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We study the Kaluza-Klein dimensional reduction of the Lovelock-Cartan theory in five-dimensional
spacetime, with a compact dimension of S1 topology. We find cosmological solutions of the Friedmann-
Robertson-Walker class in the reduced spacetime. The torsion and the fields arising from the dimensional
reduction induce a nonvanishing energy-momentum tensor in four dimensions. We find solutions
describing expanding, contracting, and bouncing universes. The model shows a dynamical compactifi-
cation of the extra dimension in some regions of the parameter space.

DOI: 10.1103/PhysRevD.94.124020

I. INTRODUCTION

The experimental status of general relativity (GR),
regarding the solar system tests [1] and the detection of
signals consistent with the merge of two black holes by the
LIGO Collaboration [2], has settled it as the most success-
ful theory of gravity. However, the difficulties in finding
explanations for the so-called dark sector of the Universe
have driven the community to think that GR is not the
ultimate gravitational theory.
The dark sector of the Universe is composed by two

kinds of degrees of freedom. On the one hand, the
gravitational lensing produced by the local distribution
of energy suggests the presence of an exotic form of matter
unseen by the current light-based telescopes [3]. It is thus
named dark matter and it would interact mostly (if not only)
through gravity. Such an abundance at the galactic scale is
compatible with the velocity profile of stars at the outer
regions of the galaxy [4]. At the cosmic scale, it plays a key
role in the origin and evolution of structures (see, for
instance, Ref. [5]). On the other hand, the experimental data
obtained from type Ia supernovae observations indicates
that our Universe is passing through a phase of accelerated
expansion [6]. This behavior suggests the existence of an
exotic form of energy, called dark energy, which constitutes
roughly 70% of the current content of our Universe.
The shortcomings of GR on describing these phenomena

are the main motivation to look for new gravitational
degrees of freedom. Among the possible extensions,
higher-dimensional models could shed some light on the
nature of these new degrees of freedom. For instance, as was
shown in the earlyworks ofKaluza andKlein, the existence of
an extra dimension within the GR framework would give rise

to a unified picture of gravity and electromagnetism, along
with a spectrum of new heavy particles [7]. This idea opened
the possibility of a novel geometrical understanding of
interactions, where the gauge group arises as a consequence
of the topology of the spatial compact manifold in a higher-
dimensional spacetime. The idea of higher dimensions comes
naturally in diverse physical models, for example, supersym-
metry and supergravity [8], string theory [9], novel proposals
by Arkani-Hammed et al. [10], and models fromRandall and
Sundrum [11], as attempts to solve the hierarchy problem.
In four dimensions, the Einstein-Hilbert action with a

cosmological constant is the most general theory which
leads to second-order field equations for the metric. In
higher dimensions, however, particular combinations of
higher-order terms in the curvature can be added to the
gravitational action, whose variation with respect to the
metric also yields second-order field equations. The most
general theory in arbitrary dimensions, which preserves this
feature of the four-dimensional Einstein-Hilbert action, is
called the Lanczos-Lovelock action [12]. Such a theory has
no ghosts [13] and has the same degrees of freedom as the
Einstein-Hilbert Lagrangian in arbitrary dimensions [14]. It
is worth mentioning that in the Palatini approach, where the
metric and the connection are considered as independent
fields, there are families of Lagrangians which yield to
second-order field equations, and do not possess ghosts [15].
The simplest possible extra term in the Lanczos-

Lovelock action is a quadratic construction of curvatures,
called the Gauss-Bonnet term, which reads

LGB ¼ dNx
ffiffiffiffiffiffi
−g

p ð ~R2 − 4 ~Rμν
~Rμν þ ~Rαβμν

~RαβμνÞ; ð1Þ

where ~Rαβμν is the Riemannian curvature of a manifold with
metric gμν and g its determinant. ~Rμν and ~R are the Ricci
tensor and Ricci scalar, respectively. In four dimensions,
the Gauss-Bonnet term adds no dynamics to the metric,
since it represents a topological invariant proportional to
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the Euler characteristic class, which can be written locally
as a boundary term. Nevertheless, it has been shown that
this term can be relevant for conserved charges consid-
erations in spacetimes with a local AdS asymptotic [16].
Moreover, as it was reported in Ref. [17], the inclusion of
topological invariants of the Euler class is equivalent to the
program of holographic renormalization in the context of
AdS=CFT. In dimensions higher than four it contributes to
the field equations, and it was also identified as the low-
energy correction for a spin-two field in string theory [18].
The Riemannian five-dimensional Lanczos-Lovelock

theory has been widely studied in the literature. For
instance, exact wormhole solutions which violate no energy
conditions have been found in vacuum [19], and coupled
with matter fields satisfying the weak energy conditions
[20]. In higher-order Lanczos-Lovelock models, this class
of exact solutions have been reported in [21] and in the
compactified theory with torsion [22]. Additionally, the
compactification of higher Lanczos-Lovelock terms has
been considered in Ref. [23] and their cosmology in
Refs. [24–26]. It is worth mentioning that classically, in
GR, wormholes must be supported by a kind of energy
compatible with the cosmological hypothesis. Their exist-
ence in these extended models implies the presence of
degrees of freedom that could provide an explanation for
the exotic matter/energy abundance in the Universe.
On the other hand, it is well known that GR assume the

torsion-free condition a priori. However, as Cartan first
considered, it is possible to take metricity and parallelism as
truly independent concepts [27]. Such kinds of geometry are
known as Riemann-Cartan geometries and offer the natural
framework for Poincaré gauge theories, where the torsion
appears as the field strength of translations, sourced by the
spin current [28–30]. Moreover, the vacuum predictions
of its simplest formulation—the Einstein-Cartan theory—
holds the experimental tests of GR. In the same spirit of
the Gauss-Bonnet extension of GR, the quadratic correc-
tions in curvature and torsion to Einstein-Cartan theory
have been considered, see, for example, Refs. [31,32]. The
cosmological consequences of non-Riemannian geometries
has been widely studied in the literature (for a review,
see Ref. [33]).
In the framework of Kaluza-Klein theories in higher-

