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We present a general procedure for constructing exact black hole solutions with electric or magnetic
charges in general relativity coupled to a nonlinear electrodynamics. We obtain a variety of two-parameter
family spherically symmetric black hole solutions. In particular, the singularity at the center of the space-
time can be canceled in the parameter space and the black hole solutions become regular everywhere in
space-time. We study the global properties of the solutions and derive the first law of thermodynamics. We
also generalize the procedure to include a cosmological constant and construct regular black hole solutions
that are asymptotic to anti–de Sitter space-time.
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I. INTRODUCTION

The celebrated singularity theorems proved by Penrose
and Hawking [1] claim that under some circumstances the
existence of singularities is inevitable in general relativity.
This is in accordance with the observation that the first
known exact black hole solutions in general relativity have
a singularity inside the event horizon. However, it is widely
believed that the singularities are nonphysical objects that
are created by classical theories of gravity and they do not
exist in nature. In fact, the quantum arguments given by
Sakharov [2] and Gliner [3] suggest that the space-time
singularities could be avoided for matter sources with a de
Sitter core at the center of the space-time. Based on this
idea, Bardeen proposed the first static spherically sym-
metric regular black hole solution [4]. Other regular black
hole models were also proposed later [5–14]. It is easily
shown that all these regular black hole models violate the
strong energy condition1 and hence can break the singu-
larity theorems.
It was established by Ayón-Beato and García [15–19]

that the regular black hole models can be interpreted as the
gravitational field of a nonlinear electric or magnetic
monopole. Thus, the physical source of the regular black
holes could be a nonlinear electromagnetic field. This is
also ensured by other authors in the literature [20].
Recently, it was shown in [21] that some regular black
hole solutions can be constructed in fðTÞ gravity coupled
to a nonlinear electrodynamics.
In this paper, motivated by the ideas of Ayón-Beato and

García, we study whether there exists a general procedure
for constructing regular black hole solutions in general

relativity coupled to a nonlinear electrodynamics. We find
that the answer is yes. In fact, we can construct many static
spherically symmetric black hole solutions with two
independent integration constants. The regular black holes
emerge as some degenerated solutions in the parameter
space. We study the thermodynamic properties of the
solutions and derive the first law, Smarr formula, and
entropy product formulas, respectively. We also find that
the procedure can be straightforwardly generalized to
include a cosmological constant and construct black hole
solutions that are asymptotic to anti–de Sitter space-time.
The paper is organized as follows. In Sec. II, we study

Einstein gravity coupled to a nonlinear electrodynamics
and discuss the geometric conditions for regular black
holes. In Sec. III, we construct a variety of magnetically
charged black hole solutions in the gravity model. In
Sec. IV, we demonstrate the procedure for constructing
electrically charged solutions in the gravity model. In
Sec. V, we study the thermodynamic properties of the
solutions above and derive the first law of thermodynamics.
In Sec. VI, we generalize the procedure to gravity theories
with a cosmological constant and construct AdS black hole
solutions. We conclude this paper in Sec. VII.

II. EINSTEIN GRAVITY COUPLED TO A
NONLINEAR ELECTRODYNAMICS

We consider Einstein gravity coupled to a nonlinear
electromagnetic field of the type

I ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − LðF ÞÞ; ð1Þ

where F ¼ dA is the field strength of the vector field,
F ≡ FμνFμν, and the Lagrangian density L is a function of
F . The covariant equations of motion are
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Gμν ¼ Tμν; ∇μðLFFμνÞ ¼ 0; ð2Þ

where Gμν ¼ Rμν − 1
2
Rgμν is the Einstein tensor and

LF ¼ ∂L
∂F . The energy momentum tensor is

Tμν ¼ 2

�
LFF2

μν −
1

4
gμνL

�
: ð3Þ

In this paper, we consider the static spherically symmetric
black hole solutions with nonlinear electric/magnetic
charges. The most general ansatz is given by

ds2 ¼ −fdt2 þ dr2

f
þ r2dΩ2;

A ¼ aðrÞdtþQm cos θdϕ; ð4Þ

where f ¼ fðrÞ, dΩ2 ¼ dθ2 þ sin θ2dϕ2 denotes the met-
ric of a unit 2-sphere, and Qm is the total magnetic charge
defined by

