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Scalar field self-force effects on a scalar charge orbiting a Reissner-Nordstrom black hole are
investigated. The scalar wave equation is solved analytically in a post-Newtonian framework, and the
solution is used to compute the self-field (up to 7.5 post-Newtonian order) as well as the components of the
self-force at the particle’s location. The energy fluxes radiated to infinity and down the hole are also
evaluated. Comparison with previous numerical results in the Schwarzschild case shows a reasonable
agreement in both strong field and weak field regimes.
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I. INTRODUCTION

Scalar self-force (SSF) effects arise when a scalar charge,
moving along a given orbit in a curved spacetime, interacts
with its own gravitational field, i.e., its self-field. The
associated scalar field satisfies a d’ Alembert-like equation
with source term singular at the particle’s position,
mimicking the more interesting situation of gravitational
perturbations induced by a small mass moving in a
gravitational background modified by its own presence.
The interaction of the particle with its own gravitational
field in this case gives rise to a gravitational self-force
(GSF) (see, e.g., Ref. [1] and references therein). It is a
matter of fact that the latter problem is physically more
interesting than the first one. However, the study of the first
problem is easier than the second, even if the approaches as
well as the computational techniques used in both cases are
similar. This explains why in the literature the SSF problem
has been considered as a preliminary study to the GSF one,
scouting/solving all technical difficulties also affecting
the more general gravitational perturbation problem. The
existing literature on this topic is very rich. Indeed, besides
the various pioneering works developing the fundamental
formalism for self-force calculations in a curved spacetime
[2-9], a number of interesting papers has been produced
over the years, aiming at understanding self-force effects
in black hole spacetimes, mostly Schwarzschild and Kerr
[10-33].
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The present paper concerns scalar field self-force effects
on a scalar charge moving along a spatially circular
equatorial orbit around a Reissner-Nordstrom (RN) black
hole. The interaction between the particle and the back-
ground field is thus of the gravitational type only, the
particle carrying no electromagnetic charge. We are inter-
ested in studying the coupling between the scalar charge of
the associated field with the mass and the electromagnetic
charge of the nonvacuum background, which was never
explored before. This coupling can be seen as a gravita-
tionally induced scalar interaction, which is complementary
to existing studies on gravitationally induced electromag-
netic radiation as well as electromagnetically induced
gravitational radiation processes, initiated long ago by
Zerilli and coworkers [34-36]. The only available analyti-
cal study of such a kind of perturbation problem in a RN
spacetime involves an electromagnetic charge at rest in a
perturbed RN spacetime [37-39], where the effect of
charge induction on the horizon is investigated, too.
Allowing the electromagnetic charge to move around the
hole complicates matters considerably. On the other hand,
having a scalar charge in circular motion is an intermediate
step toward such a more general situation, the advantage
of which is the possibility to perform the computations
fully analytically. Switching off the black hole charge,
one ends up with the corresponding SSF problem in the
vacuum Schwarzschild spacetime, which has been already
addressed in the literature from both analytical and numeri-
cal perspectives [14,17,20,21].

The main technical difficulties associated with self-force
calculations are related to the regularization procedure of
the scalar field and its derivatives, allowing one to extract
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the correct, physically meaningful self-force components.
We use the standard techniques reviewed, e.g., in Ref. [1],
to compute the self-field decomposed into spherical
harmonics and frequency modes and regularize it at the
particle’s position mode by mode by subtracting the
diverging large-/ limit. We analytically compute the regu-
larized self-field [up to 7.5 post-Newtonian (PN) order]
as well as the components of the self-force and compare
our results with previous numerical studies in the
Schwarzschild case [20,26], obtaining a good agreement.
Finally, we complete our analysis by providing explicit
expressions for the scalar radiation both at infinity and on
the outer horizon.

II. SCALAR CHARGE IN A
REISSNER-NORDSTROM BACKGROUND

Let us consider a Reissner-Nordstrom spacetime
with line element written in standard Schwarzschild-like
coordinates (z,r,@,¢) as

A 2
ds® = ——di* + %dﬂ + r2(d6? + sin*0dg?),  (2.1)
I

where A = r> — 2Mr + Q?. The condition A = 0 defines
radii. rp =M =+ - 0=
M(1+x), with k = /1 — Q?/M?. The “extreme” case
corresponds to |Q| =M (or x =0), the two horizons
coalescing into one. We find it convenient to introduce
also the notation w = 1 —x?> = (Q/M)?, such that w = 0
corresponds to the Schwarzschild limit, while w =1
corresponds to the extreme RN case.

Lety be a (real, minimally coupled) scalar field associated
with a scalar charge ¢ moving along a circular equatorial
timelike geodesic with 4-velocity U = I'(0, + Q0,) and
parametric equations x* = z#(z),

the two horizons at

t=Tr, r=r. 9:%, p=TQr=0Q1, (2.2)

where 7 denotes the proper time and the normalization factor
I' and the angular velocity Q are conveniently written in
terms of the inverse dimensionless radial distance u = M/r
as

1
m 3u+2(1 —?)u?

MQ = u??\/1 = (1 —k*)u, (2.3)

respectively.
Assuming that the particle’s field can be treated as a

small perturbation on the fixed RN background implies that
it obeys the massless Klein-Gordon equation
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Oy = —4no, (2.4)
where
1
Oy = ——a,(/=g¢"d, 25
V=5 (V=99 Ow) (2.5)

is the D’Alembertian (with g denoting the determinant of
the metric) and

o) = ¢ / (—g) 126 ( — 2#(2))de

75(

)5(9—) (p—Q1), (2.6)
rol

the charge density of the scalar particle with support only
along the particle’s world line (2.2). Decomposing into
spherical harmonics then gives

(r—ro qu Y (0, 4), (2.7)

= 471'7'0

where

4rq
=—Y 2,0),
qim ror lm(ﬂ:/ )

(2.8)
and similarly for the scalar field v, the dependence on
temporal, radial, and angular variables of which can be
separated as

wlt.10.0) =5 [ S ¥, 0.9 (29)

Im

The wave equation (2.4) thus reduces to the following
equation for the radial part,

'C(r) (l//lma)(r)) = Slmwé(r - )"0), (210)
with
d? 2(r—M) d
‘C(r) (Wlmw(r>) = Wl//lmw(r) + TEWImw(r)
2 1(l+1)
|: A2 A :|Wlmw(r>’ (211)
whereas
o
Sime = =27 —q1,,6(w — mQ), (2.12)
Ay
with Ay = A(ry), comes from taking the Fourier transform

of the charge density (2.7).
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III. COMPUTATION OF THE SCALAR FIELD
ALONG THE WORLD LINE

The radial part of the scalar field is computed by using
the Green function method as

Wlmw(r) = / Glmw<r7 rl)A(r/)Slma)é(r/ - rO)drl

= Glma}(r’ rO)AOSlma)a (31)

where the Green function G,,,,,(r, ) satisfies the equation
L) (G (r. 1)) = AH(r)5(r — /). It reads as

1
G (7. 7') = = [RI(r) Rig (7 ) H (7 = 7)

Imaw

R () Ry (r)H (r = 1), (3.2)

where H(x) denotes the Heaviside step function; R/ (r)
and Rf,’[,’“’(r) are two independent homogeneous solutions
of the radial wave equation having the correct behavior at
the outer horizon and at infinity, respectively; and
Wi = AR (r)RE (r) = R (r)Rg® (r)] - (3.3)
is the associated (constant) Wronskian. Substituting then
into Eq. (2.9) gives

l//(xﬂ) = _ZGlmw(r’ rO) ‘w:mQrOQZme_imQtYlm (9’ ¢)’

Im

(3.4)

which, once evaluated along the particle world line (2.2),
becomes

4rq
Vo = == > G (0. o) el Y (1/2.0)2. (3.5)

Im

only depending on r. The above expression for y, actually
requires taking the limit r — ri properly, and must be
suitably regularized in order to remove its singular part,
because the field has a divergent behavior there.

