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The mass parameters of compact objects such as boson stars, Schwarzschild, Reissner-Nordström, and
Kerr black holes are computed in terms of the measurable redshift-blueshift (zred, zblue) of photons emitted
by particles moving along circular geodesics around these objects and the radius of their orbits. We find
bounds for the values of (zred, zblue) that may be observed. For the case of the Kerr black hole, recent
observational estimates of Sgr A� mass and rotation parameter are employed to determine the
corresponding values of these red-blue shifts.
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I. INTRODUCTION

The increasing amount of evidence that many galaxies
contain a supermassive black hole at their center [1]
motivated Herrera and Nucamendi [2] (hereafter referred
to as HN) to develop a theoretical approach to obtain the
mass and rotation parameter of a Kerr black hole in terms of
the redshift zred and blueshift zblue of photons emitted by
massive particles traveling around them along geodesics
and the radius of their orbits. They found an explicit
expression of the rotation parameter as a function of zred,
zblue, the radius of circular orbits, and the massM, whereas
M might be found by solving an eight order polynomial
which can only be done numerically. These circular orbits
should, of course, be bounded and stable. If a set of
observational data fzred; zblue; rg, that is, if a set of red/
blueshifts emitted by particles orbiting a Kerr black hole at
different radii were given, what would be desirable to know
is the mass and rotation parameter in terms of that data set.
In this paper, we provide the details of how this can be
accomplished. Particularly, the mass of the black hole for
Sgr A� and its corresponding angular momentum that have
been recently estimated [3], M ∼ 2.72 × 106 M⊙ and
a ∼ 0.9939M, are employed in our analysis. In addition,
the mass parameter of axially symmetric nonrotating
compact objects such as Schwarzschild and Reissner-
Nordström black holes as well as boson stars is found in
terms of the red-blue shift of light and the orbit radius of
emitting particles. Some analyses of the red-blue shift of
light in spherical and static space-times has been done in [4]
in the context of galactic rotation curves. In order to have a
self-contained paper, we provide a brief summary of the

HN theoretical scheme in Sec. II. In Secs. III and IV we
deal with the nonrotating examples above mentioned and
the rotating Kerr black hole, respectively.

II. THEORETICAL APPROACH

HN considered a rotating axially symmetric space-time
in spherical coordinates ðxμÞ ¼ ðt; r; θ;ϕÞ. The geodesic
trajectory followed by a massive particle in this space-time
can be obtained by solving the Euler-Lagrange equations

∂L
∂xμ −

d
dτ

�∂L
∂ _xμ

�
¼ 0; ð1Þ

with the Lagrangian L given by

L ¼ 1

2
½gtt_t2 þ 2gtϕ_t _ϕþgrr _r2 þ gθθ _θ

2 þ gϕϕ _ϕ
2�; ð2Þ

being _xμ ¼ dxμ
dτ and τ the proper time. It is assumed that the

metric depends solely on r and θ; thus, the space-time is
endowed with two commuting Killing vectors ½ξ;ψ � ¼ 0
which read ξ ¼ ð1; 0; 0; 0Þ, ψ ¼ ð0; 0; 0; 1Þ. Since
gμν ¼ gμνðr; θÞ, there are two quantities that are conserved
along the geodesics

pt ¼
∂L
∂_t ¼ gtt_tþ gtϕ _ϕ ¼ gttUt þ gtϕUϕ ¼ −E;

pϕ ¼ ∂L
∂ _ϕ ¼ gtϕ_tþ gϕϕ _ϕ ¼ gtϕUt þ gϕϕUϕ ¼ L; ð3Þ

where Uμ ¼ ðUt; Ur; Uθ; UϕÞ is the 4-velocity, which is
normalized to unity rendering
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−1 ¼ gttðUtÞ2 þ grrðUrÞ2 þ gθθðUθÞ2 þ gϕϕðUϕÞ2
þ gtϕUtUϕ: ð4Þ

Two of these 4-velocity components can be found by
inverting (3),

Ut ¼ gϕϕEþ gtϕL

g2tϕ − gttgϕϕ
; Uϕ ¼ −

gtϕEþ gttL

g2tϕ − gttgϕϕ
: ð5Þ

Inserting (5) in (4), one obtains

grrðUrÞ2 þ Veff ¼ 0; ð6Þ

where Veff is an effective potential given by

Veff ¼ 1þ gθθðUθÞ2 − E2gϕϕ þ L2gtt þ 2ELgtϕ
g2tϕ − gttgϕϕ

: ð7Þ

The goal is to write the parameters of an axially
symmetric space-time in terms of the observational red-
and blueshifts zred and zblue of light emitted by massive
particles moving around a compact object. These photons
have 4-momentum kμ ¼ ðkt; kr; kθ; kϕÞ that move along
null geodesics kμkμ ¼ 0. Using the same Lagrangian (2),
one gets two conserved quantities

−Eγ ¼ gttkt þ gtϕkϕ;