Qm ¼ 1

4π

Z
F: ð5Þ

Note that in above ansatz −gtt ¼ grr ¼ f is consistent with
the Einstein equations of motion. This will be shown later
in detail. It turns out that the construction of analytical
black hole solutions with dyonic charges is a problem of
great difficulty. The situation becomes much simpler for the
single charged case, namely, when aðrÞ ¼ 0 or Qm ¼ 0.
Hence, in the following sections we will explicitly show
how to construct exact black hole solutions with either
magnetic or electric charges.
Since the main motivation of this paper is to construct

regular black holes in this gravity model, it is instructive to
first discuss what kind of a metric is regular at the origin of
the space-time. For this purpose, we parametrize the metric
function as

f ¼ 1 −
2mðrÞ

r
; ð6Þ

where the constant mass of the Schwarzschild black hole is
replaced by a mass distribution function mðrÞ. To govern
the existence of an event horizon, we shall require the mass
function to be positive definite, namely, mðrÞ > 0 when
r > 0. To exclude the space-time singularity at the origin,
we consider a smooth function mðrÞ that is at least three
times differentiable and approaches zero sufficiently fast in
the limit r → 0: mðrÞ; m0ðrÞ; m00ðrÞ vanish but the third-
order derivative m000ðrÞ is finite (zero or nonzero) at the
origin r ¼ 0. Then to ensure the space-time regularity, a
sufficient condition mðrÞ=r3 is finite in the limit r → 0
because the curvature polynomials involve at most second-
order derivatives of the metric. To be concrete, we present
some low-lying curvature polynomials as follows:

R ¼ 4m0

r2
þ 2m00

r
; RμνRμν ¼ 8m02

r4
þ 2m002

r2
;

RμνλρRμνλρ ¼ 48m2

r6
−
16m
r3

�
4m0

r2
−
m00

r

�

þ 4

�
8m02

r4
−
4m0m00

r3
þm002

r2

�
: ð7Þ

It is clear that if mðrÞ=r3 is finite, and hence m0ðrÞ=r2;
m00ðrÞ=r are also finite in the limit r → 0, all of these
polynomials will be finite constants at the origin.2 Thus,
from a purely mathematical point of view there exists a
variety of candidates for regular black holes in nature
except for those with a de Sitter core [namely, mðrÞ=r3 is a
finite but nonzero constant] at the center of the space-time.
The existence of such regular black hole solutions cannot
be ruled out before we have a better understanding of the
theory of quantum gravity.

III. ASYMPTOTICALLY FLAT BLACK HOLES
WITH MAGNETIC CHARGES

In this section, we will explicitly demonstrate the
construction procedure of exact black hole solutions with
magnetic charges. In this case, the general ansatz is given
by (4) with aðrÞ ¼ 0. It turns out that the nonlinear
Maxwell equations are automatically satisfied. For
Einstein equations, we find that there are only two
independent equations, given by

0 ¼ f0

r
þ f − 1

r2
þ 1

2
L; ð8Þ

0 ¼ f00 þ 2f0

r
þ L −

4Q4
m

r4
LF ; ð9Þ

where a prime denotes the derivative with respect to the
radial coordinate. One can first solve the Lagrangian
density L as a function of r,

L ¼ −2
�
f0

r
þ f − 1

r2

�
; ð10Þ

and then substitute it into the second equation. We find that
the latter is automatically satisfied for any given metric
function f. Hence, the metric ansatz (4) is indeed most
general for static spherically symmetric solutions with
magnetic charges. Under the parametrization (6), the
Lagrangian density simplifies to

L ¼ 4m0ðrÞ
r2

: ð11Þ

2Of course, one should further verify that the metric behaves
regularly everywhere in the space-time when an exact solution
satisfying these conditions is successfully constructed.
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In addition, the square of the field strength F is

F ¼ 2Q2
m

r4
: ð12Þ

Thus, one can freely choose a mass function mðrÞ that is
interesting in physics and then solve the Lagrangian density
analytically as a function of F . This completes the
construction of static solutions with magnetic charges.
However, there is a potential shortcoming in this procedure.
The magnetic chargeQm and the integration constants from
the metric function f may in general appear in the derived
Lagrangian density as well. This means that the solution
has no free parameters because all the constants in the
solution are the coupling constants of the corresponding
theory. As such a solution is less interesting in physics, we
shall focus on constructing the solution with at least one
free integration constant.
To check the consistency of the above procedure,

let us discuss two simple examples. The first is when
mðrÞ ¼ const. The metric is a Schwarzschild black hole,
which is the solution of vacuum Einstein equations while
Eq. (11) impliesL ¼ 0, as expected. The second example is

mðrÞ ¼ M −
Q2

m

2r
: ð13Þ

The metric is a magnetically charged Reissner-Nordström
black hole, which is the solution of Einstein-Maxwell
theories. On the other hand, from Eqs. (11)–(12), we find
L ¼ F , as expected.
Using the procedure demonstrated above, we can easily

construct a lot of exact black hole solutions with magnetic
charges in the gravity model. In the following, we will
present three different classes of solutions, which include
the well-known regular black hole models such as the
Bardeen black hole [4] and the Hayward black hole [9].

