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Regardless of the long history of gauge theories, it is not well recognized under which condition gauge
fixing at the action level is legitimate. We address this issue from the Lagrangian point of view, and prove
the following theorem on the relation between gauge fixing and Euler-Lagrange equations: In any gauge
theory, if a gauge fixing is complete, i.e., the gauge functions are determined uniquely by the gauge
conditions, the Euler-Lagrange equations derived from the gauge-fixed action are equivalent to those
derived from the original action supplemented with the gauge conditions. Otherwise, it is not appropriate
to impose the gauge conditions before deriving Euler-Lagrange equations as it may in general lead to
inconsistent results. The criterion to check whether a gauge fixing is complete or not is further investigated.
We also provide applications of the theorem to scalar-tensor theories and make comments on recent
relevant papers on theories of modified gravity, in which there are confusions on gauge fixing and counting
physical degrees of freedom.
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I. INTRODUCTION

Symmetry plays a fundamental role in physics. In
particular, gauge theories are constructed up on some
gauge symmetry or gauge transformation, under which
the Lagrangian is invariant up to total derivative. It implies
that the theory has redundant degrees of freedom (DOFs),
which make the analysis of gauge theories involved. To
cope with this difficulty, the method of so-called gauge
fixing has been employed in many situations, such as
electrodynamics, general relativity and theories of modified
gravity. Gauge fixing helps us eliminate the gauge DOFs
and extract physical DOFs.
In implementing a gauge fixing in the dynamical

analysis of gauge theories, there are two options commonly
used: (i) The first option is to fix the gauge after deriving
the equations of motion (EOMs) for all the fundamental
variables appearing in the original action. In this case,
we have all the EOMs corresponding to all the variables.
Since the general solutions of the EOMs contain arbitrary
functions corresponding to the gauge DOFs and they can be
eliminated by fixing the gauge completely, the solutions
of the EOMs supplemented with complete gauge-fixing
conditions should correctly represent the physical DOFs.
(ii) The second option is to fix the gauge at the action level,
and then derive the EOMs from the gauge-fixed action.
This process often significantly simplifies the derivation of
EOMs and subsequent dynamical analysis thanks to less
number of variables that one must manage. However,
since gauge fixing reduces the number of independent
fundamental variables, the number of EOMs obtained by
variational principle in this approach is apparently less than

the number of fundamental variables. Then, one may
naively wonder if imposing gauge-fixing conditions at the
action level changes the dynamical properties of the system
and the conclusions drawn from it would be incorrect. At
the same time, one may also naively think that gauge fixing
at the action level, if it is complete, should lead to correct
conclusions since the gauge-fixed action contains only
physical DOFs without missing any physical information.
Along this line, [1,2] discussed the validity of complete

gauge fixing in the language of Hamiltonian mechanics.
Although their results imply that complete gauge fixing at
the action level is harmless, the aforementioned problem
on the loss of EOMs in the Lagrangian formalism has not
been clarified. [3] dealt with this issue, but their arguments
are restricted to the case of cosmological perturbation
theory and justification for more generic cases has not
been established.
Another motivation of this work, which may be related

to the incomplete understanding of the role of gauge
fixing at the action level in the Lagrangian formalism, is
the following confusions in recent works, in particular,
on counting the number of physical DOFs of theories
of modified gravity. For example, in the context of
de Rham-Gabadadze-Tolley (dRGT) massive gravity [4,5],
the dynamics of the Stückelberg fluctuations around
Minkowski background was investigated in [6] imposing
a gauge condition at the action level, and arrived at an
inconsistent counting of physical DOFs, which is explained
in [7]. In addition, a class of isotropic self-accelerating
solutions [8] in dRGT massive gravity is shown to have a
different number of DOFs for isotropic perturbations in a
special choice of coordinate [9], as the constant-time
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surface of such a coordinate system coincides with the
characteristics of the isotropic perturbations [10].
In light of this situation, it is worthwhile to make a clear

statement on the relation between the EOMs derived from
the gauge-fixed action and those derived from the original
action. In this paper, we prove that if a gauge fixing is
complete, i.e., if the gauge functions are fixed without
ambiguity of integration constant, then the EOMs that are
lost by the gauge fixing can be recovered from the
remaining components of the EOMs. Conversely, if a
gauge fixing is incomplete, it is not pertinent to impose
it in the action before deriving the EOMs. Indeed, the
inconsistency in the DOF counting in [6] originates from an
incomplete gauge fixing in the action. It seems somewhat
obvious physically, however, to the best of our knowledge,
no explicit and mathematically rigorous proof has been
found before.
Before closing this section, we comment on the relevant

works [11,12], in which the role of imposing (holonomic)
gauge-fixing conditions in the action was investigated. The
author of these papers claimed that a gauge-fixed action
provides the same set of equations as the original set of
EOMs plus the gauge conditions, if the former is supple-
mented with the lost primary constraints corresponding to
the lost gauge symmetries. On the other hand, our work is
specialized to the case of complete gauge fixing, and it
gives a stronger result: no additional constraint is needed in
the analysis under a gauge-fixed action if the gauge fixing
is complete.
This paper is organized as follows. In Sec. II, we first

provide a simple example that is useful to get an intuition
of the main theorem. In Sec. III, we present a general
proof of the theorem on complete gauge fixing at the
action level for a general field theory with multiple fields
and multiple gauge symmetries in arbitrary spacetime
dimensions. Then in Sec. IV, we focus on analytical
mechanics as a special case of field theories, and explicitly
obtain the criterion for complete gauge fixing by using
some mathematical technique which is explained in
Appendix A. We provide applications of the theorem to
scalar-tensor theories of gravity in Sec. V. Furthermore,
we make some comments on the conflicts in the above
papers in Sec. VI. Finally, we draw our conclusions in
Sec. VII.

II. TOY MODEL

Before considering general gauge theories in Sec. III, let
us begin with a simple toy model to understand an essential
point of the relation between gauge fixing and Euler-
Lagrange equations. Consider a Lagrangian consisting of
two variables xðtÞ and yðtÞ,

L ¼ 1

2
ð_x − ÿÞ2: ð1Þ

As it will soon turn out, this Lagrangian is equivalent to
the one for a single point particle freely moving in one-
dimensional space. This Lagrangian is invariant under a
gauge transformation

x → xþ _ξ; y → yþ ξ; ð2Þ

with ξðtÞ being an arbitrary function. Clearly, y ¼ 0 fixes ξ
without any ambiguity, ξ ¼ −y, and hence it is a complete
gauge-fixing condition. On the other hand, x ¼ 0 does not
fix ξ completely as a constant DOF remains. The EOMs for
x and y without gauge fixing are given by

Ex ¼ −ẍþ y
… ¼ 0; Ey ¼ −x

… þ yð4Þ ¼ 0: ð3Þ

We can verify that these two equations are related as

− _Ex þ Ey ¼ 0; ð4Þ

which is the well-known Noether identity [13] in this
model. It is clear that Ey ¼ 0 is a redundant equation as it
can be derived from a derivative of Ex ¼ 0. In contrast,
Ex ¼ 0 is an independent equation in the sense that the
remaining equation Ey ¼ 0 cannot recover it uniquely.
First, let us consider the situation in which one derives

EOMs from (1) and then imposes the gauge condition
y ¼ 0 or x ¼ 0. For the complete gauge-fixing condition
y ¼ 0, the result is given by

−ẍ ¼ 0; −x
… ¼ 0; y ¼ 0: ð5Þ

The second equation is automatically satisfied by the first
equation, and thus the basic equation for x is a second-order
differential equation. Hence the solution describes the
motion of a point particle with constant velocity, and we
need two initial conditions to determine the time evolution
of x. Therefore, this system has one DOF.1

For the incomplete gauge-fixing condition x ¼ 0, one
obtains

y
… ¼ 0; yð4Þ ¼ 0; x ¼ 0: ð6Þ

Again the second equation is redundant, and the system is
described by a third-order differential equation. Thus one
needs three initial conditions, one of which corresponds
to a residual gauge DOF. Indeed, by imposing an initial
condition, e.g., yð0Þ ¼ 0 to fix the residual gauge DOF, the
system requires two initial conditions, which is consistent
with the result of the previous case. Therefore, even in an
incomplete gauge fixing, the analysis should be consistent
so long as the gauge conditions are imposed after deriving

1The number of DOFs is defined by half of the number of
initial conditions.
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EOMs and the residual gauge DOFs are eliminated by some
additional conditions.
Second, let us consider imposing the gauge condition at

the Lagrangian level. For the complete gauge-fixing con-
dition y ¼ 0, the gauge-fixed Lagrangian is given by

L ¼ 1

2
_x2: ð7Þ

The resulting EOMs are

ẍ ¼ 0; y ¼ 0: ð8Þ

This set of equations is evidently the same as (5) obtained
by imposing the gauge condition at the EOM level. Thus,
we have explicitly verified in this simple model that the
set of EOMs derived from the gauge-fixed Lagrangian
does not lose any information if the gauge fixing is
complete.
On the other hand, if one uses the incomplete gauge

fixing by setting x ¼ 0, the Lagrangian reads

L ¼ 1

2
ÿ2: ð9Þ

Then the EOMs are given by

yð4Þ ¼ 0; x ¼ 0: ð10Þ

This is clearly inconsistent with (6). Since we need four
initial conditions to determine the time evolution of y, the
number of DOFs is two. Furthermore, since the Lagrangian
consists of a higher derivative term and is nondegenerate,
one of the DOFs corresponds to an Ostrogradsky ghost
[14]. Note that even if one supplements an initial condition
for y to fix the residual gauge DOF, the system still requires
three initial conditions. In this sense, the analysis is not
consistent, and this inconsistency cannot be resolved even
if we take into account the residual gauge DOF. A general
lesson that we can learn from this simple example is that an
incomplete gauge fixing at the Lagrangian level generically
leads to an insufficient set of EOMs, or an incorrect
counting of DOFs which may even contain Ostrogradsky
ghosts.
The essential difference of the x ¼ 0 gauge from the

y ¼ 0 gauge is that the lost EOM for x is an independent
EOM, which cannot be reproduced from the other EOM.
Therefore, one should just avoid to use the incompletely
gauge-fixed Lagrangian (9), or after deriving the EOMs
(10) one should derive the lost EOM for x from the original
Lagrangian without gauge fixing, and then impose the
gauge condition x ¼ 0. The resultant set of EOMs is then
the same as (6) and there is no inconsistency.
Complementary to the gauge-fixed Lagrangian analysis

above, let us remark that one can confirm without gauge
fixing that this model has one healthy DOF by Hamiltonian

analysis. To see this, let us first transform the Lagrangian
(1) into the following equivalent form:

L ¼ −
1

2
q2 þ qð_x − ÿÞ ¼ −

1

2
q2 þ q_xþ _q _y; ð11Þ

where the first equality is justified by using the EOM for the
auxiliary variable q, q ¼ _x − ÿ, and the second equality is
valid up to total derivative. The advantage of expressing L
in this way is that the new Lagrangian contains at most
first time derivatives of the variables and we can perform
Hamiltonian analysis in a standard manner. Let πX be
canonical momenta conjugate to X ¼ x, y, q. Because of
the degeneracy of the kinetic matrix, there is one primary
constraint πx − q ≈ 0. One can then verify that the con-
sistency condition for the primary constraint yields the
secondary constraint πy ≈ 0 and no further constraints are
required. Since the Poisson bracket of the two constraints
vanishes, they are first-class constraints as expected from
the gauge symmetry. Thus, this system has 1

2
ð6−2×2Þ¼ 1

DOF. This one DOF is healthy since the Hamiltonian
evaluated on the constraint surface reads H ¼ q2=2 and
thus bounded below.2

The lesson from the toy model is that, while it is
appropriate to impose complete or incomplete gauge-fixing
conditions after deriving EOMs, it requires a special care to
impose them at the action level before deriving EOMs as
there is a crucial difference between complete and incom-
plete gauge-fixing conditions. The complete gauge-fixing
condition y ¼ 0 could be imposed at the Lagrangian level
without any inconsistency, whereas the incomplete gauge-
fixing condition x ¼ 0 led to the inconsistent set of EOMs
when imposed at the Lagrangian level. The prescription is
that one should just avoid to use the incompletely gauge-
fixed Lagrangian, or supplement the lost EOM for x by
deriving it from the original Lagrangian without gauge
fixing. In the next section, we prove that the difference
exists for general gauge theories.