dimensional Riemann-Cartan geometries, the phenomenol-
ogy of the extradimensional torsion was found in Ref. [34],
and metric-dependent torsion in extra dimensions was
studied in [35], along with its consequences in cosmology
[36]. The compatification of higher-dimensional Brans-
Dicke models with torsion was considered in Ref. [37].
Torsion-free black-hole solutions were found in [38], for
first-order compactified gravity.
The extension of the Lanczos-Lovelock theories with

nonvanishing torsion is known as Lovelock-Cartan theory
[39]. In that framework, we present a new class of cosmo-
logical solutions in five dimensions, where the compact

dimension isS1. The theory admits a nonvanishing torsion in
vacuum due to the presence of the Gauss-Bonnet term, in
contrast to the five-dimensional Einstein-Cartan theory.
The new degrees of freedom coming from the higher-
dimensional geometry generate an induced energy-
momentum form in the reduced theory. In some cases,
the solutions avoid the appearance of initial singularities and
drive the accelerated expansion of the Universe, while the
radius of the compact manifold goes to zero.
This work is organized as follows. In Sec. II we review

the Kaluza-Klein (KK) geometry in the first-order formal-
ism and fix our notation and conventions. In Sec. III, we
study the dynamics of the general Lovelock-Cartan action
in a five-dimensional spacetime and its dimensional reduc-
tion. In Sec. IV, we look for cosmological solutions of the
Friedmann-Robertson-Walker class with nontrivial torsion.
Conclusions and remarks are given in Sec. V. We also
incorporate a number of appendices to make this work a
self-contained article.

II. KALUZA-KLEIN GEOMETRY IN
RIEMANN-CARTAN SPACETIMES

In the following we will consider MN to be a
N-dimensional differential manifold. Every quantity
defined on MN will be denoted by hats x̂. Capital greek
characters (coordinate indices) and capital latin characters
(Lorentz indices) run over theN dimensions, i.e.,A ¼ 0;…;
N − 2; N, while the lowercase ones run in the (N − 1)-
dimensional reduced manifold, i.e., a ¼ 0;…; N − 2.
The differential structure of MN is determined by two

fields. The spin connection 1-form, ω̂AB ¼ ω̂AB
Γdx̂Γ,

describes the affine structure of the N-dimensional mani-
fold and the vielbein 1-form, êA ¼ êAΓdx̂Γ, defines the
metric structure of the same manifold through the relation
ĝΓΔ ¼ êAΓêBΔη̂AB, where ĝΓΔ is the spacetime metric,
while η̂AB ¼ diagð−;þ;…;þÞ is the Minkowski metric.
The vielbein maps coordinate into Lorentz indices. In
our convention, the Levi-Civita symbol is such that
ϵ̂01…ðN−2ÞN ¼ 1 and the reduced symbol is defined by
fixing the last index, i.e.,

ϵ̂a1���aN−1N ≡ ϵa1���aN−1
:

Additionally, all the Riemannian fields (torsion free) will be
made explicit by a tilde, as it was done in Eq. (1) for the
curvature.
Because the topology of the manifold, we can expand the

dependence of the fields on the extra coordinate, z, in a
Fourier series as

ϱ̂ðx̂ΓÞ ¼
X
n

ϱðnÞðxÞeinz; ð2Þ

where x denotes the coordinates of the (N − 1)-manifold,
collectively. Henceforth, we will focus on the n ¼ 0 mode
of the expansion, also referred to as the low-energy sector.
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A. Metric and affine structure

The KK ansatz for the metric lies in the premise that the
compact dimension of MN is orthogonal to the rest of the
manifold at each point. This leads to the following metric
structure:

ĝΓΔ¼
�
gγδþ ĝγzĝδz

ĝzz
ĝγz

ĝzδ ĝzz

�
¼
�
gγδþϕAγAδ ϕAγ

ϕAδ ϕ

�
ð3Þ

and its inverse,

ĝΓΔ ¼
�

gγδ −Aγ

−Aδ ϕ−1 þ A2

�
; ð4Þ

defined such that ĝΓΔĝΔΛ ¼ δΛΓ . This metric introduces a
scalar field ϕ and a vector field Aμ as new gravitational
degrees of freedom. The vielbein that holds this structure
for the metric has the following form:

êAΓ ¼
� êaγ 0

êNγ êNz

�
¼

� eaγ 0ffiffiffiffi
ϕ

p
Aγ

ffiffiffiffi
ϕ

p
�
; ð5Þ

and its inverse, ÊA
Γ, defined such that ÊA

ΓêAΔ ¼ δΓΔ and
ÊA

ΓêBΓ ¼ δBA, reads

ÊA
Γ ¼

�
Êa

γ 0

Êa
z ÊN

z

�
¼

�
Ea

γ 0

−Aa
ffiffiffiffi
ϕ

p −1

�
; ð6Þ

where Aa ¼ Ea
μAμ. This shows that the compact manifold

S1 has its own tangent space, TpS1, at each point p ∈ MN ,
and is independent of TpMN−1 in the sense that they do
not mix.
The vielbeins are defined modulo Lorentz transforma-

tions. Any transformed basis ê0A ¼ Λ̂A
BêB, where Λ̂ is a

Lorentz matrix, is as suitable as êA, and therefore shares the
structure of Eq. (5). The Lorentz transformations are then
constrained by Λ̂a