Lγ ¼ gϕtkt þ gϕϕkϕ: ð8Þ

The frequency shift z associated to the emission and
detection of photons is defined as

1þ z ¼ ωe

ωd
; ð9Þ

where ωe is the frequency emitted by an observer moving
with the massive particle at the emission point e, and ωd is
the frequency detected by an observer far away from the
source of emission. These frequencies are given by

ωe ¼ −kμUμje; ωd ¼ −kμUμjd: ð10Þ

Uμ
e and Uμ

d are the 4-velocity of the emitter and detector,
respectively. If the detector is located very far away from
the source (r → ∞), then Uμ

d ¼ ð1; 0; 0; 0Þ since Ur
d, U

θ
d,

Uϕ
d → 0, whereas Ut ¼ E ¼ 1. The frequency ωe ¼

−kμUμje is explicitly given by

ωe ¼ ðEγUt − LγUϕ − grrUrkr − gθθUθkθÞje;

with a similar expression for ωd. As a result, (9) becomes

1þ z ¼ ðEγUt − LγUϕ − grrUrkr − gθθUθkθÞje
ðEγUt − LγUϕ − grrUrkr − gθθUθkθÞjd

: ð11Þ

This is an expression for the red- and/or blueshifts of light
emitted by massive particles that are orbiting around a
compact object measured by a distant observer. The
apparent impact parameter b≡ Lγ

Eγ
of photons; that is to

say, the minimum distance to the origin r ¼ 0 was
introduced for convenience. Because of the fact that Eγ

and Lγ are preserved along null geodesics all the way from
emission to detection, one has that be ¼ bd.
Astronomers define a kinematic redshift as zkin ¼ z − zc,

and some report their data in terms of zkin. zc corresponds to
a gravitational frequency shift of a photon emitted by a
static particle located in a radius equal to the circular orbit
radius and on the signal line going from the center of the
coordinates to the far detector. In the case of the existence
of an ergoregion in the space-time (as in the Kerr black
hole), the static emitter must be outside of this. Thus,

1þ zc ¼
ðEγUtÞje
ðEγUtÞjd

¼ Ut
e

Ut
d
: ð12Þ

The kinematic redshift zkin ¼ ð1þ zÞ − ð1þ zcÞ can be
written as

zkin ¼
ðUt − bUϕ − 1

Eγ
grrUrkr − 1

Eγ
gθθUθkθÞje

ðUt − bUϕ − 1
Eγ
grrUrkr − 1

Eγ
gθθUθkθÞjd

−
Ut

e

Ut
d
:

ð13Þ

The analysis can be performed with either zkin using (13) or
z using (11). We work with zkin in this paper. The general
expression (13) is simplified for circular orbits (Ur ¼ 0) in
the equatorial plane (Uθ ¼ 0),

zkin ¼
UtUϕ

dbd − Ut
dU

ϕ
e be

Ut
dðUt

d − bdU
ϕ
dÞ

: ð14Þ

In (14), what is still needed is to take into account light
bending due to gravitational field, in other words, to find
the apparent impact parameter b for every orbit, that is to
say, to find the map, b ¼ bðrÞ as a function of the radius r
of the circular orbit associated with the emitter.
The criteria employed in [2] to construct this mapping

is to choose the maximum value of z at a fixed distance
from the observed center of the source at a fixed b.
Inverting (8) to obtain kμ ¼ kμðgαβ; E; LÞ and inserting
this expression into kμkμ ¼ 0 with kr ¼ 0 and kθ ¼ 0, one
arrives at

b� ¼
−gtϕ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tϕ − gttgϕϕ

q
gtt

; ð15Þ

where b� can be evaluated at the emitter or detector
position. Since in general there are two different values
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of b�, there will be two different values of z of photons
emitted by a receding (z1) or an approaching object (z2)
with respect to a distant observer. These kinematic shifts of
photons emitted either side of the central value b ¼ 0 read

z1 ¼
Ut

eU
ϕ
dbd− − Ut

dU
ϕ
e be−

Ut
dðUt

d − Uϕ
dbd−Þ

; ð16Þ

z2 ¼
Ut

eU
ϕ
dbdþ − Ut

dU
ϕ
e beþ

Ut
dðUt

d −Uϕ
dbdþÞ

: ð17Þ

Let us clear some points with respect to the different
gravitational shifts of photons included in (11) and (14).
In Eq. (11), the redshift/blueshift is indeed gravitational,