A. Case 1: Bardeen class

The first class solution that we present is valid for a
Lagrangian density,

L ¼ 4μ

α

ðαF Þ5=4
ð1þ ffiffiffiffiffiffiffi

αF
p Þ1þμ=2

; ð14Þ

where μ > 0 is a dimensionless constant and α > 0 has the
dimension of length squared. In the weak field limit, the
vector field behaves as L ∼ α1=4F 5=4, which is slightly
stronger than a Maxwell field. The general two-parameter
family black hole solution is

ds2 ¼ −fdt2 þ dr2

f
þ r2dΩ2;

A ¼ Qm cos θdϕ;

f ¼ 1 −
2M
r

−
2α−1q3rμ−1

ðr2 þ q2Þμ=2 ; ð15Þ

where q is a free integration constant that is related to the
magnetic charge

Qm ¼ q2ffiffiffiffiffiffi
2α

p : ð16Þ

For the same physical charge, the parameter q can be either
positive or negative. However, for our purpose we shall
require q > 0 (throughout this paper) because the solution
with M ¼ 0 will no longer be a black hole in the q < 0
case.3 Note that the solution reduces to a Schwarzschild
black hole in the neutral limit. For M ¼ 0, μ ¼ 3, the
solution is the Bardeen black hole [4], which was first
constructed in [18]. For later convenience, we refer to the
parameter M as the “Schwarzschild mass.” The Arnowitt-
Deser-Misner (ADM) mass of the black hole can be read
off from the asymptotic behavior of the metric functions

f ¼ 1 −
2ðM þ α−1q3Þ

r
þ � � � : ð17Þ

We have

MADM ¼ M þMem; Mem ¼ α−1q3: ð18Þ
It is worth pointing out that the ADM mass has two copies
of contributions, one is the Schwarzschild mass which
describes the condensate of the massless graviton from its
nonlinear self-interactions and the other is a charged term
which is associated with the nonlinear interactions between
the graviton and the photon. The latter contribution is
impossible for a Maxwell field or a Born-Infeld field. Since
the M term introduces an unavoidable space-time singu-
larity, we focus on discussing the degenerate case with zero
Schwarzschild mass. The metric function fðrÞ for various μ
is depicted in Fig. 1. It is clear that for μ ≥ 1, fðrÞ
approaches a finite constant in the limit r → 0. In fact,
near the origin, the metric function behaves as

f ¼ 1 − 2α−1q3−μrμ−1 þ � � � : ð19Þ
As emphasized earlier, to exclude the space-time singu-
larity the mass function of the solution should satisfy the
condition mðrÞ=r3∼ const in the limit r → 0. This selects a
special class of solution that has μ ≥ 3. Calculating the
low-lying curvature polynomials, we find

R ¼ regular term × rμ−3;

RμνRμν ¼ regular term × r2μ−6;

RμνλρRμνλρ ¼ regular term × r2μ−6; ð20Þ

3For some of the solutions in this section such as (24), there
exists an additional singularity at r ¼ −q > 0 when q < 0, which
can be covered by an event horizon even for M ¼ 0. However, in
this case the graviton mode becomes ghostlike. Thus we always
require q > 0 in this paper.
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where “regular term” denotes the terms that have a regular
limit at the origin. Therefore, for μ ≥ 3 the singularity at the
origin is indeed canceled. Finally, we remark that for
generic μ, the solution violates the strong energy condition
while the weak energy condition is still preserved.