N ¼ 0.
A Riemannian connection compatible with the N-

dimensional vielbein (5) is built under the premise that
dêA þ ~̂ωA

B ∧ êB ¼ 0. Thus, we find

~̂ωab ¼ ~ωab −
1

2

ffiffiffiffi
ϕ

p
FabêN;

~̂ωNa ¼ 1

2

ffiffiffiffi
ϕ

p
Fa
l e

l þ 1

2
∂a lnϕêN; ð7Þ

where ~ωab is the Riemannian spin connection of the
reduced manifold and Fab are the components of the field
strength of A ¼ Amem, defined by

F ¼ dA ¼ 1

2
Fabea ∧ eb: ð8Þ

The construction of the five-dimensional Einstein-Hilbert
action by means of the spin connection (7) leads to the
original KK theory.
In a Riemann-Cartan geometry, MN is not entirely

described by ~̂ωAB, but by a more general spin connection
independent of the metric degrees of freedom (see
Appendix A for details). We can assume a general con-
nection 1-form of the same type (regarding its MN−1 × S1

decomposition) as in Eq. (7). Thus, the most general spin
connection on MN compatible with the KK decomposition
is given by

ω̂AB ≡
�
ωab þ αabêN βa þ γaêN

−βb − γbêN 0

�
: ð9Þ

The decomposition in Eq. (9) adds new metric-
independent fields. The 0-form αab is an antisymmetric
tensor of spin-1. The 1-form βa ¼ βaμdxμ generically adds
a spin-2 field, a spin-1 field, and a spin-0 field. The last
piece, γa, is a vector 0-form of spin-1.

B. Curvature and torsion

The N-dimensional Lorentz curvature and torsion are
given by the Cartan structure equations

R̂AB ¼ dω̂AB þ ω̂A
C ∧ ω̂CB ¼ 1

2
R̂AB

CDêC ∧ êD; ð10Þ

T̂A ¼ dêA þ ω̂A
B ∧ êB ¼ 1

2
T̂A

BCêB ∧ êC: ð11Þ

Using the definition of curvature in Eq. (10), with the KK
ansatz for the spin connection (9), we find

R̂ab ¼ Rab þ
ffiffiffiffi
ϕ

p
αabF − βa ∧ βb

þ
�
Dαab þ 1

2
αabd lnϕ − 2β½aγb�

�
∧ êN; ð12Þ

R̂Na ¼ −ðDβa þ
ffiffiffiffi
ϕ

p
γaFÞ

þ
�
αabβ

b − Dγa −
1

2
γad lnϕ

�
∧ êN; ð13Þ

where R ¼ dωþ ω ∧ ω is the curvature of the reduced
spacetimeMN−1. Similarly, from the definition of torsion in
Eq. (11), we find its distinctive parts to be1

T̂a ¼ Ta þ ðβa − αabebÞ ∧ êN; ð14Þ

1Henceforth we will refer to the distinctive parts concerning
the M4 × S1 decomposition.
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T̂N ¼
ffiffiffiffi
ϕ

p
F − βb ∧ eb þ

�
1

2
d lnϕþ γbeb

�
∧ êN; ð15Þ

where T ¼ deþ ω ∧ e is the torsion 2-form of MN−1.

C. Bianchi identities

Considering the Bianchi identities for the KK structure
described above, we find relevant information about the
new fields. Taking the exterior covariant derivative over the
N-dimensional curvature and torsion, the Bianchi identities
are

D̂R̂AB ¼ 0 and D̂T̂A ¼ R̂A
B ∧ êB: ð16Þ

A careful decomposition of the first Bianchi identity
(covariant derivative of the curvature above) into its
distinctive parts gives the Bianchi identity for the curvature
of the reduced spacetime, together with the second deriva-
tive rules

DRab ¼ 0; DDαab ¼ Ra
lα

lb þ Rb
lα

al;

DDβa ¼ Ra
bβ

b; DDγa ¼ Ra
bγ

b: ð17Þ

This is taken as a proof of the tensorial nature of these new
fields under the four-dimensional Lorentz transformations.2

The second Bianchi identity gives its equivalent for MN−1;
this is

DTa ¼ Ra
b ∧ eb:

III. FIVE-DIMENSIONAL
LOVELOCK-CARTAN REDUCTION

The most general theory requiring the Lagrangian to be
(i) an invariant N-form under local Lorentz transforma-
tions, (ii) a local polynomial of the vielbein, the Lorentz
connection, and their exterior derivatives, and (iii) con-
structed without the Hodge dual,3 is the Lovelock–Cartan
theory of gravity [39]. This is the natural generalization
of Lanczos-Lovelock action when torsional degrees of
freedom are present. Its simplest realization is the
Einstein-Cartan model and their dimensional reduction is
indistinguishable from the Riemannian case (see, for
instance, [37,38]).
In five dimensions, the Lovelock-Cartan theory is given

by the following action principle:

I ¼
Z
M5

ϵ̂ABCDE

�
α0
5
êA ∧ êB ∧ êC ∧ êD ∧ êE

þ α1
3
R̂AB ∧ êC ∧ êD ∧ êE þ α2R̂

AB ∧ R̂CD ∧ êE
�
;

ð18Þ

where α0, α1, and α2 are dimensionful coupling constants.
Its variation with respect to the five-dimensional vielbein
and spin connection give the equations