but it includes an equivalent Doppler effect (redshift/
blueshift) as the emitter moves towards/away from the
observer along the circular orbit and, additionally, two
gravitational effects: a gravitational redshift for the photon
emitted by a static particle and a redshift/blueshift due to
the rotation of the space-time (as is the case for the Kerr
space-time). We removed from (11) the gravitational red-
shift for the photon emitted by a static particle [which we
called zc in (12)] and defined a kinematic redshift/blueshift
as zkin ¼ z − zc (14), which is the equivalent of the redshift/
blueshift Doppler previously mentioned, but it contains yet
the effect of the rotation of the space-time. This equivalent
Doppler effect (redshift/blueshift) as the emitter moves
towards/away from the observer along the circular orbit is
more evident in the cases of static space-times (where the
effect of rotation of space-time is null), as it is explained in
the following section. For this case, the redshift of the
photon emitted by the particle moving away from the
observer is equal in magnitude but with opposite sign to
the corresponding blueshift of the photon emitted by the
particle moving towards the observer.
We now apply this formalism to nonrotating compact

objects, namely, Schwarzschild and Reissner-Nordström
black holes as well as boson stars, whose redshift/blueshift
magnitude is described by (26), (32), and (44), respectively.

III. NONROTATING SPACE-TIMES

In the present section, we study the relationship between
the observed redshift (blueshift) of photons emitted by
particles traveling along circular and equatorial paths
around nonrotating compact objects and the mass param-
eter of these objects. Since gtϕ vanishes, the apparent
impact parameter becomes b� ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gϕϕ=gtt
p

, and the
effective potential (7) acquires a rather simple form

Veff ¼ 1þ E2

gtt
þ L2

gϕϕ
: ð18Þ

For circular orbits, Veff and its derivative dVeff
dr vanish. From

these two conditions, one finds two general expressions for

the constants of motion E2 and L2 for any nonrotating
axially symmetric space-time

E2 ¼ −
g2ttg0ϕϕ

gttg0ϕϕ − g0ttgϕϕ
; ð19Þ

L2 ¼ g2ϕϕg
0
tt

gttg0ϕϕ − g0ttgϕϕ
; ð20Þ

where primes denote the derivative with respect to r. In
order to guarantee stability of these circular orbits, V 00

eff > 0

must hold. The general expression for V 00
eff is

V 00
eff ¼ −E2

�
g00ttgtt − 2ðg0ttÞ2

g3tt

�
− L2

�
g00ϕϕgϕϕ − 2ðg0ϕϕÞ2

g3ϕϕ

�

¼ g0ϕϕg
00
tt − g0ttg00ϕϕ

gttg0ϕϕ − g0ttgϕϕ
þ 2g0ttg0ϕϕ

gϕϕgtt
; ð21Þ

where (19) and (20) were employed in the last step. Using
the explicit form of E and L, (19) and (20), in (5) one
obtains expression for the 4-velocities in terms of solely the
metric components

Uϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g0tt
gttg0ϕϕ − g0ttgϕϕ

s
; Ut ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g0ϕϕ

gttg0ϕϕ − g0ttgϕϕ

s

ð22Þ

from which the angular velocity of particles in these
circular paths becomes

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffi
−

g0tt
g0ϕϕ

s
: ð23Þ

Since bþ ¼ −b−, the redshift z1 ¼ zred and blueshift z2 ¼
zblue are equal but with opposite sign, z1 ¼ −z2; the explicit
expression is

z1 ¼
−Ut

eU
ϕ
dbdþ þ Ut

dU
ϕ
e beþ

Ut
dðUt

d þ Uϕ
dbdþÞ

: ð24Þ

Furthermore, if the detector is located far away from the
compact object rd → ∞, and as we mentioned before,
Uμ

d → ð1; 0; 0; 0Þ. Thus, (24) becomes

z1 ¼ Uϕ
e beþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gϕϕg0tt

gttðgttg0ϕϕ − g0ttgϕϕÞ

s
: ð25Þ

A. Schwarzschild black hole

As our first working example of a nonrotating space-
time, we consider the Schwarzschild black hole for which
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the relevant metric components are gtt ¼ −ð1 − 2M
r Þ and

gϕϕ ¼ r2 sin2 θ. Inserting these components in (25) with
θ ¼ π=2, one finds

z2 ¼ rcM
ðrc − 2MÞðrc − 3MÞ ; ð26Þ

which is a relationship between the measured redshift z, the
mass parameter of a Schwarzschild black hole M, and the
radius rc of a massive particle’s circular orbit that emits
light and, of course, rc > 3M. The relationship (26) is
equivalent to

M ¼ rcF ðzÞ where F�ðzÞ ¼
1þ 5z2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10z2 þ z4

p

12z2
:

ð27Þ

On the other hand, circular orbits are stable as long as
V 00
eff > 0 from (21) V00

eff reads

V 00
eff ¼

2Mðrc − 6MÞ
r2cðrc − 2MÞðrc − 3MÞ ; ð28Þ

which is positive, provided that rc > 6M; therefore,
rc
M ¼ F−1 > 6, which is fulfilled if and only if jzj <
1=

ffiffiffi
2

p
and solely for the minus sign F−ðzÞ. Hence, a

measurement of the redshift z of light emitted by a
particle that follows a circular orbit of radius rc in the
equatorial plane around a Schwarzschild black hole will
have a mass parameter determined by M ¼ rcF−ðzÞ, and
z must be jzj < 1=

ffiffiffi
2

p
. The energy, angular momentum,

velocities Ut, Uϕ, and the angular velocity of the emitter
can be computed from (19), (20), (22), and (23) and
written as a function of the measurable redshift z and
radius rc of the circular photons source’s orbit by
using (27)