In order to compute the Green function, we have first to
solve the homogeneous radial wave equation (2.10) up to a
certain PN order to obtain the in and up solutions, which are
of the form

R (1) = P{L+ AL () + AL ()
+AG () + ALy + -,

Rl (1) = RGH0(r)

(3.6)
However, these solutions do not automatically fulfill the
correct boundary conditions. A consequence of this fact is
the presence of diverging terms in the coefficients A; for
certain values of [. Therefore, high-order PN solutions
usually require using a technique first introduced by Mano,
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Suzuki, and Takasugi (MST) [40,41]. We will give some
detail in Appendix A.

Turning then to Eq. (3.5), the sum over m is straight-
forwardly computed by using standard formulas. Before
summing over [/, instead, one has only to remove the
divergent term for large /, i.e.,

[Se]

V=3 - B

=0

(3.7)

with y, being continuous across the location of the scalar
charge (see also Appendix B of Ref. [20]). The subtraction
term turns out to be (in units of g)

1 9 3
B:u—zuz—k (———K2>u3

— = —K

39625 39 , 1425 L\ .
16384 64 " 256 © )

(907 ;52585 , 451007\
256 4096 65536
< 1926415 , 109317

K4

T 65536 8192

20043121 171 6) "4 ol
u u).

* 1048576 256~ (3.8)

This can be shown to be the Taylor expansion of

Vi=o2
! % ZEllipticK(s),  (3.9)

Bupapuie = —e V"€
v1i-3u T =

analytic

where

u[l 4 u(l —«?)]
6_1—2u—|—u2(1—1<2)‘

(3.10)

It is useful to introduce the dimensionless angular
velocity variable

y = (MQ)*3 = u(1 +wu)'/3, (3.11)
as from Eq. (2.3), with inverse relation
_ Lo 1,5 35 5, 154 45
u=y 3wy —|—3wy 81wy +243wy
10868
94,0 6,7 8 3.12
WY e WO+ 007, (3.12)

where we recall w = 1 — x2.

By applying the MST technique [40,41] to the multi-
poles up to [ =4 (included), we get the following final
result for the regularized field valid up to the 7.5 PN order:
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35 7w 4 4 2
g _ )3 ST P B ) Y0 It 4
wo ¥+ [18+< 32+32>ﬂ 37 ~3n(2) —3 n(y)]y
+ % ﬁ + £+977 W72 2+ g § + g § 11’1(2)+ 1 i ln() 5
360 54" " \512 " 1536" 96 )" T\379")7 5 9" 3 7o) MYy

38 8 12
-|-< +45 >ﬂy

23741 4607 23, (279 397 ML, @G\, (77 46 4,
— W+ —=w —_— W — ———Ww+-w
1680 ' 540 ' 54 10241536 5127 96" )T T\e 9" T 9")7

1627 54 4 , 729 77 23 2
o w2 n2) - 2 12w () |y
+( LR w+9w> n(2) 20 (3)+<12 9w+9w) n(y)]y

32696 16 L\
+< 35 4725W+135W>”y

{ 1515589307 3098381 3497 , 793

27216000 378000 "~ 3240" 148"

58 8 )

R _ /2 _Z(»_ _ _
—I—( 454—45w>(1 w) 3(2 w)(1=w)In(1 —w)

6059603 1892003 2287 , 811 4 35 L\ , 76585 14281 n 2665 L\ 4,
w w w’ — w - w w
983040 983040 9216 20736 2592 262144 131072 262144

SR e 4L g 152 32 N B0 6 N (15232 N
- — - — - n — - n
900 675" 27" T 45 45" 45 45" 45 45" ) W)Y
1786621 149404 8, 112 . (152 32 152 32
SR 2222 @) + (L= 22w ) In(y)| In(2
{ 18900 4725 V13" "o T (45 45 ) n(2) + (45 45 > n(y)} n(2)

2393 729 16 10121 4856 38 , 56 388
— 1 — T T T w3 - _ 1 1 7
+( 140 35 ) n(3) -3 6(3”{ 1800 675" Y T2 (45 45W) n(y)] n(y)}y
<35633 192541 5062 , 8

_ _9% 3 15/2 8
3780 33075 " 4725 135" )”y +00"). (3.13)

In the Schwarzschild case (i.e., in the limit w — 0), it reduces to

35 7 . 4 4 2 1141 29 . 2 18 | 38
reg,schw:_ 3 2, T2 =21 4 = 2 — 1n(2 1 5 _ 27 112
Yo ¥+ <18 w7 373 -3 n(y)>y + (—360 top™ T35 @) +30) )y -y
23741 279 , 77 1627 729 77
_ _ 2)——1n | 6 _ 13/2
< Tos0 1024” T/ T M@ -5+ n(y)>y 357
1515589307 _ 6059603 , | 76585 , B2 152 304 o0 152, N
_ _ LAy (3321 152 152
27216000 983040 © ' 262144 900 457 " 45 45 "V
1786621 152 152 12393 16 10121 38
LA T (2) 4+ =2 0(2) + 2 1n(3) = —¢(3) + (= + ZIn(y) ) 1 7
+( 13000 | 45 M2+ 450 )> n(2) + 50 G - & H( 1800 450 )> “(y)]y
35633 5/, .
e 00%). (3.14)

which was never shown before in the literature.' The transcendental structure of the various PN orders is highlighted by
replacing ordinary logarithms by “eulerlogs,” i.e.,

1
eulerlog,, (x) =y +1In(2) + Eln(y) + In(m),
m=1,23,.., (3.15)

"The first terms of this expansion [up to O(y?) included] agree with unpublished results by Bini and Damour [42].
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TABLE L. Comparison between the analytical prediction (3.14)
for the regularized scalar field in the Schwarzschild case (w = 0)
and the numerical values taken from Table I of Ref. [20].
The difference Ay = yd™ ™™ _ yschW and the relative error
AI//BChW/ x//‘(*)‘:hw are shown in the third and fourth columns,
respectively. The superscript “reg” has been suppressed for
simplicity.

y W%chw AV/BChW Al//%chw/wachw
1/4 —0.02304519610 -9.43 x 107* 0.0409
1/5 —0.01022371010 —1.05 x 107 0.00102
1/6 —0.005468782560 1.40 x 107 —0.00255
1/7 —0.003282635718 7.29 x 10°° —0.00222
1/8 —0.002130877461 3.37 x 107° —0.00158
1/10 —0.001050586634 7.94 x 1077 -7.55x 107
1/14  -3.701411742 x 10*  7.66 x 107  —2.07 x 10~
1/20  —1.246786056 x 107*  5.81 x 107 —4.66 x 107>
1/30  —3.661740186 x 107> 3.02x 10719 —8.24 x 107°
1/50  —7.889525256 x 107  7.26 x 10712 —9.20 x 107’
1/70  —2.877222881 x 107 881 x 10713 —3.06 x 107’
1/100 —9.884245218 x 107 2.18 x 1074 —2.21 x 1078
1/200 —1.239865750 x 1077 -2.50 x 10714 2.02 x 1077

first introduced in Ref. [43] in order to absorb also the Euler
y constant. For example, the lowest order [O(y*)] contains
only eulerlog;, at O(y’) a combination of eulerlog; and
eulerlog, appears, etc. However, starting from O(y’), this
replacement is not enough to completely remove the Euler
y terms, meaning that the transcendental structure is more
involved.

