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We compute the parametrized post-Newtonian parameter γ in the case of a static point source for
multiscalar-tensor gravity with completely general nonderivative couplings and potential in the Jordan
frame. Similarly to the single massive field case γ depends exponentially on the distance from the source
and is determined by the length of a vector of nonminimal coupling in the space of scalar fields and its
orientation relative to the mass eigenvectors. Using data from the Cassini tracking experiment, we estimate
bounds on a general theory with two scalar fields. Our formalism can be utilized for a wide range of models,
which we illustrate by applying it to nonminimally coupled Higgs SU(2) doublet, general hybrid metric-
Palatini gravity, linear (□−1) and quadratic (□−2) nonlocal gravity.
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I. INTRODUCTION

Multiscalar-tensor gravity (MSTG) generalizes the
scalar-tensor gravity (STG) of a scalar field Φ nonmini-
mally coupled to curvature R, to the case of multiple scalar
fields Φα [1,2]. Nonminimal couplings are typically gen-
erated by quantum corrections and arise in the effective
models of higher dimensional theories. Diverse versions of
MSTG appear in fundamental physics and cosmology in
various constructions and under different disguises.
First, there are several phenomenological motivations to

consider nonminimally coupled scalars. The Standard
Model Higgs field is an SU(2) complex doublet, in the
case it is endowed with a nonminimal coupling to curvature
also the Goldstone modes may play a role in Higgs inflation
[3] and the subsequent dark energy era [4]. Otherwise a
nonminimal Higgs may be paired with another nonminimal
scalar (e.g. a dilaton) [5], or the inflation and dark energy
could be run by two nonminimally coupled scalars [6].
More general MSTG inflation or dark energy models have
N fields with noncanonical kinetic terms and arbitrary
potential [1,7–10] (also considered for stellar models [11]),
or are embedded into a supergravity setup [12]. The most
general multiscalar-tensor gravitational action with second
order field equations includes derivative couplings and is a
generalization of Horndeski’s class of theories, so far
worked out for the two fields case [13].
Second, different proposed extensions and modifications

of general relativity can be also cast into the formofMSTGby
a change of variables. It is well known that, if the gravitational
Lagrangian is nonlinear in curvature, fðRÞ, or more generally
fðΦα; RÞ, the theory is dynamically equivalent to (M)STG

with the potential depending on the form of the function f
[14–16]. Likewise we get a MSTG when the original
Lagrangian is a more complicated function of multiple
arguments of R, □R, ∇μR∇μR, Gauss-Bonnet topological
term, orWeyl tensor squared [17], as each such argument can
contribute a scalar nonminimally coupled toR. (A function of
arbitrary curvature invariants can be also turned into scalars,
but the tensor part will not generally reduce to linear R alone
[18].) If the metric and connection are treated as independent
variables, defining curvature scalars R and R, the resulting
general hybrid metric-Palatini fðR;RÞ gravity is equivalent
to MSTGwith two scalars [19]. A related construction called
C-theorywhich continuously interpolates betweenmetric and
Palatini gravities, also possesses a biscalar-tensor represen-
tation [20]. In case the Lagrangian is a function of higher
derivatives of the curvature, fðR;□iRÞ, each such argument
can be converted to a nonmimimal scalar in MSTG [21].
Moreover, a Lagrangian of nonlocal gravity, characterized by
derivatives in the inverse powers, fðR;□−iRÞ, can be made
local by again introducing auxiliary scalar fields nonmini-
mally coupled to R [22,23].
The parametrized post-Newtonian (PPN) formalism is

designed to describe slow motions in weak gravitational
fields [24], and can be utilized to confront the theory with
high precision measurements in e.g. the Solar System. The
original STG computation by Nordtvedt [25], which
assumed that the potential (mass) of the scalar field
vanishes, has been generalized to studies of higher order
effects [26] and for models with altered kinetic term or
extra scalar-matter couplings [27]. An important lesson
learned in the STG case is that making the scalar field
massive by the inclusion of the potential modifies the PPN
parameters [28–31], so that the theory becomes viable in a
much larger domain (cf. also Refs. [32,33]). This has been
especially relevant for understanding the PPN behavior of
fðRÞ gravity [34], equivalent to a subclass of STG. Of
course, a similar effect is also present in the generalized
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STG or Horndeski theory [35]. Curiously enough, in
teleparallel theories where the scalar field is nonminimally
coupled to torsion, the PPN parameters coincide with the
ones of general relativity [36] unless a boundary term is
introduced to the action [37].
In the pioneering MSTG paper Damour and Esposito-

Farèse derived the PPN parameters in the Einstein frame
and assuming the potential vanishes [1]. The effect of the
potential was also not considered in the Jordan frame
computation for the constant diagonal kinetic term [2] and
more recently for a generic kinetic term [38]. These results
were generalized to arbitrary frame and scalar field para-
metrization by using the formalism of invariants [10]. The
PPN parameters for C-theory have been determined by
relying on the correspondence with a subclass of MSTG in
the massless (vanishing potential) limit [39], while the PPN
parameter γ for specific nonlocal gravity models has been
found using the biscalar representation [40] as well as
independently of MSTG [41].
The purpose of this paper is to calculate the PPN

parameter γ for a Jordan frame MSTG with generic kinetic
terms and arbitrary potential (but without derivative cou-
plings). In Sec. II we recall the Jordan frame MSTG action
in different parametrizations. In the process we define a
covariant metric on the space of scalar fields and the vector
of nonminimal coupling, these allow us to clarify the
invariant notion of ghosts and the meaning of nonminimal
coupling. Next in Sec. III we carry out the PPN compu-
tation for a point mass source and find that the effective
gravitational constant as well as the PPN parameter γ in
general depend on the distance from the source. Section IV
uncovers the geometric picture underlying this result in
terms of the eigenvectors of the mass matrix. Section V
draws rough experimental bounds on the two scalars case
from the Cassini tracking experiment. Section VI illustrates
how to apply our formalism for various interesting exam-
ples of MSTG: nonminimally coupled Higgs SU(2) dou-
blet, general hybrid metric-Palatini gravity, linear (□−1)
nonlocal gravity, and quadratic (□−2) nonlocal gravity. The
last section, VII, provides a summary and outlook.
Some more technical calculations are given in the

appendices. Appendix A discusses when the mass matrix
can be diagonalized. Appendix B deals with the boundary
value problem and the determination of integration con-
stants. Appendix C addresses the cases when the mass
matrix cannot be brought into diagonal form and there are
higher dimensional Jordan blocks.

II. JORDAN FRAME ACTION FUNCTIONAL FOR
N FIELDS IN DIFFERENT PARAMETRIZATIONS

We start our discussion of multiscalar-tensor gravity with
a brief review of its action functional and field equations in
the Jordan frame. In Sec. II A, we consider a general
parametrization of the scalars, while in Sec. II B we present
the special case of a Brans-Dicke-like parametrization.

A. General parametrization

The general form of the multiscalar-tensor gravity action
in the Jordan frame withN scalar fieldsΦα can be written as
[2,9,38]

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ðFR − Zαβgμν∂μΦα∂νΦβ − 2κ2UÞ

þ Sm½gμν; χ�: ð1Þ
Here the indices α; β; γ;… ¼ 1; 2;…; N label the scalar
fields, the indices μ; ν;… ¼ 0, 1, 2, 3 belong to the
spacetime coordinates, while i; j;… ¼ 1, 2, 3 are reserved
for the spatial coordinates in the calculations later. The
function F ¼ F ðΦ1;Φ2;…;ΦNÞ > 0 describes the non-
minimal coupling between the scalars and curvature,
making the effective gravitational constant field dependent.
The functions Zαβ ¼ ZαβðΦ1;Φ2;…;ΦNÞ characterize
the kinetic terms of the scalar fields, while U ¼
UðΦ1;Φ2;…;ΦNÞ denotes the scalar potential. In the
Jordan frame the action Sm½gμν; χm� for the matter fields
χm involves only the metric gμν and not the scalars Φα.
Making a scalar fields dependent conformal rescaling of the
metric will present the theory in a different frame where the
matter action Sm would contain the scalars as well.
Likewise we can also reparametrize the scalar fields,
changing the form of the functions F , Zαβ, U and possibly
recasting the theory into a form more amenable for
computations and physical interpretation. We have adopted
a system of units where the speed of light and Planck’s
constant are set to equal one, c ¼ h ¼ 1. The constant κ2

8π
can be interpreted as a bare Newtonian gravitational
constant, while effectively the strength of gravity is
modified by the function F .
The variation of the action (1) with respect to the metric

gives a generalization of the Einstein’s equation,

F
�
Rμν −

1

2
gμνR

�
þ gμν□F −∇μ∇νF

þ 1

2
gμνZαβ∇ρΦα∇ρΦβ − Zαβ∇μΦα∇νΦβ

þ κ2gμνU ¼ κ2TðχÞ
μν ; ð2Þ

while the variation with respect of the scalar fields and
eliminating the R term by using the trace of Eq. (2) yields
equations for the scalar fields,�
2FZαβ þ 3

∂F
∂Φα

∂F
∂Φβ

�
□Φβ

¼ −3
∂F
∂Φα

∂2F
∂Φβ∂Φδ ∂ρΦβ∂ρΦδ −

∂F
∂Φα Zβδ∂ρΦβ∂ρΦδ

þ F
∂Zβδ

∂Φα ∂ρΦβ∂ρΦδ − 2F
∂Zαβ

∂Φδ ∂ρΦβ∂ρΦδ

− 4
∂F
∂Φα κ

2U þ 2Fκ2
∂U
∂Φα þ

∂F
∂Φα κ

2TðχÞ: ð3Þ
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The energy-momentum tensor of matter fields χ is defined by

TðχÞ
μν ¼ −

2ffiffiffiffiffiffi−gp δSm
δgμν

: ð4Þ

It is well known that in the theories where the scalars are
minimally coupled to gravity, the matrix Zαβ can be
interpreted as a metric for the space of scalar fields, it
transforms as a second rank covariant tensor under the
redefinitions of the scalar fields. However, when the scalars
are nonminimally coupled to curvature, the matrix

F αβ ≡ 1

4F 2

�
2FZαβ þ 3

∂F
∂Φα

∂F
∂Φβ

�
ð5Þ

is a natural candidate for the role of the metric of the space
spanned by the scalar fields. It transforms covariantly not
only under the redefinitions of the scalar fields, but also
under the conformal rescalings of the spacetime metric
[10]. For instance we can use it to define a scalar product of
quantities which are vectors in the space of scalar fields.
In a well-behaving theory the eigenvalues of F αβ are

positive, while a negative eigenvalue signals the presence
of a ghost among the scalars. The latter becomes quite
apparent when we make a conformal transformation into
the Einstein frame where the metric and scalar variables of
gravitation are more clearly separated. In the Einstein frame
F ≡ 1 and F αβ reduces to

1
2
Zαβ which is the factor in front

of the scalar kinetic terms. Therefore its negative eigen-
value implies a “wrong” sign kinetic term for one of the
scalar degrees of freedom [8,23].
A zero eigenvalue of F αβ tells that one of the scalar

degrees of freedom is nondynamical (like ωBD ¼ − 3
2
for a

single field Brans-Dicke case). In this case the equations of
motion allow one of the fields to be expressed in terms of
the other fields, and by inserting this relation into the action
we can integrate the nondynamical field away (see e.g.
Ref. [39]). Note that zero eigenvalue implies that the metric
F αβ is not invertible and the computation scheme devel-
oped in the current paper does not go through.
We assume the matrix F αβ has an inverse F βγ , i.e.

