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We present a detailed study of the Vaidya solution and its generalization in de Rham-Gabadadze-Tolley
(dRGT) theory. Since the diffeomorphism invariance can be restored with the Stiickelberg fields ¢¢

introduced, there is a new invariant % = g* Bﬂqﬁ”ayqﬁ” in the massive gravity, which adds to the ones

usually encountered in general relativity. There is no conventional Vaidya solution if we choose unitary
gauge. In this paper, we obtain three types of self-consistent ansatz with some nonunitary gauge, and find
accordingly the Vaidya, generalized Vaidya, and furry Vaidya solution. As by-products, we obtain a series
of furry black hole. The Vaidya solution and its generalization in dRGT massive gravity describe the black

holes with a variable horizon.
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I. INTRODUCTION

It is a significant question whether general relativity
(GR) is a solitary theory from both the theoretical and
phenomenological sides. One of the modifying gravity
theories is the massive deformation of GR. A comprehen-
sive review of massive gravity can be found in [1]. We can
divide the massive gravity theories into two varieties: the
Lorentz invariant type (LI) and the Lorentz breaking type
(LB). Though for many years it was certain that the theory
of LI massive gravity always contains the Boulware-Deser
(BD) ghosts [2], a kind of nonlinear extension was recently
constructed by de Rham, Gabadadze, and Tolley (dRGT)
[3-7]. In GR, the spherically symmetric vacuum solution to
the Einstein equation is a benchmark, and its massive
deformation also plays a crucial role in LI and LB theories.
A detailed study of the spherically symmetric solutions is
presented in LB massive gravity [8], in which we obtain a
serviceable formula of the solution to the functional
differential equation with spherical symmetry. Using this
expression, we give some analytical examples and their
phenomenological applications. We present also a detailed
study of the black hole solutions in dRGT theory [9]. Since
the diffeomorphism invariance can be restored with the
Stiickelberg fields ¢ introduced, there is a new invariant
19 = ¢0,¢°0,¢" in the massive gravity, which adds to
the ones usually encountered in GR. In the unitary gauge
¢ = x5y, any inverse metric ¢ that has divergence
including the coordinate singularity in GR would exhibit
a singularity in the invariant [“°. Therefore, there is no
conventional Schwarzschild metric if one selects unitary
gauge. In the Ref. [9], we obtain a self-consistent ansétz in
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the nonunitary gauge, and find that there are seven
solutions including the Schwarzschild solution, Reissner-
Nordstrom solution, and five other ones. Furthermore,
these solutions may become candidates for black holes
in dRGT.

The symmetric tensor field 4, = g,, —n,, is the gravi-
tational analogue to the Proca field in the massive electro-
dynamics, describing all five modes of the massive
graviton. With the four Stiickelberg fields introduced
[10] and the Minkowski metric replaced by the covariant
tensor ,,¢* 0,¢"n 4, the diffeomorphism invariance can be
restored, then the symmetric tensor H,, describes the
covariantized metric perturbation. In the unitary gauge,
H,, reduces to h,,. There is a new basic invariant / ab —
g“”ﬁﬂqﬁ”@yqﬁb in the massive gravity in addition to the ones
usually encountered in GR since the existence of the four
scalar fields ¢“. In the unitary gauge, we have
1% = g§450. Tt is obvious that 74” will exhibit a singu-
larity if ¢* has any divergence including the coordinate
singularity for the unitary gauge. De Rham and his
colleagues [11] have pointed out that one would expect
the singularities in /%’ to be a problem for fluctuations
around classical solutions exhibiting it. For this reason,
they propose that the solution come true only if /%? is
nonsingular. In this paper, we continue to use this
conservative rule.

As a corollary of the above point of view, there is no
conventional Schwarzschild metric of massive gravity in
unitary gauge, which gives rise to the following paradox.
According to the vainshtein mechanism [12], this solution
of massive gravity should approximate the one of GR better
and better when we increase the mass of the source. That is
to say, this black hole of massive gravity near its horizon
should be very similar to that of GR. However, this metric
would be singular at the horizon according to the argument
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above. The Vaidya solution [13,14] is a nonstatic gener-
alization of the Schwarzschild metric in GR. Obviously,
there is no conventional Vaidya solution of massive gravity
in the unitary gauge. Whether or not there is the conven-
tional Vaidya solution in dRGT with two free parameters is
one of the questions that motivates this paper. To find new
Vaidya-type solution is another motivation.