Scalar self-force effects on a Schwarzschild background
were numerically studied in Ref. [20]. The comparison
between our analytical results and these numerical values
shows a reasonable agreement (see Table I and Fig. 1). It is
also interesting to study the behavior of this scalar field at
the light ring y = 1/3 (see Ref. [44] for the case of a
massive particle orbiting a Schwarzschild black hole). We

|
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T
0.25

T
0.20

Y
-0.005
schw
Yo
-0.010
-0.0154
-0.020
-0.025-
FIG. 1. The behavior of the regularized scalar field (3.14) in the

Schwarzschild case (w =0) as a function of y is shown in
comparison with existing numerical values. The data points are
taken from Table I of Ref. [20]. The superscript “reg” has been
suppressed for simplicity.

provide below a simple numerical fit of the data of
Table I,

3
reg, schw fit y 2 3
v, =——"——(1—-7.84y + 47.36y* — 8.65y
’ (1-3y)?
+81.77y* In(y)) (3.16)
(with a maximal residual of about 2.4 x 10~%), suggesting a
blowup of the form (1 —3y)~2. However, this is an
indication only, and a more conclusive statement requires
strong field numerical data still currently unavailable.
Finally, in the extreme RN case (i.e., in the limit w — 1),
we have

35 3 . 4 4 2 2723 7 . 2 202 1
reg,extr:_3 e __1 2 __1 4 i o2z __1 2 __1 5
Yo * (18 6" ~37 7323 n(y)>y i <1oso+64” 57 ~ 35 () —gh() )y
2 78233 555 49 17881 729 49 121
_= /2 _ e T 2 - T 1n(2) = —=Z1n(3 1 (e 13/2
”y +< 15120 1024”7 T 67 T a0 M2~ g nB) F 5 n0) ) - 555 my
160402001 438259 , 99 , (647 8 16, 8
_ _ 2422 4 (_64T 8 16 8
3265920 110592 512 4860 13773 3 WY

2174033 8 3 9477
<— m + gln(Z) + gln(y)) 1I1(2> + Toln
203629

my!¥2 + 0(y%).

44100

3= 500) + (= g+ 3100 ) 1m0 7

(3.17)

[Note that the term with In(1 — w) in Eq. (3.13) is proportional to (1 — w) In(1 — w), which vanishes in the limit w — 1, so

that the final expression is finite.]
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IV. SCALAR SELF-FORCE
The scalar self-force is given by (see, e.g., Ref. [21])
Fo(¥) = qVayp (¥
= =4V G 70) e 0dim € ™Y 1,(6, ),

Im

(4.1)
with nonvanishing components

O, =-QF :ig—“”"22mc (r 7o)l =z
(%) d(£) r : Imo\"> 10 r=ry,0=m

X |Ylm(ﬂ/2’0)|27

2
’

0 drq?
Fr(:t) = r ZarGlmw("’ }"0) |r:r§,m:mQ|Ylm (71'/2, O)
Im

(4.2)
|

1, 1 3 21 1
B, ==y +|(—ctaw ]|y + (-5 tsw—

128 2
12607 97 331
32768 ' 96 384 6

(306759 18433 4517

131072 16384 "

whereas B, = 0.

5
+— ——w2+w3——w4>y6

W 1055w3_130 4 988
2304 864
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once evaluated at the position of the scalar charge, i.e., in
the limit r — rZ. After summing over m, the divergent
behavior for large / is removed by

2. 11
Oreg __ 0! 0 _
F,~°= E {E(Fa(+>+Fa(—)) B,|, (4.3)

=0

where F % i
[-independent quantities B, are suitable regularization
parameters, in agreement with Eq. (94) of Ref. [1], the
term linear in L = [ + % there being removed by taking the
average between the left and right limits at the particle
position. The subtraction term for the radial component is

given by (in units of q)

denote the limits » — rg of each mode and the

7 2 44
—wz)y4—|—( >3 -|-5— ——w2+—w3)y5

512 "6 T3 81

i 790 s\ .7 8
o1 w —|—729w )y +00®°), (4.4)

The final result for the regularized temporal and radial components of the self-force valid through the order O(y'¥/?) is (in

units of gq)

1

g 1 1 2 2 77 23 9 4
F{™8 = _y* 4 (——+—w>y5+§ny”/2+ <——+—w——w2>y6+ <—+§W>7zyl3/2

3

7721
3600 675

6 9
1753 10

247138
27" T o43 3

420 5

38 8 7 3761 27 2,
+l=—=+—w ||y + |- +—w—§w

2 /7 1 4 4 2
Fiee — |2 (- 22—y —"In(2) =21 3
[9+<64 64W)” 37 3n() 3n<y)}y
+

604 41 (29 239 1\, (14
45 27" " \1024 " 3072" T96" )"

38 8
=+ (——+—w)ﬂy13/2

IS1L 473 103 (1335 1 151
140 " 90 "W g1 "
857 268 8 2187 31

139 2378 8 .\ ., )
( 35 +4725W+135W)”y +007),

respectively.

9

28 2
+w W+ (1=-w)¥2+ a2+

5

4 (76 16 76 16

9 _E+EW>Y+<_E+EW> In(2)

>ﬂ.y15/2 + O(yg),

2048 16" " 2304" 576" )" 2 T3 W)Y

4 4

T3t —W2> lll(y)}y7

3 27

(4.5)
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TABLE II. Comparison between the analytical expressions (4.6) for the regularized temporal and radial components of the self-force
(in units of ¢, the superscript reg being suppressed for simplicity) in the Schwarzschild case (w = 0) and the numerical values taken
from Tables II and III of Ref. [26]. The second and third columns display the values obtained by our analytical expressions, whereas the
fourth and fifth columns display the difference with the corresponding numerical values (i.e., AFVschw — poschwnum _ pOschw 5pq
AFOschw — pOschwnum _ pOschwy Einally, the last two columns show the associated relative errors AF9schw / 0schw apd A pOschw / pOschw

respectively.