B. Case 2: Hayward class

The second class of solution that we present is valid for a
Lagrangian density:

L ¼ 4μ

α

ðαF Þμþ3
4

ð1þ ðαF Þμ4Þ2 : ð21Þ

In the weak field limit, the vector field behaves as

L ∼ α
μ−1
4 F

μþ3
4 . It could be either stronger (μ > 1) or weaker

(0 < μ < 1) than a Maxwell field. A critical case occurs
when μ ¼ 1, at which the nonlinear electrodynamics
reduces to a Maxwell field in the weak field limit. The
general static spherically symmetric solution reads

ds2 ¼ −fdt2 þ dr2

f
þ r2dΩ2;

A ¼ Qm cos θdϕ;

f ¼ 1 −
2M
r

−
2α−1q3rμ−1

rμ þ qμ
; ð22Þ

where the magnetic charge and the ADM mass are still
given by (16) and (18), respectively. For M ¼ 0, μ ¼ 3,
the solution is the Hayward black hole [9], which has been
constructed in [22]. For the solution with zero
Schwarzschild mass, the behaviors of the metric function
f and the low-lying curvature polynomials are still given by

(19) and (20), respectively. Thus, the regular black hole
solution has μ ≥ 3 as well.

C. Case 3: A new class

Perhaps the most interesting theories that admit regular
black hole solutions are such that the vector field
approaches a Maxwell field in the weak field limit. We
find that such theories indeed exist:

L ¼ 4μ

α

αF
ð1þ ðαF Þ1=4Þμþ1

: ð23Þ

The black hole solution reads

ds2 ¼ −fdt2 þ dr2

f
þ r2dΩ2;

A ¼ Qm cos θdϕ;

f ¼ 1 −
2M
r

−
2α−1q3rμ−1

ðrþ qÞμ ; ð24Þ

where the magnetic charge and ADM mass are still given
by (16) and (18), respectively. When M ¼ 0, the metric
function f and the curvature polynomials behave as (19)
and (20) near the origin. Thus, the regular black hole
solution also has μ ≥ 3.

D. Generic case

For a generic mass function mðrÞ of the type

mðrÞ ¼ M þ α−1q3rμ

ðrν þ qνÞμ=ν ; ð25Þ

the Lagrangian density of the nonlinear electromagnetic
field turns out to be

L ¼ 4μ

α

ðαF Þνþ3
4

ð1þ ðαF Þν4Þμþν
ν

; ð26Þ

where an extra dimensionless parameter ν is introduced.
The Lagrangian density reduces to (14), (21), and (23)
when ν ¼ 2; μ; 1, respectively. For later convenience, we
also write down the corresponding black hole solution as
follows:

ds2 ¼ −fdt2 þ dr2

f
þ r2dΩ2;

A ¼ Qm cos θdϕ;

f ¼ 1 −
2M
r

−
2α−1q3rμ−1

ðrν þ qνÞμ=ν : ð27Þ

Following the analysis above, the regular black hole
solution has M ¼ 0 and μ ≥ 3. Of course, one can also

FIG. 1. The metric function fðrÞ for a Bardeen class solution
with zero Schwarzschild mass. Along the vertical axis, the value
of μ decreases from top to bottom. For solid lines μ ¼ 5, 3 and for
dashed lines μ ¼ 2, 1. Some parameters have been set as
α ¼ 1=2, q ¼ 1. The dotted line corresponds to a Schwarzschild
black hole with M ¼ 2.
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consider constructing black hole solutions with more
general mass functions if the difficulty of solving the
Lagrangian density analytically can be overcome. [One
example is the first exact regular black hole solutions
presented by Ayón-Beato and García in [15]. In this paper,
we only consider the black hole solutions with the mass
function (25) because the solutions can have one indepen-
dent integration constant. For more general mass functions,
this condition will no longer hold, but one can still
construct those solutions using our procedure.]

IV. ASYMPTOTICALLY FLAT BLACK HOLES
WITH ELECTRIC CHARGES

For electrically charged black hole solutions, the general
ansatz is given by (4) with Qm ¼ 0. In this case, we find
that there are three independent equations,

0 ¼ a00

a0
þ 2

r
þ L0

F

LF
;

0 ¼ f00 þ 2f0

r
þ L;

0 ¼ f0

r
þ f − 1

r2
þ 1

2
Lþ 2a02LF ; ð28Þ

where the first is the equation of the vector field which can
be solved as

LF ¼ Qe

r2a0
: ð29Þ

Here Qe is the electric charge carried by the black hole

Qe ¼
1

4π

Z
LF

�F: ð30Þ

The Lagrangian density can be solved from the second
equation:

L ¼ −f00 −
2f0

r
: ð31Þ

Substituting the above results into the last equation, one
finds

0 ¼ f00 −
2ðf − 1Þ

r2
−
4Qea0

r2
: ð32Þ

This is the equation that one should solve to obtain the
electric field for a given metric function. To check the
consistency of the procedure, we calculate LF from its
definition LF ¼ ∂L=∂F ¼ L0=F 0;F ¼ −2a02 and use
Eqs. (31) and (32). We find that the result exactly coincides
with (29).
Under the parametrization (6), the Lagrangian density

simplifies to

L ¼ 2m00

r
: ð33Þ

Equation (32) can be analytically solved as

a ¼ 1

2Qe
ð3m − rm0Þ þ c; ð34Þ

where c is an integration constant associated with the gauge
choice. In the following, we shall choose the gauge
að∞Þ ¼ 0. This completes the construction of black hole
solutions with nonlinear electric charges. One can first
choose a physically interesting mass function and then
obtain the corresponding gauge potential and the
Lagrangian density as a function of r from above two
equations. The remaining problem is how to express the
Lagrangian density explicitly as a function of the field
strength squared F . In general, this is very difficult because
F ¼ −2a02 has a rather complicated expression.4

Nevertheless, Eq. (29) allows us to rewrite the Lagrangian
density at least as a function of P, where P ¼ F ðLF Þ2,
namely, L ¼ LðPÞ. In fact, in this case it may be more
appropriate to describe the system by means of a Legendre
transformation [15,23]:

H ¼ FLF − L: ð35Þ

It is easy to show that H is naturally a function of P,
dH ¼ ðLF Þ−1dðF ðLF Þ2Þ ¼ HPdP, and the Lagrangian
density can be derived as L ¼ 2PHP −H. It should be
emphasized that the original LðF Þ formalism may not be
appropriate any longer in this case5 because one will end
with a multivaluedLðF Þ, which has different branches for a
well-defined single one HðPÞ.
For the generic mass function (25), the electrically

charged black hole solution reads

ds2 ¼ −fdt2 þ dr2

f
þ r2dΩ2;

f ¼ 1 −
2M
r

−
2α−1q3rμ−1

ðrν þ qνÞμ=ν ;

A ¼ qffiffiffiffiffiffi
2α

p
��

3 − ðμ − 3Þ
�
q
r

�
ν
�

×

�
1þ

�
q
r

�
ν
�

−μþν
ν

− 3

�
dt; ð36Þ

where the electric charge is given by

Qe ¼
q2ffiffiffiffiffiffi
2α

p : ð37Þ

4The situation becomes much simpler for a Maxwell and
Born-Infeld field.

5We are grateful to E. Ayón-Beato for this point.
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The corresponding Lagrangian density can be solved as

L ¼ 2μ

α
zμ−3ð1þ zνÞ−μþ2ν

ν ðμ − 1 − ðνþ 1ÞzνÞ;

z ¼ q
r
¼ 1

ð−αPÞ1=4 : ð38Þ

Unlike the magnetically charged case, the field strength of
the nonlinear electromagnetic field can behave regularly for
some cases. We find

F ¼ −2a02 ¼ −
1

2Q2
e
ð2m0 − rm00Þ2;

¼ −α−1μ2q2νþ2r2μ−2ððνþ 3Þrν

− ðμ − 3ÞqνÞ2ðrν þ qνÞ−2μþ4ν
ν : ð39Þ

It is easy to see that when μ ≥ 1, the electric field has a
regular limit at the origin of space-time. Thus, in the subset
of the parameter spaceM ¼ 0; μ ≥ 3, we have regular black
holes with regular electric fields.
To end this section, we point out that the construction

will become much more complicated for dyonic regular
black hole solutions (4) because the field strength squared
becomes F ¼ 2Q2

m
r4 − 2a02, while LF still takes the form

(29). Thus, in this case it is a problem of great difficulty to
solve the Lagrangian densityL as a function ofF or P for a
given mass function. Perhaps one can start the story from a
given Lagrangian density such as (26) and then try to solve
the electric field as well as the metric functions analytically
or half-analytically. We leave this as a future direction for
research.

V. THE FIRST LAW OF THERMODYNAMICS

A. Derivation of the first law

For asymptotically flat black holes with nonlinear
electric/magnetic charges, the first law was derived in
[24] using a covariant approach. It was shown that the
standard first law,

dMADM ¼ TdSþ ΦdQe þΨdQm; ð40Þ

was satisfied. Here T, S are the Hawking temperature and
entropy

T ¼ κ

2π
; S ¼ 1

4
A; ð41Þ

where κ is the surface gravity and A is the area of the event
horizon. The physical charges Qe, Qm and the conjugate
potentials Φ, Ψ are defined by

Qe ¼
1

4π

Z
Σ2

LF
�F;