III. PROOF OF THE THEOREM

In this section, we prove the main theorem of the present
paper. We first set up our notations and derive a key identity
in Sec. III A, and then prove the theorem in Sec. III B. We
discuss further extension of the theorem in Sec. III C.

A. Setup

Having captured the essence of the main theorem in
Sec. II, let us now consider a general field theory defined

2In addition to the straightforward Hamiltonian analysis,
it is actually immediate to see that the Lagrangian (1) satisfies
the so-called degeneracy condition [15], under which a general
Lagrangian containing higher-order derivatives is free from
Ostrogradsky ghosts that originate from the higher derivative
terms.
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by the Lagrangian L ¼ Lðϕi; ∂μϕ
i; ∂μ∂νϕ

i;…; xμÞ with
multiple fields ϕi ¼ ϕiðxμÞ in D-dimensional spacetime,
which is invariant up to total derivative under a general
gauge transformation

ϕi → ϕi þ Δξϕ
i; ð12Þ

where Δξϕ
i depend on gauge functions ξIðxμÞ and

their derivatives. Here, i ¼ 1;…; n labels the fields
and I ¼ 1;…; m labels the gauge symmetries, with m < n.
In such a theory with gauge symmetries, there exists an

identity between the EOMs, which is known as Noether’s
second theorem [13]. Actually, this identity plays a crucial
role in the proof of the main theorem given in Sec. III B. Let
us consider an infinitesimal gauge transformation

ϕi → ϕi þ Δϵϕ
i; ð13Þ

where Δϵϕ
i are linearized as

Δϵϕ
i ¼

Xk
p¼0

FiðpÞ
I ∂ðpÞϵI: ð14Þ

Here, we suppress indices for pth-order coefficients and
derivative as

FiðpÞ
I ≡ F

iμ1���μp
I ;

∂ðpÞ ≡ ∂μ1 � � � ∂μp : ð15Þ

Note that FiðpÞ
I are functions of the fields ϕi and their

derivatives, and they can also depend explicitly on xμ. In
(14), p ¼ 0 term is understood as Fi

Iϵ
I without derivative,

and all the other terms with p ≥ 1 have pth derivative of the
infinitesimal gauge functions ϵI. Although the summation
over repeated indices is implicit in principle, we sometimes
restore the summation symbol for some indices for clarity.
Since the action is invariant under the infinitesimal gauge
transformation (13), we obtain

0 ¼ ΔϵS ¼
Z

dDxEiΔϵϕ
i: ð16Þ

Here, Ei are the EOMs for ϕi, i.e., the Euler-Lagrange
equations derived by the variational principle3:

Ei ≡ ∂L
∂ϕi − ∂μ

� ∂L
∂ð∂μϕ

iÞ
�
þ ∂μ∂ν

� ∂L
∂ð∂μ∂νϕ

iÞ
�
− � � � :

ð17Þ

Plugging (14) into (16) and integration by parts yield

0 ¼
Z

dDx

"Xk
p¼0

ð−1Þp∂ðpÞðEiF
iðpÞ
I Þ

#
ϵI: ð18Þ

Since ϵI are arbitrary functions, we obtain the following
key identity (Noether identity) between the EOMs:

Xk
p¼0

ð−1Þp∂ðpÞðEiF
iðpÞ
I Þ ¼ 0; ð19Þ

for I ¼ 1;…; m.
Let us remark that one can verify that the gauge trans-

formation of the EOMs Ei can be written as a linear
combination of Ei and their derivatives. This means that, as
it should be, if a configuration of ϕi satisfies the EOMs,
then its gauge transformation ϕi þ Δϵϕ

i also satisfies the
same set of EOMs.

B. Main theorem

Let us consider gauge fixing of a general field theory. As
mentioned in Sec. I, there are two methods commonly used
for this purpose. The first option is to fix the gauge after
deriving all the EOMs. The second option is to fix the
gauge at the action level, and then derive EOMs from the
simplified action, in which we obtain only a part of all
the EOMs.
To illustrate the above point, let us consider the case

where one sets first mgð≤ mÞ fields to zero:

ϕi ¼ 0; ði ¼ 1;…; mgÞ; ð20Þ

by choosing the gauge functions ξIðI ¼ 1;…; mgÞ such
that they satisfy Δξϕ

i ¼ −ϕi, which is a generalization of
the situation considered in Sec. II. If one imposes the gauge
conditions at the action level, one does not obtain the
EOMs Ei for the first mg fields. Whether one loses
information or not depends on whether the lost EOMs
are independent or redundant. By redundant EOMs,
we mean equations that can be recovered by using the
Noether identity (19) with the remaining EOMs Eiði ¼
mg þ 1;…; nÞ derived from the gauge-fixed action. In this
case, no information is lost and the subsequent dynamical
analysis is justified. In contrast, if the lost EOMs are
independent, one cannot recover them and the subsequent
dynamical analysis is in general inconsistent. We would
like to avoid such a type of gauge fixing at the action level.
Actually, it is possible to discern the two cases by checking
whether the gauge fixing is complete or not. For a general
gauge fixing, we shall prove the following theorem:
Theorem: Let the Lagrangian L ¼ Lðϕi; ∂μϕ

i;
∂μ∂νϕ

i;…; xμÞ be invariant up to total derivative under a
transformation (12). Consider imposing gauge conditions

3Strictly speaking, it is the set of equations Ei ¼ 0, not Ei
themselves, that should be called EOMs. Nevertheless, we refer
to Ei as EOMs throughout this article, which will not cause any
confusion.
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fIðϕi; ∂μϕ
i; ∂μ∂νϕ

i;…; ∂ðlÞϕi; xμÞ ¼ 0; ðI ¼ 1;…; mgÞ;
ð21Þ

in the action with mg ≤ m. If the gauge fixing is complete,
i.e., the conditions (21) uniquely fix mg components of the
gauge functions ξI, then the mg components of the EOMs
Ei that are lost by imposing the gauge conditions at the
action level can be recovered from the remaining n −mg

components of Ei.
Here, the term “complete gauge fixing” does not mean

mg ¼ m, which uses all the gauge DOFs. Rather, a gauge
fixing is defined to be complete when mg out of m gauge
functions ξI are determined without ambiguity of integra-
tion constant. One could consider a complete gauge fixing
with mg < m (see the end of Sec. V B and Sec. V D for
specific examples). Since such a partial gauge fixing does
not affect the rest gauge DOFs, we do not need the
knowledge of all the gauge symmetries of a given theory.
In what follows, we simply denote by ξI only the mg

relevant components of the gauge functions.
One should also note that the gauge transformation

must be defined so that the number of derivatives must
be minimized. Otherwise, one may misclassify a complete
gauge fixing as an incomplete one. To see this point,
suppose a given theory is invariant under a gauge trans-
formation of the form (12) and gauge conditions fI ¼ 0 fix
the gauge functions ξI completely. Now let us consider
another transformation by ζI:

ϕi → ϕi þ Δ_ζϕ
i; ð22Þ

which is obtained by the replacement ξI → _ζI in (12), and
thus the action is also invariant under (22). For this new
gauge transformation, the same set of gauge conditions
fI ¼ 0 does not fix ζI uniquely since there remains
ambiguity of functions that are constant in time, and it
seems as if the gauge fixing is incomplete. This misclassi-
fication originates from an inappropriate choice of the
generators of the gauge transformation. Though this exam-
ple seems somewhat ridiculous, such a situation could arise
in practice (see Sec. V C).
To prove the Theorem, let us formulate the definition for

the gauge fixing by (21) to be complete in more convenient
manner. Suppose one could find gauge functions ξI that
transform a given configuration of ϕi so that it satisfies the
gauge conditions fI ¼ 0. Now let us consider an infini-
tesimal gauge transformation ϕi → ϕi þ Δϵϕ

i from such a
configuration. If the gauge fixing is complete, there is no
gauge transformation for which the transformed variables
still satisfy the gauge conditions, namely, any infinitesimal
gauge transformation spoils fI ¼ 0. This means that for
complete gauge fixing the change of the gauge-fixing
functions vanishes, ΔϵfI ¼ 0, if and only if ϵI ¼ 0.

Obviously, ϵI ¼ 0 is always a solution for ΔϵfI ¼ 0, but
the point is that ϵI ¼ 0 is the unique solution. The explicit
form of ΔϵfI is given by

ΔϵfI ¼
Xl
q¼0

∂fI
∂ð∂ðqÞϕiÞ ∂ðqÞðΔϵϕ

iÞ

¼
Xk
p¼0

Xl
q¼0

∂fI
∂ð∂ðqÞϕiÞ ∂ðqÞðFiðpÞ

J ∂ðpÞϵJÞ

≡ P̂I
Jϵ

J; ð23Þ

where P̂I
J is an mg ×mg matrix whose arguments are

derivative operators acting on ϵJ. One can also express
P̂I
J in a simpler form. With the aid of the Leibniz rule, one

can sort out P̂I
J by the order of derivative as

P̂I
J ¼

Xk
p¼0

Xl
q¼0

Xq
r¼0

�
q

r

�� ∂fI
∂ð∂ðqÞϕiÞ ∂ðq−rÞF

iðpÞ
J

�
∂ðpþrÞ

≡Xkþl

s¼0

MðsÞI
J∂ðsÞ; ð24Þ

where the explicit form of MðsÞI
J is

MðsÞI
J ¼

Xminfs;kg

p¼maxfs−l;0g

Xl
q¼s−p

�
q

s − p

�
uIðqÞi ∂ðpþq−sÞF

iðpÞ
J ;

uIðqÞi ≡ ∂fI
∂ð∂ðqÞϕiÞ : ð25Þ

To reiterate, the gauge fixing is complete if and only if

P̂I
Jϵ

J ¼ 0 ð26Þ

is uniquely solvable.
A set of equations of this type is known as partial

differential-algebraic equations (partial DAEs, or PDAEs).
Since P̂I

J is a differential operator, at first sight, one may
expect that the PDAE system (26) is uniquely solvable if
and only if all the differential parts in P̂I

J vanish, namely,

P̂I
J ¼ Mð0ÞI

J; ðdetMð0ÞI
J ≠ 0Þ: ð27Þ

This is indeed a necessary and sufficient condition for
mg ¼ 1, but is not necessary for mg ≥ 2. For instance, for
mg ¼ 2, let us consider a case such that

Mð0Þ ¼
�
a 0

b c

�
; Mð1Þ ¼

�
0 0

dμ 0

�
;

MðpÞ ¼ 0; ðp ≥ 2Þ: ð28Þ
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For detMð0Þ ≠ 0, both a and cmust not vanish. In this case,
(26) simplifies as

aϵ1 ¼ 0; dμ∂μϵ
1 þ bϵ1 þ cϵ2 ¼ 0: ð29Þ

Now one finds ϵ1 ¼ 0 from the first equation. After
substituting it to the second equation, it is immediate to
see ϵ2 ¼ 0. Thus, we obtain a unique solution ϵI ¼ 0

regardless of nonzeroMð1Þ. Hence, the condition (27) is too
restrictive.
The mathematical criterion for the unique solvability

of (26) is defined in the following manner. The solution
of (26) could be formally written as