ϵ̂ABCDEðα0êB ∧ êC ∧ êD ∧ êE þ α1R̂
BC ∧ êD ∧ êE

þ α2R̂
BC ∧ R̂DEÞ ¼ 0; ð19Þ

ϵ̂ABCDEðα1êC ∧ êD þ 2α2R̂
CDÞ ∧ T̂E ¼ 0: ð20Þ

The last term in Eq. (18) is the five-dimensional Gauss-
Bonnet term for a Lorentz curvature written in exterior
forms, which is analogous to Eq. (1) for the Riemannian
case. Exact solutions with torsion were reported in [40].
The Lovelock-Cartan theory in five dimensions allows a

unique torsional extension that is not in the Lovelock
series [39],

LT ∝ T̂A ∧ R̂A
B ∧ êB: ð21Þ

However, it can be written as a boundary term, adding no
dynamics to the field equations.
In this work, we will focus on the region in the parameter

space where

Δ≡ α21 − 4α0α2 > 0: ð22Þ
This condition place us outside the Chern-Simons point
(Δ ¼ 0). In that particular case, the field equations (19) and
(20) are invariant under a larger gauge group (AdS5), while the
action (18) becomes the Chern-Simons form for that group
[41]. Exact solutionswith torsion inChern-Simons gravity are
given in [38,42]. Holographic properties in the Riemannian
case were studied in Ref. [43] and also, when torsion is
considered, in Ref. [44]. Additionally, the case Δ < 0 was
considered in Ref. [45], and its cosmology in Ref. [46].
In terms of the KK ansatz presented in the previous

section, the field equations can be decomposed into its
distinctive parts. Then Eq. (19) leads to

ϵabcd

�
α0eb ∧ ec ∧ ed þ 1

2
α1ðMbc − Lb ∧ ecÞ ∧ ed

− α2ðLb ∧ Mcd þ Kb ∧ NcdÞ
�
¼ 0; ð23Þ

ϵabcdKb ∧ ðα1ec ∧ ed þ 2α2McdÞ ¼ 0; ð24Þ

ϵabcdðα0ea ∧ eb ∧ ec ∧ ed

þ α1Mab ∧ ec ∧ ed þ α2Mab ∧ McdÞ ¼ 0; ð25Þ

2The tensorial nature of these fields can be also derived from
the decomposition of the transformation rule of ω̂AB under the
Lorentz group.

3The Hodge dual maps p-forms into (N − p)-forms through
⋆ðêA1 ∧ … ∧ êApÞ ¼ 1

ðN−pÞ! ϵ̂
A1…Ap

Apþ1…AN
êApþ1 ∧ … ∧ êAN .
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ϵabcdðα1Nab ∧ ec ∧ ed þ 2α2NabMcdÞ ¼ 0; ð26Þ

while Eq. (20) gives

ϵabcd½α1ðec ∧ ed ∧ Z − 2ec ∧ TdÞ þ 2α2ðNcd ∧ W

þMcd ∧ Z þ 2Lc ∧ Td þ 2Kc ∧ VdÞ� ¼ 0; ð27Þ

ϵabcd½α1ec ∧ ed ∧ W þ 2α2ðMcd ∧ W þ 2Kc ∧ TdÞ� ¼ 0;

ð28Þ

ϵabcdðα1eb ∧ ec þ 2α2MbcÞ ∧ Td ¼ 0; ð29Þ

ϵabcd½α1eb ∧ ec ∧ Vd þ 2α2ðMbc ∧ Vd þ Nbc ∧ TdÞ� ¼ 0:

ð30Þ

The fieldsMab,Nab, La,Ka,W, Va, and Z are defined from
Eqs. (12)–(15), such that

R̂ab ¼ Mab þ Nab ∧ ê5; R̂5a ¼ Ka þ La ∧ ê5;

T̂a ¼ Ta þ Va ∧ ê5; T̂5 ¼ W þ Z ∧ ê5: ð31Þ

IV. DIMENSIONALLY REDUCED
LOVELOCK-CARTAN COSMOLOGY

A. Cosmological ansatz

In order to look for cosmological solutions, we demand
the symmetries assumed by the cosmological principle, i.e.,
isotropy and homogeneity of the involved fields. This can be
achieved by imposing that the Lie derivative of each field
along the Killing vectors that generate the symmetries
vanishes. Appendix B is devoted to the details of how to
find the general ansatz. The metric for this case is given by a
Friedmann-Robertson-Walker ansatz whose line element
reads

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − kr2
þ r2dθ2 þ r2sin2φdφ2

�
;

where aðtÞ is the scale factor and k ¼ þ1; 0;−1 determines
the spatial section of the four-manifold to be closed, flat, or
open, respectively. The four-dimensional vielbein compat-
ible with this metric reads

e0 ¼ dt; e1 ¼ aðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p dr;

e2 ¼ aðtÞrdθ; e3 ¼ aðtÞr sinφdφ: ð32Þ

The scalar field is a time-dependent function,

ϕ ¼ ϕðtÞ; ð33Þ
which is interpreted as the scale factor of the compact extra
dimension.

On the other hand, the spin connection adds two
functions that we called ωðtÞ and fðtÞ,

ω0i ¼ ωðtÞei; ð34Þ

ω12 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

aðtÞr e2 − fðtÞe3; ð35Þ

ω13 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

aðtÞr e3 þ fðtÞe2; ð36Þ

ω23 ¼ −
cot θ
aðtÞr e

3 − fðtÞe1: ð37Þ

The nonvanishing components of the spin connection
induced by the compact manifold are