Φ ¼ Atð∞Þ − Atðr0Þ;

Qm ¼ 1

4π

Z
Σ2

F;

Ψ ¼ ~Atðr0Þ − ~Atð∞Þ;
~F ¼ d ~A ¼ LF

�F: ð42Þ

Note that the definitions for the electric charge and
magnetic potential are properly generalized6 and they
coincide with the conventional ones for a linear Maxwell
field (for more details, we suggest that interested readers
refer to [24]). Furthermore, if α is taken as a thermody-
namic variable, the first law generalized in the extended
phase space reads7

dMADM ¼ TdSþ ΦdQe þΨdQm þ Πdα; ð43Þ

where Π is a new quantity conjugate to α. It is defined by

Π ¼ 1

4

Z
∞

r0

dr
ffiffiffiffiffiffi
−g

p ∂L
∂α : ð44Þ

Note that Π has the dimension of energy. Then the
scaling dimensional argument8 implies that the Smarr
formula is

MADM ¼ 2TSþ ΦQe þΨQm þ 2Πα: ð45Þ

6To benefit readers, we shall briefly explain how we arrive at
the definitions in (42) for a nonlinear electrodynamics. As usual
the equations of motion and the Bianchi identities can be
expressed as d ~F ¼ 0; dF ¼ 0. Then the physical charges can
be defined by integrating the lhs of the equations over any closed-
2 surface enclosing the charges. The electric and magnetic field
vectors can be defined by Eμ ¼ Fμνξ

ν; Bμ ¼ − ~Fμνξ
ν, where ξ is a

Killing vector that is null on the black hole event horizon (here
our discussions are valid for generally stationary and axisym-
metric black hole solutions). Using the equations of motion and
Bianchi identities, one can show that ∇½μEν� ¼ 0 ¼ ∇½μBν� due to
time-translational and rotational symmetries. Hence the electric/
magnetic field vectors can be written as Eμ ¼ ∂μΦ; Bμ ¼ ∂μΨ,
which in fact defines the electric/magnetic potentials covariantly.
Moreover, it is easily shown that Φ ¼ Aμξ

μ and Ψ ¼ − ~Aμξ
μ, up

to a gauge choice. In static space-times, this gives the definitions
in (42).

7It was shown by Zhang and Gao [25] that the additional terms
in the first law for asymptotically flat black holes can be derived
using the covariant approach in [24].

8Euler’s theorem implies that for any given function gðxiÞ such
that μδgðxiÞ ¼ gðμδi xiÞ, one has δgðxiÞ ¼ δixi

∂g
∂xi. Here δ; δi

denote the scaling dimensions of the function gðxiÞ and the
variables xi, respectively. For our first law (43), we have
½MADM� ¼ L; ½S� ¼ L2; ½Qe� ¼ L; ½Qm� ¼ L; ½α� ¼ L2, implying
that the Smarr formula is (45).
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It is worth pointing out that the existence of the new
conjugate (Π, α) is essential to govern the Smarr formula.
However, the definition of the conjugate is not unique. One
can redefine a new quantity ~α ∼ αz and its conjugate as
~Πd ~α ¼ Πdα. Then the Smarr formula (45) holds with the
term 2Πα replaced by 2z ~Π ~α. An interesting question is the
physical interpretation of the new pair of conjugates, which
however remains open and deserves further studies.
In the following, we shall test the first law (43) and the

Smarr formula (45) for the exact solutions that we construct
previously. First, for the magnetically charged solutions
(27), the various thermodynamic quantities are given by

MADM ¼ M þ α−1q3;

S ¼ πr20;

T ¼ 1

4πr0
ð1 − 2μα−1q4rμ−10 ðr0 þ qÞ−μ−1Þ;

Qm ¼ q2ffiffiffiffiffiffi
2α

p ;

Ψ ¼ −
qffiffiffiffiffiffi
2α

p
��

3 − ðμ − 3Þ q
r0

��
1þ q

r0

�
−μ−1

− 3

�
;

Π ¼ q3

4α2

��
1þ ðμþ 1Þ q

r0

��
1þ q

r0

�
−μ−1

− 1

�
:

ð46Þ

It follows that the first law (43) and the Smarr formula (45)
with vanishing electric charge hold straightforwardly.
For the electrically charged solutions (36), we have

MADM ¼ M þ α−1q3;

S ¼ πr20;

T ¼ 1

4πr0

�
1 − 2μα−1qνþ3rμ−10 ðrν0 þ qνÞ−μþν

ν

�
;