E2 ¼ ðrc − 2MÞ2
rcðrc − 3MÞ ¼

ð1 − 2F−ðzÞÞ2
rcð1 − 3F−ðzÞÞ

;

L2 ¼ Mr2c
rc − 3M

¼ r2cF−ðzÞ
1 − 3F−ðzÞ

; ð29Þ

Ut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rc
rc − 3M

r
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3F−ðzÞ
p ;

Uϕ ¼ 1

rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

rc − 3M

s
¼ 1

rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F−ðzÞ

1 − 3F−ðzÞ

s
; ð30Þ

Ω ¼
ffiffiffiffiffi
M
r3c

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
F−ðzÞ
r2c

s
: ð31Þ

The function M ¼ Mðr; zÞ ¼ rF−ðzÞ is in geometrized
units (G ¼ c ¼ 1). In order to plot it, we scale M and r by

any multiple of the solar mass, this is to say, by pM⊙, for
Sgr A� p ¼ 2.72 × 106. Figure 1 shows this scaled relation
M ¼ Mðr; zÞ, which is symmetric with respect to the shift
z (zred > 0, zblue < 0).
Given a set of N pairs fr; zgi of observed redshifts

z (blueshifts) of emitters traveling around a Schwarzschild
black hole along circular orbits of radii r, a Bayesian
statistical analysis might be carried out in order to estimate
the black hole mass parameter.

B. The Reissner-Nordström black hole

Our next nonrotating working example is the
Reissner-Nordström space-time, which represents a
electrically charged black hole whose relevant metric
components are gtt ¼ −ð1 − 2M

r þ Q2

r2 Þ where Q is the
electric charge parameter and gϕϕ ¼ r2 sin2 θ. For cir-
cular-equatorial orbits of the photon source, the redshift
reads

z2 ¼ r2cðMrc −Q2Þ
ðr2c − 3Mrc þ 2Q2Þðr2c − 2Mrc þQ2Þ : ð32Þ

This relationship is equivalent to

M ¼ rcG�ðrc; z2; Q2Þ; ð33Þ

where

G� ¼ 1

12z2

�
ð5z2 þ 1Þ þ 7Q2z2

r2c

�
�
z4 þ 10z2 þ 1þ z2Q2

r2c

�
z2Q2

r2c
− 2ðz2 þ 5Þ

��
1=2

�
:

ð34Þ
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FIG. 1. The mass parameter M is shown as a function of
redshift (z > 0) or blueshift (z < 0) and the radius r of an
eventual circular orbit of a photon emitter. M and r are in
geometrized units and scaled by pM⊙ where p is an arbitrary
factor of proportionality.
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In this case, the conserved quantities E2 and L2 are

E2 ¼ ðQ2 þ rcðrc − 2MÞÞ2
r2cð2Q2 þ rcðrc − 3MÞÞ ; ð35Þ

L2 ¼ r2cðMrc −Q2Þ
2Q2 þ rcðrc − 3MÞ : ð36Þ

E2 and L2 are real only if r2c − 3Mrc þ 2Q2 > 0 and
Mrc −Q2 > 0. Therefore, z2 is positive provided that
r2c − 2Mrc þQ2 > 0. As it is known, in this metric, one
distinguishes three regions: 0 < r < r−, r− < r < rþ, and
rþ < r, where r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
are the roots of

r2 − 2MrþQ2 ¼ 0, which are real and distinct only
if M2 > Q2 stands. The surface r ¼ rþ is an event
horizon similar to r ¼ 2M for the Schwarzschild’s
metric [5]. Since r > rþ implies r2 − 2MrþQ2 > 0,
our analysis is performed for r > rþ, that is, outside the
event horizon.
The stability of circular-equatorial orbits requirement

V 00
eff ¼

Mrcð18Q2 þ 2r2c − 12MrcÞ − 8Q4

r2cð2Q2 þ rcðrc − 3MÞÞðQ2 þ rcðrc − 2MÞÞ > 0

ð37Þ

tells us that Mrcð9Q2 þ r2c − 6MrcÞ − 4Q4 > 0. Inserting
M ¼ rcG� into this last condition would yield, in principle,
an inequality that may bound the values of the redshift z, as
it was the case for Schwarzschild. This inequality turns out
to be cumbersome to be analyzed analytically; hence, the
analysis was performed numerically in the following
manner: given values ofQ2 and rc, we vary z2 and compute
M ¼ rcG�ðz2; Q2; rcÞ for each value of z2. With this value
M at hand, we check whether the four conditions are