F αβF βγ ¼ δγα and detðF αβÞ ≠ 0. Then we may multiply the
scalar field equations (3) withF γα from the left, to establish

□Φγ ¼ Eγ −KγTðχÞ; ð6Þ
where the kinetic and potential terms are collected into

Eγ ¼ F γα

�
−

3

4F 2

∂F
∂Φα

∂2F
∂Φβ∂Φδ ∂ρΦβ∂ρΦδ

−
1

4F 2

∂F
∂ΦαZβδ∂ρΦβ∂ρΦδ þ 1

4F
∂Zβδ

∂Φα ∂ρΦβ∂ρΦδ

−
1

2F
∂Zαβ

∂Φδ ∂ρΦβ∂ρΦδ −
1

F 2

∂F
∂Φα κ

2U þ κ2

2F
∂U
∂Φα

�
;

ð7Þ

and the influence of matter energy-momentum is
mediated by

Kα ¼ −κ2
1

4F 2

∂F
∂Φα ; Kγ ¼ −κ2

1

4F 2
F γα ∂F

∂Φα : ð8Þ

We may call the object with components Kγ a vector
of nonminimal coupling since it is constructed from the
derivatives of the nonminimal coupling function F and
it transforms as a vector under the scalar field redefi-
nitions. In MSTG the gravitational interaction is medi-
ated by the metric and the nonminimal scalars: the
dynamical equation for the metric (2) is sourced by the

energy-momentum tensor of the matter fields, TðχÞ
μν ,

while the dynamics of the scalars (6) is sourced by
the trace of the matter energy-momentum, TðχÞ. If Kα

has a zero component then in this particular paramet-
rization of the scalar fields the respective Φα field is not
directly coupled to the curvature. Analogously, if Kγ has
a zero component, the field Φγ is not sourced by the
matter. However, through the interactions between the
scalars as encoded in the potential and kinetic terms of
the action all scalars will still be indirectly coupled to
curvature and matter in general. Only if all components
of the vector of nonminimal coupling are identically
zero, can we deem that the scalars as a collection are
minimally coupled. For theories with positive definite
metric F αβ on the space of the scalar fields, if the length
of the nonminimal coupling vector,

jKj2 ¼ F αβKαKβ; ð9Þ

vanishes, then the scalars are minimally coupled. The
latter statement is frame and parametrization indepen-
dent since the combination (9) remains invariant under
the redefinitions of the scalar fields as well as under the
rescalings of the spacetime metric [10].

B. Brans-Dicke-like parametrization

For a more straightforward physical interpretation of
the theory it is convenient to redefine the scalar fields
Φα ¼ Φαðϕ1;ϕ2;…;ϕN−1;ΨÞ by setting [9,38]

Ψ ¼ F ðΦ1;Φ2;…;ΦNÞ: ð10Þ

This reshuffles the scalars so that the covector of non-
minimal couplingKα has only one nonzero component, i.e.
it is aligned along the Nth axis (Ψ direction) in the space of
the scalar fields. Taking into account that
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Zαβ∂ρΦα∂ρΦβ

¼ Zαβ

�∂Φα

∂ϕa

∂Φβ

∂ϕb ∂ρϕ
a∂ρϕb

þ 2
∂Φα

∂ϕa

∂Φβ

∂Ψ ∂ρϕ
a∂ρΨþ ∂Φα

∂Ψ
∂Φβ

∂Ψ ∂ρΨ∂ρΨ

�
; ð11Þ

let us denote in this parametrization

Zab ¼ Zαβ
∂Φα

∂ϕa

∂Φβ

∂ϕb ;

ZaN ¼ Zαβ
∂Φα

∂ϕa

∂Φβ

∂Ψ ;

ZNN ¼ Zαβ
∂Φα

∂Ψ
∂Φβ

∂Ψ ;

Uðϕ1;ϕ2;…;ϕN−1;ΨÞ ¼ UðΦ1;Φ2;…;ΦNÞ; ð12Þ

where a; b;… ¼ 1; 2;…; N − 1 label the scalar fields ϕ.
In general there are all together N scalar redefinitions
(relations between the old and new set of scalar fields) at
our disposal, one of these has been already employed as
(10). Let us use the remaining N − 1 conditions to
impose

ZaNðϕ1;ϕ2;…;ϕN−1;ΨÞ ¼ 0: ð13Þ

We may also denote

ZNN ¼ ωðϕ1;ϕ2;…;ϕN−1;ΨÞ
Ψ

: ð14Þ

After such redefinitions all but one of the vector
components Kα vanish, and the action (1) reads

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
ΨR − Zab∂ρϕ

a∂ρϕb −
ω

Ψ
∂ρΨ∂ρΨ − 2κ2U

�
þ Sm½gμν; χm�; ð15Þ

looking akin to the Brans-Dicke theory. However note that the functions depend on all scalar fields: ω ¼ ωðϕ1;ϕ2;…;ΨÞ,
Zab ¼ Zabðϕ1;ϕ2;…;ΨÞ, U ¼ Uðϕ1;ϕ2;…;ΨÞ. The scalar field Ψ has been singled out as a variable part of the
gravitational constant. The field equations corresponding to the action (15) are

Ψ

�
Rμν −

1

2
gμνR

�
þ gμν□Ψ −∇μ∇νΨþ 1

2
gμνZab∇ρϕ

a∇ρϕb þ 1

2
gμν

ω

Ψ
∇ρΨ∇ρΨ

− Zab∇μϕ
a∇νϕ

b −
ω

Ψ
∇μΨ∇νΨþ κ2gμνU ¼ κ2TðχÞ

μν ; ð16Þ

and

ð2ωþ 3Þ□Ψ ¼
�
Ψ
∂Zab

∂Ψ − Zab

�
∂ρϕ

a∂ρϕb −
∂ω
∂Ψ ∂ρΨ∂ρΨ − 2

∂ω
∂ϕa ∂ρϕ

a∂ρΨ − 2κ2
�
2U −Ψ

∂U
∂Ψ −

1

2
TðχÞ

�
; ð17Þ

Zac□ϕa ¼
�
1

2

∂Zab

∂ϕc −
∂Zac

∂ϕb

�
∂ρϕ

a∂ρϕb þ 1

2Ψ
∂ω
∂ϕc ∂ρΨ∂ρΨ −

∂Zac

∂Ψ ∂ρϕ
a∂ρΨþ κ2

∂U
∂ϕc : ð18Þ

It is clear that only the Ψ field is directly sourced by the
matter now.

III. COMPUTING THE PPN PARAMETER γ
FOR N FIELDS

We now discuss the PPN limit of the class of
multiscalar-tensor theories introduced in the previous
section. We start with a brief review of the PPN
formalism for a single point mass source in the context
of MSTG in Sec. III A. Then we calculate the PPN limit
starting with the zeroth velocity order in Sec. III B,
followed by the second velocity orders of the scalar

field in Sec. III C, the temporal metric component in
Sec. III D and its spatial components in Sec. III E.
Section III F confirms that in the case of a single scalar
field we reobtain the previously derived result.

A. Post-Newtonian approximation

The PPN formalism has been developed to extract
standardized information—the PPN parameters—
characteristic of the slow motion weak field regime of
metric gravity theories. We follow the customary PPN
calculation procedure [24].
Matter is modeled by a perfect fluid whose stress-energy

tensor is given by
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Tμν ¼ ðρþ ρΠþ pÞuμuν þ pgμν: ð19Þ

Here ρ is the rest energy density, Π is the specific internal
energy, p is the pressure and uμ is the four-velocity of
matter. The gravitational field is assumed to be quasistatic,
so that changes are only induced by the motion of the
source matter. The orders of magnitude are ascribed to all
quantities relative to the velocity vi ¼ ui=u0 of the source
matter, which is taken to be a first order small quantity:
ρ ∝ Π ∝ p=ρ ∝ v2 ∝ Oð2Þ. Time derivatives of the metric
components and the scalars are weighted with an additional
velocity order Oð1Þ. Later in the calculation we specify the
matter source to be a point massM0 residing at the origin of
spatial coordinates, ρ ¼ M0δðrÞ.
The spacetime metric is taken to be a perturbed

Minkowski metric gμν ¼ ημν þ hμν. Only the metric com-
ponents of order Oð2Þ, written as

h
ð2Þ

00 ¼ 2GeffUNðrÞ; ð20Þ

h
ð2Þ

ij ¼ 2GeffγUNðrÞδij; ð21Þ

are relevant for the calculation of the PPN parameter γ. Here
Geff is the effective gravitational constant and UNðrÞ ¼ M0

r
is the Newtonian gravitational potential which depends on
the distance from the source point mass.
The temporal and spatial components of the Ricci tensor

can be computed from their definition using the perturbed
metric. Up to order Oð2Þ they are

R00 ¼ −
1

2
∇2 h

ð2Þ
00; ð22Þ

Rij ¼ −
1

2
∇2 h

ð2Þ
ij þ

1

2
ð h
ð2Þ

00;ij − h
ð2Þ

kk;ij þ 2 h
ð2Þ

ki;kjÞ: ð23Þ

On the other hand, the equation of motion for the metric (2)
can be trace reversed to express the Ricci tensor compo-
nents as

Rμν ¼
1

F

�
κ2
�
Tμν −

1

2
gμνT

�
þ κ2gμνU þ gμν□F

−
1

2
gμν∇ρ∇ρF þ∇μ∇νF þ Zαβ∇μΦα∇νΦβ

�
: ð24Þ

Equating the respective components of Eqs. (22) and (23)
with those of (24), and solving for the metric components
(20) and (21) is at the heart of the PPN γ calculation.
All scalar fields are considered to be perturbed around

their constant cosmological background values,

ΦαðxμÞ ¼ Φ
ð0Þ

α þ Φ
ð2Þ

αðxμÞ: ð25Þ

In the asymptotic limit Φ
ð2Þ

αjr→∞ ¼ 0. The functions of the
scalar fields are expanded in a Taylor series with the
coefficients assumed to be of order Oð0Þ.

B. 0th order approximation

In the lowest order of magnitudeOð0Þ, the background is
Minkowski space empty of matter and the scalars are
constant. The field equation for the metric (24) reduces to

κ2ημνUj0 ¼ 0: ð26Þ

Thus the asymptotic background value of the potential
must be negligible (which is consistent with the situation in
e.g. the Solar System),

Uj0 ¼ 0: ð27Þ

Similarly, the scalar fields’ equations (3) or (6) in the lowest
order of magnitude become

2
∂F
∂Φγ

����
0

Uj0 ¼ F j0
∂U
∂Φγ

����
0

; ð28Þ

leading to

∂U
∂Φγ

����
0

¼ 0; ð29Þ

if we assume F 0 ≡ F j0 ≠ 0 (the gravitational constant at
the cosmological background is not infinite).