β0 ¼ −bðtÞe0; βi ¼ βðtÞei; ð38Þ

γ0 ¼ −γðtÞ: ð39Þ

For this ansatz, the 1-form A ¼ AðtÞdt has vanishing
field strength F. Thus, without loss of generality, it can be
fixed to zero by means of an Uð1Þ gauge transformation or,
equivalently, a diffeomorphism transformation along the z
direction.
The equations of motion for the cosmological ansatz

give a system of differential equations for the time-
dependent functions defined above. Curvature and torsion
for this ansatz can be seen in Appendix B. We find that
the only non-Riemannian branch demands βa ¼ 0. Thus,
bðtÞ ¼ βðtÞ ¼ 0. Otherwise, the system is consistent only
at the Chern-Simons point, where it degenerates.
After a simple algebra, the system becomes

h

�
α1þ2α2

�
ω2þ k

a2
−f2

��
þ4α2fð _fþHfÞ¼ 0; ð40Þ

2α0 þ α1

�
_ωþ 2ω2 þ k

a2
− f2

�

þ 2α2ð _ωþ ω2Þ
�
ω2 þ k

a2
− f2

�
¼ 0; ð41Þ

2α2

�
_ϕ

2ϕ
þ γ

�
fð _f þHfÞ þ h2ðα1 − 2α2ωγÞ ¼ 0; ð42Þ

ω

�
_ϕ

2ϕ
þ γ

�
þ _γ þ

_ϕ

2ϕ
γ −

α1
2α2

¼ 0; ð43Þ

�
ω2 þ k

a2
− f2

�
ðα1 − 2α2ωγÞ − α1ωγ þ 2α0 ¼ 0; ð44Þ

ð _ωþ ω2Þðα1 − 2α2ωγÞ − α1ωγ þ 3α0 −
α21
4α2

¼ 0; ð45Þ
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where dot stands for the time derivative. For the sake of
simplicity, we have defined hðtÞ ¼ ωðtÞ −HðtÞ, where
H ¼ _a=a is the Hubble function.

B. Solutions

The system develops two non-Riemannian branches, one
for each value of the parameter

u� ¼ 2α1 �
ffiffiffiffiffiffi
6Δ

p

4α2
; ð46Þ

where Δ was given in Eq. (22).
Equations (40)–(45) are reduced to the Riemannian

system when f ¼ h ¼ 0 and γ ¼ − _ϕ=2ϕ. The details of
such a model can be seen in Refs. [25,47–50].
Because of Eq. (46), the solutions will be valid in the

region of the parameter space where Δ > 0. The function
ωðtÞ satisfies the equation

_ωþ ω2 þ u� ¼ 0; ð47Þ
which, for the three significantly different values of u�, has
the following solutions:

ωðtÞ ¼

8>><
>>:

− ffiffiffiffiffiffi
u�

p
tan ½ ffiffiffiffiffiffi

u�
p ðt − t0Þ�; u� > 0

ðt − t0Þ−1; u� ¼ 0ffiffiffiffiffiffiffiffiffi−u�
p

tanh ½ ffiffiffiffiffiffiffiffiffi−u�
p ðt − t0Þ�; u� < 0

; ð48Þ

where t0 is an integration constant to be fixed. We express
the time dependence of the remaining fields in terms of ω
and list them explicitly in Appendix C. The solutions read

γðωÞ ¼ u�
ω

; ð49Þ

ϕðωÞ ¼ ϕ0ω
2

jω2 þ u�j
exp

� ∓ ffiffiffiffiffiffi
6Δ

p

4α2ðω2 þ u�Þ
�
; ð50Þ

aðωÞ ¼ a0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jω2 þ u�j

p exp

� � ffiffiffiffiffiffi
6Δ

p

24α2ðω2 þ u�Þ
�
; ð51Þ

f2ðωÞ ¼ jω2 þ u�j
k
a20

exp

� ∓ ffiffiffiffiffiffi
6Δ

p

12α2ðω2 þ u�Þ
�

þ ω2 þ 3α1 �
ffiffiffiffiffiffi
6Δ

p

6α2
; ð52Þ

where a0 and ϕ0 are integration constants.
Herein, we will consider α1 to be positive,4 because this

parameter admits the interpretation of the Newton’s gravi-
tational constant. It is worth mentioning the existence of
models of gravity that are free of the linear curvature term.
These models are referred to as pure Lovelock gravities

[51] and consider the cosmological term and the poly-
nomial of highest order in the curvature. Even though the
analysis that follows will consider a positive nonzero value
for α1, the solutions listed above are also valid in the regime
where α1 ¼ 0, which constitutes the non-Riemannian
extension of pure Lovelock theories.

1. Bouncing solutions

In Fig. 1 we show the allowed region, in the α0–α2
parameter space, for u� to be positive.
All the solutions for u� > 0 are periodic, as shown in the

behavior of the scale factor in Fig. 2. In that case, the scale
factor aðtÞ starts from a singular point and reaches a future
one after a time tbounce ¼ π=

ffiffiffiffiffiffi
u�

p
. Depending on the

particular region on the parameter space, the scale factor
undergoes an expanding and contracting age, allowing a
intermediate bounce without collapsing before a big
crunch. This is the case of the third curve in Fig. 2.
Otherwise, it expands and collapses in a simple oscillatory
way. Moreover, the bouncing behavior of the extra dimen-
sion is given by the scalar field in a phase difference of π=2
with respect to aðtÞ, as shown in Fig. 3.

2. Expanding and contracting solutions

The allowed parameter space for uþ and u− to be
negative is shown in Fig. 4, while the restriction u− ¼ 0

sets α2 ¼ 1
12α0

.5

In the regime where u� ≤ 0, there are three distinctive
conducts: (i) eternal expansion, (ii) eternal contraction, and
(iii) initial expansion followed by an eternal contraction. In
all these three scenarios, the size of the extra dimension,
modulated by the ϕðtÞ field, is reciprocal to the scale factor

FIG. 1. Allowed regions, in the α0-α2 plane, for uþ and u− to be
positive definite.

4In all the plots we normalize α1 ¼ 1. 5Notice that in our choice of parameters uþ cannot vanish.