ϵI ¼ ðQ̂ · 0ÞI; ð30Þ

where Q̂I
J is the inverse matrix operator of P̂I

J. In general,
Q̂I

J involves integral operators and thus the solution (30)
contains integration constants. However, if the PDAE
system is uniquely solvable, there exists a derivative-
operator-valued matrix Q̂I

J satisfying

P̂I
KQ̂

K
J ¼ Q̂I

KP̂
K
J ¼ δIJ; ð31Þ

and in this case (30) indeed gives a unique solution ϵI ¼ 0.
The case of (27) with mg ¼ 1, namely P̂ ¼ Mð0Þ, is indeed
the only case that the inverse operator Q̂ is independent
of integral operators: it is just given by Q̂ ¼ 1=Mð0Þ. In
general, there is no systematic way for judging explicitly
the existence of such an inverse matrix Q̂I

J only involving
derivative operators for any given P̂I

J. Yet, there is a
systematic way for some special cases. We shall return
to this point in Sec. IV.
The key feature of the unique solvability of a PDAE

system is the fact that it is shared by its adjoint PDAE
system, which is defined as follows. Let uI and vI be
arbitrary functions with compact support. Then the adjoint
of P̂I

J is defined through integration by parts as

huI; P̂I
Jv

Ji ¼
Z

dDx uI
X
s

MðsÞI
J∂ðsÞvJ

¼
Z

dDx

�X
s

ð−1Þs∂ðsÞðuIMðsÞI
JÞ
�
vJ

≡ hP̂†I
JuI; vJi; ð32Þ

where a dagger represents an adjoint operator. Namely,
P̂†I

J acts on uI as

P̂†I
JuI ¼

X
s

ð−1Þs∂ðsÞðuIMðsÞI
JÞ: ð33Þ

If Q̂I
J involves integral operators, we cannot define Q̂

†I
J in

the same way. By contrast, if Q̂I
J is written solely by

differential operators, one can define the adjoint operator
for Q̂I

J in the same way as (32) and it can be easily shown
that Q̂†I

J is the inverse operator of P̂†I
J:

P̂†I
KQ̂

†K
J ¼ Q̂†I

KP̂
†K

J ¼ δIJ: ð34Þ

Therefore, if (26) is uniquely solvable for ϵJ, the adjoint
PDAE system for functions λI ,

P̂†I
JλI ¼ 0; ð35Þ

also has a unique solution, which is given by
λI ¼ Q̂†J

IðP̂†K
JλKÞ ¼ 0.

The above feature is precisely what we need to prove the
Theorem. If one imposes the gauge conditions (21) after
deriving all the EOMs, one obtains

Ei ¼ 0; fI ¼ 0; ð36Þ

as basic equations to describe the dynamics of the system.
As emphasized before, the number of gauge conditions mg

is in general equal to or smaller than the total number of
gauge symmetries m. On the other hand, if one fixes the
gauge at the action level, one must minimize the action
under fI ¼ 0. This can be achieved by the method of
Lagrange multiplier. Namely, we add to the Lagrangian the
gauge-fixing functions fI multiplied by λI:

Sfix ¼
Z

dDxðLþ λIfIÞ: ð37Þ

Here, λI as well as ϕi are considered as dynamical
variables. Note that one may use the gauge conditions to
modify the form of L, because such use of the gauge
conditions is equivalent to redefinition of λI . Yet, it is
assumed for convenience that gauge conditions are not used
in L to eliminate some variables. The EOMs derived from
the gauge-fixed action (37) are given by

Ei ¼ −
Xl
q¼0

ð−1Þq∂ðqÞðλIuIðqÞi Þ; fI ¼ 0; ð38Þ

where uIðqÞi is defined in (25). We can show that if a gauge
fixing is complete in the sense that ϵI ¼ 0 is the unique
solution for the PDAE system (26), then all the Lagrange
multipliers λI are vanishing, i.e., (38) is equivalent to (36).
Plugging (38) into the Noether identity (19), we note that

Xk
p¼0

Xl
q¼0

ð−1Þpþq∂ðpÞ½FiðpÞ
J ∂ðqÞðλIuIðqÞi Þ� ¼ 0: ð39Þ
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One can verify that the left-hand side is equivalent to P̂†I
JλI

defined by (33). Indeed, from the expression for MðsÞI
J

given in (25), we have

P̂†I
JλI ¼

Xkþl

s¼0

ð−1Þs∂ðsÞðλIMðsÞI
JÞ

¼
Xk
p¼0

Xl
q¼0

Xq
r¼0

�
q

r

�

× ð−1Þrþp∂ðpÞ∂ðrÞ½λIuIðqÞi ∂ðq−rÞF
iðpÞ
J �

¼
Xk
p¼0

Xl
q¼0

Xq
r¼0

Xr
s¼0

�
q

r

��
r

s

�

× ð−1Þrþp∂ðpÞ½∂ðsÞðλIuIðqÞi Þ∂ðq−sÞF
iðpÞ
J �

¼
Xk
p¼0

Xl
q¼0

ð−1Þpþq∂ðpÞ½FiðpÞ
J ∂ðqÞðλIuIðqÞi Þ�; ð40Þ

where in going from the third line to the fourth line,
we have interchanged the summations

Pq
r¼0

P
r
s¼0 ¼Pq

s¼0

Pq
r¼s and used a formula

Xq
r¼s

ð−1Þr
�
q

r

��
r

s

�
¼ ð−1Þqδqs: ð41Þ

Therefore, (39) is the adjoint PDAE system to (26), and as
we mentioned earlier, they share the unique solvability.
Namely, if the gauge fixing is complete, there exists an
inverse matrix of the adjoint operator P̂†I

J, which leads to
the unique solution λI ¼ 0. This completes the proof of the
Theorem.
In conclusion, if the gauge fixing by the conditions (21)

is complete, one could impose the gauge conditions at the
action level and then derive EOMs without any incon-
sistency. This is because the process yields the same set of
EOMs obtained from varying the original action and then
imposing the gauge conditions. On the other hand, if the
gauge fixing is incomplete and imposed at the action level,
it may lead to an incorrect set of EOMs as some part of the
EOMs are lost in general. One could circumvent this
situation by deriving EOMs from the original action
without incomplete gauge fixing, and then impose the
gauge conditions. Another consistent way of analysis is that
after deriving EOMs from an incompletely gauge-fixed
action, one derives the lost EOMs from the original action
without gauge fixing, and then impose the gauge con-
ditions. Then the combined set of EOMs is equivalent with
the one obtained by imposing the gauge conditions after
deriving EOMs. In general, imposing the gauge conditions
at the action level simplifies the derivation of EOMs since
some part of the EOMs can be derived from a simplified

action. However, one needs to pay attention to supplement
all the lost EOMs.
The remaining thing is how to check if the gauge fixing

is complete, i.e., how to check the existence of the inverse
matrix of P̂I

J. Although there is no systematic method for
this in general, there are at least two exceptional cases: one
is mg ¼ 1 and the other is D ¼ 1. The former is a field
theory with a single gauge symmetry in D-dimensional
spacetime, whereas the latter corresponds to analytical
mechanics of a point particle in n-dimensional space. In
the case of mg ¼ 1, as mentioned earlier, the existence of
any derivative term spoils the unique solvability of the
equation P̂ϵ ¼ 0. Thus P̂ must be of the form (27),
P̂ ¼ Mð0Þ. We shall discuss the other case of D ¼ 1
in Sec. IV.

C. Possible extension of the Theorem

As mentioned in the previous section, the Theorem
postulates that (a part of) the gauge functions ξI are
completely determined by the same number of conditions
fI ¼ 0. Therefore, it does not apply to, e.g., electrody-
namics. Indeed, the Maxwell theory in flat spacetime
without source term

L ¼ −
1

4
FμνFμν ð42Þ

has a gauge symmetry under

Aμðt; xÞ → Aμðt; xÞ þ ∂μξðt; xÞ; ð43Þ

in which the gauge function ξ appears only with derivative.
This makes it impossible to determine ξ uniquely for any
gauge condition, i.e., any gauge fixing is incomplete, and
thus the assumption of the Theorem could not be satisfied.
In cases where the gauge fixing is incomplete, one may

consider imposing some additional conditions, which could
be of the form (21) or possibly be boundary conditions, to
fix the residual gauge DOFs. Then, now that the gauge
fixing is completed, the same result would hold: the lost
EOMs can be recovered. Although this is not always the
case (see Sec. II), one can indeed recover the lost EOMs
in the case of the Coulomb gauge in electrodynamics.
Starting from a general configuration of Aμ that satisfies the
boundary condition Aμ → 0 as jxj → ∞, one can always
find ξ so that the transformed variables fulfill the Coulomb
gauge condition ∂iAi ¼ 0:

△ξðt; xÞ ¼ −∂iAiðt; xÞ; ð44Þ

where △≡ ∂i∂i is the Laplacian. There still remains
ambiguity of function that satisfies △ξhðt; xÞ ¼ 0, and this
DOF can be used to set A0 ¼ 0. Since A0 is transformed as
A0 → A0 þ _ξh, we choose
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ξhðt; xÞ ¼ ψðxÞ −
Z

t
dt0A0ðt0; xÞ; ð45Þ

where ψðxÞ is an arbitrary harmonic function. One can
show that this ξh satisfies △ξh ¼ 0 by use of the EOM for
A0 with ∂iAi ¼ 0. If we require that the boundary condition
for Ai is maintained by the gauge transformation, then one
can fix ψðxÞ ¼ 0 and the only remaining gauge DOF is a
constant.
Now we consider fixing ∂iAi ¼ 0 and A0 ¼ 0 in the

Lagrangian, namely,

Lfix ¼ −
1

4
FμνFμν þ λð∂iAiÞ þ αA0; ð46Þ

and demonstrate the whole set of the EOMs for L can be
recovered. The EOMs for the field Aμ and the Lagrange
multipliers λ, α are given by

Eμ ¼ ∂νFνμ − δiμ∂iλþ δ0μα ¼ 0; ð47Þ

Eλ ¼ ∂iAi ¼ 0; ð48Þ

Eα ¼ A0 ¼ 0: ð49Þ

The original set of EOMs ∂νFνμ ¼ 0 follows if λ ¼ const
and α ¼ 0. With (48) and (49), one can simplify (47) to get

E0 ¼ α ¼ 0; Ei ¼ □Ai − ∂iλ ¼ 0: ð50Þ

Obviously, α ¼ 0 from the first equation. From the second
equation and the boundary condition that Ai → 0 as
jxj → ∞, one can conclude λ → const. On the other
hand, from ∂iEi ¼ 0 with (48), we obtain △λ ¼ 0 and
thus λ ¼ const everywhere in spacetime. Hence, we have
recovered the original EOMs.
Similar arguments also hold in another choice of gauge

fixing, e.g., Lorenz gauge condition ∂μAμ ¼ 0 supple-
mented with an additional condition A0 ¼ 0, and may be
extended to some other gauge theories. Nevertheless, we do
not consider further generalization of the Theorem here.

IV. CRITERION FOR COMPLETE
GAUGE FIXING

In Sec. III, we showed that gauge fixing at the action
level is justified if the gauge fixing is complete. We saw
that for the case of mg ¼ 1, i.e., field theory with a single
gauge symmetry, it is immediate to derive the necessary
and sufficient condition (27) for the gauge fixing to be
complete. In this section, we focus on the case of D ¼ 1,
and show that it is possible to check if given gauge
conditions define complete gauge fixing or not by trans-
forming the corresponding ordinary DAEs (ODAEs) into
some canonical form.