all satisfied: (i) M2 > Q2, (ii) r2 − 3Mrþ 2Q2 > 0,
(iii) Mr −Q2 > 0, and (iv) Mrð9Q2 þ r2 − 6MrÞ−
4Q4 > 0. The second and third inequalities guarantee
that one, indeed, has circular and equatorial orbits;
the fourth stems from V 00

eff > 0. We look for the mini-
mum and maximum value of z for which these four
conditions are fulfilled. This process is repeated for
several values of Q2 and rc. For Q ¼ 0, the result for
Schwarzschild (jzj < 1=

ffiffiffi
2

p
) is recovered. Figure 2 shows

the surfaces zmin ¼ zminðrc; Q2Þ and zmax ¼ zmaxðrc; Q2Þ.
Only for frequency shifts z such that jzj ∈ ðzmin; zmaxÞ,
the corresponding values M ¼ Mðz2; Q2; rcÞ ¼ rcG− are
acceptable.
The velocities Uϕ and Ut of photons emitters orbiting in

circular and equatorial paths are

Uϕ ¼ 1

rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mrc −Q2

r2cð2Q2 þ rcðrc − 3MÞÞ

s
;

Ut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2c
2Q2 þ rcðrc − 3MÞ

s
; ð38Þ

and their angular velocity is given by

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mrc −Q2

r4c

s
: ð39Þ

Since M ¼ rcG−ðz2; rc; Q2Þ, these 4-velocity components
and Ω are actually functions of the redshift z, the radius of
the circular orbit rc, and the parameter Q2. Unlike the
Schwarzschild black hole, there is not an analytic relation-
ship of the mass parameter M in terms only of the
measurable variables z and r; it depends also on Q2. At
any rate, given a set of observables fz; rgi, Bayesian
statistical analysis would provide an estimate for both
parameters M and Q.

C. Boson stars

Colpi et al. [6] performed a study of self-interacting
boson stars which were modeled by a complex scalar
field endowed with a quartic potential V ¼ m2

2
jϕj2þ

λ
4
jϕj4. The stability analysis yielded equilibrium

configurations along either a stable or unstable branch
[6,7]. We will be concerned with stable equilibrium
configurations of boson stars for which the metric
reads

ds2 ¼ −α2ðrÞdt2 þ a2ðrÞdr2 þ r2ðdθ2 þ sin2θdφ2Þ:
ð40Þ

The components grr ¼ a2ðrÞ and gtt ¼ −α2ðrÞ are found
by solving

 15
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r Q2
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FIG. 2. Minimum zmin and maximum zmax redshift surfaces as a
function of the radius r of circular orbits followed by photon
emitters around a Reissner Nordström black hole and its charge
parameter Q2. Only for redshifts bounded by these surfaces, the
corresponding values M ¼ Mðz2; Q2; rÞ ¼ rG− are acceptable.
M,Q, and r are in geometrized units and scaled by pM⊙ where p
is an arbitrary factor of proportionality.
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da
dx

¼ a
2

�
1 − a2

x
þ a2x

��
Ω2

α2
þ 1þ Λ

2
ϕ̂2

�
ϕ̂2 þ ϕ̂02

a2

��
;

dα
dx

¼ α

2

�
a2 − 1

x
þ a2x

��
Ω2

α2
− 1 −

Λ
2
ϕ̂2

�
ϕ̂2 þ ϕ̂02

a2

��
;

ð41Þ

where, for numerical purposes, we have introduced
the following dimensionless variables: x ¼ mr, ϕ̂ ¼ffiffiffiffiffiffiffiffiffi
4πG

p
ϕ, Λ ¼ λ=4πGm2, and Ω ¼ ω=m, where m is

the mass of complex scalar field ϕ, ω its frequency,
and λ is the dimensionless self-coupling of the scalar.
Here, 0 represents the derivative with respect to x.
For the complex scalar field, we consider a harmonic

form Φðt; rÞ ¼ ϕðrÞe−iωt and solve the Klein-Gordon
equation, which in terms of the dimensionless variables,
takes the form

ϕ̂00 ¼
�
1 −

Ω2

α2
þ Λϕ̂2

�
a2ϕ̂ −

�
α0

α
−
a0

a
þ 2

x

�
ϕ̂0: ð42Þ

The boundary conditions for the metric functions and the
scalar field, in order to guarantee regularity at the origin
and asymptotic flatness at infinity, are að0Þ¼ 1, αð0Þ¼ 1,
ϕð0Þ¼ϕ0, ϕ0ð0Þ¼ 0, limx→∞αðrÞ¼ limx→∞1=aðxÞ, and
limx→∞ϕðxÞ ≈ 0.
The system is basically an eigenvalue problem for the

frequency of the boson star ω as a function of a parameter,
the so-called central value of the scalar field ϕ0 which
determines the mass M of a boson star. This system can be
solved by using the shooting method [8]. Figure 3 shows
the metric component gtt ¼ −α2ðxÞ and grr ¼ a2ðxÞ for
boson stars with Λ ¼ 0.
For circular orbits (_x ¼ 0) with radius xc, the effective

potential and its derivative vanish. From these conditions
L2 and E2 are obtained