Vaidya [13,14] solved Einstein’s equations for a spheri-
cally symmetric radiating nonrotating body with the energy-

L . (rad)™__ .

momentum tensor of radiation 7y, = pk,k,, where k, is a
null vector directed radially outward and p is defined to be
the energy density of the radiation as measured locally by an

observer with 4-velocity »#, that is to say, p = v* v”Tf,f‘d). In
this work, we study the Vaidya solution and its generali-
zation in dRGT, where two parameters are freely chosen.
Furthermore, we release ourselves from the limitation of the
unitary gauge ¢ = x*5;, and the Stiickelberg field ¢ is
taken as a “hedgehog” configuration ¢’ = ¢(u, r)= [9] and
¢° = h(u, r), where u is the retarded time [14]. We find a
class of Vaidya solutions in dRGT. On the obtained
solutions, the singularities in the invariant /¢* are absent
except for the physical singularity r = 0, so that these
solutions may be regarded as candidates for the dRGT black
holes embraced by the radiation.

The paper is organized as follows: Sec. II gives a brief
review of dRGT theory [6]. In Sec. III, we present three
types of self-consistent ansatz with some nonunitary gauge.
In Sec. IV, we find the Vaidya solution and a solution of
furry black hole under the ansatz I, and in Sec. V the
generalized Vaidya solution and the extended solution of
furry black hole are found under the ansatz II. The
generalized Vaidya solutions are studied under the ansatz
[T in Sec. VI. The results are summarized and discussed in
Sec. VIL

II. THE MODIFIED EINSTEIN EQUATIONS
IN DRGT THEORY

The gravitational action is
2

S = Mzm/d“x\/—_g[R +mU(g”. ¢, (1)

where R is the Ricci scalar, and U is a potential for the
graviton which modifies the gravitational sector. The
potential is composed of three parts,

U(g”, ¢) = Uy + a3Us + a, Uy, (2)

where a3 and a4 are dimensionless parameters, and

U, = [K]* = [K?],
Us = [K]? = 3[K][K?] + 2[K7).
Uy = [K]* = 6[K]*[K?] + 8[K][KC] 4 3[K*]* — 6[K*]. (3)
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Here the square brackets denote the traces, i.e., [K] = K¥,

and
5”1/ - \/ glmaa¢aay¢b’7ab

5”1/ Y, Z/lzz (4)
where the matrix square root is /2# /X%, = 2¥,, ¢ is
the physical metric, 7, is the reference metric and ¢“ are
the Stiickelberg scalars introduced to restore general
covariance [15].

Variation of the action with respect to the metric leads to
the modified Einstein equations

K,

1
G, —mTl) = — 189, (5)
;4 H Mﬁl H
where
1 6(y/—qgU
T = _w (6)
V=9 69"

From (4), we have
n\ ko
S ZZZI(—I)"( )zz . )

Thus, [K"] can be written as follows,

K] =4 - [VE],
K3 =4 -2[VZ] + [2].
(K] = 4 =3[VZ] + 3[2] - [,
[KY] = 4 — 4[VZ] + 6[Z] — 4[2F] + [2]. (8)

The symmetric tensor H,, describes the covariantized
metric perturbation, which reduces to h,, in the unitary
gauge. Therefore, it is natural to split ¢* into two parts:
¢* = x* — z* and z* = 0 in the unitary gauge. It is useful
that we adopt the following decomposition in the nonuni-
tary gauge,

mAY + 0%x
N ©)

where A“ describe the helicity £1, and # is the longitudinal
mode of the graviton in the decoupling limit [11].
Moreover, My — oo and m — 0 in the decoupling limit
[15], while A* = M ;m? is held fixed. This limit represents
the approximation in which the energy scale E is much
greater than the graviton mass scale.
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III. A SELF-CONSISTENT SPHERICALLY
SYMMETRIC ANSATZ