y F(,) schw F(r) schw A F? schw A F(r) schw A F(r) schw / F? schw A F(r) schw / F(r) schw
1/6 3.088678309 x 1074 2.069192430 x 1074 520x 1075 =3.92x 1073 0.168 —0.189
1/7 1.621300383 x 10~* 9.086682872 x 10~° 146 x 1075 =124 x 1075 0.0901 -0.136
1/8 9.278324817 x 1073 4.535558187 x 1073 494 %10  —4.53x 1076 0.0532 —0.0999
1/10 3.667967766 x 1073 1.462629728 x 1075 823x 1077  —8.42x 1077 0.0224 —0.0576
1/14 9.180183375 x 106 2.785864322 x 10~° 5.66x 1078  —6.58 x 1078 0.00616 —0.0236
1/20 2.148236416 x 107°  4.981418996 x 1077 336 x107° —435x107° 0.00156 —0.00874
1/30 4.175425467 x 1077 7.191466709 x 10~8 136 x 10710 —1.96 x 10~'° 3.26 x 104 —0.00272
1/50 5.359926673 x 10~8 6.350626477 x 10 2.40x 10712 —3.93 x 10-!2 447 x 1073 —6.18 x 1074
1/70 1.391199738 x 108 1.284814550 x 10~°  1.67x 10713 —3.15x 10713 1.20 x 1073 —2.45 x 1074
1/100  3.335029050 x 102 2.356682550 x 1071 990 x 10~15  —6.83 x 10~ 2.97 x 1076 -2.90 x 1074

In the Schwarzschild limit (w — 0), we have

1 1 2 77 9 10121 4 76 76 38
Oregschw _ 4 * 5 = _11/2_"".6 7 13/2 g, [ 7
F = In(2 In
’ 3 T TR T T s +[3600 N AT QT (y)]y
3761
_ 15/2 1 0(y8
oo™t ).
i 2 7 4 4 2 604 29 14 66 7
Oreg,schw 2 5 2 6
F =|-Z4—22——y——In(2)-ZIn — 4+ 2 ——y——In(2)—=In
’ [ 5 o™ "3/ 33 (y>]y+[45+1024 377523 (y)}y
38 ., [1511 1335 , 31 857 2187 31 139
— a2 | —— 4+ =+ —y+——In(2) ——=—In(3) +=In T————ayP2 1 0(y%). (4.6
45 +[140 s04g” Tt TN g n@) +n0) |y =Sy PR O07). (4.6)

The leading 3PN and 4PN terms of the previous expressions agree with those of Ref. [21]. Furthermore, the comparison
with available numerical results of Refs. [20,26] shows again a good agreement (see Table II and Fig. 2, where we refer to
the most recent work [26]).

10-3 -
schw
F o 10744 FOschw
! r

10-4_
10-5_

10—5 m
10—6_

10764
10774

10—7 -
10—8_

1078 4
1077

10-g-l T T T T T T T

0.005 0.01 0.05 0.1 0.005 0.01 0.05 0.1

FIG. 2. Comparison of numerical data from Ref. [26] for the regularized temporal and radial components of the self-force (in units of
q, the superscript reg being suppressed for simplicity) in the Schwarzschild case (w = 0) with the behavior of the corresponding
analytical expressions (4.6).

124028-7



BINI, CARVALHO, and GERALICO
V. SCALAR RADIATION

Let us compute the amount of scalar radiation either
flowing into the hole or transmitted at spatial infinity.
We need to construct the solution to the nonhomogeneous
wave equation (2.10) which satisfies purely ingoing-wave
boundary conditions at the black hole horizon and purely
outgoing-wave boundary conditions at infinity. This is
accomplished by using the two kinds of solutions lew
to the corresponding homogeneous equation with asymp-
totic behavior [45-47]

u Btranse—i(ur* r—r,
R
Imaw pref ¢ e“‘”* + pinc ¢ ':” . r— o ’
Cupetwr* + Crefe—zwr*7 r—r, ( )
R 5.1
Imw iwrs s .
Ctrans e —. r — 00
where r, is the tortoiselike coordinate defined by

dr./dr = r*/A, ie.,

2Mr, = 2Mr_  r—r_

= - 1 . 5.2
A r+r+—r_n 2M r+—r_n2M (52)
The final solution is given by [48]
le(u( ) Zﬁwu( ) lmw(r) +Zlm(u( )R;r]mn( ) (53)
where
o Lofrow /
Zlm(u(r) Wl lea)(r) ( )Slmwé( rO)drv
_1 )
oL (r)= / RS (' )A(F)Sa0(r —19)dr,
Wlma) r
(5.4)

and W, = 2iwC"™S B is the constant Wronskian. The
asymptotic behaviors of R;,,,, at the horizon and at infinity
are then

lew(r - r+) - BtmnSZ?fnw(r+)€_iwr*’

ior,

Rina(r = ) = C°Zf], (o) == (55)
r
respectively, so that one can define the amplitudes
Z{r[nw - Btr‘mszmw( ) lmw - Ctmngnw( ) (56)

Explicitly, we find

PHYSICAL REVIEW D 94, 124028 (2016)

trans

zZn  =2n r0qima R, (r0)8(w — mQ)
Imaw
=212 6(w — mQ),
trans
Ze  =2r roqimaRi, (r0)8(w — mQ)

Imw

=21Z36(w — mQ). (5.7)

The energy flux at infinity is thus given by [45-47]

dE°°
Ziml*, 5.8
24][' lm ( )
while the energy flux at the event horizon is
dE" Maw? rJr
dt = Z |Zlm ’ (59)

Im

with Z"* defined in Eq. (5.7) and @ = mQ.

For the computation of the amplitudes and the trans-
mission coefficients, we have used the MST ingoing and
upgoing solutions, which satisfy the proper boundary
conditions at the horizon and at infinity for any given value

of L,ie, R (r) = R™™V () and R® (r) = RPMSD (1),

Imo lm(u Imw Imao
The corresponding transmission coefficients are given

by [48]

Birans — 812(€+T)(1+211L:) Z a,,
Ctrans — w~eie(n S—%)A’i, (510)
where
L v & +1—ie)
AV — p-ltie i) g5 N Ly (i€
v e e? ,1:2_00( ) (1/+1—|—i€)nan
(5.11)

The definitions of the various quantities e, 7, v, a,, are given
in Appendix A 2 for convenience.
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We find (in units of g)

dE® dE® 2 13 1 12 4

i e 1 24+ = 2 3/2 —104+—=—w—-= 2 2 =7 5/2

ar (dt >N{ +( +3w>y+ Ty +< +3w 3w)y +<5+3w>ny
1331 2203 4 , 28 . 4

T _ B -
+[75 225 oW e T3

76 16 76 16 38 8 3
+< STV ) +<_B+Bw>m(2)+(——15+—15w>ln(y)]y
521 86 2
il M 7/2
+< A )”y tou }

dE" dE® 7
——=(—) 2l =w)(1 + VI —=w)y* + 2——w Y+ (3 —sw 420 )y
dt dt )y 3

L1231 793 32 5 260 5 1 (388 N ] 4.2\,
5L B 22, 200 6,8 BRI S o A g
75 225" 9 81 T—w 1515 (1-w)2\3 3