L2 ¼ x3cα0ðxcÞ
αðxcÞ − xcα0ðxcÞ

; E2 ¼ α3ðxcÞ
αðxcÞ − xcα0ðxcÞ

: ð43Þ

Here, xc ¼ mrc. Choosing E2 and L2 as in (43) guar-
antees circular orbits. Generally, both α and α0 are non-
negative; therefore, given a numerical solution, we only
need to determine the domain D of the radial variable x
where α − xα0 > 0 and work exclusively in that domain.
We then compute the values L2 and E2 with (43) and
perform a survey in D checking where the condition for
stable circular orbits V 00

eff > 0 holds. Thereby, one finds a
set of parameters fðE;L; xcÞg, which gives us circular
orbits, xcϵD.
According to Eq. (25), the redshift of photons emitted by

particles orbiting a boson star is calculated by

zðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xα0

α2ðα − xα0Þ

s
: ð44Þ

Figure 4 shows the z behavior as functions of x for
several boson stars with different masses and for two values
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FIG. 3. Metric functions gtt ¼ −α2ðxÞ and grr ¼ a2ðxÞ of
equilibrium configurations for boson stars corresponding to
the values of the quartic parameter Λ ¼ 0.
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FIG. 4. We show the redshift of photons emitted by particles
orbiting boson stars with different masses corresponding to
different central values ϕ0, as a function of the scaled radius
of the orbit. ϕc is the central value for the maximum mass. The
upper plot corresponds to the case Λ ¼ 0 and the lower plot
to Λ ¼ 100.
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of Λ, 0 and 100. The solid black curve represents the boson
star corresponding to the critical massMcrit. ForM < Mcrit,
or equivalently, ϕ0 < ϕcrit, the boson star is stable; other-
wise, it is unstable. Mcrit ¼ 0.633 and Mcrit ¼ 2.254 for
Λ ¼ 0 and Λ ¼ 100, respectively. In Fig. 4 for Λ ¼ 0, it is
observed that the maximum value of the redshift increases
as the central value ϕ0 of the scalar field increases. But for
large values of x, all the curves zðxÞ seem to get closer to
the value zcritðxÞ at large x for a boson star with critical mass
Mcrit. One also can observe that the curves zðxÞ corre-
sponding to smaller masses than the critical, remain below
the solid black curve zcritðxÞ.
Table I shows the values of the masses corresponding to

stable and unstable boson stars for both Λ ¼ 0 and
Λ ¼ 100.
One can also note that for configurations with the same

value of mass but a different self-interacting parameter, the
maximum redshift increases as Λ decreases. For large
values of x, the redshift for all configurations converge
to the same values (see Fig. 5).

IV. KERR BLACK HOLE

In order to apply the HN approach to the case of rotating
stationary axially symmetric space-times, it is necessary to
integrate the general equations for the respective geodesic
orbits. This is easier if we find constants of motion
associated to the geodesic orbit. This is the case of the
Kerr space-time, where, in addition to the conserved energy

and the azimuthal angular momentum of a particle, a Killing
tensor exists, Kμν, giving a new constant of motion of a
geodesic orbit named the Carter constant, C ¼ KμνUμUν,
which is only nontrivial for nonequatorial orbits. The value
of C is zero in the case of particles orbiting on the equatorial
plane, which is just the case considered in this section.
Explicit expressions for the shifts z1 and z2 computed at

either side of b ¼ 0 were found by HN

z1 ¼
� ffiffiffiffiffi

M
p ð2aM þ rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c − 2Mrc þ a2

p
Þ

r3=4c ðrc − 2MÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3=2c − 3Mr1=2c � 2aM1=2

q ;

z2 ¼
� ffiffiffiffiffi

M
p ð2aM − rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c − 2Mrc þ a2

p
Þ

r3=4c ðrc − 2MÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3=2c − 3Mr1=2c � 2aM1=2

q : ð45Þ

The upper signs correspond to corotating orbits and the
lower signs to counterrotating orbits. From (45), the
rotating parameter a as a function of the mass parameter
M, the radius of circular-equatorial orbits rc of particles
around the Kerr black hole emitting light, and the corre-
sponding z1 and z2 turn out to be

a2ðα; β; rc;MÞ ¼ r3cðrc − 2MÞα
4M2β − r2cα

; ð46Þ

where α≡ ðz1 þ z2Þ2 and β≡ ðz1 − z2Þ2. Nonetheless,
there is not an explicit expression to find the mass
parameter M; instead, there is an eight order polynomial
for it derived also from (45). In this section, we carry out a
numerical analysis to study how M varies with rc and the
shifts z1 and z2 detected by a faraway observer. The metric
components of the Kerr black hole in the Boyer-Lindquist
coordinates are given by

gtt ¼ −
�
1 −

2Mr
Σ

�
; gtϕ ¼ −

2Marsin2θ
Σ

;

gϕϕ ¼
�
r2 þ a2 þ 2Ma2rsin2θ

Σ

�
sin2θ;

grr ¼
Σ
Δ
; gθθ ¼ Σ; ð47Þ

where

Δ≡ r2 þ a2 − 2Mr; Σ≡ r2 þ a2cos2θ;

with the restriction M2 ≥ a2. For circular and equatorial
orbits, the two conserved quantities are [9]