A. Setup

In D ¼ 1 case, the fields ϕi are functions of time
only and the system is equivalent to analytical mechanics
of a point particle in n-dimensional space. Therefore,
we employ qi instead of ϕi as fundamental variables to
emphasize this point and write the Lagrangian as
L ¼ Lðqi; _qi; q̈i;…; tÞ with qi ¼ qiðtÞði¼ 1;…;nÞ. Never-
theless, note that this class applies not only to analytical
mechanics but also to field theories with a homogeneous
configuration, field theories written in terms of Fourier
decomposed variables, etc.
As in Sec. III, we assume that the Lagrangian is invariant

up to total derivative under a gauge transformation

qiðtÞ → qiðtÞ þ Δξqi; ð51Þ

where Δξqi involve higher-order time derivatives of the
gauge functions ξIðtÞðI ¼ 1;…; mÞ. For an infinitesimal
gauge transformation, the change of qi can be linearized as

Δϵqi ¼
Xk
p¼0

FðpÞi
IðtÞ

dpϵIðtÞ
dtp

: ð52Þ

The Noether identity (19) for the EOMs Ei then reads

Xk
p¼0

ð−1Þp dp

dtp
ðEiF

ðpÞi
I Þ ¼ 0: ð53Þ

The gauge-fixing conditions depending on qi and their time
derivatives take the form of

fI
�
qi; _qi; q̈i;…;

dlqi

dtl
; t

�
¼ 0; ðI ¼ 1;…; mgÞ: ð54Þ

If the gauge fixing is complete, (54) fixes mgð≤ mÞ
components of ξI without ambiguity of integration con-
stant. Similarly to the analysis in Sec. III, below we denote
by ξI only such mg components that are relevant to the
gauge fixing.

B. Derivation of the criterion

As we have proved in Sec. III B, there is a one-to-one
correspondence between the completeness of gauge fixing
and the unique solvability of (26). In our present case of
D ¼ 1, (26) reads

0 ¼ ΔϵfI ¼ Mð0ÞI
Jϵ

J þ
Xkþl

p¼1

MðpÞI
J
dpϵIðtÞ
dtp

; ð55Þ

where we have sorted terms by the order of derivative as
in (24). This is a system of linear ODAEs with higher-order
derivatives. Introducing auxiliary variables ηIðpÞ as
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ηIð1Þ ¼ _ϵI; ηIðpÞ ¼ _ηIðp−1Þ; ðp ¼ 2; 3;…; kÞ; ð56Þ

one has the following first-order DAE system for the set of
variables ðϵI; ηIðpÞÞ:
2
666666664

Mð0ÞI
J Mð1ÞI

J Mð2ÞI
J � � � MðkÞI

J

0 δIJ 0 � � � 0

0 0 δIJ � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � δIJ

3
777777775

2
6666666664

ϵJ

ηJð1Þ
ηJð2Þ

..

.

ηJðkþlÞ

3
7777777775

−

2
666666664

0 0 0 � � � 0

δIJ 0 0 � � � 0

0 δIJ 0 � � � 0

..

. . .
. . .

. . .
. ..

.

0 � � � 0 δIJ 0

3
777777775

2
6666666664

_ϵJ

_ηJð1Þ
_ηJð2Þ

..

.

_ηJðkþlÞ

3
7777777775
¼

2
666666664

0

0

..

.

..

.

0

3
777777775
: ð57Þ

In this way one can always reduce the higher-order
DAEs (55) for ϵI to the manifestly first-order DAEs (57)
for ðϵI; ηIðpÞÞ. Note that (55) and (57) share the unique

solvability, since ϵI and all the auxiliary variables ηIðpÞ
vanish if and only if ϵI ¼ 0. Therefore, without loss of
generality, below we consider the unique solvability of the
first-order DAE system of the form

P̂I
Jϵ

J ≡MI
J _ϵ

J þ NI
Jϵ

J ¼ 0; ð58Þ

where M and N are time-dependent m ×m matrices.
In the case of a single gauge symmetry, the criterion for

the unique solvability was simple, i.e., all the coefficients
of derivatives vanish. Therefore, one may think that ϵI are
uniquely determined only when

MI
J ¼ 0 and detNI

J ≠ 0: ð59Þ

However, as we mentioned earlier, this condition is too
restrictive. While (59) is a sufficient condition, it is not a
necessary condition.
Another uniquely solvable example is that

MI
J ¼ KI

J and NI
J ¼ δIJ; ð60Þ

where KI
J is a strictly lower (upper) triangular matrix, i.e.,

all the components of the matrix on and above (below) the
diagonal are vanishing. Note that KI

J can depend on time. If
KI

J is strictly lower triangular, one can first determine ϵ1

uniquely. One then determines ϵ2, as one can treat non-
vanishing derivative _ϵ1 as a source term. Likewise, one can
continue to determine all the components of ϵI uniquely.

On the other hand, if KI
J is strictly upper triangular, one can

start from ϵm, and proceed to determine ϵm−1; ϵm−2;…; ϵ1

in order. In terms of the operator matrix P̂ in (58), the case
of (60) amounts to

P̂I
J ¼ δIJ þ KI

J
d
dt

: ð61Þ

Clearly, P̂ has an inverse matrix

�
P̂−1

�
I

J
¼ δIJ þ

Xm−1

s¼1

��
−K

d
dt

�
s
�
I

J
; ð62Þ

as expected. Indeed, as explained in Sec. III B, the
existence of P̂−1 without integral is equivalent to the
unique solvability of the corresponding system of equa-
tions. Besides the case of (60), there are still other forms of
ðM;NÞ for which (58) is uniquely solvable. For instance, δIJ
can be relaxed to some diagonal matrix whose diagonal
components are all nonvanishing, and then N can be added
by any strictly lower (upper) triangular matrix, which is a
generalization of (28). Therefore, the sufficient condition
above can be generalized as

MI
J ¼ KI

J and NI
J ¼ DI

J þ LI
J; ð63Þ

where KI
J and LI

J are time-dependent strictly lower (upper)
triangular matrices, and DI

J is a time-dependent regular
diagonal matrix. In general, however, it is not possible to
write down all the uniquely solvable cases in a simple form.
On the other hand, the following is necessary for the

unique solvability (see Appendix A):

detMI
J ¼ 0: ð64Þ

If this condition is not satisfied, the system (58) is basically
a set of ordinary differential equations (ODEs) and cannot
be solved uniquely for ϵI. Although the above condition is
necessary for the unique solvability, it is not a sufficient
condition and does not necessarily guarantee the unique
solvability.
In practice, as we shall see in Sec. V B, the sufficient

conditions (59) and (63), and the necessary condition (64)
are powerful enough when one considers specific gauge
theories with multiple gauge symmetries and judges
whether a gauge fixing is complete or not. In addition,
by using a transformation of a given ODAE system to some
canonical form, it is possible to check the unique solvability
of the ODAE system with a general pair of matrices ðM;NÞ
(see Appendix A).
In summary, it is always possible to judge whether any

given gauge fixing is complete or not in the case of D ¼ 1.
Practically, one can first check the sufficient conditions (59)
and (63), and the necessary condition (64). If none of them
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are useful to determine whether the system is uniquely
solvable, one can proceed to perform the methodology in
Appendix A, which always works. From the above argu-
ment, now it is clear why we restrict ourselves to analytical
mechanics. In the case of field theories withD ≥ 2, one can
still reduce any higher-order PDAE system to a first-order
system as (58):

MμI
J∂μϵ

J þ NI
Jϵ

J ¼ 0; ð65Þ
which is characterized by the set of Dþ 1 matrices
ðMμ; NÞ. Even in this case, one could still consider
sufficient conditions and a necessary condition similar to
(59), (63), and (64) (see Sec. V D). However, to the best of
our knowledge, the criterion for the unique solvability of a
general PDAE system is still an open issue.

V. APPLICATIONS TO SCALAR-TENSOR
THEORIES

In Sec. III and Sec. IV, we have established a general
theorem that guarantees the validity of gauge fixing at the
action level so long as the gauge fixing is complete. In this
section, we apply the obtained results to some dynamical
systems in the framework of generic scalar-tensor theories
for demonstration. We shall also see that imposing incom-
plete gauge fixing at the action level leads the subsequent
analysis to some inconsistency.
Throughout this section, we focus on a general scalar-

tensor theory in D-dimensional spacetime

S¼
Z

dDx
ffiffiffiffiffiffi
−g

p
Lðgμν;∂λgμν;∂λ∂σgμν;…;ϕ;∂λϕ;∂λ∂σϕ;…Þ;

ð66Þ

which possesses general covariance, i.e., the action is
invariant under an infinitesimal transformation of coordi-
nates xμ → xμ þ ϵμ. The gauge transformation of the metric
and the scalar field is then given by

gμν → gμν −∇μϵν −∇νϵμ;

ϕ → ϕ − ϵμ∇μϕ: ð67Þ
Indeed, the gauge transformation of the Lagrangian density
becomes total derivative:

Δϵð
ffiffiffiffiffiffi
−g

p
LÞ ¼ ð− ffiffiffiffiffiffi

−g
p ∇μϵ

μÞLþ ffiffiffiffiffiffi
−g

p ð−ϵμ∇μLÞ
¼ −

ffiffiffiffiffiffi
−g

p ∇μðϵμLÞ ¼ −∂μðϵμ
ffiffiffiffiffiffi
−g

p
LÞ: ð68Þ

A. Homogeneous and isotropic universe

Now we work on the flat Friedmann-Lemaître-
Robertson-Walker (FLRW) metric

ds2 ¼ −N2ðtÞdt2 þ a2ðtÞδijdxidxj; ð69Þ

with ϕ ¼ ϕðtÞ.4 Taking ϵ0 ¼ ϵ0ðtÞ and ϵi ¼ 0 in (67), we
have the following gauge transformation for N, a, and ϕ:

ΔϵN ¼ −N _ϵ0 − _Nϵ0;

Δϵa ¼ − _aϵ0;

Δϵϕ ¼ − _ϕϵ0: ð70Þ

With this transformation rule, one can write down the
Noether identity (53) as

N _EN − _aEa − _ϕEϕ ¼ 0; ð71Þ

where EN , Ea, Eϕ are the EOMs for N, a, ϕ, respectively.
Note that the above identity holds for any spacetime
dimension D.
As a simple case, let us consider general relativity with a

canonical scalar field in four dimensions:

SGR ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
ðR− 2ΛÞ−ω

2
gμν∂μϕ∂νϕ−VðϕÞ

�
:

ð72Þ

In the present case of the flat FLRW spacetime, the
Lagrangian reads

ffiffiffiffiffiffi
−g

p
L ¼ a3N

�
M2

Pl

�
3

ä
aN2

þ 3
_a2

a2N2
− 3

_a
aN

_N
N2

− Λ

�

þ ω

2

_ϕ2

N2
− VðϕÞ

�
: ð73Þ

The EOMs for N, a, ϕ are respectively given by

EN ¼ a3
�
M2

Pl

�
3

_a2

a2N2
− Λ

�
−
�
ω

2

_ϕ2

N2
þ VðϕÞ

��
;

Ea ¼ 3a2N

�
M2

Pl

�
2

ä
aN2

þ _a2

a2N2
− 2

_a
aN

_N
N2

− Λ

�

þ ω

2

_ϕ2

N2
− VðϕÞ

�
;

Eϕ ¼ −a3N
�
ω

�
ϕ̈

N2
þ 3

_a
aN

_ϕ

N
−

_ϕ

N

_N
N2

�
þ V 0ðϕÞ

�
; ð74Þ

and they indeed satisfy the identity (71).
If one gauge fixes either a or ϕ at the action level, one

would not obtain Ea or Eϕ. This does not cause any problem
because the lost EOM Ea or Eϕ can be recovered from the

4One can verify that imposing the metric ansatz (69) at the
action level is harmless, i.e., it yields the same set of equations as
the one obtained by imposing the ansatz after deriving EOMs.
This statement can be extended to general isometries [16].
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other EOMs by using (71), which means that either Ea or
Eϕ is a redundant equation. This result reflects the fact that
fixing of either a or ϕ is complete gauge fixing as Δϵa ¼ 0

or Δϵϕ ¼ 0 has the unique solution ϵ0 ¼ 0.
However, if one gauge fixes N at the action level, one

would lose EN and cannot recover it from the other EOMs,
which is clear as (71) involves _EN . To avoid this situation,
one should not fix N at the action level. One should fix N
only after deriving the EOM for N. Although this is a
widely used strategy for gauge fixing of N, to the best of
our knowledge, its reason had not been sufficiently inves-
tigated and the general criterion had not been clarified.
Now it is clear that one can use complete gauge fixing
at the action level without losing EOMs. For incomplete
gauge fixing, one should circumvent to use it until one
derives EOMs.

