
ψ 00

ψ

�

−
1

6
αð1þ γÞΔγ þ 1

6
αð1þ γ þ γ2Þγ00 − 1

3
αð1þ γ þ γ2Þ

�
−
γ − 1

r2
þ γ0

r

�
þ 1

6
α0γ2γ0

−
4

3
α0γ3

ψ 0

ψ
þ 1

3
αγ2γ0

ψ 0

ψ
− 2αγ3

ψ 02

ψ2
þ 8

3
παγ3Φ02

�
; ð2:8Þ

ð∂t − rβ∂rÞΦ ¼ −αΠ; ð2:9Þ

ð∂t − rβ∂rÞΠ

¼ αΠK − ψ−4αγ2
�
ΔΦþ 2Φ0

�
γ0

γ
þ ψ 0

ψ
þ α0

2α

��

þ αV 0ðΦÞ; ð2:10Þ

where Π is the conjugate momentum of Φ. The Hamil-
tonian constraint and the momentum constraint can be
written as

Δψ
ψ

þ 1

8

�
5
Δγ
γ

− 3
γ00

γ

�
þ πΦ02 þ 2πγ−2ψ4VðΦÞ

þ ðγ2 þ γ þ 1Þðγ − 1Þ
4γ3r2

þ γ0

γ

�
2
ψ 0

ψ
þ 3

16

γ0

γ

�

þ ψ4

γ2

�
3A2

4γ2
þ πΠ2 −

1

12
K2

�
¼ 0; ð2:11Þ

A0 þ γ

3
K0 þ 4πγΠΦ0 þ 3A

r
þ Aγ0

2γ
þ 6A

ψ 0

ψ
¼ 0: ð2:12Þ

The boundary condition for the variables at the origin is
imposed by the Neumann boundary condition in order to
guarantee regularities. In addition, we require that γ and A
satisfy the local flatness condition:

γðt; r ¼ 0Þ ¼ 1; Aðt; r ¼ 0Þ ¼ 0: ð2:13Þ

The Neumann boundary condition and the local flatness
condition regularize the 1=r and 1=r2 terms in Eq. (2.8) and
constraint equations. It can be straightforwardly checked
that, if the condition (2.13) is satisfied on the initial
hypersurface and the time evolution equations are exactly
satisfied, the condition (2.13) is kept for every time step.
However, when the time evolution equations are numeri-
cally solved, the local flatness condition can be violated due
to numerical errors. When the Neumann boundary con-
dition for A and γ is imposed, the local flatness condition
cannot be explicitly enforced. In consequence, numerical
instability may be generated by 1=r and 1=r2 terms in the
original evolution equation (2.8) for A. In order to avoid the

numerical instability, instead of Eq. (2.8), we solve the
momentum constraint (2.12) for A at each time step. At the
origin, the equation (2.2) is evaluated by using the
Neumann boundary condition and the local flatness con-
dition (2.13).
While the appearance of 1=r and 1=r2 terms is avoided in

the evolution equation by the prescription stated above, we
still have those terms in the Hamiltonian constraint (2.11).
Due to these terms, we suffer from the large cancellation
error in evaluation of the constraint violation near the
origin, and we cannot use the Hamiltonian constraint (2.11)
to check the accuracy of the numerical computation. In
order to overcome this difficulty, we introduce the auxiliary
field Γðt; rÞ defined by

Γ≡ γ0 þ 3

r
ðγ − 1Þ: ð2:14Þ

Then, the constraint equation (2.11) becomes

Δψ
ψ

þ 1

8

�
5
Δγ
γ

− 3
γ00

γ

�
þ πΦ02 þ 2πγ−2ψ4VðΦÞ

þ γ2 þ γ þ 1

8γ3

�
Δγ −

1

3
γ00 −

2

3
Γ0
�
þ γ0

γ

�
2
ψ 0

ψ
þ 3

16

γ0

γ

�

þ ψ4

γ2

�
3A2

4γ2
þ πΠ2 −

1

12
K2

�
¼ 0. ð2:15Þ

From the time evolution equations, we can derive the
evolution equation for Γ as follows:

ð∂t − rβ∂rÞΓ ¼ α
γ0

γ
Aþ 8παγΠΦ0 þ 12αA

ψ 0

ψ
þ 2

3
αγK0

− 2α0A −
8

3
γβ0 þ 1

3
rγ0β0 −

2

3
rγβ00 þ βΓ:

ð2:16Þ

We check the violation of Eqs. (2.14) and (2.15) throughout
the time evolution as measures of numerical accuracy.
The evolution equation for A, which we do not solve in

this work, can be also derived from the evolution equation
as follows:

CRITICAL BEHAVIOR OF A SPHERICALLY SYMMETRIC … PHYSICAL REVIEW D 94, 124032 (2016)

124032-3



ð∂t − rβ∂rÞA ¼ αKA − 2α
A2

γ
−
2

3
rAβ0 þ ψ−4

�
−
1

6
γ3ðΔα − 3α00Þ − 1

3
αγ3

�
Δψ
ψ

− 3
ψ 00

ψ

�

−
1

6
αð1þ γÞΔγ þ 1

18
αð1þ γ þ γ2Þγ00 þ 1

9
αð1þ γ þ γ2ÞΓ0 þ 1

6
α0γ2γ0

−
4

3
α0γ3

ψ 0

ψ
þ 1

3
αγ2γ0

ψ 0

ψ
− 2αγ3

ψ 02

ψ2
þ 8

3
παγ3Φ02

�
: ð2:17Þ

We note that, in this scheme, 1=r and 1=r2 terms are also
removed from the time evolution equation (2.17) (see also
Ref. [24]). It is also worthwhile to note that this procedure
is quite similar to the so-called Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) scheme in numerical relativity

]25,26 ].

B. Gauge condition

For the shift vector, we simply set

βðt; rÞ ¼ 0: ð2:18Þ

For the lapse function, we use the maximal slice condition
K ¼ 0. By this condition, K is equal to zero at initial time
and the time evolution equation for K gives the elliptic
partial differential equation for αðt; rÞ:

Δαþ 2α0
�
ψ 0

ψ
þ γ0

γ

�
¼ αψ4γ−2

�
6
A2

γ2
þ 8πΠ2 − 8πVðΦÞ

�
:

ð2:19Þ

Because the solution for this equation has the ambiguity of
a constant factor, we normalize it so that the lapse function
may be unity at far boundary.
The lapse α is a nontrivial function of the radial

coordinate, and it may have the value larger than unity
for some cases. In such cases, we need to care about the
Courant-Friedrichs-Lewy condition (CFL condition). In
order to appropriately impose the CFL condition for the
physical time scale, we normalized the time step intervalΔt
as αmaxΔt ¼ 0.75Δ, where Δ is the grid interval of the
radial coordinate and αmax is the maximum value of the
lapse function at each time step.

C. Numerical scheme

We implemented the equations (2.7), (2.9), (2.10),
(2.19), and (2.19) in a numerical code. Because we use
the maximal slice condition and impose that β ¼ 0, the time
derivative of ψ vanishes, and we do not need to solve the
Eq. (2.5). The integration in time is performed by the
iterative Crank-Nicolson scheme [27], and spatial deriva-
tives are evaluated by using a 4th order finite difference
method except for γ in r < 0.01=μ, where spatial deriva-
tives of γ is evaluated by using the 2nd order central

difference method for the numerical stability. This is
because we found that if we use the higher resolution
scheme around the origin, the numerical calculation

become unstable. μ is defined by μ≡
ffiffiffiffi
2λ
3

q
σ. The

Laplacian terms in each equation at the origin are evaluated
by using the CARTOON method in r < 0.01=μ [28].

III. INITIAL DATA

Let us consider a momentarily static domain wall based
on the isotropic coordinate ~r, for which a line element dh2

on the initial hypersurface can be expressed as

dh2 ¼ ~ψ4ðd~r2 þ ~r2dΩ2Þ: ð3:1Þ

The relation between the coordinate r and ~r will be given
later. Hereafter, we express all variables as functions of
ðt; ~rÞ, and denote them with a tilde. From the momentarily
static condition, K, A, and Π are assumed to be zero at
t ¼ 0. Consequently, the momentum constraint is trivially
satisfied.
The initial scalar field profile is assumed to be the

following form:

~Φð~r; t ¼ 0Þ ¼ σ tanh

�
~r − r0
l

�
þ σ

�
−1 − tanh

�
~r − r0
l

��

× exp

�
−
�
~r
l

�
4
�
; ð3:2Þ

where r0 is the initial radius of the domain wall and l is the
width of the domain wall. The width l is given by the value

of the planar domain wall solution as l ¼ 2
σ

ffiffi
3
λ

q
¼

ffiffiffiffi
2
μ2

q
(see

Fig. 1). The first term locally describes the planar domain
wall solution for large ~r. While the second term is
introduced to regularize the scalar filed at the origin. By
this term, the initial data of ~Φ satisfy the regularity
condition at the origin: ∂r

~Φðt ¼ 0; ~r ¼ 0Þ ¼ 0.
Because it is expected that curvature values for near

critical cases are very large, high numerical resolution is
needed especially in the central region to resolve the critical
behavior. In order to realize the finer resolution near the
origin, we use the coordinate r which is related to the
isotropic coordinate ~r as follows:
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r ¼
8<
:

~r ð0 < ~r < RÞ;
~rþ

�
~r−R
w

�
ρ ðR < ~rÞ; ð3:3Þ

where R, w, and ρ are constant parameters. Performing the
coordinate transformation from ~r to r, γ can be read off
from the spatial part of the metric (2.3). Γ can be also
calculated by the definition (2.14). Then, solving the
Hamiltonian constraint equation (2.11) for ψ, we can
obtain the initial data set.
It is worthwhile to note that, by virtue of the new

coordinate r, the physical distance to the outer numerical
boundary can be so large that the scalar waves cannot reach
the outer boundary. Therefore, during the time evolution,
the asymptotically flat boundary condition can be easily
implemented for the radial coordinate r.

IV. RESULTS

A. Setup

Hereafter we express all the variables in the unit of μ.
The radius of the domain wall r0 is the only parameter
which characterizes the initial data of this system. We have
another parameter λ to specify the potential shape. In
Ref. [19], the cases λ ¼ 30000μ2 and λ ¼ 60000μ2 are
investigated. We consider smaller values of λ=μ2 and higher
potential barrier between the potential minima than the
cases in Ref. [19], so that we can observe characteristic
behavior due to existence of the two potential minima. In
this paper, we investigate the cases λ ¼ 1000μ2 and
λ ¼ 2000μ2. As for the parameters in the coordinate
transformation (3.3), we use the following two parameter
sets:

Param-1∶ R ¼ 0.1=μ; w ¼ 0.05=μ; ρ ¼ 6; 0 < rμ < 0.2;

ð4:1Þ

Param-2∶ R ¼ 0.03=μ; w ¼ 0.01=μ; ρ ¼ 6; 0 < rμ < 0.05;

ð4:2Þ

where the each region of r denotes the whole numerical
region. In both cases, the maximum value of the areal
radius is about 60=μ.

B. Convergence test

Before showing main results, in this subsection, we
present the result of a convergence test for our numerical
code by using simulation with r0 ¼ 0 for each resolution.
We show the result for λ ¼ 2000μ2. For simplicity, we
focus on the value Φ0ðt;ΔÞ ≔ Φðt; r ¼ 0;ΔÞ, where we
have explicitly written the dependence on the grid interval
Δ. If our numerical code obeys the nth order convergence,
we obtain

Φ0ðt;ΔÞ ¼ ΦtðtÞ þ ηΔn; ð4:3Þ

where ΦtðtÞ ≔ limΔ→0Φ0ðt;ΔÞ is the true value for the
infinite resolution and η is a constant. Since a 2nd order
finite difference method is partially used in our numerical
code, we expect at least the 2nd order convergence to our
numerical code, that is n ≥ 2. As is shown in Fig. 2, the
value of n can be read off as n ∼ 3.5 from our numerical
results, and ΦtðtÞ and η can be evaluated by using the least
square fitting assuming n ¼ 3.5.

C. Threshold

First, we summarize our parameter setting for each value
of the initial radius r0 of the domain wall in Table I. For
λ ¼ 1000μ2 and λ ¼ 2000μ2 cases, the thresholds r� of the
BH formation are given by 1.4556243366=μ and
2.199078357=μ, respectively.
In the λ ¼ 2000μ2 case, there is the parameter region in

which the lapse function diverges at the origin during the
time evolution. This behavior might suggest that the time
slice condition is not appropriate for this parameter region.
However, the value of r0 in this region is far from the
threshold value, and it is not a matter to investigate the
critical behavior.