A. The metric corresponding
to the radiation coordinates

The front of a gravitational wave (just like that of an
electromagnetic wave) provides a unique surface X. Such a
null hypersurface X is described by the equation x° = 0 in
the radiation coordinate system. The parametric lines of the
other coordinates x' (i = 1,2,3) will be situated in X. Thus,
there exists a family of noninteracting null hypersurfaces
which are described by x” = constant in this coordinate
system. We note that there is a congruence of null geodesics
on any null hypersurface x” = constant, which can be used
to define a second coordinate x'. Therefore, we should take
this congruence as the parametric lines of x!. In other
words, we have x> = constant and x> = constant in addi-
tion to x° = constant on each one of the null geodesics of
the congruence. Explicitly, the normal vector of surface X,
and these geodesics are the parametric lines of x!, so we
have ¢ = &, namely,

0 1 0 0
1 gt g2 gP
g° = 0 & &2 &I (10)
0 J' 2 &
and therefore
go 1 902 Go3
1 0 O 0
G = (11)
- 90 0 g g3
g0 0 g% g3

In the spherical symmetric case, the radiation coordinates
x# are usually denoted (u,r,0,¢), where r is the usual
radial coordinate and 6, ¢ are generalized polar angles.
Accordingly, the general form of the covariant components
of metric

b*(u,r) 10 0
1 0 O 0
W=l o o0 -2 o |1
0 0 0 —r*in®0

and therefore
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0 1 0 0

= 1 —b*(u,r) 0 0 (13)
0 0 —r2 0
0 0 0 —r2csc?d

For the static line element
ds* = b*(r)du® + 2dudr — r*dQ?

where u can be interpreted as retarded time coordinate

and
rodr
w=r1- / A (14)
ro bZ(r)
Hence we obtain for the null hypersurfaces
rodr
t— —— = constant. 15
jo bZ(r) ( )

In the case of the Schwarzschild solution,
ds* = <1 - ﬁ) du® + 2dudr — r*dQ?, (16)
r

and
(17)

u=t—r—rgln(r—ry),

where ry is the Schwarzschild radius. Especially, r; =0
and we have u = t — r, and the Minkowskian metric

ds* = du® + 2dudr — r*dQ. (18)

From (12) we have the Christoffel symbols of the second
kind,

[Y,=—bb', T9=r, T%=rsin®0, TL,=bb+bb,
[y =Tlg=bb', Ty=-b’r, Ti3=-brsin’0,
5, =I%,=r"1, TI%=-sinfcoso, F%IIF%SZ}"—]’

I3, =I3; =cotd. (19)

All other symbols vanish. The Ricci tensor in radiation
coordinates is consequently given by
27012 30 2 3/
r

—= = —p*> - 2bb'r +1,

2bb’
ROl — RlO — b/z + bb” + .
r

(20)
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where b = db/du, b’ = db/dr, and all other components
are zero. A straightforward calculation then shows that the
Ricci scalar is given by

4bb' b -1
R:2<b’2+bb”+ﬂ+b 5 ) (21)
r r

The nonvanishing components of the mixed Einstein tensor
G, are then given in the following

2bb' > -1
GOO — Gll — _ —
r r
2bb’
G2 =Gy =— (b’z + b + . ) (22)
|
n— ¢¢/
(i* = ¢*) = B*(hh' = pp')
Z =
0
0

where dots and primes denote derivatives with respect to u
and r, respectively.
For a 2 x 2 matrix M, the Cayley-Hamilton theorem tells
us that
MM = M? + (det M), (25)
where I, is 2 x 2 identity matrix. We define %, as the upper

left-hand 2 x 2 submatrix of X and use det M" = (det M)"
to find the square root of %,,

1
V= m(22 + /det3,1,), (26)
where
detS, = (hgy — W), (27)
and
[VZa] = \/[Ea] + 2/det . (28)

Using (26)—(28), we obtain the recursion formula as
follows

] -

(det \/_ %

and X9 = I,. Thus, we have

=] (k>1), (29)
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B. The ansatz for Stiickelberg field