B. Linear cosmological perturbations

We consider the scalar perturbations around the FLRW
metric (see e.g. [17,18])

ds2 ¼ −N2ð1þ 2ΦÞdt2 þ 2aN∂iBdtdxi

þ a2
�
ð1þ 2ΨÞδij þ

�
∂i∂j −

∂2

D − 1
δij

�
E

�
dxidxj;

ð75Þ

and the perturbation of the scalar field δϕ. From now on
we work in the Fourier space. Note that the perturbation

variables with different wave numbers are decoupled. The
gauge transformation of the scalar perturbations corre-
sponding to the coordinate redefinition by xμ → xμ þ ϵμ

with ϵi ¼ ∂iϵ
S is given by

ΔϵΦ ¼ −_ϵ0 −
_N
N
ϵ0;

ΔϵΨ ¼ −
_a
a
ϵ0 þ k2

3a2
ϵS;

ΔϵB ¼ 1

aN

�
−_ϵS þ N2ϵ0 þ 2_a

a
ϵS
�
;

ΔϵE ¼ −
2

a2
ϵS;

Δϵδϕ ¼ − _ϕϵ0: ð76Þ

Therefore, the Noether identity (53) reads

_EΦ −
_N
N
EΦ −

_a
a
EΨ þ N

a
EB − _ϕEδϕ ¼ 0;

d
dt

�
1

aN
EB

�
þ k2

3a2
EΨ þ 2_a

a2N
EB −

2

a2
EE ¼ 0: ð77Þ

These identities hold in any spacetime dimension D.
In the simple case of general relativity plus a canonical

scalar field (72) in four dimensions, the Euler-Lagrange
equations for Φ, Ψ, B, E and δϕ are respectively given by

EΦ ¼ a3N

�
M2

Pl

�
ðΛ − 9H2ÞΦþ 3ð3H2 − ΛÞΨþ 6H

_Ψ
N
þ k2

a2

�
2aHBþ 2Ψþ 1

3
k2E

��

þ ω
_ϕ

N

�
3

2

_ϕ

N
ðΦ −ΨÞ −

_δϕ

N

�
þ VðΦ − 3ΨÞ − V 0δϕ

�
;

EΨ ¼ 3a3N

�
M2

Pl

�
2
Ψ̈
N2

þ 2H

�
3
_Ψ
N
−

_Φ
N

�
− 2

_N
N2

_Ψ
N
þ
�
2

ä
aN2

þH2 − 2H
_N
N2

�
ðΨ − ΦÞ − ΛðΨþ ΦÞ

þ 2k2

3a2

�
ΦþΨþ 2aHBþ a _B

N

�
þ k4

9a2
E

�
þ ω

_ϕ

N

�
_δϕ

N
þ

_ϕ

2N
ðΨ − ΦÞ

�
− VðΦþΨÞ − V 0δϕ

�
;

EB ¼ k2a2N
�
M2

Pl

�
ð3H2 − ΛÞaB − 2

_Ψ
N
þ 2HΦ −

k2

3

_E
N

�
− ω

_ϕ

N

�
δϕþ

_ϕ

2N
aB

�
− VaB

�
;

EE ¼ k4a3N
6

�
M2

Pl

�
2

a2
ðΦþΨÞ þ 2

a

�
_B
N
þ 2HB

�
−

Ë
N2

þ
�

_N
N2

− 3H

�
_E
N

þ 2E

�
−2

ä
aN2

−H2 þ Λþ 2H
_N
N2

�
þ k2

3a2
E

�
þ E

�
−ω

_ϕ2

N2
þ 2V

��
;

Eδϕ ¼ −a3N
�
V 00δϕþ V 0ðΦþ 3ΨÞ þ ω

�
δ̈ϕ

N2
þ

_δϕ

N

�
3H −

_N
N2

�
þ
�
−

ϕ̈

N2
− 3H

_ϕ

N
þ

_ϕ

N

_N
N2

�
ðΦ − 3ΨÞ

−
_ϕ

N

�
_Φ
N
− 3

_Ψ
N

�
þ k2

a2

�
δϕþ

_ϕ

N
aB

���
; ð78Þ
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where H ≡ _a=ðaNÞ. One can confirm that the identity (77)
is satisfied for these EOMs, after using the background
EOMs (74).
As we showed in Sec. III, the recoverability of the lost

EOMs and the completeness of the gauge fixing are
equivalent as they are related through adjoint DAE systems.
Below we consider three gauge-fixing conditions com-
monly used in cosmology, whose (in)completeness can be
checked by the sufficient conditions (59) and (63), and the
necessary condition (64).

(i) Comoving gauge: E ¼ 0, δϕ ¼ 0 (complete).
In this case, the gauge conditions are fI ¼ðE;δϕÞ.

To check if it is complete or not, we consider an
infinitesimal gauge transformation from the comov-
ing gauge, and impose ΔϵfI¼ðΔϵE;ΔϵδϕÞ¼ð0;0Þ.
From (76) we obtain

"
0 − 2

a2

− _ϕ 0

#�
ϵ0

ϵS

�
¼

�
0

0

�
: ð79Þ

As it does not involve derivatives of ϵ0 or ϵS, it is
obvious that ϵ0 ¼ ϵS ¼ 0 is the unique solution, i.e.,
the gauge fixing is complete. This is the case of (59).
Consequently, EOMs for E and δϕ can be recovered
from

�
0 − _ϕ

− 2
a2 0

��
EE

Eδϕ

�
¼ ðsum of the other EOMsÞ:

ð80Þ

(ii) Newtonian gauge: B ¼ 0, E ¼ 0 (complete).5

Since fI ¼ ðB;EÞ, we impose ΔϵB ¼ 0 and
ΔϵE ¼ 0 in (76), and obtain

�
0 − 1

aN

0 0

��
_ϵ0

_ϵS

�
þ
"
N
a

2_a
a2N

0 − 2
a2

#�
ϵ0

ϵS

�
¼
�
0

0

�
; ð81Þ

which satisfies the sufficient condition (63), and
ϵ0 ¼ ϵS ¼ 0 is the unique solution. The identity (77)
reads

�
0 0

1
aN 0

�" _EB

_EE

#
þ
"

N
a 0

_a
a2N − _N

aN2 − 2
a2

#�
EB

EE

�

¼ ðsum of the other EOMsÞ: ð82Þ

As expected, it satisfies the same sufficient condition
(63), and we can recover EB, and then EE.

(iii) Synchronous gauge: Φ ¼ 0, B ¼ 0 (incomplete).
Setting ΔϵΦ ¼ 0 and ΔϵB ¼ 0 in (76), we have

�−1 0

0 − 1
aN

��
_ϵ0

_ϵS

�
þ
"
− _N

N 0

N
a

2_a
a2N

#�
ϵ0

ϵS

�
¼

�
0

0

�
:

ð83Þ

Clearly, it violates the necessary condition (64), and
the gauge fixing is incomplete. From (77), one can
also check that EΦ and EB cannot be recovered from
the other EOMs as the adjoint DAE system violates
the same necessary condition (64).

To reiterate, so long as the gauge fixing is complete, one
can fix the gauge at the action level without losing EOMs.
In addition, one can also partially fix the gauge completely,
which amounts to the casemg < mmentioned in Sec. III B.
For example, one can fix δϕ ¼ 0 at the action level, which
determines ϵ0 completely, and then derive the set of EOMs.
It is clear that one can recover Eδϕ from the other EOMs and
there is no lost independent EOM.

C. Spherically symmetric spacetime

Let us consider time-dependent spherically symmetric
spacetime

ds2 ¼ −Aðt; rÞdt2 þ dr2

Bðt; rÞ þ 2Cðt; rÞdtdr

þ Eðt; rÞr2γijdxidxj; ð84Þ

with ϕ ¼ ϕðt; rÞ.6 Here, i, j label angular variables, and γij
represents the metric of a (D − 2)-dimensional maximally
symmetric space with spatial curvature κ ¼ 1. Let us
perform the coordinate transformation xμ → xμ þ ϵμ with
ϵ0 ¼ ϵ0ðt; rÞ, ϵr ¼ ϵrðt; rÞ and ϵi ¼ 0 for angular parts. The
gauge transformation of A, B, C, E and ϕ is defined as

ΔϵA ¼ −2A_ϵ0 þ 2C_ϵr − _Aϵ0 − A0ϵr;

ΔϵB ¼ 2B2Cϵ00 þ 2Bϵr0 − _Bϵ0 − B0ϵr;

ΔϵC ¼ −C_ϵ0 −
1

B
_ϵr þ Aϵ00 − Cϵr0 − _Cϵ0 − C0ϵr;

ΔϵE ¼ − _Eϵ0 −
ðEr2Þ0
r2

ϵr;

Δϵϕ ¼ − _ϕϵ0 − ϕ0ϵr: ð85Þ

It is commonly used to impose ametric ansatz byCðt; rÞ ¼ 0
and Eðt; rÞ ¼ 1 [or sometimes Eðt; rÞ ¼ 1=Bðt; rÞ] in the
action. However, this ansatz is not a complete gauge fixing.7

5Here, we do not consider k ¼ 0 modes.

6Similarly in Sec. VA, one is allowed to impose the metric
ansatz (84) at the action level.