1.0e-14

1.0e-13

1.0e-12

1.0e-11

1.0e-10

1.0e-14 1.0e-13 1.0e-12 1.0e-11 1.0e-10

(Φ
0(

t,Δ
)-

Φ
t(t

))
/η

Δ3.5

t=0.05 μ-1

t=0.10 μ-1

t=0.20 μ-1

x3.5

FIG. 2. The convergence of Φ0ðt;ΔÞ for each time step.
FIG. 1. The profile of the scalar field for the initial data.
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Apart from the parameter region where the calculation is
terminated, we do not observe the discrete change of the
black hole formation time, and nontrivial phase transition
such as the phase transition between the delayed collapse
phase and the prompt collapse phase reported in the
massive scalar field case [15].

D. Mass scaling and the fine structure

We define the black hole mass MBH as the half of the
apparent horizon radius at the moment of the apparent
horizon formation. In the supercritical region (r0 > r�), we
can see the mass scaling around the threshold of the black
hole formation(see Fig. 3). As we can see in Fig. 3, the
indices of the scaling agree with the index of the massless
scalar system.

We can also see the fine structure in Fig. 3. In order to see
the fine structure more clearly, we show the difference
between MBH and the scaling relation ζjðr0 − r�Þμjν in
Fig. 4. The periodic behaviors appear in the region
ln jðr0 − r�Þμj≲ −9. The periods are about 4.5 in the log
scale, which is close to the massless scalar case.

E. Mass discontinuity

There are some discontinuities in the behavior of the
mass as a function of r0 (ln jðr0 − r�Þμj≃ −10, −14.5 for
λ ¼ 1000μ2, and ln jðr0 − r�Þμj≃ −9.5, −14.0 for
λ ¼ 2000μ2). The reason for this behavior can be under-
stood by looking at the time evolution of the marginally
outer trapped surfaces, whose outgoing null expansion
vanishes. We depict the time evolution of the trapped region

TABLE I. Table of the parameter region of our numerical simulation and the grid interval for each simulation. The
leftmost column shows whether the parameter is in the super critical region or the subcritical region.

Sub/Super critical Initial domain wall radius [μ−1] Grid interval [μ−1] Param-1=2

λ ¼ 1000μ2

Super 2.500000000 ∼ 1.455625000 5.0 × 10−5 Param-1
Super 1.455624950 ∼ 1.455624600 2.5 × 10−5 Param-1
Super 1.455624500 ∼ 1.455624350 1.0 × 10−6 Param-2
Sub 1.455624200 ∼ 1.455624000 1.0 × 10−6 Param-2
Sub 1.455623500 ∼ 1.440000000 5.0 × 10−5 Param-1

Sub/Super critical Initial domain wall radius [μ−1] Grid interval [μ−1] Param-1=2

λ ¼ 2000μ2

Super 4.200000000 ∼ 2.216000000 5.0 × 10−5 Param-1
Super 2.206000000 ∼ 2.199162000 5.0 × 10−5 Param-1
Terminated 2.215000000 ∼ 2.207000000 Terminated
Super 2.199160000 ∼ 2.199078380 2.0 × 10−5 Param-1
Super 2.199078377 ∼ 2.199078367 5.0 × 10−6 Param-2
Sub 2.199078332 ∼ 2.199077000 5.0 × 10−6 Param-2
Sub 2.199076000 ∼ 2.199010000 2.5 × 10−5 Param-1
Sub 2.199000000 ∼ 2.194000000 5.0 × 10−5 Param-1

-8
-7
-6
-5
-4
-3
-2
-1
 0
 1

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2  0  2

ln
 |M

B
H

μ|

ln|(r0-r∗)μ|

λ=1000μ2

|(r0-r∗)μ|ν

-8
-7
-6
-5
-4
-3
-2
-1
 0
 1

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2  0  2

ln
|M

B
H

μ|

ln|(r0-r∗)μ|

λ=2000μ2

|(r0-r∗)μ|ν

FIG. 3. The left panel shows the mass scaling for the λ ¼ 1000μ2 case, and the right panel shows the mass scaling for the λ ¼ 2000μ2