OSCAR CASTILLO-FELISOLA et al. PHYSICAL REVIEW D 94, 124020 (2016)

124020-6



aðtÞ regarding their expansive/contractive asymptotic
behavior.
The case u− ¼ 0 has two behaviors depending on

whether α2 is positive or negative. As shown in Fig. 5,
for positive α2 the solutions fit into the third category
above, while for negative α2 the solutions expand eternally.
The ϕ field (see Fig. 6) grows infinitely for α2 > 0, or
asymptotically goes to zero for α2 < 0. This latter behavior
provides a dynamical compactification, which might serve
as a mechanism to assure—at a certain time—the decou-
pling of the zeroth mode from the Kaluza-Klein tower.
The case u� < 0 has solutions that either expand or

contract eternally, as shown in Fig. 7. The typical evolution
of the Universe with uþ < 0 is to grow infinitely, while for
negative u− the expansion (contraction) corresponds to α2

positive (negative). Figure 8 shows the behavior of ϕ for
this case. For all these solutions, the scale factor remains
finite at t ¼ 0, presenting no initial singularity. It has been
reported that the Gauss-Bonnet term can prevent the
Universe from expanding from an initial singularity
[25,48], which also applies to this case.

C. Effective energy density and pressure

Equation (23) can be written in a familiar form, by means
of (A3), as

−
1

2
ϵabcd

�
~Rbc −

Λ
3
eb ∧ ec

�
ed ¼ κGτ

eff
a ; ð53Þ

with Λ≡ −6α0=α1, κG ≡ 2=α1, and

FIG. 2. Behavior of the scale factor, aðtÞ, as a function of the
scaled time, τ, for u� > 0. We have normalized using the
maximum value of the scale factor, amax.

FIG. 3. Behavior of the ϕ field as a function of the scaled time,
τ, for u� > 0. We have normalized using the maximum value of
the scalar field, ϕmax.

FIG. 4. Allowed regions, in the α0-α2 plane, for uþ and u− to be
negative definite.

FIG. 5. Distinctive behaviors of the scale factor for u− ¼ 0.

KALUZA-KLEIN COSMOLOGY FROM FIVE-DIMENSIONAL … PHYSICAL REVIEW D 94, 124020 (2016)

124020-7



τeffa ¼ 1

2
ϵabcd

�
1

2
α1ðκbl ∧ κlc þ ~DκbcÞ ∧ ed

þ
�
Dγb þ 1

2
γbd lnϕ

�
∧
�
1

2
α1ec ∧ ed þ α2Rcd

��
;

ð54Þ

where κab is the contorsion 1-form defined as the torsional
correction to the spin connection [see Eq. (A1)]. The
contributions of F, αab, and βa have not been taken into
account because, for the purposes of this article, they
vanish. The left-hand side of Eq. (53) is the 3-form whose
Hodge dual yields the Einstein equations with cosmologi-
cal constant in four dimensions. We identify the right-hand
side as an energy-momentum 3-form induced by the
geometry, which behaves as a perfect fluid. It contains
the torsional and the higher-dimensional degrees of
freedom.
The energy density ρ and the pressure p are obtained

through the identities

τeff0 ¼ −
1

3!
ρϵ0ijkei ∧ ej ∧ ek; ð55Þ

τeffi ¼ −
1

2
pϵ0ijke0 ∧ ej ∧ ek; ð56Þ

giving

ρ ¼ −
3

2
α1ðh2 − f2 þ 2HhÞ

þ 3ωγ

�
1

2
α1 þ α2

�
ω2 þ k

a2
− f2

��
; ð57Þ

p ¼ α1

�
_hþHhþ 1

2
ðh2 − f2 þ 2HhÞ

�

− 2ωγ

�
1

2
α1 þ α2ð _ωþHωÞ

�

þ
�
_γ þ 1

2
γ _Φ

��
1

2
α1 þ α2

�
ω2 þ k

a2
− f2

��
: ð58Þ

Using the solutions obtained in the previous section, these
expressions are

ρ ¼ 3

2
α1

�
H2 þ k

a2

�
þ 3α0; ð59Þ

p ¼ −α1
�
_H þ 3

2
H2 þ k

2a2

�
− 3α0; ð60Þ

and satisfy the continuity equation _ρþ 3Hðρþ pÞ ¼ 0.
For u� < 0, the energy density remains finite at the

beginning. From Eqs. (59) and (60) one can see that the
induced energy density and pressure are not positive-definite

FIG. 6. Distinctive behavior of the ϕ field for u− ¼ 0.

FIG. 7. Different behaviors for the scale factor, as function of
the scaled time τ, for u� < 0. We have normalized using the
maximum value of the scale factor, amax, in the plotted region.

FIG. 8. Different behaviors for the ϕ field, as function of the
scaled time τ, for u� < 0. We have normalized using the
maximum value of the ϕ field, ϕmax, in the plotted region.
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quantities. In fact, the Universe undergoes an accelerating
expansion phase due to the presence of torsion and the
extradimensional fields.