C. Scalar fields at 2nd order

The next step is to expand the scalar equations (6) in
Taylor series up to the order of magnitude Oð2Þ. Time
derivatives and squares of spatial derivatives drop out,
while the conditions (27), (29) simplify the result to

∇2Φ
ð2Þ

γ ¼ Mγ
αΦ
ð2Þ

α þ kγρ; ð30Þ

where the vector of nonminimal coupling (8) is taken at the
asymptotic background,

kγ ¼ Kγj0; ð31Þ

and the components of the “mass matrix” are

Mγ
α ¼

�
κ2

2F
F γβ ∂2U

∂Φβ∂Φα

�
0

: ð32Þ

It is easier to integrate Eq. (30) when the mass matrix is
turned into its Jordan normal form, JðβÞðδÞ ¼
ðP−1ÞðβÞγMγ

αPαðδÞ. Here the similarity matrix P is con-
structed from the components of the eigenvectors or
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generalized eigenvectors of the mass matrix. In general, the
eigenvalues of the mass matrix can be complex and the
Jordan normal form consists of Jordan blocks of the size
that depends on the difference between the algebraic and
geometric multiplicity of the respective eigenvalue.
However, as discussed in the next Sec. IV, in the physically
most well-behaved case when the background metric of the
space of scalar fields, F γβj0, is positive definite (hence
there are no ghosts), and the Hessian of the potential,
∂2U

∂Φβ∂Φα j0, is positive semidefinite (hence the field configu-
ration is not unstable), the mass matrix M will have
non-negative eigenvalues m2

½δ� with equal algebraic and

geometric multiplicity. In this case J is a diagonal matrix of
the eigenvalues m2

½δ�, while the similarity matrix element

PαðδÞ is the αth component of the δth eigenvector, vαðδÞ. The
question of when the mass matrix can be diagonalized is
discussed further in Appendix A, and the generic case with
nontrivial Jordan blocks is treated in Appendix C.
Here let us proceed with the assumption that J is

diagonal with non-negative entries. Since the matrices
M, P, and J are constant, we can write Eq. (30) as

∇2ðP−1ÞðβÞγΦ
ð2Þ

γ ¼ JðβÞðγÞðP−1ÞðγÞαΦ
ð2Þ

α þ ðP−1ÞðβÞγkγρ:
ð33Þ

In essence we have made a transformation in the scalar
fields space from a generic basis into a basis given by the
mass matrix eigenvectors, indices in brackets enumerate
components in the mass eigenbasis. In the new diagonal
basis

Φ̂
ð2Þ

ðβÞ ¼ ðP−1ÞðβÞγΦ
ð2Þ

γ; ð34Þ

k̂ðβÞ ¼ ðP−1ÞðβÞγkγ; ð35Þ

the equation for the scalar fields assumes the generic form
of a screened Poisson equation

∇2 Φ̂
ð2Þ

ðβÞ −m2
½β� Φ̂

ð2Þ
ðβÞ ¼ k̂ðβÞρ; ð36Þ

since JðβÞðγÞ ¼ m2
½β�δ

ðβÞ
ðγÞ . Here the square brackets denote

that the lower index ½β� comes in pair with upper ðβÞ and
there is no summation. Equation (36) is solved by

Φ̂
ð2Þ

ðβÞ ¼ −
Z

d3r0
e−m½β�jr−r0j

4πjr − r0j k̂
ðβÞρ: ð37Þ

Substituting a point mass M0 at the origin for the matter
density distribution ρ allows us to express the solution as

Φ̂
ð2Þ

ðβÞ ¼ −
M0

4πr
e−m½β�rk̂ðβÞ: ð38Þ

The integration constants have been fixed by demanding

that Φ̂
ð2Þ

ðβÞ vanish at spatial infinity and the source matches
the surrounding field (fulfills Gauss’ theorem, see
Appendix B). To obtain the solutions for the original scalar
fields we have to transform back,

Φ
ð2Þ

α ¼ PαðβÞ Φ̂
ð2Þ

ðβÞ ¼ −
M0

4πr
PαðβÞEðβÞðδÞðP−1ÞðδÞγkγ; ð39Þ

where the radius dependence is encoded in the matrix

EðβÞðδÞ ¼ ðe−
ffiffi
J

p
rÞðβÞðδÞ ¼ e−m½δ�rδðβÞðδÞ: ð40Þ

As laid out systematically in Appendices B and C the basic
form of the solution (39) also holds in the general case of
arbitrary eigenvalues of the mass matrix, while the matrix
(40) is not necessarily diagonal, but gets adjusted to
encompass complex eigenvalues and higher dimensional
Jordan blocks (C39).

D. Metric perturbation h00 and Geff

The equation for the temporal components of the
spacetime metric is obtained from Eq. (24) by Taylor
expanding up to the second order and taking into account
Eq. (22) as well as the other relevant conditions from
Secs. III A and III B. The result is

∇2

�
h
ð2Þ

00 −
1

F 0

∂F
∂Φα

����
0

Φ
ð2Þ

α

�
¼ −

κ2

F 0

ρ: ð41Þ

We should also substitute in the Φ
ð2Þ

solution (39) and keep in
mind that the matter density ρ is given by a point massM0 at
the origin. The solution for the components of the metric is

h
ð2Þ

00 ¼
M0

4πrF 0

�
κ2−

∂F
∂Φα

����
0

PαðβÞEðβÞðδÞðP−1ÞðδÞγkγ
�
: ð42Þ

By comparing with Eq. (20) we can read off the effective
gravitational constant as

Geff ¼
κ2

8πF 0

ð1 − ΓðrÞÞ; ð43Þ

where the deviation from the background value,

ΓðrÞ¼−
1

4F 2
0

�∂F
∂ΦαP

αðβÞEðβÞðδÞðP−1ÞðδÞγF γε ∂F
∂Φε

�
0

ð44aÞ

¼ −
4F 2

0

κ4
½kαPαðβÞEðβÞðδÞðP−1ÞðδÞγkγ�; ð44bÞ
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is expressed by using the definition of the vector of non-
minimal coupling, Eq. (8).

E. Metric perturbation hij and the PPN parameter γ

The equation for the spatial components of the spacetime
metric is likewise obtained from Eq. (24) by Taylor
expanding up to the second order and taking into account
Eq. (23) along with the other relevant conditions from
Secs. III A and III B. Imposing also the gauge conditions

1

2
h
ð2Þ

00;ij −
1

2
h
ð2Þ

kk;ij þ h
ð2Þ

ki;kj ¼
1

F 0

∂F
∂Φα

����
0

Φ
ð2Þ

α
;ij ð45Þ

simplifies the resulting equation to

∇2

�
h
ð2Þ

ij þ
1

F 0

δij
∂F
∂Φα

����
0

Φ
ð2Þ

α

�
¼ −

κ2

F 0

δijρ: ð46Þ

Substituting in the Φ
ð2Þ

solution (39) and a point mass source
leads to the solution

h
ð2Þ

ij ¼
κ2M0δij
4πrF 0

ð1þ ΓðrÞÞ: ð47Þ

Comparison with the definitions (21) and (43) allows us to
deduce the PPN parameter γ to be

γ ¼ 1þ ΓðrÞ
1 − ΓðrÞ : ð48Þ

Deviation from the general relativity value γ ¼ 1 is set
by a rather complicated term (44) that involves the scalar
field masses as well as nonminimal coupling. If the masses
are zero the dependence on the distance drops out, but the
deviation term Γ will only disappear in the limit when the
(length of the) vector of nonminimal coupling (9) also
vanishes. Some insights concerning the geometry behind
this formula are discussed further in Sec. IV.

F. Single field case

In the special case of a single scalar-tensor gravity F, Z,
and U depend only on one field. The metric of the space of
the scalar fields reduces to a single component F 11 ¼
1

4F 2 ð2FZ þ 3ð∂F∂ΦÞ2Þwhile the mass matrix is automatically
diagonal,

M1
1 ¼

�
2κ2F

2FZ þ 3ð∂F∂ΦÞ2
∂2U
∂Φ2

�
0

≡ Jð1Þð1Þ: ð49Þ

The deviation term (44) is thus

ΓðrÞ ¼
�
−

1

2FZ þ 3ð∂F∂ΦÞ2
�∂F
∂Φ
�

2
�
0

e−
ffiffi
J

p
r: ð50Þ

In the Brans-Dicke-like parametrization where F ¼ Ψ
and Z ¼ ω

Ψ, the metric simplifies to F αγ ¼ 1
4Ψ2 ð2ωþ 3Þ,

and the mass matrix is given by

M1
1 ¼

�
2κ2Ψ
2ωþ 3

∂2U
∂Ψ2

�
0

≡ Jð1Þð1Þ: ð51Þ

The deviation is simply

ΓðrÞ ¼ −
e−
ffiffi
J

p
r

2ω0 þ 3
ð52Þ

and from (48) it is easy to recognize the familiar result for γ
[28,29]

γ ¼ 2ω0 þ 3 − e
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ2Ψ0
2ω0þ3

∂2U
∂Ψ2j0

q
r

2ω0 þ 3þ e
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ2Ψ0
2ω0þ3

∂2U
∂Ψ2j0

q
r

: ð53Þ

IV. GEOMETRIC INTERPRETATION

In the previous section we found that in MSTG the
difference of the effective gravitational constant (43) and the
PPN parameter γ (48) from their general relativity values is
given by a rather complicated term (44). However, when the
mass matrix is diagonalizable, i.e. it has a complete set of
linearly independent eigenvectors this term can be given a
neat geometric interpretation. In the current section we show
this works in the physically most relevant case when there
are no ghosts and the metric on the field space is positive
definite, by discussing the mass matrix eigenvalues in
Sec. IVA and eigenvectors in Sec. IV B. As an illustrative
example this construction is applied to a two field case in
the Brans-Dicke-like parametrization in Sec. IVC.

A. Eigenvalues of the mass matrix

The mass matrix M is given by a product (32) of the
matrix F−1, which is the inverse of the scalar fields’ space
metric F αβ, and the matrix U, proportional to the second

partial derivatives of the potential, ∂2U
∂Φα∂Φβ, both evaluated at

the spatial infinity (i.e. at the background values of the
scalar fields). Although both F−1 and U are by construc-
tion real symmetric matrices and therefore diagonalizable,
their product M is not automatically so.
Following Ref. [42] let us assume that the metric on the

space of the scalar fields, F , is positive definite, i.e. all the
scalars are dynamical and not ghosts. From elementary
algebra we know that sinceF αβ is real and symmetric it can
be diagonalized by an orthogonal matrix A,
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ðATÞðθÞϵF ϵαAαðγÞ ¼ ðΔ2ÞðθÞðγÞ ¼ f2½γ�δðθÞðγÞ; ð54Þ

where Δ2 is a diagonal matrix whose entries are non-
negative eigenvalues f2½γ� of F . Multiplying Eq. (54) from

both sides by ðΔ−1ÞðγÞðβÞ ≡ f−1½γ� δ
ðγÞ
ðβÞ ¼ ðΔ−TÞðβÞðγÞ normal-

izes it to

ðΔ−TÞðζÞðθÞðATÞðθÞϵF ϵαAαðγÞðΔ−1ÞðγÞðβÞ ¼ δðζÞðβÞ: ð55Þ

As the matrix

Uϵα ¼
κ2

2F
∂2U

∂Φϵ∂Φα ð56Þ

is symmetric by construction, sandwiching it like Eq. (55)
also yields a symmetric matrix, where transposing gives

ððΔ−TÞðζÞðθÞðATÞðθÞϵUϵαAαðγÞðΔ−1ÞðγÞðβÞÞT
¼ ðΔ−TÞðβÞðγÞðATÞðγÞαUαϵAϵðθÞðΔ−1ÞðθÞðζÞ: ð57Þ

Therefore there exists another orthogonal matrix B which
diagonalizes the matrix above. Thus for U we can write

ðPTÞðηÞϵUϵαPαðδÞ ¼ m2
½δ�δðηÞðδÞ; ð58Þ

where the coefficients m2
½δ� are real and the transformation

matrix is

PαðδÞ ¼ AαðγÞðΔ−1ÞðγÞðβÞBðβÞðδÞ; ð59Þ

ðPTÞðηÞϵ ¼ ðBTÞðηÞðζÞðΔ−TÞðζÞðθÞðATÞðθÞϵ: ð60Þ

The matrix P is normalized with respect to the metric F ,
since from the definitions (54) and (59), (60) it follows that

ðPTÞðηÞϵF ϵαPαðδÞ ¼ δðηÞðδÞ; ð61Þ

ðP−1ÞðβÞγF γζðP−TÞζðηÞ ¼ δðβÞðηÞ: ð62Þ

The latter is clear from

ðP−1ÞðβÞγF γζðP−TÞζðηÞðPTÞðηÞϵF ϵαPαðδÞ ¼ δðβÞðδÞ : ð63Þ

In principle one could here also say that the entries of P are
vielbeins for the space of the scalar fields. The indices
denoted without brackets pertain to a generic basis in the
space of the scalar fields and are lowered and raised by the
metric F and its inverse, while the indices denoted in
brackets pertain to the orthonormal mass eigenbasis or
equivalently to the respective tangent space and are raised
and lowered by the flat metric (Kronecker delta).