case. In each panel, the dots denote the numerical results, and the line denotes the fitting functionMBH ¼ ζjðr0 − r�Þμjν. We determined
the coefficient ζ and ν by using the least squares fitting in the region ln jðr0 − r�Þμj < −5. As a result, for λ ¼ 1000μ2, ζ ≃ 0.564,
ν≃ 0.370 and for λ ¼ 2000μ2, ζ ≃ 0.905, ν≃ 0.388.
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and the marginally outer trapped surfaces in Fig. 5. In
Fig. 5, the trapped region is described by the shaded region.
In some period of time, the trapped region is divided into
two disconnected thick spherical shell regions. Therefore,

we have two connected sequences of outer boundaries of
the connected trapped regions. Consequently, the mass of
the black hole at the moment of the horizon formation
depends on which sequence appears first. The discrete
transition of the black hole mass may happen at the
parameter for which two sequences simultaneously appear.
Since the multiple connected trapped regions are essential
for this phenomenon, it cannot be realized in calculations
with the areal polar gauge or the null coordinates. Similar
behavior is also reported for the massless scalar system
with a horizon penetrating gauge condition [20].

F. Scaling in the subcritical region

Let us consider the scaling behavior in the subcritical
parameter region. We calculate the maximum absolute
value of the curvature R and RμνRμν at the origin in the
subcritical parameter region (r0 < r�), which are denoted
as jRjmax and jRμνRμνjmax, respectively. As is mentioned in
the Introduction, it is expected that these curvatures also
obey scaling laws. Because the behaviors of these curva-
tures are almost the same as each other, only the relation
between jRjmax and the initial radius of the domain wall is
depicted in Fig. 6. As is shown in Fig. 6, the behavior of
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the maximum value of the curvature agrees with the
massless case. This is the expected result because, if the
system comes to be governed by the scaling properties,
the kinetic energy of the scalar field dominates and the
potential term becomes less effective near the critical
point [13].
As is also expected from the above consideration, we

observe the scaling of the absolute maximum value of the
conjugate momentum jΠjmax at the origin in the subcritical
region (see Fig. 7). The index is expected from the
dimensional analysis [10], because the dimension of
the conjugate momentum of the scalar field is the inverse
of the length scale. We can find that the sign of Π at the
maximum absolute value synchronizes with the period of
the fine structure. It visualizes that there is a relation
between the oscillation of the scalar field near the origin
and the period of the fine structure in the parameter space.

V. SUMMARY AND DISCUSSION

In this paper, we have focused on the spherically
symmetric minimally coupled scalar field system with a
double well potential, and investigated gravitational col-
lapse of a spherically symmetric domain wall. We have
performed full general relativistic numerical simulation for
two specific cases which have different parameter sets from
the previous work [19]. As a result, Choptuik’s scaling and
the fine structure have been confirmed. We have found that
the index of the scaling and the period of the fine structure
are close to the massless scalar case. Furthermore, for the
subcritical region, we have checked that the maximum
value of the curvature at the origin also obeys the scaling
law with a similar index to the massless scalar case.
We have shown that the behavior of the black hole mass

as a function of the initial radius of the domain wall is not

necessarily smooth. Due to the nontrivial structure of the
trapped region, the behavior of the black hole mass may
have discontinuity. This behavior is peculiar in the analysis
with spacelike horizon penetrating time slices. The origin
of this discontinuity is the appearance of multiple con-
nected trapped regions. Recently, similar behavior is
reported in Ref. [20]. They found that a new outer horizon
appears after an apparent horizon initially appears, and the
difference between the old apparent horizon and the new
apparent horizon also obeys the scaling law. It may be
interesting to check if the same scaling low can be realized
with a nontrivial potential and discuss their differences.
Furthermore, we consider that if we define the black hole
mass from the final state, then there are no discontinuities.
But, in order to find the final BH mass, the long time
numerical calculation is needed. We leave them as a
future work.
In this paper, the analyses have been done for two

specific values of the parameter contained in the scalar field
potential. In the supercritical region, when the initial radius
of the domain wall changes, the black hole formation time
changes smoothly. In this sense, nontrivial phase transition,
such as the transition between the prompt collapse phase
and the delayed collapse phase reported in the massive
scalar system [15], has not been found. Apparently, we
need further parameter search to complete the phase
diagram of the spherical domain wall collapse as in the
case of the massive scalar field [15].
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