We consider the general form of spherically symmetric
ansatz for Stiickelberg field as follows

¢° = h(u,r),

¢ = plur)=. (23)

The ansatz (23) contains two additional functions & (u, r)
and ¢(u r), which reduces to unitary gauge only if
h(u,r) = u +f’ d’ and ¢(u,r) = r in the static case.
The self- cons1stency of ansatz (23) imposes restrictions

on h(u,r) and ¢(u,r). Under the ansatz (23), the matrix
¥ = (¥¥,) takes the form

2 _ ¢/2 0 0
(hh/_¢¢/)_b2(h/2_¢/2) 0 0
0 %2 0 (24)
0 0o %
k
o= 0 (30)
0 ')

and

K" =4+ zgl(—l)k<z> (252 + 2(%) k). (31)

From (6), (8), and (31), we obtain the nonzero components
of TW*  as follows

2
det 22 - ¢—2
r

700, (1—7¢)[\/2_2]+?+
+[;‘fﬂ <¢—1>(ilh/—¢¢’+ det,)
e 1)

[\/2227 @—1) (hi' — g + det22)>

~t2ay(2-1) (V- (4 VERE). (2

TN, [\/22_2] (W2 = ¢?) (% - 1) (2 —3as (% - 1) )
(33)
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Ty = s 02 = D = )
x(%—1><2—3a3<%—1>>, (34)
7O = 70 4 [\/22_2] P22 — h?)
x @— 1> <2—3a3<%— 1)) (35)

2
dCt 22 + )
r

702, = /55 -2¢

r

—3a; (?—1)2( %, —2)

~12a,(2-1) (VS - (14 VEa:)). G6)

(37)

From the modified Einstein equation (5) in vacuum, we
require that 70 and TUO') vanish which is a self-
consistent requisition for the ansatz (23). Therefore, the
self-consistent ansatz can be classified into three types as
follows

Ansatz I:

ds*> = b*(u, r)du® + 2dudr — r*d?,

¢° = h(u.r),
¢ =x; (38)
Ansatz II:
ds* = b*(u, r)du® + 2dudr — r*dQ?,
¢° = h(u.r),
¢ 2 1) (39)
= _ X ;
3a3
Ansatz III:
ds* = b*(u, r)du® + 2dudr — r*d<??,
¢° = h(u.r),
¢ = h(ur)~ (40)
r
It is easy to verify that T(()K)0 = T<1K)1 under all types. On the
other hand, the energy-momentum tensor of a radiating
field T,(ffd> can be described as the geometrical optics

form [16]
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rad 2
7! = =5 (). (41)
Combing now (13) and (41), we find
T, = Q. (42)

C. The equation between T7®)°) and T2,

From (22), (32), (36), and (42), the modified Einstein
equation with and without the radiating field can be
rewritten as

b?)y b -1

(r) +— = m?T"0, (43)
b2\ b2)!

( 2) +( r) _ sz(lc)zz (44)

There is a mathematical identify relation
b2 / bz -1\’
(( ). § )
r r
2 b2 " b2 / b2 / bZ -1
()
r 2 r r r

which is the key to the analytical solution. Combing (43),
(44), and (45), we obtain

2
(TR0 == (T2, — TR0), (46)
r
which is a necessary condition of T _In general, T(®)0,,

and T2, are functions of b*(u, r) and h(u, r) under three
types of ansatz. Under some suitable boundary conditions,
there is always a numerical solution to the system com-
posed of two equations (43) and (46) with two unknown
functions. However, the motivation of our work is to find
possible exact solutions, so we will settle these types one
by one.

IV. SOLUTIONS UNDER THE ANSATZ I

In this section, we present a detailed study of solutions
under the self-consistent ansatz I in dRGT with two free
parameters a3 and a,. The obtained solutions are free of
singularities except for the conventional one appearing in
GR (for instance, the singularity » = 0 in the spherically
symmetric solutions).