The matrix P also diagonalizes the mass matrix M,

JðβÞðδÞ ¼ ðP−1ÞðβÞγMγ
αPαðδÞ

¼ ðP−1ÞðβÞγF γζðP−TÞζðηÞðPTÞðηÞϵUϵαPαðδÞ

¼ m2
½δ�δ

ðβÞ
ðδÞ ; ð64Þ

due to (62) and (58). The mass matrix eigenvalues m2
½δ�

coincide with the eigenvalues of the matrix (57).
Furthermore, the matrix Uϵα is congruent to the transformed
matrix in Eq. (58) and according to Sylvester’s law of
inertia these matrices have the same numbers of positive,
negative, and zero eigenvalues. Therefore the signs of the
mass matrix eigenvalues match the signs of the eigenvalues
of the Hessian of the potential.
Let us recall from Sec. III B that the Minkowski back-

ground required the potential U to vanish and have an
extremum in the spatial asymptotics. If the potential there
has a minimum, or the potential is everywhere non-negative
by construction while there are some flat directions (e.g. the
potential does not depend on some of the scalar fields), then
the eigenvalues of the matrix of second derivatives, Uϵα, as
well as the eigenvalues of the mass matrix are all non-
negative.

B. Eigenvectors of the mass matrix

As the mass matrix diagonalizes, it possesses a full set of
linearly independent eigenvectors, vαðδÞ. The components
of eigenvectors can be read off from the columns of the
similarity matrix,

PαðδÞ ¼ vαðδÞ; ðP−1ÞðβÞγ ¼ δðβÞðαÞvðαÞϵF ϵγ: ð65Þ

The eigenvectors are orthonormal,

vðηÞϵF ϵαvαðδÞ ¼ ðPTÞðηÞϵF ϵαPαðδÞ ¼ δðηÞðδÞ; ð66Þ

and by construction satisfy

Mγ
αvαðδÞ ¼ m2

½δ�v
γðδÞ; ð67Þ

which is obvious from multiplying Eq. (64) from left
by P.
As the mass matrix diagonalizes into J, taking its square

root and exponent are straightforward, and thus

EðβÞðδÞ ¼ ðe−
ffiffi
J

p
rÞðβÞðδÞ ¼ e−m½δ�rδðβÞðδÞ : ð68Þ

The deviation term (44b) can now be unraveled as
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ΓðrÞ ¼ −
4F 2

0

κ4
kαPαðβÞEðβÞðδÞðP−1ÞðδÞγkγ

¼ −
4F 2

0

κ4
kϵF ϵαvαðβÞe−m½δ�rδðβÞðδÞδ

ðδÞðηÞvðηÞζF ζγkγ

¼ −
4F 2

0

κ4
jkj2
X
δ

cos2ðϑðδÞÞe−m½δ�r; ð69Þ

where the scalar product of the mass matrix eigenvector,
vðδÞ, and the vector of nonminimal coupling in spatial
asymptotics, k, has been written in terms of the angle ϑðδÞ
between them.
The last result informs us that when all scalar fields are

massless, the deviation Γ in the gravitational constant and
PPN parameter γ is proportional to the “strength” of
nonminimal coupling as measured by the length squared
of the vector k. If the scalars are massive, each mass
eigenvalue will give a contribution that reduces the
deviation exponentially in spatial distance from the source.
These contributions are weighted according to the angles
between the respective eigenvector and the overall vector of
nonminimal coupling. For instance a mass eigenvalue
whose eigenvector happens to be perpendicular to the
vector of nonminimal coupling will not affect the deviation.
However, if the vector of nonminimal coupling vanishes,
i.e. the scalars are minimally coupled, the deviation Γ will
be zero, irrespective of the masses of the scalars.

C. N = 2 scalar fields in the Brans-Dicke-like
parametrization

In the Brans-Dicke-like parametrization (15) for two
scalar fields Φ1 ¼ ϕ, Φ2 ¼ Ψ and

F ¼ Ψ; Zαβ ¼
�Zðϕ;ΨÞ 0

0
ωðϕ;ΨÞ

Ψ

�
ð70Þ

the metric on the space of scalar fields is already diagonal,

F αγ ¼
� Zðϕ;ΨÞ

2Ψ 0

0
2ωðϕ;ΨÞþ3

4Ψ2

�
: ð71Þ

There are no ghosts as long as Z ≥ 0 and 2ωþ 3 ≥ 0. The
vector of nonminimal coupling has only one nonzero
component,

Kα ¼
�
0 − κ2

4Ψ2

�
: ð72Þ

Its square

KαKα ¼ κ4

4Ψ2ð2ωþ 3Þ ð73Þ

tells that the nonminimal coupling disappears in the
limit 1

2ωþ3
→ 0.

The mass matrix

Mγ
α ¼

" κ2

Z
∂2U
∂ϕ2

κ2

Z
∂2U
∂ϕ∂Ψ

2κ2Ψ
2ωþ3

∂2U
∂ϕ∂Ψ

2κ2Ψ
2ωþ3

∂2U
∂Ψ2

#
0

ð74Þ

has eigenvalues

m2
� ¼ κ2

2Z0ð2ω0 þ 3Þ
�
ð2ω0 þ 3Þ∂

2U
∂ϕ2

����
0

þ 2Ψ0Z0

∂2U
∂Ψ2

����
0

� B

�
; ð75Þ

where

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ 8ð2ω0 þ 3ÞZ0Ψ0

� ∂2U
∂ϕ∂Ψ

����
0

�
2

s
; ð76Þ

A ¼ 2Ψ0Z0

∂2U
∂Ψ2

����
0

− ð2ω0 þ 3Þ∂
2U

∂ϕ2

����
0

: ð77Þ

One can easily check that both eigenvalues are positive
when in the spatial asymptotics the fields are at a minimum
of the potential, i.e. the Hessian of U is positive definite
there,

∂2U
∂ϕ2

����
0

> 0;
∂2U
∂ϕ2

����
0

∂2U
∂Ψ2

����
0

>

� ∂2U
∂ϕ∂Ψ

����
0

�
2

: ð78Þ

The F -normalized eigenvectors

vαðþÞ ¼
ffiffiffi
2

p
Ψ0

ffiffiffiffiffiffiffiffiffiffiffi
1þ A

B

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0 þ 3

p
 

2ð2ω0þ3Þ
AþB

∂2U
∂ϕ∂Ψ

���
0

1

!
;

vαð−Þ ¼
ffiffiffi
2

p
Ψ0

ffiffiffiffiffiffiffiffiffiffi
1 − A

B

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0 þ 3

p
 

2ð2ω0þ3Þ
A−B

∂2U
∂ϕ∂Ψ

���
0

1

!
ð79Þ

are F -orthogonal and give the columns of the similarity
matrix P.
Knowing that

EðβÞðδÞ ¼
�
e−mþr 0

0 e−m−r

�
ð80Þ

we can now calculate from Eq. (44b)
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ΓðrÞ ¼ −
4Ψ2

0

κ4
½kαPαðβÞEðβÞðδÞðP−1ÞðδÞγkγ�

¼ −
1

2ω0 þ 3

�
1

2

�
1þA

B

�
e−mþr þ 1

2

�
1−

A
B

�
e−m−r

�
:

ð81Þ

It can be deduced by comparison with Eq. (69) or by direct
calculation that the angles between the mass eigenvectors
and the vector of nonminimal coupling obey

cos2ϑþ ¼ ðkαvαðþÞÞ2
jkj2 ¼ 1

2

�
1þ A

B

�
;

cos2ϑ− ¼ ðkαvαð−ÞÞ2
jkj2 ¼ 1

2

�
1 −

A
B

�
: ð82Þ

Since the mass eigenvectors are orthogonal to each other,
ϑ− ¼ ϑþ þ π

2
, it holds that cos2 ϑþ þ cos2 ϑ− ¼ cos2 ϑþþ

sin2 ϑþ ¼ 1.
Finally

Geff ¼
κ2

8πΨ0

�
1þ cos2 ϑþe−mþr þ cos2 ϑ−e−m−r

2ω0 þ 3

�
ð83Þ

and

γ ¼ 2ω0 þ 3 − cos2 ϑþe−mþr − cos2 ϑ−e−m−r

2ω0 þ 3þ cos2 ϑþe−mþr þ cos2 ϑ−e−m−r
: ð84Þ

V. OBSERVATIONAL CONSTRAINTS

Making use of the results derived in the previous two
sections, we are now in the position to derive observational
constraints on multiscalar-tensor theories of gravity. These
will be obtained from the Cassini tracking experiment,

whose results we briefly describe in Sec. VA. In Sec. V B
we then derive constraints on the biscalar theory in the
Brans-Dicke-like parametrization, discussed before in
Sec. IV C.

A. The Cassini measurement of γ

Since our result for γ generally depends on the inter-
action distance r between the gravitating source and the
test mass acted upon, to get a rough estimate we should
turn to an experiment with a clear characteristic interac-
tion distance r ¼ r0.

1 The most precise value for γ has
been obtained from the time delay of radar signals sent
between Earth and the Cassini spacecraft on its way to
Saturn [45]. The experiment yielded the value γ − 1 ¼
ð2.1� 2.3Þ × 10−5 (at 1σ precision). The radio signals
were passing by the Sun at a distance of 1.6 solar radii
or r0 ≈ 7.44 × 10−3 AU.

B. Observational constraints for two scalar fields

In the case of two scalar fields in the Brans-Dicke-like
parametrization the expression for the PPN parameter γ
(84) involves five quantities which characterize the field
configuration in the spatial asymptotic background: the
coefficient ω0 from the kinetic term of the nonminimal
scalar, two mass eigenvalues mþ, m−, and two angles ϑþ,
ϑ− between the mass eigenvectors and the vector of
nonminimal coupling in the space of scalar fields. The
two angles are related by ϑþ ¼ ϑ− − π

2
and the formula (84)

is symmetric for the interchange of the masses and a
reflection across the angle π

4
.