Qe ¼
q2ffiffiffiffiffiffi
2α

p ;

Φ ¼ −
qffiffiffiffiffiffi
2α

p
�
ð3 − ðμ − 3Þ

�
q
r0

�
ν
�

×

�
1þ

�
q
r0

�
ν
�

−μþν
ν

− 3

�
;

Π ¼ q3

4α2

��
1þ ðμþ 1Þ

�
q
r0

�
ν
�

×

�
1þ

�
q
r0

�
ν
�

−μþν
ν

− 1

�
: ð47Þ

It is straightforward to verify that the first law (43) and the
Smarr formula (45) with vanishing magnetic charge are
indeed satisfied.

B. Entropy product formulas

Let us discuss the entropy product formulas for the
solutions (27) and (36). For simplicity, we focus on the
three special classes of solutions listed in Sec. III with some
low-lying μ ¼ 1, 2, 3. For vanishing Schwarzschild mass,
the maximal number of the horizons defined by the roots
(both real and imaginary) of the equation fðrÞ ¼ 0 is
exactly equal to μ for all these solutions. For instance, for
Bardeen class solutions (15), there is only one horizon r0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

em − q2
p

for μ ¼ 1 and two horizons r� ¼ Mem �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

em − q2
p

for μ ¼ 2. In both cases, the reality of the
horizons provides a lower bound for the physical charges:
Q > μ

ffiffiffiffiffiffiffiffi
α=8

p
. For μ ¼ 3, the equation fðrÞ ¼ 0 is equiv-

alent to a cubic equation of r2,

0 ¼ ðr2 þ q2Þ3 − 4M2
emr4; ð48Þ

and hence there are six roots in total, which occur in pairs,
with r2 taking the same value. Here we follow [26] and
view ~r ¼ r2 as the radial variable and consider only three
roots. We find that the horizons radii have lengthy
expressions that are not instructive to give. Nevertheless,
the entropy product formula turns out to be very simple.
We find

μ ¼ 1; S ¼ πð4M2
em −

ffiffiffiffiffiffi
2α

p
QÞ;

μ ¼ 2;
Y2
i¼1

Si ¼ 2απ2Q2;

μ ¼ 3;
Y3
i¼1

Si ¼ −ð2αÞ3=2π3Q3; ð49Þ

whereQ collectively denotes the electric/magnetic charges.
For μ ¼ 4, we can also derive the product

Q
4
i¼1 Si, which is

a rather involved function of (Mem; α1=2Q). For the
Hayward class (22) and new class solutions (24), we obtain
the same entropy product formulas:

μ ¼ 1; S ¼ πð2M2
em − ð2αÞ1=4Q1=2Þ2;

μ ¼ 2;
Y2
i¼1

Si ¼ 2απ2Q2;

μ ¼ 3;
Y3
i¼1

Si ¼ ð2αÞ3=2π3Q3: ð50Þ

Note that for all the solutions above, the entropy product
formulas for μ ¼ 2, 3 are independent of Mem.
For the solutions with nonzero Schwarzschild mass, we

can also derive the product formulas of the entropies for
μ ¼ 1, 2 cases. We find
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μ ¼ 1;
Y2
i¼1

Si ¼ 4ð2αÞ1=2π2M2Q;

μ ¼ 2;
Y3
i¼1

Si ¼ 8απ3M2Q2; ð51Þ

which intriguingly depend on the product of the
Schwarzschild mass squared and the physical charges.
Note that the μ ¼ 1 case of the Bardeen class solution
has four horizons and hence is not included in the above
results. The entropy product of this case and of the μ ¼ 3
case of all these solutions is in general a rather involved
function of ðM;Mem; α1=2QÞ.

VI. ASYMPTOTICALLY ANTI–DE SITTER
BLACK HOLES

The charged AdS black holes play an important role in
the application of the AdS/CFT correspondence. In this
section, we would like to construct the AdS black hole
solutions with nonlinear electric/magnetic charges. For this
purpose, we include a cosmological constant in the action,
namely,

I ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ 6l−2 − LðF ÞÞ; ð52Þ

wherel is theAdS radius. The covariant equations ofmotion
are still given by (2)–(3) but the Einstein tensor includes
the cosmological constant Gμν ¼ Rμν − 1

2
ðRþ 6l−2Þgμν.