E ¼ r3=2 − 2M
ffiffiffi
r

p � a
ffiffiffiffiffi
M

p

r3=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3=2 − 3M

ffiffiffi
r

p � 2a
ffiffiffiffiffi
M

pq ;

L ¼ � ffiffiffiffiffi
M

p ðr2 ∓ 2a
ffiffiffiffiffiffiffi
Mr

p þ a2Þ
r3=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3=2 − 3M

ffiffiffi
r

p � 2a
ffiffiffiffiffi
M

pq : ð48Þ
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FIG. 5. Redshift due to a particle orbiting different self-
interacting boson stars with the same mass MT ¼ 0.63.

TABLE I. Values of ϕ0 and masses corresponding to stable and
unstable boson stars for Λ ¼ 0 and Λ ¼ 100.

Λ ¼ 0 Λ ¼ 100

Stable Unstable Stable Unstable

ϕ0 MT ϕ0 MT ϕ0 MT ϕ0 MT

0.05 0.416 0.29 0.620 0.04 1.371 0.10 2.249
0.25 0.620 0.80 0.431 0.08 2.227 0.16 1.892
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Corotating orbits (upper signs) have L > 0, whereas
counterrotating (lower signs) orbits have L < 0. In order to
have real values for E and L, and thereby circular orbits, it
is necessary that

r3=2 − 3M
ffiffiffi
r

p � 2a
ffiffiffiffiffi
M

p
≥ 0: ð49Þ

Circular-equatorial orbits can be either bound or
unbound. The latter type are those for which, given a
small outward perturbation, the particle will go to infinity,
and one has bound orbits otherwise. There are bound orbits
provided that

r > rmb ¼ 2M ∓ aþ 2
ffiffiffiffiffi
M

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M ∓ a

p ð50Þ

is satisfied. Not all bound orbits are stable; only those
whose radius satisfies V 00

effðrÞ ≥ 0 are stable [9]. This
condition is akin to

r ≥ rms ¼ M½3þ Z2 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − Z1Þð3þ Z1 þ 2Z2Þ

p
�;

Z1 ≡ 1þ
�
1 −

a2

M2

�
1=3

��
1þ a

M

�
1=3

þ
�
1 −

a
M

�
1=3

�
;

Z2 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
a2

M2
þ Z2

1

r
: ð51Þ

M cannot be written as an explicit function of rc, α, and
β, or equivalently, as a function of rc, z1, and z2. In order to
find the mass parameterM, one has to numerically find the
roots of the eight order polynomial derived from (45)

FðMÞ ¼ ½16rcM3 − ð4βM2 − αr2cÞðrc − 2MÞðrc − 3MÞ�2
− 4αr2cMðrc − 2MÞ3ð4βM2 − αr2cÞ: ð52Þ

It is convenient to normalize M by an arbitrary Mmax as
~M ¼ M=Mmax, thereby 0 < ~M ≤ 1. rc is also scaled with
Mmax as ~rc ¼ rc=Mmax. Mmax may be chosen again as
pM⊙. We will work with the ~M and ~r variables henceforth,
but we will drop the tildes.
For a given value of the radius of the emitter’s circular

path rc, one sets the size of the parameter domain
D ¼ ðz1min; z1maxÞ × ðz2min; z2maxÞ, where a search of
these polynomials’ roots is carried out. The polynomial
(52) has the following properties: FðM; rc; z1; z2Þ ¼
FðM; rc; z2; z1Þ ¼ FðM; rc;−z1;−z2Þ, which is useful for
choosing D. Recalling that the two different values of z
correspond to photons emitted by a receding (z1) or an
approaching object (z2) with respect to a distant observer,
an apposite domain would be D¼ð0;z1maxÞ× ð−z2min;0Þ.
At each point q ¼ ðz1; z2Þ ∈ D, (52) is numerically solved
to attainM ¼ Mðq; rcÞ. One starts with a given fixed value
of rc and search in our domain D for the subset Drc where
roots of FðM; rc; qÞ ¼ 0 exist. In principle, there may be up
to eight real roots Mi (or none) at q ∈ D. If there is at least

one root, the corresponding a2 is computed using (46), and
we test whether M2 ≥ a2 actually holds. If this is the case,
r3=2 − 3M