7Note that Eðt; rÞ ¼ 1 alone is a complete gauge fixing. To see
this, we set ϵ0 ¼ 0 in (85) since Eðt; rÞ ¼ 1 is achieved by
redefinition of r only. Then, ΔϵE ¼ 0 has the unique solution
ϵr ¼ 0. Likewise one can also fix ϕ by complete gauge fixing.
Therefore, one can fix E and/or ϕ by complete gauge fixing.
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Following the general prescription, if one sets ΔϵC ¼
ΔϵE ¼ 0 in (85), it is clear that one cannot determine the
set ðϵ0; ϵrÞ uniquely. Therefore, if one imposes the metric
ansatz (84) with Cðt; rÞ ¼ 0 and Eðt; rÞ ¼ 1 at the action
level, the subsequent analysis does not capture the correct
number of DOFs in general. We shall return to this point
in Sec. VI.
On the other hand, the static spherically symmetric

spacetime

ds2 ¼ −AðrÞdt2 þ dr2

BðrÞ þ 2CðrÞdtdrþ EðrÞr2γijdxidxj;

ð86Þ

with ϕ ¼ ϕðrÞ allows us to fix CðrÞ ¼ 0 and EðrÞ ¼ 1 by
complete gauge fixing. For the coordinate transformation
xμ → xμ þ ϵμ with ϵ0 ¼ ϵ0ðrÞ, ϵr ¼ ϵrðrÞ, and ϵi ¼ 0, the
gauge transformation (85) simplifies as

ΔϵA ¼ −A0ϵr;

ΔϵB ¼ 2B2Cϵ00 þ 2Bϵr0 − B0ϵr;

ΔϵC ¼ Aϵ00 − Cϵr0 − C0ϵr;

ΔϵE ¼ −
ðEr2Þ0
r2

ϵr;

Δϵϕ ¼ −ϕ0ϵr: ð87Þ

The crucial difference from (85) is that ϵ0 appears only with
radial derivative in (87), which is the consequence of
the static ansatz of the spacetime. As we mentioned in
Sec. III B, such a choice of the gauge function is inappro-
priate. It is not ϵ0 itself but η≡ ϵ00 that should be treated as
a generator of the gauge transformation. Then, the Noether
identity (53) gives the following relations between the
EOMs:

2B2CEB þ AEC ¼ 0;

2BE0
B − CE0

C þ A0EA þ 3B0EB þ ðEr2Þ0
r2

EE þ ϕ0Eϕ ¼ 0:

ð88Þ

Let us consider fixing CðrÞ ¼ 0 and EðrÞ ¼ 1 in the action.
Correspondingly, we set ΔϵC ¼ ΔϵE ¼ 0 in (87) and
obtain

�
A 0

0 2
r

��
η

ϵr

�
¼

�
0

0

�
; ð89Þ

which has the unique solution ðη; ϵrÞ ¼ ð0; 0Þ. Therefore,
this gauge fixing is complete and thus EC and EE can be

recovered from the Noether identity.8 However, the circum-
stance is a little different from the former examples. In
this case, setting C ¼ 0 in the first equation of (88) yields
EC ¼ 0, which means EC vanishes identically. After that,
EE can be written in terms of the other EOMs by use of the
second equation.
In the rest of this section, we investigate spherically

symmetric solutions starting from a gauge-fixed action to
illustrate the (in)appropriateness of (in)complete gauge
fixing at the action level. Here we consider the
Einstein-Hilbert action with a cosmological constant in
D dimensions:

SEH ¼ MD−2
Pl

2

Z
dDx

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ: ð90Þ

If we substitute the metric ansatz (84) with Cðt; rÞ ¼ 0 and
Eðt; rÞ ¼ 1, the action becomes of the form

SEHjC;E ¼ D − 2

ΓðD−1
2
Þ π

D−1
2 MD−2

Pl

Z
dtdr

ffiffiffiffi
A
B

r �
ðrD−3ð1 − BÞÞ0

−
2Λ

D − 2
rD−2

�
: ð91Þ

Hence we obtain EOMs as

ðrD−3ð1 − BÞÞ0 − 2Λ
D − 2

rD−2 ¼ 0;

�
A
B

�0
¼ 0; ð92Þ

which yield the following solution:

Bðt; rÞ ¼ 1 −
c1ðtÞ
rD−3 −

2Λ
ðD − 1ÞðD − 2Þ r

2;

Aðt; rÞ ¼ c2ðtÞBðt; rÞ: ð93Þ

This result is obviously incompatible with cosmological-
constant case of Birkhoff’s theorem [19], according to
which the coefficients c1 and c2 must be constant. This
contradiction precisely originates from imposing the
incomplete gauge-fixing condition Cðt; rÞ ¼ 0 and
Eðt; rÞ ¼ 1 at the action level. Regarding this point, [20]
derived the corresponding set of EOMs in a similar manner,
but finally neglected the time dependence of the solution
(93). Their solution is actually a physically correct one, but
the above argument does not allow one to drop the time
dependence of the solution.
A correct solution is obtained in the following manner.

Let us impose the metric ansatz (84) with Eðt; rÞ ¼ 1 in the
action (90), while Cðt; rÞ ¼ 0 is imposed after deriving the

8Of course, in addition to the gauge fixing of C and E, (87)
tells us that one could consider other kind of complete gauge
fixing. In general one can fix any of fA; E;ϕg and/or either of
fB;Cg of (86) by complete gauge fixing.
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three EOMs corresponding to the metric functions A, B
and C. Thus we start from the following action:

SEHjE ¼ D − 2

ΓðD−1
2
Þ π

D−1
2 MD−2

Pl

Z
dtdr

ffiffiffiffi
F
B

r �
ðrD−3ð1 − BÞÞ0

− rD−3
�

2Λ
D − 2

rþ C
F

_Bþ B3C2

2F2

�
F
B

�0��
; ð94Þ

where F≡ Aþ BC2. Note that one can fix Eðt; rÞ ¼ 1 by
redefinition of r, which can be read off from (85). As we
mentioned earlier, Eðt; rÞ ¼ 1 alone is a complete gauge
fixing and thus there is no residual DOF for redefining r.
On the other hand, if one fixes Cðt; rÞ ¼ 0 by redefinition
of t, then one can still redefine t by some function that only
depends on t: t → ~tðtÞ. The EOMs derived from (94) are

ðrD−3ð1−BÞÞ0 − 2Λ
D− 2

rD−2 ¼ 0;

�
A
B

�0
¼ 0; _B¼ 0;

ð95Þ

where we have substituted C ¼ 0. Since the first two
equations coincide with (92), one obtains the same solution
as in (93) from them. The third equation is the difference
from (92), which yields c1 ¼ const. As for c2ðtÞ, we
can use the residual gauge DOF, namely, t → ~tðtÞ: one
can fix c2 ¼ 1 by choosing the new time coordinate ~t so
that d~t ¼ c2ðtÞ1=2dt. Thus we obtain a solution which is
consistent with Birkhoff’s theorem.
Another consistent way of analysis is to derive EOMs

from an incompletely gauge-fixed action, and to derive
lost EOMs from the action without incomplete gauge
fixing. Then the combined set of EOMs yields a consistent
analysis. In the present example, after obtaining (92), one
could derive the lost EOM forC from (94), and then impose
C ¼ 0. The resultant set of EOMs is the same as (95).

D. Perturbations around static spherically
symmetric background

Let us consider perturbations around the static spheri-
cally symmetric metric (86). In the following argument,
we set CðrÞ ¼ 0 and EðrÞ ¼ 1 from the beginning. We start
from a brief review of the formalism to decompose the
metric perturbations in general spacetime dimension devel-

oped in [21]. Any metric perturbation hμν ≡ gμν − gð0Þμν can
be decomposed as follows:

hab ¼ fðSÞab ðt; rÞS;
hai ¼ rðfðSÞa ðt; rÞSi þ fðVÞa ðt; rÞV iÞ;
hij ¼ 2r2ðHðSÞ

L ðt; rÞγijSþHðSÞ
T ðt; rÞSij

þHðVÞ
T ðt; rÞV ij þHðTÞ

T ðt; rÞT ijÞ; ð96Þ

where a, b ¼ ðt; rÞ and i, j denote angular variables. On the
other hand, a perturbation of the scalar field is written as

δϕ ¼ δϕðSÞðt; rÞS: ð97Þ

For the definitions of the harmonic functions S, Si, Sij, V i,
V ij and T ij, see Appendix B. The expansion coefficients

fðSÞab , fðSÞa , HðSÞ
L , HðSÞ

T , fðVÞa , HðVÞ
T , HðTÞ

T represent the
dynamical DOFs of the perturbation, and the superscripts
denote the transformation property under rotations in the
(D − 2)-dimensional space: (S), (V), (T) denote scalar,
vector, tensor, respectively.9 These three types of perturba-
tions are completely decoupled. Note that the coefficients

fðSÞa , fðVÞa of the harmonic vectors can be defined only for

l ≥ 1, and the coefficientsHðSÞ
T ,HðVÞ

T ,HðTÞ
T of the harmonic

tensors appears only if l ≥ 2 (see Appendix B). Note also
that we omitted the multipole index for the harmonic
functions as each mode evolves independently.
The infinitesimal change ϵμ of coordinates can also be

decomposed by use of the harmonic functions as

ϵa ¼ TðSÞ
a S; ϵi ¼ rðLðSÞSi þ LðVÞV iÞ: ð98Þ

With these functions TðSÞ
a , LðSÞ and LðVÞ, we obtain the

gauge transformation of the dynamical variables. For the
scalar perturbations, we find

Δϵf
ðSÞ
tt ¼ −2 _TðSÞ

t þ A0BTðSÞ
r ;

Δϵf
ðSÞ
tr ¼ − _TðSÞ

r − T 0
r þ

A0

A
TðSÞ
t ;

Δϵf
ðSÞ
rr ¼ −2T 0ðSÞ

r −
B0

B
TðSÞ
r ;

Δϵf
ðSÞ
t ¼ − _LðSÞ þ kS

r
TðSÞ
t ;

Δϵf
ðSÞ
r ¼ −LðSÞ0 þ LðSÞ

r
þ kS

r
TðSÞ
r ;

ΔϵH
ðSÞ
L ¼ −

kS
ðD − 2Þr L

ðSÞ −
B
r
TðSÞ
r ;

ΔϵH
ðSÞ
T ¼ kS

r
LðSÞ;

Δϵδϕ
ðSÞ ¼ −Bϕ0TðSÞ

r ; ð99Þ

where k2S is the eigenvalue of the scalar harmonic function
S (see Appendix B). For the vector perturbations,

9In four dimensions, the scalar perturbations are often referred
to as even or E modes, the vector perturbations are odd or B
modes, and the tensor perturbation is absent as the tensor
harmonics T ij vanish.
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Δϵf
ðVÞ
t ¼ − _LðVÞ;

Δϵf
ðVÞ
r ¼ −LðVÞ0 þ LðVÞ

r
;

ΔϵH
ðVÞ
T ¼ kV

r
LðVÞ: ð100Þ

Here, k2V is the eigenvalue of the harmonic vector V i.

The tensor perturbation HðTÞ
T is invariant under the

transformation (98):

ΔϵH
ðTÞ
T ¼ 0: ð101Þ

Now we are ready to write down the Noether identity.
Since the dynamical variables are functions of ðt; rÞ, we
employ the expression (19) for multidimensional field

theory. For the scalar-type gauge functions TðSÞ
a and LðSÞ,

we obtain

2_EðSÞ
tt þ EðSÞ0

tr þ A0

A
EðSÞ
tr þ kS

r
EðSÞ
t ¼ 0;

_EðSÞ
tr þ 2EðSÞ0

rr þ A0BEðSÞ
tt −

B0

B
EðSÞ
rr þ kS

r
EðSÞ
r

−
B
r
EðSÞ
L − Bϕ0EðSÞ

δϕ ¼ 0;

_EðSÞ
t þ EðSÞ0

r þ 1

r
EðSÞ
r −

kS
ðD − 2Þr E

ðSÞ
L þ kS

r
EðSÞ
T ¼ 0;

ð102Þ

and for the vector-type gauge function LðVÞ,

_EðVÞ
t þ EðVÞ0

r þ 1

r
EðVÞ
r þ kV

r
EðVÞ
T ¼ 0: ð103Þ

Here EðSÞ
δϕ is the EOM for δϕðSÞ, and otherwise EðYÞ

X

denotes the EOM for the expansion coefficient of the
metric perturbation with the same indices.
In what follows, we consider three sets of (partial)

complete gauge-fixing conditions and demonstrate the
Theorem indeed holds. The first two sets correspond to
Regge-Wheeler gauge [22], which is commonly used in the
context of black-hole perturbation theory in four dimensions.