FIG. 1. Constraints at 2σ from the Cassini measurement of the PPN parameter γ on the rescaled masses of the two scalar fields and the
parameter ω0 for ϑþ ¼ 0 (left), ϑþ ¼ π

8
(middle), and ϑþ ¼ π

4
(right). The allowed region of the parameter space is to the right of the

plotted surface.

1As in STG, in a more rigorous analysis one has to integrate
over geodesics [43] and give up the idealization of the point mass
[44].
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Therefore from the Cassini experimental bounds on the
parameter γ [45], taken at the 2σ confidence level, we can
infer rough bounds on the possible values of the theory
parameters as plotted on Fig. 1. For better visualization and
in order to facilitate comparison with the single field case
[29] the horizontal axes depict rescaled masses ~m� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0 þ 3

p
m� normalized by the mass corresponding to

the astronomical unit. The vertical axis shows only ω0 >
− 3

2
since we have assumed the absence of ghosts. The three

plots on Fig. 1 correspond to the angles ϑþ ¼ 0, ϑþ ¼ π
8
,

and ϑþ ¼ π
4
. The plots for ϑþ ¼ 3π

8
and ϑþ ¼ π

2
would be

identical to the second and first plot, respectively, with ~mþ
and ~m− interchanged.
The allowed parameter region is to the right of the

plotted surface. When both fields are massless the bounds
disappear in the limit ω0 → − 3

2
and ω0 ≳ 40000. The

existence of masses makes other values of ω0 also feasible
and for sufficiently high masses there are no bounds
on ω0. The graph for a single nonminimal scalar [29] is
identical with a slice of the left plot, since there the
eigenvector corresponding to the second mass m− is
perpendicular to the vector of nonminimal coupling and
m− does not have any effect. For arbitrary angles the
inclusion of the second massive field reduces the allowed
region on one side and extends it on the other side. It is
interesting that at a generic angle ϑ even a massless field
will still have an effect on the result. This is visible on the
middle and right plots, where the bound on ω0 is much
lower than 40000 at the edges of the graph where one mass
is zero and another nonzero.

VI. SOME SPECIFIC MODELS

To illustrate the formalism developed in Sec. III and
Sec. IV let us consider some examples of models formu-
lated as MSTG or equivalent to MSTG. In particular, we
discuss the nonminimally coupled Higgs SU(2) complex
doublet in Sec. VI A, hybrid metric-Palatini gravity in
Sec. VI B, and linear □

−1 and quadratic □
−2 nonlocal

gravity in Secs. VI C and VI D.

A. Nonminimally coupled Higgs SU(2) doublet

Models with the Higgs field nonminimally coupled to
curvature are built from the action [4,46]

SnmH ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ��
m2

p

2
þ ξH†H

�
R

− ðDμHÞ†ðDμHÞ − 1

4
F2 −

λ

4
ðH†H − v2Þ2

�
;

ð85Þ

where Dμ denotes the gauge covariant derivative, and F is
the gauge field strength, λ is the Higgs self-coupling

constant, and v is the Higgs vacuum expectation value.
It is convenient to parametrize the Higgs complex doublet
by four real scalars as

H ¼ 1ffiffiffi
2

p
�
ϕ1eiθ1

ϕ2eiθ2

�
: ð86Þ

We assume the gauge fields do not play a role in the typical
scales of e.g. the Solar System and neglect them. By
equating the Planck mass mp ¼ 1

κ, and making the scalars

dimensionless, ϕ1 ¼ Φ1

κ , ϕ2 ¼ Φ2

κ , θ1 ¼ Φ3, θ2 ¼ Φ4 we can
write the action (85) in the form of the general MSTG
action (1), with

F ¼ 1þ ξððΦ1Þ2 þ ðΦ2Þ2Þ;
Zαβ ¼ diagð1; 1; ðΦ1Þ2; ðΦ2Þ2Þ;

U ¼ λ

4κ4

�ðΦ1Þ2
2

þ ðΦ2Þ2
2

− κ2v2
�

2

: ð87Þ

The metric of the space of scalar fields (5)

F αβ ¼

0
BBBBBB@

Fþ6ξ2ðΦ1Þ2
2F 2

3ξ2Φ1Φ2

F 2 0 0

3ξ2Φ1Φ2

F 2

Fþ6ξ2ðΦ2Þ2
2F 2 0 0

0 0
ðΦ1Þ2
2F 0

0 0 0
ðΦ2Þ2
2F

1
CCCCCCA

ð88Þ

is positive definite (and there are no ghosts) as long as
F > 0. The vector of nonminimal coupling (8),

Kα ¼
�
− κ2ξΦ1

2F 2 − κ2ξΦ2

2F 2 0 0
	
; ð89Þ

tells that in the parametrization (86) only two of the four
Higgs components have a direct nonminimal coupling to
curvature, but the other two components are still indirectly
involved via the metric (88).
For the PPN setup in the spatial background the Higgs

field must reside at the minimum of the potential,

ðΦ1
0Þ2 þ ðΦ2

0Þ2 ¼ 2κ2v2; ð90Þ

to satisfy the conditions (27) and (29). The mass matrix
(32) can be found by a straightforward computation, it has
only one nonzero eigenvalue,

m2
½1� ¼ m2

H ¼ λv2ð1þ 2ξκ2v2Þ
1þ 2ξκ2v2 þ 12ξ2κ2v2

; ð91Þ

while the other eigenvaluesm2
½2� ¼ m2

½3� ¼ m2
½4� ¼ 0. We see

that by the virtue of nonminmal coupling the usual Higgs
mass expression gets a ξ-dependent correction. However,
since the Higgs vacuum expectation value v is many orders
of magnitude smaller than the Planck mass (κ2v2 ∼ 10−34)
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this correction is really tiny for typical values of the
nonminimal coupling constant required by the Higgs
inflation (ξ ∼ 104 [4,46]).
There exists a full set of eigenvectors, orthonormal with

respect to the metric (88), encoded in the columns of the
similarity matrix

PαðβÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2ξκ2v2

p

0
BBBBBBBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2ξκ2v2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2ξκ2v2þ12ξ2κ2v2

p Φ1
0

κv −Φ2
0

κv 0 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2ξκ2v2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2ξκ2v2þ12ξ2κ2v2

p Φ2
0

κv
Φ1
0

κv 0 0

0 0
ffiffi
2

p
Φ1
0

0

0 0 0
ffiffi
2

p
Φ2
0

1
CCCCCCCCCCA
:

ð92Þ

Inserting these results into Eq. (44b), the deviation from
general relativity is found to be

Γ ¼ −
4ξ2κ2v2e−mHr

1þ 2ξκ2v2 þ 12ξ2κ2v2
: ð93Þ

Therefore the effective gravitational constant (43) is

Geff ¼
κ2

8πð1þ 2ξκ2v2Þ
�
1þ 4ξ2κ2v2e−mHr

1þ 2ξκ2v2 þ 12ξ2κ2v2

�
ð94Þ

and the PPN parameter γ (48) is given by

γ ¼ 1þ 2ξκ2v2 þ 12ξ2κ2v2 − 4ξ2κ2v2e−mHr

1þ 2ξκ2v2 þ 12ξ2κ2v2 þ 4ξ2κ2v2e−mHr
: ð95Þ

Since for the Standard Model Higgs and the Cassini
experiment characteristic distance the combination
mHr ∼ 1026, the predicted value of γ is well within the
observational bounds. This concurs with the estimate about
the single field Higgs monopole configuration [47].

B. General hybrid metric-Palatini

General hybrid metric-Palatini gravity combines curva-
ture R computed from the metric and curvature R com-
puted from independent connection into a single action [19]

SghmP ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
fðR;RÞ: ð96Þ

By introducing two scalars it is possible to rewrite the
action as [19]

SghmP ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR −

3

2ξ
gμν∂μξ∂νξ −Wðϕ; ξÞ

�
;

ð97Þ

where the potentialW encodes the original function f. The
latter action is in the MSTG form, matching Eq. (1) with the
identifications ϕ ¼ Φ1, ξ ¼ Φ2, and

F ¼ Φ1; Z22 ¼
3

2Φ2
; U ¼ 1

2κ2
WðΦ1;Φ2Þ: ð98Þ

The eigenvalues of the metric of the space of scalar
fields (5),

F αβ ¼
 

3
4ðΦ1Þ2 0

0 3
4Φ1Φ2

!
ð99Þ

can be read off from the diagonal, there are no ghosts
provided that Φ1 and Φ2 are both positive. The vector of
nonminimal coupling (8),

Kα ¼
�
− κ2

4ðΦ1Þ2 0
	
; ð100Þ

tells that in this parametrization only one of the scalar fields
has a direct nonminimal coupling, but the other is indirectly
involved via the potential and the metric (99). It is not
possible to write out the Jordan form of the mass matrix for
a generic potential (there are several distinct possibilities).
Therefore let us look at the models previously considered in
the literature [19].
Model 1 is characterized by

W ¼ W0e
−λΦ1ffiffi

6
p
: ð101Þ

The conditions for the Minkowski background (27), (29)
are satisfied in the limit Φ1 → ∞ and the mass matrix (32)
vanishes. Due to the nontrivial vector of nonminimal
coupling (100) the factor (44b) is Γ ¼ − 1

3
, but from

Eqs. (43), (48)

Geff → 0; γ ¼ 1

2
ð102Þ

and the model is not viable.
Model 2 is characterized by

W ¼ W0ðΦ2Þλe−λΦ1ffiffi
6

p
: ð103Þ

For λ > 1 the conditions for the Minkowski background
(27), (29) can now be satisfied also byΦ2

0 ¼ 0. However the
mass matrix (32) vanishes again and result is the same as
for model 1.

C. Linear (□−1) nonlocal gravity

The simplest example to build a nonlocal gravity is to
include to the action an inverse of the d’Alembertian
operator acting on the Ricci scalar [48],
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SNL−1 ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
Rð1þ fð□−1RÞÞ: ð104Þ

Adding a suitable Lagrange multiplier and performing an
integration by parts to replace the□-term allows us to write
this action in the MSTG form as [22]

SNL−1 ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ðð1þ fðΦ1Þ þ Φ2ÞR

þ gμν∂μΦ1∂νΦ2Þ: ð105Þ

Here in our notation F ¼ 1þ fðΦ1Þ þ Φ2 and the metric
on the space of scalar fields (5),

F αβ ¼
1

4F 2

 
3ð ∂f

∂Φ1Þ2 −F þ 3ð ∂f
∂Φ1Þ

−F þ 3ð ∂f
∂Φ1Þ 3

!
; ð106Þ

is positive definite (i.e. there are no ghosts) if

6

F
∂f
∂Φ1

> 1: ð107Þ

This inequality matches exactly the result obtained via
multiple intermediate redefinitions of the scalar fields
and transforming into the Einstein frame [23,49]. In
fact, the action (104) provides the only member in the
family of nonlocal gravities which can be free of ghosts
in the MSTG representation [23]. There is no potential
and all the fields are massless, hence deviations from
general relativity (44b) come from the nonminimal
coupling only,

Γ ¼ −
4F 2

0

κ4
kαkα ¼

"
2 ∂f
∂Φ1

ðF − 6 ∂f
∂Φ1Þ

#
0

: ð108Þ

From the general formulas (43) and (48) we can now
read off

Geff ¼
κ2

8πF 0

"
F − 8 ∂f

∂Φ1

F − 6 ∂f
∂Φ1

#
0

ð109Þ

γ ¼
"
F − 4 ∂f

∂Φ1

F − 8 ∂f
∂Φ1

#
0

; ð110Þ

which is in complete agreement with the earlier calcu-
lation using biscalar representation [40] and a sub-
sequent direct calculation [41]. Experimental bounds
on γ can be invoked to constrain the possible forms of
the function f. Yet, the model has been already
disfavored by the cosmological data [50].