For the ansatz I, (32) and (36) can be reduced to

0= —T(]C)zz = —[\/ 22] + \/ det22 + 1,

T(K)0 (47)

det, = i’ (48)

124022-5
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and

[VZ)? = 20(W + 1) = B2(h? — 1). (49)
Thus, (46) becomes

4
(TR0 = — TK)0,, (50)

which is a separable equation and

00, = 21 (51)

and

(53)

On the other hand, we have the equation of h(u, r) as
follows

—(\/2h(h’+ 1) =bX R 1)+ h+1= Sij‘), (54)
from which the function i(u, r) can be determined. There
exist two cases that (54) degenerates and becomes an
ordinary differential equation: (i) h”> =1 and S(u) = 0;
(i) h, S(u) and ry(u) are all constants. In reality, case
(i) corresponds with the Vaidya solution [14] and case

(i) correlates closely with the solution of the furry black
hole [9].

A. The Vaidya solution in dRGT
For the case of /2 = 1 and S(u) = 0, (54) is reduced to

h=2i+1=0, forh =1, (55)
or
h+1=0, forh =-1. (56)
Thus, we obtain
h==(u-+r). (57)
In the meantime, (53) becomes
P =1- rsgu) . (58)
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Substituting (58) into (21), we have the Ricci scalar R = 0.

Since the Ricci scalar and T,(f)

Einstein equation may also read as

vanish, the modified

2
R/w = _ﬁQ(u)éoﬂélo/ (59)
From (20), we have
R, = - rr(z'” ) 3080, (60)
and
dig(u)
= . 1
alu) =5 (61)

Finally, the Vaidya solution can be written as

)
r
¢ =E(u+r),
b = xi. (62)

Due to the existence of the Stiickelberg field, there is a new
basic invariant I** = ¢**0,,¢* d,¢" in the massive gravity in
addition to the ones usually encountered in GR. de Rham
and his colleagues have pointed out that the solution comes
true only if 7%? is nonsingular [11]. For the Vaidya solution
(62), we have

0 =2 p?

IOi — (2 _ bZ)ni’

1V = (n'nf — 87) = — b*n'n/. (63)
r

B. Furry black hole

For the case of 1 = 0 and S(u) = S, r,(u) = ry (S and r,
are constants), (54) is reduced to

(1-n2)p* = (784_ 1>2, (64)
and
h= i/ (1 G ;21)2>%dr, (65)
where
Pl =1

124022-6
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This solution is also free of singularities except for the
conventional one appearing in GR. In fact, we have

(66)

Using the coordinate transformation (14), we obtain the
furry black hole solution in the Schwarzschild coordinate

roor
£ S —m?) +rr\?
0 — i/ o ) dr,
¢ m>S + ryr —r? d
¢ = x'. (67)

V. SOLUTIONS UNDER THE ANSATZ II

In this section, we find out a generalized Vaidya solution
and extended furry black holes under self-consistent ansatz
IT in dRGT with two free parameters a3 and ay,.

For the ansatz II, (32) and (36) can be reduced to

1 = (3- ) (153l - Vaars)

3

4
+9—a%(12a4 —1) -3, (68)
and
Tmpr_ﬂm%—zﬁw@]—\MaZJ———h/ﬂ
2 2
2(=—+1). 6
n Q%+.) (69)
where
det 2 )i (70)
e = |z
2 33 )
and
. 2 2
[V/I,? =2kl — b? (;ﬂ - (—+ 1) >
36{3
+2¢/det Z,. (71)

PHYSICAL REVIEW D 94, 124022 (2016)

T2, is clearly a linear function of T if [%,] or
y/detX, is constant. In this case, we have

A+2
2= T = SRR (TX0 + 3p),

5 (72)

where 4 and u are undetermined constants. Using (46) and
(72), we obtain

TN, — {;(3)A fo
Az 3,“’

A==2,

7
r/laé—2, (73)

where A and S(u) are integral constants. Substituting (73)
into (43), we have

) + (b - 1) {&MAﬁ’ for © 77
r + —_ e or

—m2i<"> + 3m2/¢r2, A#£ =2,

(74)
and subsequently the solution as follows
l—iru)ﬁ*mz/\lﬁ, l:_z’
pr={ 1 -nld S 02 for =1, (75)
relu mz u —

In the case of 4 = —2, the resulting solution is correspond-

ing to generalized Vaidya solution, and the case of 1 # —2
correlates closely with the solution of extended furry black
hole [9], as we will see in the following.