We find that for maximally symmetric solutions with
electric/magnetic charges, the procedure established in
Secs. II and III still works well (of course, some of the
equations involve new terms associated with the cosmologi-
cal constant). Herewe shall not repeat those details. The final
results are for the same Lagrangian density LðF Þ; the
asymptotically flat black hole solutions obtained in
Secs. II and III can be straightforwardly generalized to
(A)dS black hole solutions with spherical/hyperbolic/toric
topologies. For the magnetic case (26), the solution reads

ds2 ¼ −fdt2 þ dr2

f
þ r2dΩ2

k;

A ¼ Qmxdy;

f ¼ r2=l2 þ k −
2M
r

−
2α−1q3rμ−1

ðrν þ qνÞμ=ν ; ð53Þ

where dΩ2
k ¼ dx2=ð1 − kx2Þ þ ð1 − kx2Þdy2 denotes the

metric of the two-dimensional sphere/hyperboloid/torus
with constant curvature k ¼ 1;−1, 0.

For the electrically charged case (38), the solution reads

ds2 ¼ −fdt2 þ dr2

f
þ r2dΩ2

k;

f ¼ r2=l2 þ k −
2M
r

−
2α−1q3rμ−1

ðrν þ qνÞμ=ν ;

A ¼ qffiffiffiffiffiffi
2α

p
��

3 − ðμ − 3Þ
�
q
r

�
ν
�

×

�
1þ

�
q
r

�
ν
�

−μþν
ν

− 3

�
dt: ð54Þ

Treating the cosmological constant as well as the parameter
α as a thermodynamic variable [27,28], we argue that the
first law in the extended phase space reads

dMAMD ¼ TdSþ ΦdQe þΨdQm þ Πdαþ Vd ~P; ð55Þ

whereMAMD is the AMD mass [29,30] of AdS black holes
and the conjugates ð ~P;VÞ are defined by [27,28]

~P ¼ −
Λ
8π

¼ 3

8πl2
; V ¼ 4πr30

3
: ð56Þ

The Smarr formula is

MADM ¼ 2TSþ ΦQe þΨQm þ 2Πα − 2V ~P: ð57Þ

To test the first law and Smarr formula for the above
solutions, we first notice that the temperature of the
solutions has an additional dependence on the cosmological
constant as well as the topological parameter. We find

magnetic solution∶ T ¼ 1

4πr0
ð3r20l−2 þ k − 2μα−1q4rμ−10

× ðr0 þ qÞ−μ−1Þ;

electric solution∶ T ¼ 1

4πr0

�
3r20l

−2 þ k − 2μα−1

× qνþ3rμ−10 ðrν0 þ qνÞ−μþν
ν

�
: ð58Þ

The mass and other thermodynamic quantities exactly
coincide with those of (46) and (47), respectively. It follows
that the above first law and Smarr formula are indeed
satisfied for these solutions.
To end this section, we point out that Eq. (58) in fact

gives the equation of state ~P ¼ ~PðT; VÞ for the black hole
systems in the extended phase space. Then one can follow
[22] and discuss the critical phenomena of these solutions.

VII. CONCLUSION

In this paper, we provide a generic procedure for
constructing exact black hole solutions with electric or
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magnetic charges in general relativity coupled to a nonlinear
electrodynamics. The Lagrangian density of the nonlinear
electromagnetic field is proposed to be a function of the field
strength squared,F ¼ FμνFμν. For general static spherically
symmetric solutions, we find that the equations of motion
allow us to choose an appropriate metric and then solve the
gauge potential and the Lagrangian density of the nonlinear
electromagnetic field. This is a simple but powerful pro-
cedure for constructing known regular black hole models in
the literature.
We first construct magnetically charged solutions in the

gravity model. We obtain a large class of solutions and
derive the corresponding Lagrangian density of the non-
linear electromagnetic field analytically. The black hole
solutions contain two free parameters and reduce to the
Schwarzschild black hole in the neutral limit. In particular,
in a subset of the parameter space the singularity at the
origin of the space-time is canceled and the black holes
become regular everywhere in the space-time. We also
establish the procedure for constructing electrically charged

solutions in the gravity model. We find that in this case, all
the regular black holes have a regular electric field as well.
We then study the global properties of the above

solutions. We derive the first law and the Smarr formula.
For some of the solutions, we also derive the entropy
product formulas and obtain many interesting results.
Finally, we generalize the construction procedure for

gravity theories with a cosmological constant. We find that
the above asymptotically flat black hole solutions (includ-
ing the regular black holes) can be straightforwardly
generalized to the maximally symmetric counterparts that
are asymptotic to anti–de Sitter space-time.
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