8 116 16 32 16

-2 ) @) + (=22 2w ) m(y) [y

3}'+< 75t v )n()+( 5+15W) n(y)]y

+-L69_ﬁ +9ﬂ 2 _ 473 3+1309 4+; 4_1_0 + _7_6+4_O _2 2 ln(l_ )
225 157 Ters” T st T 243" T1-w 3" 5 9" 45" Y

oL (BB BN (B8N (L8888 6N o
—_— —w+—w —+-w ——t+—w—-—w
G—w2\3" 9" " )" T {1579")" 159" 45

28 64 ;
( 8+?W—EW ) ln(y)}y

56 16 s
oy /2
+< 45 + 15 w)n:y

208762 10034656 4518949 1162 28 1 44 25
[_ w? w3+10w4——w5—|——(9—— +5 2)

7875 1 165375 " 165375 675 3 3T

1818 17086 10804 , 16 1 /36 446 262 , 4 .\,
M T N T I T >ln(1_ )+W<5 PRI )”

608 344 8 1124 22132 23008 , 32 |

105 45 779" )H( 75 1575 Y T 1575 +1_5W>1n(2)

(s
(i3
S
(2

+

+

_|_

9388 3128w_7436w2+2w3 K
525 525 15 Y

+

16 17/2 9
225+675 35" )ﬂy +00°) ¢, (5.12)

where

dE=\ 1,
_ = —y", 5.13
(dt )N o (5.13)

in terms of the gauge-invariant variable y [see Eq. (3.12)]. Note that the flux at infinity is computed up to the 3.5PN order,
ie., at 0(y7/ 2) included (see Appendix B). The leading contribution to the flux on the horizon, instead, enters at 3PN order
beyond the lowest order and is computed through O(y'7/?).
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In the Schwarzschild case (w — 0), the previous expressions reduce to

dE® dE® 2
dt dt

521

= /2 19) 4
o400,

dt dt

<2669 8§ , 64 8

75 3

225 37 T157 715

dE® dE® 1 1331 4 76 76 38
= ( > [1—2y—|—27ry3/2—10y2+Sny5/2+ < P S
N

dE"  (dE%® 1306 4
= (—) 4y’ [1 +2y+ 3y + <—+—n2—
N

o o _ " 3
I e eh) - 30) >

116 32

-t - Fie) )

5

56
45

+—y——In(2) - 81n(y)>y4 e

137887 36 , 608 1124 9388 88
- Ry ———1n(2) - "1 S+ ayl12 4 0(y9) ], 5.14
< 7875 757 Ti0s’ T 75 M) 55 n<y)>y Tops™ O (5.14)
whereas in the extreme RN case (w — 1), we have
dE*® dE*® 4 56 3542 4
—= <7> {1 —§y+27ry3/2 —6y2+Eﬂy5/2+ (m‘f’gﬂ'z —4y —4In(2) —21n(y)>y3
N
4343
o /2 4
510 ™00 )],
dE" dE® 2 8
= (=) 2y°|1+Z2 —y2+0(?)|. 5.15
" (dt)Ny[+3y+3y+ (y)] (5.15)

Therefore, when the black hole is extremely charged, the
horizon-absorbed flux starts three more PN orders beyond
with respect to the nonextreme case.

We show in Table III the comparison between the total
energy flux

dE®  dE% N dEH
dt  dt dt

(5.16)

computed by using Eq. (5.14) in the Schwarzschild case
and the numerical values taken from Table I of Ref. [26].
We find that the agreement is reasonably good in the weak
field regime, with fractional errors ranging from 107!

TABLE IIl.  Comparison between the total energy flux £ =
E® + E" (in units of ¢, the overdot denoting d/dt) computed by
using the analytical expressions (5.14) in the Schwarzschild case
(w = 0) and the numerical values taken from Table I of Ref. [26].

The last two columns display the difference AE®! = Elotmum _
E“ and the corresponding relative error AE/E,

y Etot A Etol A Etot / Etot
1/6 2.174332404 x 1074 3.78 x 107 0.174
1/8  7.334363785 x 107 3.91 x 107° 0.0533
1/10 3.06988477 x 1073 6.78 x 1077 0.0221
1/20  1.980748387 x 10° 2.92 x 10~ 0.00147
1/40  1.262548016 x 1077 —2.81 x 107" —222x107*

|
(aty = 1/6) to 107* (at y = 1/40). Furthermore, we have
checked that our analytic expression (5.16) for the total
energy flux agrees with the analogous quantity obtained
from the self-force energy balance relation dE™'/dt =
I'F)™ up to the order O(y®), which is our accuracy
in the computation of the self-force components
[see Eq. (4.6)].

Finally, we note that the (dimensionless) angular
momentum fluxes can be easily calculated through [48]

dyfte v dE™>
dt dt

(5.17)

VI. CONCLUDING REMARKS

We have analyzed self-force effects on a scalar charge
moving along a circular orbit around a Reissner-Nordstrom
black hole. The scalar wave equation is separated by using
standard spherical harmonics (available here because of the
underlying spherical symmetry of the background), and the
field is decomposed into frequency modes. The associated
radial equation is solved perturbatively in a PN framework
by using the Green function method. The scalar field as
well as the components of the self-force are then regular-
ized at the particle’s position by subtracting the divergent
term mode by mode, summing then the infinite series up to
a certain PN order. The MST approach has also been
adopted for computing a number of radiative multipoles (up
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to [ = 4), so that our final result for the field is accurate up
to the 7.5PN order, i.e., up to the order O(y'>/?) included in
terms of the dimensionless gauge-invariant frequency var-
iable y = (MQ)?/3. Since the scalar charge interacts only
gravitationally with the background field, the coupling with
the black hole electromagnetic charge is quadratic. The two
limiting cases of a Schwarzschild black hole (which was
missing in the literature and represents by itself an interest-
ing byproduct of our work) and of an extreme Reissner-
Nordstrom black hole are discussed explicitly. The com-
parison of the analytically computed regularized field and
self-force components with existing numerical results in the
Schwarzschild case [17,26] has shown a good agreement
(see Tables I and II). We have also evaluated the radiation
fluxes both at infinity and on the outer horizon up to O(y’/?)
and O(y'7/?) included, respectively. We have found that,
when the black hole is extremely charged, the horizon-
absorbed flux starts three more PN orders beyond than
the nonextreme case. The problem of radiation due to an
electromagnetic charge orbiting a RN black hole general-
izing the present analysis will be considered in future works.

|
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APPENDIX A: HOMOGENEOUS SOLUTIONS
TO THE SCALAR WAVE EQUATION

1. PN solutions
PN solutions have the form (3.6), i.e.,

Rit (1) = [+ AL (P + AL (1 + AL ()
+Almw( )178 + ]’

R—l 1m(u(r)'

lea) ( ) N

up(PN) (Al)

The first coefficients are given by

Ml w*r?
A == 3ar)
e MPII=1)(2l =1 =) 2 —50-10 w*rt
A =y M s i D s )i S
Almo(py — M3l(l—1)(l—2)(2l—1—31<2) M 2[3(21 (21 +3) + (3lz+3l—2)1<2][(2l+l)ln(r/R)—1]
=5 6(21—1) T (21— 1) (21 + 3) (21 + 1)?
Mot 33 —271% — 1421 - 136 @°r°
T U )1+ 2)2I+3)(2+5) 4820+ 3) 2+ 520+ 7)
Aoy = MU= DU=DU=3) 10,430 _3) 32041 - 6 - x2)

P 24(21 - 1)(21 - 3)
— 9914 — 24113 — 4361

— 2761 —36  481° + 3481* + 5401* + 1261* — 1201 — 36 ,

r

N M3a? [ 415 -32P
61(21 +3)(21 + 1)?