D. Quadratic (□−2) nonlocal gravity

A nonlocal gravity model more viable cosmologically is
provided by including to the action the inverse-squared
d’Alembertian operator acting on the Ricci scalar [51],

SNL−2
−
¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

m2

6
R□−2R

�
; ð111Þ

where m is a parameter with mass dimension. By intro-
ducing two scalarsU ¼ −□−1R, S ¼ −□−1U, it is possible
to write the action (111) as [51]

SNL−2 ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ��
1 −

m2

6
S

�
R

− ξ1ð□U þ RÞ − ξ2ð□Sþ UÞ
�

ð112Þ

where ξ1, ξ2 are Lagrange multipliers. By adopting the
identifications 16πG ¼ 2κ2, m2

6
¼ μ

2κ2
and in terms of the

dimensionless scalar fields, U ¼ Φ1, S ¼ 2κ2Φ2, ξ1 ¼ Φ3,
ξ2 ¼ 1

2κ2
Φ4, after integration by parts the action (112) takes

the form of the generic MSTG action (1), with

F ¼ 1 − μΦ2 − Φ3;

Z13 ¼ Z31 ¼ Z24 ¼ Z42 ¼ −
1

2
;

U ¼ 1

4κ4
Φ1Φ4: ð113Þ

The metric of the space of scalar fields (5),

F αβ ¼

0
BBBBBB@

0 0 − 1
4F 0

0 3μ2

4F 2

3μ
4F 2 − 1

4F

− 1
4F

3μ
4F 2

3
4F 2 0

0 − 1
4F 0 0

1
CCCCCCA
; ð114Þ

has eigenvalues

f½1;2� ¼� 1

4F
; f½3;4� ¼

3ð1þμ2Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ð1þμ2Þ2þ4F 2

p
8F 2

ð115Þ

which tell that two of the four scalars are actually ghost
degrees of freedom. This is in accordance with the
observation in Ref. [23], however the case with the original
theory (112) is more subtle [51,52]. The vector of non-
minimal coupling (8),

Kα ¼
�
0 κ2μ

4F 2
κ2

4F 2 0
	
; ð116Þ
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has zero length,

F αβKαKβ ¼ 0: ð117Þ

The latter property does not mean that the scalars are
minimally coupled, but occurs because the metric (114) is
not positive definite. Such situation is actually rather
reasonable. Namely, on the one hand the action (112)
reduces to general relativity with minimally coupled
scalars in the m → 0 limit where the vector of non-
minimal coupling should vanish. On the other hand the
third component of the vector of nonminimal coupling
(116) is independent of the mass scale m and is
unaffected by this limiting procedure. Therefore for the
general relativity limit to exist, the vector (116) must be
of zero length as measured by the metric (114) already
for arbitrary value of m.
The Minkowski background requires

Φ1
0 ¼ Φ4

0 ¼ 0 ð118Þ

and we assume the values Φ2
0, Φ3

0 get fixed by some
mechanism. (It is an open issue how much the cosmologi-
cal evolution of the scalar S could affect local experiments
in the Solar System [53,54].) As the Hessian of the
potential U has one positive and one negative nonzero
eigenvalue, the mass matrix (32)

Mγ
α ¼

0
BBBBBB@

− 3μ
2κ2F 0

0 0 − 3
2κ2F 0

− 1
2κ2

0 0 0

0 0 0 − 1
2κ2

− 3μ2

2κ2F 0
0 0 − 3μ

2κ2F 0

1
CCCCCCA

ð119Þ

is not diagonalizable, but admits a Jordan form
(cf. Appendix C)

JðβÞðδÞ ¼

0
BBB@

0 m2 0 0

0 0 0 0

0 0 m2
½3� 0

0 0 0 0

1
CCCA; ð120Þ

where the only nonzero mass eigenvalue is

m2
½3� ¼ −

3μ

κ2F 0

¼ −
m2

F 0

; ð121Þ

while m is an arbitrary constant of mass dimension,
which cancels out later since the similarity matrix is
given by

PαðδÞ ¼

0
BBBBBB@

0 m2

2
1
2

0

− 1
4κ2

μþ4

4μκ2m2
½3�

− 1
4κ2m2

½3�
1

μκ2m2
½3�

μ
4κ2

μ
4κ2m2

½3�
− μ

4κ2m2
½3�

0

0 − μm2

2
μ
2

0

1
CCCCCCA
: ð122Þ

The Jordan matrix (120) does not have a square root, but
the solutions for the scalar fields in the mass basis can be
written out as

Φ̂
ð2Þ

ðβÞ ¼ −
M0

4πr
EðβÞðγÞk̂

ðγÞ; ð123Þ

where

EðβÞðγÞ ¼

0
BBB@

1 m2r2
2

0 0

0 1 0 0

0 0 cðrÞ 0

0 0 0 1

1
CCCA: ð124Þ

The oscillating dependence on the distance,

Φ̂
ð2Þ

ð3Þ ¼ −
M0k̂

ð3Þ

4πr
cðrÞ

¼
c1 cosð

ffiffiffiffiffiffiffiffiffiffiffi
jm2

½3�j
q

rÞ þ c2 sinð
ffiffiffiffiffiffiffiffiffiffiffi
jm2

½3�j
q

rÞ
r

; ð125Þ

arises because m2
½3� < 0. Here the integration constant

c1 ¼ −M0k̂
ð3Þ

4π , but c2 remains undetermined, see
Appendix B 3 for the details. Now the deviation from
the general relativity value (44b) is

ΓðrÞ ¼ −
4F 2

0

κ4
½kαPαðβÞEðβÞðδÞðP−1ÞðδÞγkγ�

¼ μð1 − cðrÞÞ
κ2m2

½3�F 0

¼ −
1

3
ð1 − cðrÞÞ ð126Þ

and the final formulas (43), (48) yield

Geff ¼
κ2

8πF 0

�
1þ ð1 − cðrÞÞ

3

�
; ð127Þ

γ ¼ 2þ cðrÞ
4 − cðrÞ : ð128Þ

This result can be compared to the Newtonian limit found
in Ref. [55] for the intermediate distances much larger than
the Schwarzschild radius but much smaller than the scale
m−1 which is assumed to be comparable to Hubble scale
playing a role in cosmology. By a many sided investigation
the authors of Ref. [55] are able to determine the integration
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constants. The effective gravitational constant that can be
read off from Eqs. (4.30), (4.31) in Ref. [55] matches our
result (127) when the integration constant c2 in Eq. (125)
gets fixed to zero. In that case, for sufficiently small values
of the combination mr, also the post-Newtonian parameter
γ will be close to unity and satisfy the observations.
If we change the sign of the nonlocal term,

SNL−2
þ
¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþm2

6
R□−2R

�
; ð129Þ

the MSTG form of the action remains the same, except

F ¼ 1þ μΦ2 − Φ3: ð130Þ
The eigenvalues of the metric on the scalar fields are still
given by Eq. (115) and two of the four scalars are ghosts.
However the only nonzero mass matrix eigenvalue is now
positive,

m2
½3� ¼

3μ

κ2F 0

¼ m2

F 0

ð131Þ

and the distance dependence is exponential. This leads to

ΓðrÞ ¼ −
1 − e−m½3�r

3
; ð132Þ

Geff ¼
κ2

8πF 0

�
1þ 1 − e−m½3�r

3

�
; ð133Þ

γ ¼ 2þ e−m½3�r

4 − e−m½3�r
; ð134Þ

in agreement with the direct calculation proceeding from
the original action in Ref. [41].

VII. SUMMARY AND OUTLOOK

In this paper we considered a generic MSTG with
arbitrary coupling functions and potential (but no derivative
couplings) in the Jordan frame, and computed the post-
Newtonian parameter γ using a point mass as a source. In
the single field case the result reproduces the earlier study
[29], where a massive nonminimal scalar is known to
modify the effective gravitational constant Geff and the
PPN parameter γ by a correction which falls off exponen-
tially in distance. The same effect persists in the multiscalar
case, while Geff (43) and γ (48) now depend in an intricate
way not only on the masses but also on the alignment of the
fields in the field space (44).
To describe the geometry of the field space we found it

useful to introduce a metric (5) and a vector (8) which
describes the nonminimal coupling of the scalars to gravity
(spacetime curvature). These objects transform covariantly
under the reparametrization of the scalars, i.e. a change of
the coordinates and the corresponding local basis in the
field space. The PPN calculation lead to the mass matrix
(32) whose eigenvectors (or generalized eigenvectors) form

a special basis in the field space. A nice interpretation can
be given if the field space metric is positive definite (there
are no ghosts among the scalars), as in Eq. (69) each
massive field gives a contribution depending on the angle
between the respective mass eigenvector and the overall
vector of nonminimal coupling.
The situation is perhaps easier to grasp in the case of just

two fields in the Brans-Dicke-like parametrization where
the formula (84) for γ can be used to plot constraints on the
theory parameters from the Cassini tracking experiment,
see Fig. 1. As expected, for massless scalars the bounds on
the asymptotic value of the Brans-Dicke ω are high, while
sufficiently large masses remove any bound on ω. A very
interesting scenario would arise when one massless scalar is
accompanied by a rather massive scalar, since in that case
the experimental constraints on ω will be also greatly
reduced compared to a single massless nonminimal scalar
(provided the alignment in the field space is sufficiently
favorable).
Our results are very general and can be utilized to test the

viability of a multitude of models, either originally for-
mulated as MSTG or shown to be equivalent to MSTG. As
an illustration of the formalism we considered four relevant
examples: nonminimally coupled Higgs SU(2) complex
doublet, general hybrid metric-Palatini gravity, linear (□−1)
nonlocal gravity, and quadratic (□−2) nonlocal gravity. In
the cases where an earlier PPN result was available in the
literature for these examples, it agreed with the application
of our formulas for that specific model.
The computations of our paper were carried out in the

Jordan frame. However, in various contexts and for several
applications it is useful to focus upon the Einstein frame
instead. Therefore it remains a task for future to give the
results also in the Einstein frame, or even better, rephrase
them in terms of the formalism of invariants [10] which
facilitates their easy implementation in any frame and
parametrization. Our insights to the role of the geometry
on the field space are most likely just a first glimpse, and
the formalism of invariants seems a fruitful tool to clarify
these issues as well.
The estimation of the numerical bounds on the model

parameters assuming a characteristic distance from a point
mass can be a rather crude approximation for an actual
astrophysical experiment. For a more realistic situation one
should integrate over geodesics and invoke an extended
source, as has been done for a single nonminimally coupled
field case [43,44]. Finally, to fully test the MSTG models
the PPN weak field arena must be complemented by
research on the strong field regime as well [56].
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APPENDIX A: DIAGONALIZATION
OF THE “MASS MATRIX”