V. DISCUSSION AND CONCLUSIONS

In this work we have presented the dimensional reduc-
tion of the five-dimensional Lovelock-Cartan theory intro-
duced in Ref. [39], under the assumption that the compact
dimension has S1 topology. An interesting feature of these
theories is that, unlike the Einstein-Cartan theory, torsion is
allowed to propagate.
Although there are several generalizations of gravita-

tional models which include higher-order terms in curva-
ture and torsion—in either four or higher dimensions
[31–33]—we highlight that in our model the presence of
higher-order terms in torsion are introduced through the
Gauss-Bonnet term, accompanied by a sole extra coupling
constant. Moreover, Lovelock-Cartan gravity ensures that
the field equations are first-order equations (since the
Lagrangian can be written without the use of the Hodge
dual), which is not the case in most gravitational models
with higher-order curvature and torsion.
In the generic reduction, the effective theory has a spin-2

particle, a spin-1 Uð1Þ gauge boson, and a spin-0 scalar
particle coming from the decomposition of the metric,
while the decomposition of the spin connection introduces
three extra fields: two spin-1 particles, αab and γa, and the
1-form βa yields a new spin-2 particle, a spin-1 particle, and
a spin-0 particle. These new fields do not transform under
the gauge group (see Sec. II C).
We used the most general ansatz compatible with the

cosmological symmetries (see Appendix B) to find sol-
utions of the Friedmann-Robertson-Walker class in the
four-dimensional theory. Though we restrict ourselves to
the class of theories with Δ > 0, in Ref. [46] the case of
negative Δ is considered (without torsion). The field
equations for the cosmological ansatz ensure that the
solutions with nontrivial torsion have vanishing αab and
βa. The solutions are parametrized by u�, related to the
fundamental couplings of the theory through Eq. (46), and
exhibit three different sectors depending on whether this
parameter is positive, negative, or zero. The behavior of the
universes described by our solutions is fourfold: (i) eternal
expansion, (ii) eternal contraction, (iii) initial expansion
with asymptotic contraction, and (iv) bouncing.
Among the different cases, there are some solutions that

do not start from an initial singularity; however, this is not
the generic behavior. Moreover, all of our cosmological
solutions are free of the future singularities categorized in
Ref. [52]. In addition, the size of the extra dimension is
driven by the scalar field ϕðtÞ and its behavior at late times
is compatible with a dynamical mechanism for compacti-
fication, at certain regions of the parameter space (see
Figs. 6 and 8). Another interesting feature is that in all of
our cosmological scenarios, the scale factor does not

depend on the k parameter which modulates the metric
structure.
The field equation (23) admits the interpretation of the

Einstein equations, where the energy-momentum 3-form is
induced by the torsion and the extradimensional degrees of
freedom. It is important to mention that the induced energy-
momentum form is nonstandard, in the sense that it inherits
a coupling between matter and curvature [see Eq. (54)
for the definition]. Moreover, the energy density and the
pressure are not positive definite, providing a playground
for a gravitational explanation for the accelerated expansion
of the Universe.
As we can see from Eq. (B5), f corresponds to the

completely antisymmetric part of torsion. Its solution given
in Eq. (52) shows that it can be imaginary for certain
periods of time. Additionally, it is the only function
sensitive to the value of k. Thus, if a reality condition is
imposed over f for certain values of the coupling constants,
it would provide a distinction criteria among open, flat,
and closed universes. In the light of this, and given the
experimental evidence supporting the flatness of the
Universe (see Ref. [53]), we restrict the discussion to
the case where k ¼ 0.6 A reality condition over f in
Eq. (52) is satisfied within the region

3α1 �
ffiffiffiffiffiffi
6Δ

p
≥ 0 and α2 > 0; or;

3α1 �
ffiffiffiffiffiffi
6Δ

p
≤ 0 and α2 < 0:

This should be taken into account to restrict the parameter
region studied in Sec. IV B. A similar behavior for this
function was found in Ref. [54]. Notice that the antisym-
metric part of torsion is unseen by classical particles
following geodesics and it does not couple minimally to
spin-0 or spin-1 bosons. However, it appears as an effective
interaction term for the Dirac Lagrangian in spacetimes
with torsion [30]

LInt ¼ −
i
8
TαμνΨ̄ΓαμνΨ ¼ 3

2
fΨ̄Γ0Γ5Ψ;

which couples to the fermionic axial current. For imaginary
values of fðtÞ, the authors in Ref. [54] argued that the loss
of unitarity and the violation of the current conservation can
be interpreted as particle creation.
The vacuum cosmological solutions presented here

provide a useful arena to isolate the effects of the induced
fields and probe their consequences in physically important
scenarios. In that sense, and since they are absent in the
cosmological ansatz, a four-dimensional isotropic configu-
ration might contribute to interpret the αab and βa fields as
gravitational hairs in black-hole solutions, or wormhole-
supporting matter.

6The cases where k ¼ �1 can be studied analogously.
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The gravitational principles we take for granted can be
relaxed to construct a logically consistent theory. This
approach might provide an explanation for the phenomena
at the limit of the current understanding of the Universe,
such as its content and evolution. This work shows that the
renouncing of the metric description of gravity, attached to
a higher-dimensional spacetime, can radically affect the
way we perceive the gravitational degrees of freedom and,
therefore, what our measurements read as the energy
content of the Universe.
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APPENDIX A: RIEMANN-CARTAN GEOMETRY

In Riemann-Cartan geometry, both the vielbein eA and
the spin connection ωAB are independent features of the
manifold.7 The spin connection can be decomposed in a
Riemannian part, which is metric dependent, ~ωAB satisfying
~DeA ¼ 0, and a contorsion piece κAB ¼ −κBA, such that

ωAB ¼ ~ωAB þ κAB: ðA1Þ

Therefore, the torsion 2-form defined as the covariant
derivative of the vielbein with respect to the total spin
connection is

TA ¼ κAB ∧ eB: ðA2Þ

On the other hand, the curvature 2-form also suffers
corrections with respect to the Riemannian one, due to
the presence of torsional degrees of freedom. This can be
seen explicitly by taking the definition of curvature in
Eq. (10) and (A1) to find

RAB ¼ ~RAB þ ~DκAB þ κAC ∧ κCB; ðA3Þ

where ~RAB is the Riemannian curvature constructed
with ~ωAB.