61(21+ 3)(21 — 1)(20 + 1)?

61 200312 +31-2
* {21 12 g)(zzt 1)(21)+ 1)"2} ln(’/R>}
Aatr {_ 2417 + 15616 — 176615 — 132671* — 2951213 — 2346512 — 20581 + 2784
48(1+1)(20 +3)2(21 +5)(21 + 1)2(1 + 2)
1616 + 801° — 4401* — 24321% — 280317 + 111 + 784
16021 = )21+ 3321 + 5) (2l + 1) :
3 32 4+31-2
+ {(21 T3+ 1) (20— 1)(21++ 32201 1) Kz] ln(r/R)}
51— 601° — 62517 — 15481 — 1108 Wb

+ Ma®r

240(1+3)(1+2)21+T7)(21+5)(21 +3)(I+ 1)

384(20 +9)(21 +7) (21 +5)(21 +3)° (A2)
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where R is a length scale. This solution, which we need,
however, to compute the sum over all multipoles, becomes
immediately inadequate, and one should use the MST
technique. In fact, the coefficient A, of the “up” solution
[obtained from A" (r) with [ — —I— 1] diverges for
[ = 0; similarly, higher order coefficients diverge for
[=1,2,..., etc.

2. MST solutions

The MST technique [40,41] allows one to find a
homogeneous solution to the radial equation which satisfies
retarded boundary conditions at the horizon [Rilr’f(‘f\’,[ST)(r)]
and radiative boundary conditions at infinity [Rfl'g(“l’v[ST) (r)].

The ingoing solution can be formally written as a
convergent (at any finite value of r) series of hypergeo-
metric functions,

[Se]

R or (6) = Ciny(¥) D ayF(n+v+1—iz,—n—v
—ir, 1 —ie —it;x), (A3)
with
C(in) (x) = eiekx(_x)—i(€+r)/2(1 _x)i(e—r)/2’ (A4)

where the new variable x = (r, —r)/2Mk has been
introduced and

B 16(1('2 +1)

=2Mw,
€ [0} =5 p,

(A5)
The hypergeometric functions above are better evaluated by
using the standard identity

I'(c)l'(b—a)

Fla.bieix) =3 F e —a)

F(a,c—=b,a—b+1;y)

(c)I'(a—D) .
mF(b,c—a,b—a+l,y),
(A6)

involving the “small” variable y = 1/(1 — x). Note that the
overall factor I'(¢) does not depend on n, so that it can be
factored out.

The expansion coefficients a, satisfy the following
three-term recurrence relation

azan+1 +ﬂl;zan + ylr/lan—l =0, (A7)
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where

_dex(n+v+1+ie)(n+v+1—ie)(n+v+1+ir)
B (n+v+1)2n+2v+3)
pro==l(l+1)+(n+v)(n+v+1)+ext+ e
ekt
+ b
(n+v)(n+v+1)
_dex(n+v+ie)(n+v—it)(n+v—ie)
n= (n+v)2n+2v-1) ’

ay

’

(A8)

Once the recurrence system has been solved forn = 1...N
andn = —N... — 1 fora given N such that ay =0 = a_y,
the case n =0 with gy =1 becomes a compatibility
condition which yields the parameter

[e]
v=1+ E vk,
=1

The solution of the recurrence system is rather involved
(even in this relatively simple case). The structure of the
expansion coefficients

(A9)

i€ (A10)

a, =

M)~

k=i

is summarized in Table IV for / =1 and N = 15, as an
example.

The upgoing solution can be formally written as a
convergent (at spatial infinity) series of irregular confluent
hypergeometric functions with the same series coefficients,

= (v+1-ie),

Ri’sfﬂAST) (2)=Clup)(2) ; anm(ﬁz)"\lf[n +v
+1—ie,2n+2v+2;-2iz], (A11)
with
; : ex —ile+7)/2
C(up) (Z) = (2Z)”e_”€e_’ﬂ(l/+l)elz (1 _ ?> ’
(A12)

where the new variable z = w(r —r_) = ex(1 — x) has
been introduced and (A),=T(A+n)/T'(A) is the
Pochammer symbol. The irregular confluent hypergeomet-
ric functions above can be conveniently split into two
pieces by using the identity

TABLE IV. The structure of the expansion coefficients (A10) of the recurrence relation is shown for / =1 and N = 15, so that

a_j5 = 0= ais and ayg = 1.

n -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

2 3 4 5 6 7 8 9 10 11 12 13 14

i 13 12 11 10 9 8 7 6 5 4 3 2
j 14 14 14 14 14

14 14 14 14 14 14 14 14 14 ...

1 -1 2 3 4 5 6 7 8 91011 12 13 14
14 14 14 14 14 14 14 14 14 14 14 14 14 14
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I'(1->) r'b-1)
V(a,b;) ==———=F(a,b; =0 _F(a—b+1,2-b;0). Al3
For instance, for [ = 1, we get
1 w3 D22 (T o
R 1 —1 2Kk + 2i% — 2ylp? — — - 4
s (1) =7~ K( +10M>'7 o [+ 2626 = (1407’ = — (10 280M>n
iMw

@’ 2 21,5
—7<1+W>[1+2K+2K — (1 +x)%yn

16875 + 120375k> + 87075k* 4 23790«° + 1616x3
—{[ + e A A K+[1+2K+2K2—(1+K)27/]2

75(15 + 4x?)?

1 4 2Mxn*\ | Mw? rt 151 23
_8(1+6K‘2+K'4)71'2—BK'2(15—|—4K2)]n( K1 )] wr_wKr< _ar >}n6

r 213 2520 15120M
+0(n),
—1 A aMN L, M a)zr%_ B %_a)zr2 3(5 + k) M? .
Rup(MST)(r)_ 2w*r? 4<1+a)2r3>’1 +a)r2 b oM ytin i =i r 16 * 10w*r* g
n 1 + Mao+ (1 n )2M2 w’r’]
——= 1) - i
372 2 re 60

2iM? iM? 5
+ { 512 = (54 3x%) + 52 [—(15 +4K?) In(2wrn) + 15(y — in)? — (45 + 4x?)y + 30in —EzzZ
r

101250 4 67800x% + 15435k* + 848«° iMw?r 61 it rt
21n(2 -
* 10(15 + 4x2)? T3 norn) +7 =57 ) ~ g

+ 0@, (A14)

having rescaled the “in” solution by the constant factor I'(¢), with

1 2 496125 + 680400x> 4 135990x* + 12688K
—1- (4222 O(e%). Al5
g <2+15K>6 189000(15 + 4¢2) 40 (A13)
APPENDIX B: ENERGY FLUXES
Using the notation of Ref. [48], the energy fluxes (5.8) and (5.9) can be written as

dE®  [dE®\ N &
dr ( ) ,Z_I: Zl i

dE"  (dE% A

—={— 2(1- 1 1- 3 H Bl
o= () =m0 VTS S, (B1)

with nﬁ;" = 175,;”. For small values of the dimensionless angular velocity variable y, the expansion coefficients behave as
npe, ~ y/=1 and ni ~ y2(=1) for fixed values of m. Therefore, since we have used the MST solutions up to [ = 4, our
calculations of the flux at infinity and on the horizon are accurate up to the order O(y”/?) and O(y'%/?) beyond the lowest

order, respectively. For example, for / = 1, the first few terms of the expansion are given by
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o 1, (13,1 py (M23 1 0 1
'7“_2+< 5+3W>y+”y +<350+30W 6
10958 12427 26 , 14 . 2

{W—Ww—i——w +—w+= <

45 81 3
19 4 Lo(1123 1 1,
+( B—l—ﬁw)ln(y)]y +< +—w—=w

175

44

130 5 1
W sy 1
45

ML
150 450

58

_gy + (—15+]85w) In(2) + <—5 +]5w> ln(y)]y“ +00»).