A. Generalized Vaidya solution

For the h(u,r) = £(55- + 1)(u + r) and S(u) = 0, we
have ’
4803 — 64a
i, — quon — 48 —6day 76
0 2 27“431 ( )

which corresponds to the case of A = —2. Substituting (75)
into (20) and (21), we have the Ricci scalar R = 12m?A
and the Einstein tensor

iy (u)
G, = —< 2 + 3m2Ab2) 8959. (77)
As a result, we have an expression of r(u),
dry(u)
= . 78
glu) =5 (78)

124022-7
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Finally, the generalized Vaidya solution can be written as

P2 1 ro(u) (4803 — 64ay)m?r?
B r 8laj ’
2
d)o = :l:(S_a3+ 1>(u+r),
P =x. (79)

B. Extended furry black holes

For the case of i = 0 and S(u) = S, ry(u) = r, (S and r,
are constants), (75) is rewritten as

1_V_;+m2ilnr+m2ﬂr2’ =1,
b* = ) for (80)
1—%+(,1’f1§,x+m2ﬂ”2, A#1,-2.

From (73), we obtain the equation of h(u, r) as follows

16(14 2 2 %
3t 1) -2
-5 (G ) -)7)
4
s (12ay—1) =3 = —5 —3pu. (81)
9a;3

S
s

Therefore, we have

(e

and

2 s2 3
> B 3 _M>2bzrzz+4> dr.  (82)

3a3

 27a3 — 48a, + 4

270{% (83)

u

This solution is also free of singularities except for the
conventional one appearing in GR. In fact, a straightfor-
ward calculation then shows that /*° are given by

2 \? s?
00 — _ 3,2 _
1=—p <3a3+1) T

3a3

‘ 2 2 ) 5? L
3a3 3o (3_13676':)2 P2 p2ita

.. 2 2 o ..
[7=(-"4+1) ((1=b*)n'n/ =5").
(3a3+ ) ((1=b*)n'n/ —8")

(84)

Using the coordinate transformation (14), we obtain the
furry black hole solutions in the Schwarzschild coordinate:
(i) for the case of 1 =1,

PHYSICAL REVIEW D 94, 124022 (2016)

m2Sinr

ds* = (1—2—1—

+ m2,ur2> dr’
r r

291 -
—(I—E—Fm nr—l—mzurz) dr? — r?dQ?,

2 _ l6ay 327“)172 6 _ 52]%
3

3 < __1baq 4
¢0_i/[( a5 " oa

dr,
(3 —52)br’

. 2 .
P = <3—m+l>x’; (85)
and (ii) for the case of 1 # 1, =2,
dst= (1=0 0 S g
§7 = —— o T mur
ra-nA T
: s -1
- (1 —Q—F—(Aml)rﬂ—l—mzyrz) dr? — r’dQ?,
r —
2 164y _ 32a4\12 2044 _ (21}
¢o:i/[(3+“3 o P ST
(3 — Sou)ri+2 ’
i 2 i
P = 3—053-1—1 x'. (86)

VI. A FURRY VAIDYA SOLUTION UNDER
THE ANSATZ III

In this section, we find out some generalized Vaidya
solutions under self-consistent ansatz III in dRGT with
12a4 = 1 + 3a3 + 903 and a3 # 0. Let us suppose further

S

_ﬁ’

h(u,r) (87)

where £ and S are constants, then (32) and (36) can be
reduced to

1 2(6-1)8%  8&S
T<K)00:(§+1)2 <_ 2512 +@+§2—4§—1>,
(88)
and
soon_ L (_26E-1)S*_4e¢-1)S
2= (é + 1)2 72642 e
+§2—4§—1>. (89)