(i) HðVÞ
T ¼ 0:

For HðVÞ
T to be defined appropriately, we focus on

modes with l ≥ 2. This gauge fixing is complete

since ΔϵH
ðVÞ
T ¼ 0 in (100) has the unique solution

LðVÞ ¼ 0 since kV ≠ 0. As a result, the correspond-

ing EOM EðVÞ
T can be recovered from the other

EOMs by virtue of the Noether identity (103).
(ii) fðSÞt ¼ HðSÞ

L ¼ HðSÞ
T ¼ 0:

Here, we restrict ourselves to modes with l ≥ 2 so

that one can define both fðSÞt and HðSÞ
T . To check the

completeness of the gauge fixing, we set Δϵf
ðSÞ
t ¼

ΔϵH
ðSÞ
L ¼ ΔϵH

ðSÞ
T ¼ 0 in (99):

2
64
0 0 −1
0 0 0

0 0 0

3
75
2
664
_TðSÞ
t

_TðSÞ
r

_LðSÞ

3
775þ

2
6664

kS
r 0 0

0 − B
r − kS

ðD−2Þr

0 0 kS
r

3
7775

×

2
664
TðSÞ
t

TðSÞ
r

LðSÞ

3
775 ¼

2
64
0

0

0

3
75: ð104Þ

This satisfies the sufficient condition (63) since
kS ≠ 0. Therefore, this gauge fixing is complete

and one can recover EðSÞ
t , EðSÞ

L and EðSÞ
T from the

Noether identity (102):

2
64
0 0 0

0 0 0

1 0 0

3
75
2
664
_EðSÞ
t

_EðSÞ
L

_EðSÞ
T

3
775þ

2
664

kS
r 0 0

0 − B
r 0

0 − kS
ðD−2Þr

kS
r

3
775
2
664
EðSÞ
t

EðSÞ
L

EðSÞ
T

3
775

¼ ðsum of the other EOMsÞ: ð105Þ

(iii) fðSÞt ¼ fðSÞr ¼ HðSÞ
T ¼ 0:

Here again we consider modes with l ≥ 2. We

impose Δϵf
ðSÞ
t ¼ Δϵf

ðSÞ
r ¼ ΔϵH

ðSÞ
T ¼ 0 in (99) to

obtain

2
64
0 0 −1
0 0 0

0 0 0

3
75
2
664
_TðSÞ
t

_TðSÞ
r

_LðSÞ

3
775þ

2
64
0 0 0

0 0 −1
0 0 0

3
75
2
664
TðSÞ0
t

TðSÞ0
r

LðSÞ0

3
775

þ

2
664

kS
r 0 0

0 kS
r

1
r

0 0 kS
r

3
775
2
664
TðSÞ
t

TðSÞ
r

LðSÞ

3
775 ¼

2
64
0

0

0

3
75: ð106Þ

This example serves an application of the generali-
zation of the sufficient condition (63) to higher
dimensions which we mentioned at the end of
Sec. IV B. Since kS ≠ 0, this system has a unique
solution and thus the gauge fixing is complete.
Focusing on the relevant components of the EOMs,
the Noether identity (102) is written as
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2
64
0 0 0

0 0 0

1 0 0

3
75
2
664
_EðSÞ
t

_EðSÞ
r

_EðSÞ
T

3
775þ

2
64
0 0 0

0 0 0

0 1 0

3
75
2
664
EðSÞ0
t

EðSÞ0
r

EðSÞ0
T

3
775

þ

2
664

kS
r 0 0

0 kS
r 0

0 1
r

kS
r

3
775
2
664
EðSÞ
t

EðSÞ
r

EðSÞ
T

3
775

¼ ðsum of the other EOMsÞ: ð107Þ

Thus, one can recover EðSÞ
t and EðSÞ

r from the first-

and second-line equations, and then EðSÞ
T can be

written in terms of the other EOMs by use of the
third-line equation.

(iv) fðSÞt ¼ HðSÞ
L ¼ δϕðSÞ ¼ 0:

Since fðSÞt cannot be defined for the monopole
(l ¼ 0) mode, we focus on modes with l ≥ 1. Note

that kS ≠ 0. Setting Δϵf
ðSÞ
t ¼ΔϵH

ðSÞ
L ¼Δϵδϕ

ðSÞ ¼ 0
in (99), we obtain

2
664
0 −1 0

0 0 0

0 0 0

3
775
2
664
_TðSÞ
t

_LðSÞ

_TðSÞ
r

3
775þ

2
664

kS
r 0 0

0 − kS
ðD−2Þr − B

r

0 0 −Bϕ0

3
775

×

2
664
TðSÞ
t

LðSÞ

TðSÞ
r

3
775 ¼

2
664
0

0

0

3
775: ð108Þ

This satisfies the sufficient condition (63), and hence
this gauge fixing is complete. Indeed, the corre-

sponding EOMs EðSÞ
t , EðSÞ

L and EðSÞ
δϕ can be recovered

from the Noether identity (102):

2
664
0 0 0

1 0 0

0 0 0

3
775
2
664
_EðSÞ
t

_EðSÞ
L

_EðSÞ
δϕ

3
775þ

2
664

kS
r 0 0

0 − kS
ðD−2Þr 0

0 − B
r −Bϕ0

3
775

×

2
664
EðSÞ
t

EðSÞ
L

EðSÞ
δϕ

3
775 ¼ ðsum of the other EOMsÞ: ð109Þ

E. Unitary gauge

In the context of scalar-tensor theories of gravity, the so-
called unitary gauge is often used since it significantly
simplifies the action. In this gauge, one redefines time
coordinate so that ϕ ¼ t, while spatial coordinates remain
arbitrary. Note that the unitary gauge fixing is valid in

situations such as inflation or cosmology, where the
gradient of the scalar field is timelike and the scalar field
is monotonic in time. For the following analysis we assume
these conditions are satisfied.
Let us start from the general action (66) and consider an

infinitesimal transformation of time t → tþ ϵ0ðxμÞ. The
corresponding gauge transformation of the scalar field is
given by

Δϵϕ ¼ − _ϕϵ0; ð110Þ

and Δϵϕ ¼ 0 has the unique solution ϵ0 ¼ 0. This means
that, starting from a configuration that satisfies the unitary
gauge condition ϕ ¼ t, any infinitesimal gauge transfor-
mation spoils the gauge condition. Thus, the unitary gauge
fixing is complete and it can be imposed at the action level
without losing any independent EOM by virtue of the main
theorem.
This can be explicitly seen as follows. Let us denote the

EOMs for gμν and ϕ as

Eμν ≡ 1ffiffiffiffiffiffi−gp δS
δgμν

; Eϕ ≡ 1ffiffiffiffiffiffi−gp δS
δϕ

: ð111Þ

When one imposes the unitary gauge in the action, one does
not obtain the scalar EOM Eϕ from the Euler-Lagrange
equations. Whether the lost EOM is redundant or not can be
judged by use of the Noether identity. Since the action is
invariant under the gauge transformation (67), we have

0 ¼ ΔϵS ¼
Z

dDx
ffiffiffiffiffiffi
−g

p ½Eμνð−2∇μϵνÞ þ Eϕð−ϵν∇νϕÞ�

¼
Z

dDx
ffiffiffiffiffiffi
−g

p ½2∇μEμν − Eϕ∇νϕ�ϵν; ð112Þ

so the Noether identity can be read off as

2∇μEμν − Eϕ∇νϕ ¼ 0: ð113Þ

Hence, one finds Eϕ ¼ ð2= _ϕÞ∇μEμ
0 and thus the scalar

EOM is redundant, as was stated in, e.g., [23].
The unitary gauge has been employed to analyze

complicated theories such as beyond Horndeski [24–26],
whose action involves higher-order derivative terms.
It was shown in [25,27–30] that the class has 3 DOFs
by Hamiltonian analyses in the unitary gauge. However,
[31] pointed out that such analyses may not be appropriate
since higher derivative terms in the action, which may
yield Ostrogradsky ghost [14], could be lost by the unitary
gauge fixing (for the detailed arguments, see [32]). Also,
[33–35] alerted the same problem. Let us remark that these
criticisms do not contradict the above argument based on
our main theorem. What we have shown is that the
Lagrangian analysis does not change regardless of when
one imposes the unitary gauge, i.e., before or after deriving
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EOMs. Our work does not address the relation among
DOFs in different gauges.

VI. COMMENTS ON RECENT WORKS

From the discussions so far, we can draw a general
lesson that a complete gauge fixing is harmless when
deriving EOMs in the Lagrangian formalism, while an
incomplete gauge fixing would result in some inconsis-
tency. Before making conclusions, let us revisit the con-
fusions in recent works on counting DOFs in theories of
modified gravity.
In the context of dRGT massive gravity, the dynamics

of the Stückelberg fluctuations around Minkowski back-
ground was investigated in [6]. Taking the so-called
decoupling limit, Stückelberg fluctuations can be decom-
posed as a sum of an additional Stückelberg scalar π and a
free vector field Aμ with canonical Maxwell kinetic term,
for which Uð1Þ symmetry is restored by π. In this limit, [6]
imposed the Lorenz gauge condition to Aμ at the action
level. As explained in Sec. III C of [7], this process causes
the problematic term _π _A0, and leads to the inconsistent
counting of DOFs. It is now clear that the process confuses
the DOF counting, as the Lorenz gauge fixing is not
complete. As we saw in Sec. III C, if one imposes addi-
tional conditions Aμ → 0 as jxj → ∞ and A0 ¼ 0, the
Lorenz gauge fixing becomes complete. Indeed, with these
additional conditions, the problematic term vanishes.
Furthermore, a class of isotropic self-accelerating sol-

utions in massive (bi)gravity was constructed in [8,36,37].
They derived the EOMs for the Stückelberg fields from the
action with the metric ansatz (85) with Cðt; rÞ ¼ 0 and
Eðt; rÞ ¼ 1=Bðt; rÞ, derived the EOMs for the metric from
the original action without the metric ansatz, and then
imposed the metric ansatz to the EOMs for the metric.
While this metric ansatz itself is not a complete gauge
fixing as we saw in Sec. V C, the above process is
consistent and does not lose any EOM since all the
EOMs for the metric are derived consistently. It is interest-
ing that the number of propagating DOFs for perturbations
could still change. Indeed, [9] showed that one of the
kinetic terms for isotropic perturbations around the class of
self-accelerating background [8] vanishes in some choice
of coordinate. It is clarified in [10] that a poor choice of the
coordinate in which the constant-time surface coincides
with the characteristics of isotropic perturbations confuses
the number of physical DOFs. Although the situation is
similar to the previous example, in this case the change of
the number of physical DOFs is not originated from the
issue of gauge fixing at the action level.