19
15
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—&-145 >ln(1 w) + (1_1 i (i %w)nz

[1] L. Barack, Gravitational self force in extreme mass-ratio
inspirals, Classical Quantum Gravity 26, 213001 (2009).

[2] Y. Mino, M. Sasaki, and T. Tanaka, Gravitational radiation
reaction to a particle motion, Phys. Rev. D 55, 3457 (1997).

[3] T.C. Quinn and R.M. Wald, An Axiomatic approach to
electromagnetic and gravitational radiation reaction of par-
ticles in curved space-time, Phys. Rev. D 56, 3381 (1997).

[4] L. Barack and A. Ori, Mode sum regularization approach for
the selfforce in black hole space-time, Phys. Rev. D 61,
061502 (2000).

[5] T.C. Quinn, Axiomatic approach to radiation reaction of
scalar point particles in curved space-time, Phys. Rev. D 62,
064029 (2000).

[6] L. Barack, Y. Mino, H. Nakano, A. Ori, and M. Sasaki,
Calculating the gravitational selfforce in Schwarzschild
space-time, Phys. Rev. Lett. 88, 091101 (2002).

[7] L. Barack and A. Ori, Gravitational selfforce and gauge
transformations, Phys. Rev. D 64, 124003 (2001).

[8] S.L. Detweiler and B. F. Whiting, Self-force via a Green’s
function decomposition, Phys. Rev. D 67, 024025 (2003).

[9] E. Poisson, The motion of point particles in curved space-
time, Living Rev. Relativ. 7, 6 (2004).

[10] L. M. Burko, Self-force on static charges in Schwarzschild
space-time, Classical Quantum Gravity 17, 227 (2000).

[11] L. Barack, Self-force on a scalar particle in spherically
symmetric space-time via mode sum regularization: Radial
trajectories, Phys. Rev. D 62, 084027 (2000).

[12] L. M. Burko, Self-Force on Particle in Orbit Around A
Black Hole, Phys. Rev. Lett. 84, 4529 (2000).

[13] A.G. Wiseman, The self-force on a static scalar test charge
outside a Schwarzschild black hole, Phys. Rev. D 61,
084014 (2000).

[14] H. Nakano, Y. Mino, and M. Sasaki, Self-force on a scalar
charge in circular orbit around a Schwarzschild black hole,
Prog. Theor. Phys. 106, 339 (2001).

[15] L. M. Burko and Y. T. Liu, Self-force on a scalar charge in
the space-time of a stationary, axisymmetric black hole,
Phys. Rev. D 64, 024006 (2001).

[16] L. Barack and A. Ori, Regularization parameters for the
self-force in Schwarzschild space-time. 1. Scalar case,
Phys. Rev. D 66, 084022 (2002).

[17] S.L. Detweiler, E. Messaritaki, and B.F. Whiting, Self-
force of a scalar field for circular orbits about a Schwarzs-
child black hole, Phys. Rev. D 67, 104016 (2003).

[18] H. Nakano, N. Sago, and M. Sasaki, Gauge problem in the
gravitational self-force. 2. First post-Newtonian force under
Regge-Wheeler gauge, Phys. Rev. D 68, 124003 (2003).

[19] W. Hikida, S. Jhingan, H. Nakano, N. Sago, M. Sasaki,
and T. Tanaka, A new analytical method for self-force
regularization. 1. Scalar charged particle in Schwarzschild
space-time, Prog. Theor. Phys. 111, 821 (2004).

[20] L. M. Diaz-Rivera, E. Messaritaki, B. F. Whiting, and S. L.
Detweiler, Scalar field self-force effects on orbits about
a Schwarzschild black hole, Phys. Rev. D 70, 124018
(2004).

[21] W. Hikida, H. Nakano, and M. Sasaki, Self-force regulari-
zation in the Schwarzschild spacetime, Classical Quantum
Gravity 22, S753 (2005).

[22] A. C. Ottewill and B. Wardell, Quasilocal contribution to the
scalar self-force: Geodesic motion, Phys. Rev. D 77, 104002
(2008).

[23] R. Haas, Scalar self-force on eccentric geodesics in
Schwarzschild spacetime: A Time-domain computation,
Phys. Rev. D 75, 124011 (2007).

[24] T. Damour, Gravitational self-force in a Schwarzschild
background and the effective one body formalism, Phys.
Rev. D 81, 024017 (2010).

[25] L. Barack and N. Sago, Gravitational self-force on a particle
in eccentric orbit around a Schwarzschild black hole, Phys.
Rev. D 81, 084021 (2010).

124028-14


http://dx.doi.org/10.1088/0264-9381/26/21/213001
http://dx.doi.org/10.1103/PhysRevD.55.3457
http://dx.doi.org/10.1103/PhysRevD.56.3381
http://dx.doi.org/10.1103/PhysRevD.61.061502
http://dx.doi.org/10.1103/PhysRevD.61.061502
http://dx.doi.org/10.1103/PhysRevD.62.064029
http://dx.doi.org/10.1103/PhysRevD.62.064029
http://dx.doi.org/10.1103/PhysRevLett.88.091101
http://dx.doi.org/10.1103/PhysRevD.64.124003
http://dx.doi.org/10.1103/PhysRevD.67.024025
http://dx.doi.org/10.12942/lrr-2004-6
http://dx.doi.org/10.1088/0264-9381/17/1/316
http://dx.doi.org/10.1103/PhysRevD.62.084027
http://dx.doi.org/10.1103/PhysRevLett.84.4529
http://dx.doi.org/10.1103/PhysRevD.61.084014
http://dx.doi.org/10.1103/PhysRevD.61.084014
http://dx.doi.org/10.1143/PTP.106.339
http://dx.doi.org/10.1103/PhysRevD.64.024006
http://dx.doi.org/10.1103/PhysRevD.66.084022
http://dx.doi.org/10.1103/PhysRevD.67.104016
http://dx.doi.org/10.1103/PhysRevD.68.124003
http://dx.doi.org/10.1143/PTP.111.821
http://dx.doi.org/10.1103/PhysRevD.70.124018
http://dx.doi.org/10.1103/PhysRevD.70.124018
http://dx.doi.org/10.1088/0264-9381/22/15/009
http://dx.doi.org/10.1088/0264-9381/22/15/009
http://dx.doi.org/10.1103/PhysRevD.77.104002
http://dx.doi.org/10.1103/PhysRevD.77.104002
http://dx.doi.org/10.1103/PhysRevD.75.124011
http://dx.doi.org/10.1103/PhysRevD.81.024017
http://dx.doi.org/10.1103/PhysRevD.81.024017
http://dx.doi.org/10.1103/PhysRevD.81.084021
http://dx.doi.org/10.1103/PhysRevD.81.084021

SCALAR FIELD SELF-FORCE EFFECTS ON A PARTICLE ...