From (43), (44), (88), and (89), we obtain the exact
solutions as follows

ds* = b*(u, r)du® + 2dudr — r*dQ?,

S . 4
0o _ % i = i
= =

124022-8
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where S and & are constants and

PHYSICAL REVIEW D 94, 124022 (2016)

m? [ 2(&-1)s* 8£S 2-a5-] _2
(1+87 ((25—1)r25 T T3 ) a3 3&4 97
}"Y u nr —90>
bZ(u,r)—l+¥: ILJ;(%+16S1 _g) for ) _9 i 1)
3= "3
m> 2rt r
(5 4 25— 1y), P
I
2 _
nd g — (150 g 2@ =r(0)
r r—=rg (0)
2
=—1 — . 92 r(r_zrs<0)+rs(u))
5 < + 2(13) ( ) _ (r - (O))Z er _ erQZ’ (96)
As the generalized Vaidya solutions, there is still a relation ' ]
ro(u) = q(u). Obviously, if a3 - co we have & - —1; if SO the event horizon is
az — 0, we have & — oo. If and only if a3 = —3%£5, the
solutlon'(9l) is asymptotically flat. In the case of g(u) = 0, r(1) = ,(0) + / u g(w)du, (97)
we obtain new furry black holes from (90)—(92). 0

VII. CONCLUSION AND DISCUSSION

In GR, the Vaidya solution is a nonstatic generalization
of the Schwartzschild metric and has some unique features,
and its massive deformation also plays an interesting role in
dRGT. In this work, we have developed a study of the
Vaidya solution and its generalization in dRGT if the
Stiickeberg fields are taken as some self-consistent ansatz.
Under the ansatz I, we obtain the Vaidya solution in dRGT.
Under the ansatz II and III, we obtain the Vaidya-de Sitter
and the furry Vaidya solution, respectively. As by-products,
we obtain a series of the furry black holes.

The Vaidya solution and its generalization in dRGT
massive gravity describe the black holes with a variable
horizon. For the metric

ds*> = b*(u, r)du® + 2dudr — r*dQ?, (93)

we take Schwarzschild coordinate

r—u+ [
= U S,
o bz(ovr)

then (93) can be rewritten as

(94)

2(b*(u,r) — b*(0,71))
b*(0,7)
B 26%(0,7) — b*(u, r)
b*(0,7)

dtdr

ds* = b*(u, r)dt* —

dr* — rrdQ-2.

(95)

There is an infinite red-shift surface in b*(u, r) = 0, which
corresponds to the event horizon. Especially, the Vaidya
solution (58) can be rewritten as

and ry(u) is a variable horizon. In reality, the radius of
generalized Vaidya solutions are changeable, not only event
horizon but also cosmological one.

For all solutions, the singularities in the invariant 7%® are
absent. In fact, the invariant /%” can be explicitly expressed
as

1 =2hi' — b*h?
IOi — (2h _ bzh/)(f)/ni,
¢2

. . . 2 'y
I = <2¢¢' — D2+ z)n’nf _‘/5_2511, (98)
r r

where (n',n?,n%)=sinfcos¢,sinfsing,cosd). Obviously,

the singularities in the invariant /%* are absent except for the
physical singularity » = 0 in GR, so that these solutions of
massive gravity may be regarded as candidates for the black
hole in dRGT.

In addition, one may be anxious that the scalar pertur-
bations on these backgrounds are infinitely strongly
coupled in light of the result of Ref. [17]. It is found that
the de Sitter background has infinitely strongly coupled
fluctuations in the decoupling limit for the parameters
chosen as 903 +3a; — 12a,+1 =0 [17]. Under the

ansatz I and II, we have z° = —h(r) and 7' = (1 — f)x’
for the furry black holes. From (9), we obtain the vector
mode A = — %3 h(r) and A’ = 0 which are different from

those studied in [17]. However, we have to meet this
question under the ansatz III unless we consider asymp-
totically flat background. Finally, we can also discuss the
Kerr solution using our method developed in this work and
will do so in a forthcoming paper.
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