In Sec. IV we showed that when the metric (5) on the
space of scalar fields is positive definite (there are no
ghosts) the mass matrix (32) is diagonalizable, which
simplifies the calculation and interpretation of the results.
In this appendix we outline some other cases when the mass
matrix also admits a diagonal form, drawing on Ref. [42].
For instance if the matrix U [proportional to the Hessian

of the potential, Eq. (56)] is positive definite, then by a
construction similar to Sec. IVA we can find a matrix C
such that

ðCTÞðθÞϵUϵαCαðγÞ ¼ δðθÞðγÞ ðA1Þ

and simultaneously

ðCTÞðθÞϵF ϵαCαðγÞ ¼
1

m2
½γ�
δðθÞðγÞ: ðA2Þ

Here the coefficients 1
m2

½γ�
may be also negative. One can

normalize the metric F by introducing a positive diagonal
matrix

ðΔ̄2ÞðθÞðγÞ ¼
1

jm2
½γ�j

δðθÞðγÞ: ðA3Þ

Let us define P ¼ CΔ̄−1. Then

ðPTÞðηÞϵF ϵαPαðδÞ ¼ ðsignm2
½δ�ÞδðηÞðδÞ ðA4Þ

which is a diagonal matrix with þ1 and −1 entries
depending on the signs of the coefficients m2

½δ�. Finally

JðβÞðδÞ ¼ ðP−1ÞðβÞγMγ
αPαðδÞ

¼ ðP−1ÞðβÞγF γεðP−TÞεðηÞðPTÞðηÞϵUϵαPαðδÞ

¼ m2
½δ�δ

ðβÞ
ðδÞ : ðA5Þ

Therefore the Jordan normal form of the mass matrixM is
again diagonal. The mass matrix eigenvectors are still
orthonormal with respect to the metric F and form a
complete set. The components PαðδÞ can be again inter-
preted as vielbeins on the space of scalar fields, but now
with appropriate possibly pseudo-Euclidean signature. Let
us also point out that nothing in the previous construction
changes if not all of the eigenvalues are distinct.
So far we have established by an explicit construction

that the mass matrix is diagonalizable when the eigenvalues

of F or U are all positive. It is possible to show that the
mass matrix is still diagonalizable with real eigenvalues if
there exists a matrix

Y ¼ σU þ γF ; σ2 þ γ2 ¼ 1; ðA6Þ
that is positive definite [42]. For example if F has all
negative eigenvalues then we can choose σ ¼ 0, γ ¼ −1
and simultaneously diagonalize −F and U. Alternatively if
U has all negative eigenvalues the good choice would be
σ ¼ −1, γ ¼ 0. Even if a positive definite matrix Y does
not exist, it may still be possible to diagonalize the mass
matrix with complex eigenvalues.

APPENDIX B: BOUNDARY VALUE PROBLEM

In this appendix we discuss the boundary value problem
which arises when solving the second order scalar field
equation as discussed in Sec. III C. For simplicity, we
restrict our discussion here to a single eigenvalue λ of a
diagonalizable mass matrix, so that we have to solve an
equation of the form

∇2 Φ̂
ð2Þ

− λΦ̂
ð2Þ

¼ k̂ρ; ðB1Þ

where ρ ¼ M0δðrÞ is the matter density of a point mass at
the origin. Here we omitted the eigenvector index (α) for
brevity. We show that the boundary value problem uniquely
determines the solution for the scalar field, and thus also the
metric perturbation, unless the mass matrix has a negative
eigenvalue, in which case there remains an undetermined
constant, which must be fixed by other means.

1. Zero eigenvalue

In the case of a zero eigenvalue λ ¼ 0 of the mass matrix
we simply have to solve the Poisson equation

∇2 Φ̂
ð2Þ

¼ k̂ρ; ðB2Þ

which has the general spherically symmetric vacuum
solution (outside the point mass source)

Φ̂
ð2Þ

¼ c1
r
þ c2: ðB3Þ

From the boundary condition

lim
r→∞

Φ̂
ð2Þ

¼ 0 ðB4Þ

we immediately obtain c2 ¼ 0. Note that the solution has a
singularity at r ¼ 0, which must be matched with the point
mass source. We thus consider a spherical integration
volume BR of radius R around the point mass, for which
we find
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k̂M0 ¼ k̂
Z Z Z

BR

ρdV ¼
Z Z Z

BR

∇2 Φ̂
ð2Þ
dV

¼
ZZ
⬭

∂BR

~∇ Φ̂
ð2Þ

·d~A ¼ −c1
ZZ
⬭

∂BR

~er
r2

· d~A ¼ −4πc1:

ðB5Þ

Thus, we have

c1 ¼ −
k̂M0

4π
ðB6Þ

and

Φ̂
ð2Þ

¼ −
k̂M0

4πr
: ðB7Þ

This is of course the classical and well-known solution of
the Poisson equation for a pointlike source.

2. Positive eigenvalue

For a positive eigenvalue λ ¼ m2 with m > 0 we have a
screened Poisson equation

∇2 Φ̂
ð2Þ

−m2 Φ̂
ð2Þ

¼ k̂ρ; ðB8Þ

with the general spherically symmetric vacuum solution

Φ̂
ð2Þ

¼ c1e−mr þ c2emr

r
: ðB9Þ

Also here we obtain c2 ¼ 0 from the boundary condition

that Φ̂
ð2Þ

vanishes at infinity. We further have

k̂M0 ¼ k̂
Z Z Z

BR

ρdV ¼
Z Z Z

BR

ð∇2 Φ̂
ð2Þ

−m2 Φ̂
ð2Þ
ÞdV ¼

ZZ
⬭

∂BR

~∇ Φ̂
ð2Þ

·d~A −m2
Z Z Z

BR

Φ̂
ð2Þ
dV

¼ −c1
ZZ
⬭

∂BR

ð1þmrÞe−mr

r2
~er · d~A − c1m2

Z Z Z
BR

e−mr

r
dV

¼ −4πc1ð1þmRÞe−mR − 4πc1½1 − ð1þmRÞe−mR� ¼ −4πc1: ðB10Þ

We thus have

c1 ¼ −
k̂M0

4π
ðB11Þ

and

Φ̂
ð2Þ

¼ −
k̂M0

4πr
e−mr: ðB12Þ

The solution is thus given by a Yukawa potential.

3. Negative eigenvalue

For a negative eigenvalue λ ¼ −n2 with n > 0 we have
an inhomogeneous Helmholtz equation

∇2 Φ̂
ð2Þ

þ n2 Φ̂
ð2Þ

¼ k̂ρ; ðB13Þ
with the general spherically symmetric vacuum solution

Φ̂
ð2Þ

¼ c1 cos nrþ c2 sin nr
r

: ðB14Þ

In this case we cannot eliminate c2 using the condition that

Φ̂
ð2Þ

vanishes at infinity. From the point mass source we
obtain

k̂M0¼ k̂
ZZZ

BR

ρdV¼
ZZZ

BR

ð∇2 Φ̂
ð2Þ
þn2 Φ̂

ð2Þ
ÞdV

¼
ZZ
⬭

∂BR

~∇ Φ̂
ð2Þ
·d~Aþn2

ZZZ
BR

Φ̂
ð2Þ
dV

¼−
ZZ
⬭

∂BR

ðc1−c2nrÞcosnrþðc2þc1nrÞsinnr
r2

~er ·d~A

þn2
ZZZ

BR

c1cosnrþc2 sinnr
r

dV

¼−4πc1: ðB15Þ

The constant c2 remains undetermined here. It must be
fixed by some additional reasoning, for instance by letting
the theory parameters to approach the limit to general
relativity and matching the solution to the respective
solution in general relativity (cf. e.g. Ref. [55]).

4. Complex eigenvalue

For a complex eigenvalue λ ¼ ðmþ inÞ2 we have an
equation of the form

∇2 Φ̂
ð2Þ

− ðmþ inÞ2 Φ̂
ð2Þ

¼ k̂ρ; ðB16Þ
with the general spherically symmetric vacuum solution
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Φ̂
ð2Þ

¼ c1e−ðmþinÞr þ c2eðmþinÞr

r
¼ c1e−mrðcos nr − i sin nrÞ þ c2emrðcos nrþ i sin nrÞ

r
: ðB17Þ

Since λ is complex, we can always choose mþ in to be the root of λ which has a real partm > 0. Hence, we obtain c2 ¼ 0

from the boundary condition that Φ̂
ð2Þ

vanishes at infinity. We further have

k̂M0 ¼ k̂
Z Z Z

BR

ρdV ¼
Z Z Z

BR

½∇2 Φ̂
ð2Þ

− ðmþ inÞ2 Φ̂
ð2Þ
�dV ¼

ZZ
⬭

∂BR

~∇ Φ̂
ð2Þ

·d~A − ðmþ inÞ2
Z Z Z

BR

Φ̂
ð2Þ
dV

¼ −c1
ZZ
⬭

∂BR

ð1þmr − inrÞðcos nr − i sin nrÞe−mr

r2
~er · d~A − c1ðmþ inÞ2

Z Z Z
BR

e−mrðcos nr − i sin nrÞ
r

dV

¼ −4πc1: ðB18Þ

We thus have

c1 ¼ −
k̂M0

4π
ðB19Þ

and

Φ̂
ð2Þ

¼ −
k̂M0

4πr
e−mrðcos nr − i sin nrÞ: ðB20Þ

The solution is complex. However, recall that in this case
there always exists a complex conjugate eigenvalue
λ� ¼ ðm − inÞ2, and that the corresponding eigenvectors
are such that its source coupling is given by k�, so that the

field equation is solved by Φ̂
ð2Þ

�, and that the original field
equations in the untransformed basis have the real solutions

Φ̂
ð2Þ

þ Φ̂
ð2Þ

� and −iðΦ̂
ð2Þ

− Φ̂
ð2Þ

�Þ.

APPENDIX C: NONDIAGONALIZABLE
MASS MATRIX

Here we extend the treatment of Sec. III C and show how
to proceed with solving the scalar field equation in case the
mass matrix M is nondiagonalizable. Instead of Eq. (36),
in the general case the scalar equation assumes the form

∇2 Φ̂
ð2Þ

ðαÞ − JðαÞðβÞ Φ̂
ð2Þ

ðβÞ ¼ k̂ðαÞρ; ðC1Þ
where J is the Jordan normal form of the mass matrix. In
the following discussion we will assume that J consists of
only a single Jordan block. In the most general case, where
J consists of a direct sum of several Jordan blocks, this
discussion should be applied to each block separately. We
distinguish three cases, depending on whether the diagonal
elements of the Jordan block are positive, zero, or complex.
As noted before in Appendix B 3, the case of negative
eigenvalue runs into a problem of how to fix the integration
constant, and it is a bit complicated to further generalize
this case to a nontrivial Jordan block.

1. Positive eigenvalue

First we consider the case that the Jordan normal form is
given by a single block with

J ¼ DþN;

D ¼

0
B@

m2 0

. .
.

0 m2

1
CA;

N ¼

0
BBBBB@

0 m2 0

. .
. . .

.