APPENDIX B: ISOTROPIC-HOMOGENEOUS
ANSATZ

The cosmological principle demands the spatial section
of spacetime to be isotropic and homogeneous. This means
that the fields involved in the model must be compatible
with this assumption. A spacetime is isotropic with respect
to certain point P if after a rotation with respect to an axis
passing through P, all the geometrical properties remain
invariant. Thus, the spacetime looks the same in all
directions. Homogeneity is understood such that the
spacetime looks the same from every point P. These
two assumptions are translated in the Killing equations,
which are the vanishing of the Lie derivatives of the fields
along the vectors which generate the symmetries fζλig.
The set of Killing vectors fζλig are the generators of

SOð3Þ, which generate the spatial rotations in three
dimensions, J i ¼ ϵijkxj∂k, and the Killing vectors asso-

ciated with spatial translations Pi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p ∂i, satisfying
the algebra

½J i;J j� ¼ ϵijkJ k;

½Pi;Pj� ¼ −kϵijkJ k;

½J i;Pj� ¼ ϵijkPk:

In particular, the Killing equations for the metric tensor
and the torsion tensor are

£igμν ¼ ζλi∂λgμν þ gλν∂μζ
λ
i þ gμλ∂νζ

λ
i ¼ 0; ðB1Þ

£iTα
μν ¼ ζλi∂λTα

μν − Tλ
μν∂λζ

α
i þ Tα

λν∂μζ
λ
i

þ Tα
μλ∂νζ

λ
i ¼ 0; ðB2Þ

where Tα
μν are the components of the torsion 2-form

defined by Ta ¼ 1
2
eaαTα

μνdxμ ∧ dxν. The same must hold
for the new fields

£iAμ ¼ ζλi∂λAμ þ Aλ∂μζ
λ
i ¼ 0; ðB3Þ

£iϕ ¼ ζλi∂λϕ ¼ 0; ðB4Þ

and also for the components of αμν ¼ −ανμ, βμν and γμ,
defined such that

αab ¼ EaμEbναμν;

βa ¼ Eaμβμνdxν;

γa ¼ Eaμγμ;

and whose Killing equations are analogous to the tensorial,
Eq. (B1), and vectorial one, Eq. (B3). These requirements
on the fields are translated to a set of first-order differential
equations whose most general solution determines our
ansatz structure for Eqs. (32)–(39).

7Here, we will drop the hats since we will not deal with the KK
decomposition.

OSCAR CASTILLO-FELISOLA et al. PHYSICAL REVIEW D 94, 124020 (2016)

124020-10



The components of the Lorentz curvature and torsion for
the isotropic-homogeneus ansatz are

R0i ¼ ð _ωþHωÞe0 ∧ ei þ fωϵijkej ∧ ek;

Rij ¼
�
ω2 þ k

a2
− f2

�
ei ∧ ej − ð _f þHfÞϵijke0 ∧ ek;

and

T0 ¼ 0; Ti ¼ −he0 ∧ ei þ fϵijkej ∧ ek; ðB5Þ

respectively. The functions aðtÞ, ωðtÞ, fðtÞ, hðtÞ, and HðtÞ
were defined in Sec. IV.

APPENDIX C: TIME DEPENDENCE
ON THE SOLUTIONS

We supply here the time-dependent expressions for the
cosmological solutions, given the different values of u�, in
terms of the dimensionless parameter τ ¼ ffiffiffiffiffiffiffiffiffiju�j

p ðt − t0Þ.
For u� > 0,

γðtÞ ¼ −
ffiffiffiffiffiffi
u�

p
cot τ; ðC1Þ

ϕðtÞ ¼ ϕ0sin2τ exp

�∓ ffiffiffiffiffiffi
6Δ

p

4α2u�
cos2τ

�
; ðC2Þ

aðtÞ ¼ a0ffiffiffiffiffiffi
u�

p j cos τj exp
�� ffiffiffiffiffiffi

6Δ
p

24α2u�
cos2τ

�
; ðC3Þ

f2ðtÞ ¼ u�
k
a20

sec2τ exp

�∓ ffiffiffiffiffiffi
6Δ

p

12α2u�
cos2τ

�

þ u�tan2τ þ
3α1 �

ffiffiffiffiffiffi
6Δ

p

6α2
: ðC4Þ

For u� ¼ 0,

γðtÞ ¼ 0; ðC5Þ

ϕðtÞ ¼ ϕ0 exp

�∓ ffiffiffiffiffiffi
6Δ

p

4α2
ðt − t0Þ2

�
; ðC6Þ

aðtÞ ¼ a0jt − t0j exp
�� ffiffiffiffiffiffi

6Δ
p

24α2
ðt − t0Þ2

�
; ðC7Þ

f2ðtÞ ¼ k
a20ðt − t0Þ2

exp

�∓ ffiffiffiffiffiffi
6Δ

p

12α2
ðt − t0Þ2

�

þ ðt − t0Þ−2 þ
3α1 �

ffiffiffiffiffiffi
6Δ

p

6α2
: ðC8Þ

For u� < 0,

γðtÞ ¼ −
ffiffiffiffiffiffiffiffiffi
−u�

p
coth τ; ðC9Þ

ϕðtÞ ¼ ϕ0sinh2τ exp

�∓ ffiffiffiffiffiffi
6Δ

p

4α2u�
cosh2τ

�
; ðC10Þ

aðtÞ ¼ a0ffiffiffiffiffiffiffiffiffi−u�
p cosh τ exp

�� ffiffiffiffiffiffi
6Δ

p

24α2u�
cosh2τ

�
; ðC11Þ

f2ðtÞ ¼ −u�
k
a20

cosh−2τ exp

�∓ ffiffiffiffiffiffi
6Δ

p

12α2u�
cosh2τ

�

− u�tanh2τ þ
3α1 �

ffiffiffiffiffiffi
6Δ

p

6α2
: ðC12Þ
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