[26] N. Warburton and L. Barack, Self force on a scalar charge in
Kerr spacetime: Circular equatorial orbits, Phys. Rev. D 81,
084039 (2010).

[27] N. Warburton and L. Barack, Self force on a scalar charge in

Kerr spacetime: eccentric equatorial orbits, Phys. Rev. D 83,

124038 (2011).

B. Wardell, I. Vega, J. Thornburg, and P. Diener, A Generic

effective source for scalar self-force calculations, Phys. Rev.

D 85, 104044 (2012).

A. C. Ottewill and P. Taylor, Static Kerr Green’s function in

closed form and an analytic derivation of the self-force for a

static scalar charge in Kerr space-time, Phys. Rev. D 86,

024036 (2012).

I. Vega, B. Wardell, P. Diener, S. Cupp, and R. Haas, Scalar

self-force for eccentric orbits around a Schwarzschild black

hole, Phys. Rev. D 88, 084021 (2013).

S. Isoyama, L. Barack, S. R. Dolan, A. Le Tiec, H. Nakano,

A.G. Shah, T. Tanaka, and N. Warburton, Gravitational

Self-Force Correction to the Innermost Stable Circular

Equatorial Orbit of a Kerr Black Hole, Phys. Rev. Lett.

113, 161101 (2014).

[32] N. Warburton, Self force on a scalar charge in Kerr spacetime:
inclined circular orbits, Phys. Rev. D 91, 024045 (2015).

[33] M. van de Meent, Gravitational self-force on eccentric
equatorial orbits around a Kerr black hole, Phys. Rev. D
94, 044034 (2016).

[34] F.J. Zerilli, Perturbation analysis for gravitational and
electromagnetic radiation in a Reissner-Nordstrom geom-
etry, Phys. Rev. D 9, 860 (1974).

[35] M. Johnston, R. Ruffini, and F. Zerilli, Gravitationally Induced
Electromagnetic Radiation, Phys. Rev. Lett. 31, 1317 (1973).

[36] M. Johnston, R. Ruffini, and F. Zerilli, Electromagnetically
induced gravitational radiation, Phys. Lett. 49B, 185 (1974).

[37] D. Bini, A. Geralico, and R. Ruffini, On the equilibrium
of a charged massive particle in the field of a Reissner-
Nordstrom black hole, Phys. Lett. A 360, 515 (2007).

(28]

[29]

(30]

(31]

PHYSICAL REVIEW D 94, 124028 (2016)

[38] D. Bini, A. Geralico, and R. Ruffini, Charged massive
particle at rest in the field of a Reissner-Nordstrom black
hole, Phys. Rev. D 75, 044012 (2007).

[39] D. Bini, A. Geralico, and R. Ruffini, Charged massive
particle at rest in the field of a Reissner-Nordstrom black
hole. II. Analysis of the field lines and the electric Meissner
effect, Phys. Rev. D 77, 064020 (2008).

[40] S. Mano, H. Suzuki, and E. Takasugi, Analytic solutions of
the Regge-Wheeler equation and the postMinkowskian
expansion, Prog. Theor. Phys. 96, 549 (1996).

[41] S. Mano, H. Suzuki, and E. Takasugi, Analytic solutions of
the Teukolsky equation and their low frequency expansions,
Prog. Theor. Phys. 95, 1079 (1996).

[42] D. Bini and T. Damour (unpublished).

[43] T. Damour, B.R. Iyer, and A. Nagar, Improved resumma-
tion of post-Newtonian multipolar waveforms from circu-
larized compact binaries, Phys. Rev. D 79, 064004
(2009).

[44] S. Akcay, L. Barack, T. Damour, and N. Sago, Gravitational
self-force and the effective-one-body formalism between the
innermost stable circular orbit and the light ring, Phys. Rev.
D 86, 104041 (2012).

[45] S. A. Teukolsky, Perturbations of a rotating black hole. 1.
Fundamental equations for gravitational electromagnetic
and neutrino field perturbations, Astrophys. J. 185, 635
(1973).

[46] W. H. Press and S. A. Teukolsky, Perturbations of a rotating
black hole. II. Dynamical stability of the Kerr metric,
Astrophys. J. 185, 649 (1973).

[47] S. A. Teukolsky and W. H. Press, Perturbations of a rotating
black hole. Ill—Interaction of the hole with gravitational
and electromagnetic radiation, Astrophys. J. 193, 443
(1974).

[48] M. Sasaki and H. Tagoshi, Analytic black hole perturbation
approach to gravitational radiation, Living Rev. Relativ. 6, 6
(2003).

124028-15


http://dx.doi.org/10.1103/PhysRevD.81.084039
http://dx.doi.org/10.1103/PhysRevD.81.084039
http://dx.doi.org/10.1103/PhysRevD.83.124038
http://dx.doi.org/10.1103/PhysRevD.83.124038
http://dx.doi.org/10.1103/PhysRevD.85.104044
http://dx.doi.org/10.1103/PhysRevD.85.104044
http://dx.doi.org/10.1103/PhysRevD.86.024036
http://dx.doi.org/10.1103/PhysRevD.86.024036
http://dx.doi.org/10.1103/PhysRevD.88.084021
http://dx.doi.org/10.1103/PhysRevLett.113.161101
http://dx.doi.org/10.1103/PhysRevLett.113.161101
http://dx.doi.org/10.1103/PhysRevD.91.024045
http://dx.doi.org/10.1103/PhysRevD.94.044034
http://dx.doi.org/10.1103/PhysRevD.94.044034
http://dx.doi.org/10.1103/PhysRevD.9.860
http://dx.doi.org/10.1103/PhysRevLett.31.1317
http://dx.doi.org/10.1016/0370-2693(74)90505-X
http://dx.doi.org/10.1016/j.physleta.2006.09.028
http://dx.doi.org/10.1103/PhysRevD.75.044012
http://dx.doi.org/10.1103/PhysRevD.77.064020
http://dx.doi.org/10.1143/PTP.96.549
http://dx.doi.org/10.1143/PTP.95.1079
http://dx.doi.org/10.1103/PhysRevD.79.064004
http://dx.doi.org/10.1103/PhysRevD.79.064004
http://dx.doi.org/10.1103/PhysRevD.86.104041
http://dx.doi.org/10.1103/PhysRevD.86.104041
http://dx.doi.org/10.1086/152444
http://dx.doi.org/10.1086/152444
http://dx.doi.org/10.1086/152445
http://dx.doi.org/10.1086/153180
http://dx.doi.org/10.1086/153180
http://dx.doi.org/10.12942/lrr-2003-6
http://dx.doi.org/10.12942/lrr-2003-6