. .
.

m2

0 0

1
CCCCCA; ðC2Þ

where both m and m are nonzero and real. Usually one
would normalize m2 ¼ 1; however, recall that J is of
dimension ðmassÞ2, so that we introduce a unit mass here.
Note thatD is diagonal andN is nilpotent,Nd ¼ 0. Further,
D and N commute, DN ¼ ND, since D is a multiple of the
unit matrix.
We can now solve the scalar field equations (C1)

recursively, starting with the last equation α ¼ d, which
reads

ð∇2 −m2ÞΦ̂
ð2Þ

ðdÞ ¼ k̂ðdÞρ: ðC3Þ

We obtain the solution

Φ̂
ð2Þ

ðdÞ ¼ −k̂ðdÞ
M0

4πr
e−mr ðC4Þ

for a pointmassM0 at the origin,making use of the boundary
conditions detailed in the preceding Appendix B 3. The
remaining field equations then take the form
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ð∇2 −m2ÞΦ̂
ð2Þ

ðαÞ ¼ m2 Φ̂
ð2Þ

ðαþ1Þ þ k̂ðαÞρ: ðC5Þ

They can be solved by an ansatz of the form

Φ̂
ð2Þ

ðαÞ ¼ −
M0

4πr
e−mr

Xd
β¼α

pðβ−αÞðrÞk̂ðβÞ; ðC6Þ

where pðαÞ is determined by the recursive definition

pð0ÞðrÞ ¼ 1; m2pðα−1ÞðrÞ ¼ p00
ðαÞðrÞ − 2mp0

ðαÞðrÞ:
ðC7Þ

The solution which is compatible with the boundary con-
ditions takes the form

pðαÞðrÞ ¼
�
m
m

�
2αXα

β¼0

ð−1ÞβðαÞα−βð1 − αÞα−β
22α−βα!ðα − βÞ! ðmrÞβ ðC8aÞ

¼
�
m
m

�
2αXα

β¼0

ð−1Þα
�
2α − β − 1

β − 1

� ð2α − 2βÞ!
22α−βα!ðα − βÞ! ðmrÞβ ðC8bÞ

¼

8>><
>>:

0 if α < 0;

1 if α ¼ 0;

ðmmÞ2α
ð−1ÞαΓðα−1

2
Þ

2
ffiffi
π

p
α! 1F1ð1 − α; 2 − 2α; 2mrÞmr otherwise

ðC8cÞ

¼

8>><
>>:

0 if α < 0;

1 if α ¼ 0;

− 2mr
4αα ðmmÞ2αLð1−2αÞ

α−1 ð2mrÞ otherwise;

ðC8dÞ

where Γ denotes the gamma function, 1F1 represents the
confluent hypergeometric function of the first kind, and
LðaÞ
n is the nth generalized Laguerre polynomial.
We could have obtained this solution also from the

matrix ansatz

Φ̂
ð2Þ

ðαÞ ¼ −
M0

4πr
EðαÞðβÞk̂

ðβÞ; ðC9Þ

where

E ¼ exp ð−r ffiffiffi
J

p Þ: ðC10Þ

Here we can determine the square root using

ffiffiffi
J

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ N

p ¼
ffiffiffiffi
D

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1d þ D−1N

q

¼
Xd−1
j¼0

ffiffiffi
π

p
2j!Γð3

2
− jÞD

1
2
−jNj; ðC11Þ

while the components are then given by

ð
ffiffiffi
J

p
ÞðαÞðβÞ ¼

ffiffiffi
π

p
2ðβ − αÞ!Γð3

2
− β þ αÞ

m2ðβ−αÞ

m2ðβ−αÞ−1 : ðC12Þ

The exponential is defined as usual through the Taylor
series

E ¼
X∞
j¼0

ð−r ffiffiffi
J

p Þj
j!

; ðC13Þ

and its components are

EðαÞðβÞ ¼ pðβ−αÞðrÞe−mr; ðC14Þ

where pðαÞðrÞ is given by the explicit formula (C8).

2. Zero eigenvalue

Let us now assume that the Jordan normal form of the
mass matrix is given by a single block
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J ¼ N ¼

0
BBBBB@

0 m2 0

. .
. . .

.

. .
.

m2

0 0

1
CCCCCA; ðC15Þ

so that D ¼ 0 in the notation of the preceding section. Note
that J is nilpotent, Jd ¼ 0.
Also in this case we can solve these equations

recursively, starting with the last equation α ¼ d, which
reads

∇2 Φ̂
ð2Þ

ðdÞ ¼ k̂ðdÞρ: ðC16Þ

We obtain the solution

Φ̂
ð2Þ

ðdÞ ¼ −k̂ðdÞ
M0

4πr
ðC17Þ

for a point mass M0 at the origin, again making use of the
boundary conditions detailed in Appendix B 1. The remain-
ing field equations then take the form

∇2 Φ̂
ð2Þ

ðαÞ ¼ m2 Φ̂
ð2Þ

ðαþ1Þ þ k̂ðαÞρ: ðC18Þ

They can be solved by an ansatz of the form

Φ̂
ð2Þ

ðαÞ ¼ −
M0

4πr

Xd
β¼α

pðβ−αÞðrÞk̂ðβÞ; ðC19Þ

where pðαÞ is determined by the recursive definition

pð0ÞðrÞ ¼ 1; m2pðα−1ÞðrÞ ¼ p00
ðαÞðrÞ: ðC20Þ

The solution which is compatible with the boundary
conditions takes the form

pðαÞðrÞ ¼
ðmrÞ2α
ð2αÞ! : ðC21Þ

Also in this case we can write the solution as

Φ̂
ð2Þ

ðαÞ ¼ −
M0

4πr
EðαÞðβÞk̂

ðβÞ; ðC22Þ

where

E ¼
X∞
j¼0

Jjr2j

ð2jÞ! : ðC23Þ

Note that this sum terminates at j ¼ d, because J is
nilpotent. Its components are given by

EðαÞðβÞ ¼
(
0 if α > β;
ðmrÞ2ðβ−αÞ
½2ðβ−αÞ�! otherwise:

ðC24Þ

3. Complex eigenvalues

We finally discuss the case that the Jordan normal form is
given by a pair of complex conjugate blocks

JðαÞðβÞ ¼

0
BBBBBBBBBBBBBBBBBBB@

ðm − inÞ2 m2 0

::
:

::
:

::
:

m2

ðm − inÞ2

ðmþ inÞ2 m2

::
:

::
:

::
:

m2

0 ðmþ inÞ2

1
CCCCCCCCCCCCCCCCCCCA

ðC25Þ

where m > 0 and n > 0. It is convenient to label the components 1−;…; d−; 1þ;…; dþ. The last field equation in each
block then takes the form
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½∇2 − ðm� inÞ2�Φ̂
ð2Þ

ðd�Þ ¼ k̂ðd
�Þρ: ðC26Þ

Once more making use of the boundary conditions detailed
in Appendix B 4, the solution is given by

Φ̂
ð2Þ

ðd�Þ ¼ −k̂ðd
�Þ M0

4πr
e−ðm�inÞr

¼ −k̂ðd
�Þ M0

4πr
e−mrðcos nr ∓ i sin nrÞ: ðC27Þ

The remaining field equations then take the form

½∇2 − ðm� inÞ2�Φ̂
ð2Þ

ðα�Þ ¼ m2 Φ̂
ð2Þ

ðαþ1Þ� þ k̂ðα
�Þρ: ðC28Þ

They can be solved by an ansatz of the form

Φ̂
ð2Þ

ðα�Þ ¼ −
M0

4πr
e−ðm�inÞrXd

β¼α

p�
ðβ−αÞðrÞk̂ðβ

�Þ; ðC29Þ

where p�
ðαÞ is determined by the recursive definition

p�
ð0ÞðrÞ ¼ 1;

m2p�
ðα−1ÞðrÞ ¼ p�

ðαÞ
00ðrÞ − 2ðm� inÞp�

ðαÞ
0ðrÞ: ðC30Þ

The solution which is compatible with the boundary
conditions takes the form

p�
ðαÞðrÞ ¼

�
m

m� in

�
2αXα

β¼0

ð−1ÞβðαÞα−βð1 − αÞα−β
22α−βα!ðα − βÞ! ððm� inÞrÞβ ðC31aÞ

¼
�

m
m� in

�
2αXα

β¼0

ð−1Þα
�
2α − β − 1

β − 1

� ð2α − 2βÞ!
22α−βα!ðα − βÞ! ððm� inÞrÞβ ðC31bÞ

¼

8>><
>>:

0 if α < 0;

1 if α ¼ 0;

ð m
m�inÞ2α

ð−1ÞαΓðα−1
2
Þ

2
ffiffi
π

p
α! 1F1ð1 − α; 2 − 2α; 2ðm� inÞrÞðm� inÞr otherwise

ðC31cÞ

¼

8>><
>>:

0 if α < 0;

1 if α ¼ 0;

− 2ðm�inÞr
4αα ð m

m�inÞ2αLð1−2αÞ
α−1 ð2ðm� inÞrÞ otherwise;

ðC31dÞ

with the functions Γ, 1F1 and LðaÞ
n as above in Eq. (C8).

Writing this solution in matrix form, we have

Φ̂
ð2Þ

ðαÞ ¼ −
M0

4πr
EðαÞðβÞk̂

ðβÞ; ðC32Þ

where again we used the matrix exponential

E ¼ exp ð−r ffiffiffi
J

p Þ ¼
X∞
j¼0

ð−r ffiffiffi
J

p Þj
j!

: ðC33Þ

In this case the components are

ð
ffiffiffi
J

p
Þðα�Þðβ�Þ ¼

ffiffiffi
π

p
2ðβ − αÞ!Γð3

2
− β þ αÞ

m2ðβ−αÞ

ðm� inÞ2ðβ−αÞ−1 ;

ð ffiffiffi
J

p Þðα�Þðβ∓Þ ¼ 0 ðC34Þ

and thus

Eðα�Þðβ�ÞðrÞ ¼ p�
ðβ−αÞe

−ðm�inÞr; ðC35aÞ

Eðα�Þðβ∓Þ ¼ 0; ðC35bÞ

with p�
ðαÞðrÞ given by the defining formula (C31).

4. General solution formula

We have seen in the previous sections that the solutions
(C9), (C22), (C32) for the second order scalar field
equations can always be written in a common matrix
form

Φ̂
ð2Þ

ðαÞ ¼ −
M0

4πr
EðαÞðβÞk̂

ðβÞ; ðC36Þ
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with a matrix E given by Eqs. (C10), (C23), (C33). Note
that these formulas are very similar, and can be brought to a
common form

E ¼
X∞
j¼0

�
Jjr2j

ð2jÞ! −
S2jþ1r2jþ1

ð2jþ 1Þ!
�
;

S ¼

 ffiffiffi

J
p

if J has a square root;

0 otherwise:
ðC37Þ

Here
ffiffiffi
J

p
always denotes the positive square root, i.e., the

square root with positive real parts of the eigenvalues. Note
that this formula holds only for a single Jordan block. In
case that J consists of several Jordan blocks ~J, and is thus
given by a direct sum

J ¼ ⨁
Jordan blocks ~J

~J; ðC38Þ

it must be applied to each Jordan block separately. The full
matrix E is then given likewise by a direct sum

E ¼ ⨁
Jordan blocks ~J

X∞
j¼0

�
~Jjr2j

ð2jÞ! −
~S2jþ1r2jþ1

ð2jþ 1Þ!
�
;

~S ¼

 ffiffiffi

~J
p

if ~J has a square root;

0 otherwise:
ðC39Þ
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