ffiffiffi
r

p � 2a
ffiffiffiffiffi
M

p
≥ 0 should be tested to determine

for which roots of PðM; rc; qÞ there is, indeed, a circular
orbit. Moreover, this inequality tells us what type of orbit
we are dealing with at q, either a co- or counterrotating one.
We discard those roots of the polynomial (52) at a point
q ∈ D that do not fulfill the conditions for circular, bound
(r > rmb), and stable (r > rrms) orbits. What we have
found is that, not in every single point q ∈ D there is a
root of FðMÞ ¼ 0 that leads us to a circular stable orbit of
radius rc followed by a photon emitter particle; only in a
subset Drc ⊂ D does such a mass parameter exist.
Furthermore, in all the surveys we have done on domains

with different sizes and different values of rc, in almost
every point q ∈ Drc , the massM obtained is unique, and so
is the rotation parameter a. There is a tiny region Ddouble ⊂
Drc where two roots at q ∈ Drc exist; these two roots are
very close to each other, and the difference between each
pair is typically of order 10−2 or smaller. Figure 6 shows the
bounds of the frequency shifts where there is a mass
parameter corresponding to circular stable corotating orbits
of photon emitters. In the subsetDrc of the parameter space
ðz1; z2Þ, there is a single (red region) and a double (black
region) root (M) of the polynomial FðM; rc; z1; z2Þ ¼ 0 for
rc ¼ 3. There is a rather small region inDwhere retrograde
orbits are allowed. That region is not shown in Fig. 6. At
any rate, in spiral galaxies, most of the stars have direct
rather than retrograde orbits. Figure 7 presents the mass
parameter M ¼ Mðrc; z1; z2Þ for rc ¼ 1 and rc ¼ 3.
For some values of the mass parameter M, Fig. 8 shows

the set of points fðz1; z2; rcÞg corresponding to those
values of M. If a set of observations fðzred; zblue; rcÞg of

-5

-4

-3

-2

-1
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 0  1  2  3  4  5

z 2

z1

FIG. 6. For corotating orbits around the Kerr black hole, at each
point in the red region of the red-blue shift space ðz1; z2Þ, there is
a single root (M) of the polynomial FðM; rc; z1; z2Þ ¼ 0 for
rc ¼ 3. At each point of the small black region, there are two
roots. In the white region, there exists a mass parameter M, yet it
does not correspond to a stable orbit. In the green region, there is
no root at all.
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redshifts-blueshifts coming from emitters in circular orbits
of radii rc are laid along and around a curve corresponding
to a valueM, that specific value would be an estimate of the
Kerr black hole mass M.
If we select the estimate of the putative black hole mass

at the center of our Galaxy M ¼ 2.72 × 106 M⊙ to define
~r ¼ r=M and a ¼ pM ¼ 0.9939M, the expressions of the
frequency shifts become

z1 ¼
�ð2pþ ~r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r2 − 2~rþ p2

p
Þ

~r3=4ð~r − 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r3=2 − 3~r1=2 � 2p

p ;

z2 ¼
�ð2p − ~r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r2 − 2~rþ p2

p
Þ

~r3=4ð~r − 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r3=2 − 3~r1=2 � 2p

p ;

whose plots are shown in Fig. 9 for the corotating case. As
r=M → 2, z1 → ∞. Negative values of z1 are found for
rc < 2 that might be due to the very strong dragging of the

black hole over the emitter. As r=M increases,
zred → −zblue, as is the case for the Schwarzschild black
hole whose plot is also shown (dashed curves) and starts at
r ¼ 6, as it should be.

V. FINAL REMARKS

In this paper, we have applied the theoretical approach
developed by HN to determine the mass parameter of
compact objects in terms of the frequency shifts z of light
emitted by particles traveling along circular geodesics of
radii rc around those objects. For the Schwarzschild and
Reissner-Nordström black holes, we have found an explicit
formulaM ¼ Mðz; rcÞ andM ¼ Mðz; rc; Q2Þ, respectively,
and bounds for z. Not all values of z would be detected
from a faraway observer. For boson stars, z increases as the
radius of the orbits increases and reaches a maximum
shown in Fig. 4. For different equilibrium configurations,
this zmax increases as the central value ϕ0 increases
regardless if the configuration lies on the stable or unstable
branch. The curve zðϕcritÞ seems to be the limit of all zðϕÞ
for large radii. For configurations with a fixed M but
different Λ, zmax decreases as Λ increases. It would be
interesting to perform a similar analysis for rotating boson
stars; this work is in progress.
For the Kerr black hole, the mass parameter obtained as a

root of the polynomial FðN; rc; z1; z2Þ is nearly unique.
There is a small region in the space D where there are
double roots. The plot of the redshift and blueshift as a
function of rc for the putative black hole at the center of our
Galaxy has been presented also. Recently, a black hole with
scalar hair was constructed by Herdeiro and Radu [10]. It
would be interesting to construct the curve z ¼ zðrcÞ for a
given M for such space-time and compare it with the one
presented here for the Kerr black hole to determine the
effect of hair.
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