VII. CONCLUSIONS

Despite the long history of gauge theories and their
analyses with gauge fixing, it had not been clarified under
which condition gauge fixing at the action level is justified

in the Lagrangian formalism, which caused some confu-
sions in recent works. Although the justification in the
Hamiltonian formalism given in [1] may also imply the
validity in the Lagrangian formalism, it is still important to
check this point explicitly to build a bridge to the practical
implementation of gauge fixing like the ones in Sec. V. In
this paper, we addressed the issue under a general setting
of gauge theory with multiple fields and multiple gauge
symmetries defined in D-dimensional spacetime. We
proved the Theorem in Sec. III that gauge fixing in the
action yields consistent results if the gauge fixing is
complete. Our proof relies on the equivalence between
the following two sets of EOMs: one is the Euler-Lagrange
equations derived from the original action supplemented
with the gauge-fixing conditions, and the other is the Euler-
Lagrange equations derived from the gauge-fixed action
with Lagrange multipliers. We showed that these two sets
of EOMs coincide if the gauge fixing is complete, which is
the consequence of the fact that the unique solvability is
shared by a PDAE system and its adjoint system.
To apply the Theorem, one needs to check whether the

gauge fixing of interest is complete or not. While it is not
clear for general gauge theories how to check it, it is
immediate to derive the necessary and sufficient condition
(27) for the case of mg ¼ 1, i.e., field theories with a single
gauge symmetry. Another possible case explored in Sec. IV
is the case of D ¼ 1, which applies to analytical mechanics
in arbitrary dimensions, or multiple fields with a homo-
geneous configuration, multiple fields in Fourier space, etc.
We presented the sufficient conditions (59) and (63), and
the necessary condition (64) for a gauge fixing to be
complete, as well as the general methodology to judge
whether a given gauge fixing is complete or not, for which
the mathematical technique for ODAE systems is explained
in Appendix A. The examples provided in Sec. V illustrate
applications of the above results. They are helpful to
resolve some of the confusions in recent papers as we
commented in Sec. VI.
While imposing gauge fixing at the action level is a

powerful tool for analysis of gauge theories, it requires a
special care as it may lead to some inconsistent result.
Our results elucidate that such a process leads to the same
conclusion as the one obtained by imposing the gauge
conditions after deriving EOMs if the gauge fixing is
complete, and enable one to check whether or not the gauge
fixing of interest is complete.
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APPENDIX A: UNIQUE SOLVABILITY
OF ODAEs

1. Standard canonical form of ODAEs

In this appendix, we discuss conditions for a system of
ODAEs to have a unique solution without integration
constant. Since any higher-order DAE system can be recast
into a first-order system by introducing auxiliary variables
(see Sec. IV B), we consider a first-order ODAE system of
the form

MI
J _x

J þ NI
Jx

J ¼ gI; ðA1Þ

where J ¼ 1;…; m. In general, I does not necessarily run
over the same range as J, but in that case the system is
obviously not uniquely solvable. Hence, we assume I also
runs from 1 to m. The system is said to be uniquely
solvable if and only if the following conditions are
satisfied:

(i) The system is well-posed, i.e., it has a solution for
any inhomogeneity gI.

(ii) No ODE appears.
It is obvious that the second requirement cannot be met if
detMI

J ≠ 0. We thus obtain a necessary (but not suffi-
cient) condition for the unique solvability of the system:

detMI
J ¼ 0: ðA2Þ

On the other hand, we can also derive the sufficient
conditions (59) and (63).
A necessary and sufficient condition for the unique

solvability is rather nontrivial [38]. The idea is to recast
the pair ðMI

J; N
I
JÞ into the form of (63) by transformation of

variables with some regular matrices SIJ and TI
J. Let us

multiply SIJ by both sides of (A1) and write

SIKM
K
LT

L
J
_~xJ þ ðSIKNK

LT
L
J þ SIKM

K
L
_TL
J Þ~xJ ¼ ~gI; ðA3Þ

where ~xI and ~gI are defined as

~xI ≡ ðT−1ÞIJxJ; ~gI ≡ SIJg
J: ðA4Þ

Therefore, if we define ~MI
J and ~NI

J by

~MI
J ≡ SIKM

K
LT

L
J ;

~NI
J ≡ SIKN

K
LT

L
J þ SIKM

K
L
_TL
J ; ðA5Þ

(A3) becomes

~MI
J
_~xJ þ ~NI

J ~xJ ¼ ~gI; ðA6Þ

which has the same form as (A1). It has been shown in [38]
that, one can always choose SIJ and TI

J so that the pair of
matrices ð ~MI

J; ~N
I
JÞ takes the following “standard canonical

form” (SCF):

ð ~M; ~NÞ ¼
��

Im1
0

0 Km2
ðtÞ

�
;

�
Jm1

ðtÞ 0

0 Im2

��
; ðA7Þ

if and only if the system is well posed. Here, Imi
denotes an

mi ×mi identity matrix, Km2
ðtÞ is an m2 ×m2 matrix

which is strictly lower triangular, Jm1
ðtÞ is some m1×m1

matrix, and m1 þm2 ¼ m. From the block-diagonal struc-
ture of (A7), it is clear that in (A6) the equations for the first
m1 variables and the lastm2 are decoupled. Ifm1 ≠ 0, since
the upper-left m1 ×m1 submatrix of ~MI

J is the identity
matrix, the first m1 equations are inevitably ODEs and thus
the unique solvability of the system is spoiled. If m1 ¼ 0,
one is left with equations of the form

2
666664

0 � � � � � � 0

� . .
. ..

.

..

. . .
. . .

. ..
.

� � � � � 0

3
777775

2
666664

_~x1

..

.

..

.

_~xm

3
777775
þ

2
666664

~x1

..

.

..

.

~xm

3
777775
¼

2
666664

~g1

..

.

..

.

~gm

3
777775
: ðA8Þ

This precisely satisfies the sufficient condition (63). We can
uniquely solve this ODAE system for ~xI from the first-line
equation to the mth-line equation without any integration
constant, and then obtain xI through xI ¼ TI

J ~x
J.

In conclusion, the necessary and sufficient condition for
the unique solvability of the DAE system (A1) with a
matrix pair ðM;NÞ is that the corresponding SCF (A7) has
m1 ¼ 0, namely,

ð ~M; ~NÞ ¼ ðKm; ImÞ: ðA9Þ

Obviously, for a vanishing source term gI, the unique
solution is given by xI ¼ 0.
As an application of the above methodology, let us

consider the following ODAE system:

2
64

2 tþ 2 −t − 1

−2t −tðtþ 2Þ tðtþ 1Þ
2t tðtþ 1Þ −t2

3
75
2
64
_x1

_x2

_x3

3
75

þ

2
64

1 −tþ 1 t

−tþ 2 t2 þ 1 −tðtþ 1Þ
0 tþ 1 −t − 1

3
75
2
64
x1

x2

x3

3
75 ¼

2
64
0

0

0

3
75;

ðA10Þ

which corresponds to the case of
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ðM;NÞ ¼

0
B@
2
64

2 tþ 2 −t − 1

−2t −tðtþ 2Þ tðtþ 1Þ
2t tðtþ 1Þ −t2

3
75;

2
64

1 −tþ 1 t

−tþ 2 t2 þ 1 −tðtþ 1Þ
0 tþ 1 −t − 1

3
75
1
CA;

gI ¼ 0: ðA11Þ

In this case, we can find the regular transformation matrices
S, T as

S ¼

2
64
t 1 0

0 0 1

1 0 0

3
75;

T ¼

2
64

1 −2t − 1 −1
−1 3tþ 2 2

−1 3tþ 1 2

3
75: ðA12Þ

These matrices actually transform the pair ðM;NÞ into
the SCF:

ð ~M; ~NÞ ¼

0
B@
2
64
0 0 0

t 0 0

1 1 0

3
75;

2
64
1 0 0

0 1 0

0 0 1

3
75
1
CA; ðA13Þ

which satisfies the sufficient condition (63). This means
that the system (A10) is uniquely solvable and the solution
is given by xI ¼ 0.

2. Adjoint ODAE

As we proved in Sec. III B, if a DAE system is uniquely
solvable, its adjoint DAE system is also uniquely solvable.
Here, we show the fact for ODAEs in a more direct manner.
The adjoint ODAE system to (A1) has the form of

d
dt

ðyJMJ
I Þ − yJNJ

I ¼ hI: ðA14Þ

If the ODAE system (A1) is uniquely solvable, there exists
a pair of matrices ðS; TÞ that transforms ðM;NÞ into the
form of (A9). Using the pair ðS; TÞ, we can rewrite (A14) as

d
dt

ð~yJ ~MJ
I Þ − ~yJ ~N

J
I ¼ ~hI; ðA15Þ

where we have defined

~yI ≡ yJðS−1ÞJI ; ~hI ≡ hJTJ
I : ðA16Þ

More explicitly, (A15) can be written as

tKm
t _~y − ðIm − t _KmÞt ~y ¼ t ~h; ðA17Þ

namely,

2
666664

0 � � � � �
..
. . .

. . .
. ..

.

..

. . .
. �

0 � � � � � � 0

3
777775

2
666664

_~y1

..

.

..

.

_~ym

3
777775
þ

2
666664

1 � � � � �
0 . .

. . .
. ..

.

..

. . .
. . .

. �
0 � � � 0 1

3
777775

×

2
666664

~y1

..

.

..

.

~ym

3
777775
¼

2
666664

~h1

..

.

..

.

~hm

3
777775
: ðA18Þ

Similarly to (A8), this system satisfies the sufficient
condition (63). It can be solved for ~yI from the mth-line
equation to the first-line equation without any integration
constant. In particular, for a homogeneous system with
hI ¼ 0, the unique solution is yI ¼ 0.

APPENDIX B: HARMONIC FUNCTIONS

In this appendix, we briefly summarize the definitions of
the harmonic tensors, vectors and scalars in general
spacetime dimension [21]. In what follows, γij represents
the metric of an n-dimensional constant-curvature space
with n ≥ 2, and Di denotes a covariant derivative with
respect to γij. Here, we restrict ourselves to the case of
spatial curvature κ ¼ 1. For a construction of the harmonic
functions and their eigenvalues and degeneracies, see [39].

1. Tensor

The harmonic tensors T ij are defined so that they satisfy

ð△þ k2TÞT ij ¼ 0; T ij ¼ T ji;

T i
i ¼ 0; DjT

j
i ¼ 0; ðB1Þ

where △≡DiDi. Note that T ij becomes trivial in two-
dimensional space. The eigenvalue k2T takes discrete
values [39]

k2T ¼ lðlþ n − 1Þ − 2; ðl ¼ 2; 3;…Þ; ðB2Þ

and hence always positive.

2. Vector

The harmonic vectors V i are defined by

ð△þ k2VÞV i ¼ 0; DiV i ¼ 0; ðB3Þ

where the eigenvalue k2V is given by [39]
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k2V ¼ lðlþ n − 1Þ − 1; ðl ¼ 1; 2;…Þ; ðB4Þ

and all positive. One can construct the vector-type har-
monic tensor from the vector harmonic function V i as

V ij ¼ −
1

2kV
ðDiV j þDjV iÞ; ðB5Þ

which satisfies

½△þ k2V − ðnþ 1Þ�V ij ¼ 0; V i
i ¼ 0;

DjV
j
i ¼

k2V − ðn − 1Þ
2kV

V i: ðB6Þ

For V ij to be nonvanishing, it is necessary that k2V > nþ 1

as the operator △ is negative definite.10 Therefore, V ij

becomes nontrivial only for l ≥ 2.

3. Scalar

The scalar harmonic functions S are defined by

ð△þ k2SÞS ¼ 0; ðB7Þ

where the eigenvalue k2S takes [39]

k2S ¼ lðlþ n − 1Þ; ðl ¼ 0; 1;…Þ: ðB8Þ
From the scalar harmonic function S, we can construct the
scalar-type harmonic vector Si as

Si ¼ −
1

kS
DiS; ðB9Þ

which has the properties

½△þ k2S − ðn − 1Þ�Si ¼ 0; DiSi ¼ kSS: ðB10Þ
The scalar-type harmonic tensor Sij is defined by

Sij ¼
1

k2S
DiDjSþ 1

n
γijS; ðB11Þ

which satisfies

ð△þ k2S − 2nÞSij ¼ 0; Si
i ¼ 0;

DjS
j
i ¼

n − 1

n
k2S − n
kS

Si: ðB12Þ

Note that k2S ¼ 0 for l ¼ 0, so we cannot define Si or Sij.
Si is properly defined for l ≥ 1, since one obtains k2S >
n − 1 for these modes. As for Sij, k2S > 2n requires l ≥ 2.
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