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The Oð∂2Þ background-independent flow equations for conformally reduced gravity are shown to be
equivalent to flow equations naturally adapted to scalar field theory with a wrong-sign kinetic term. This
sign change is shown to have a profound effect on the renormalization group properties, broadly resulting
in a continuum of fixed points supporting both a discrete and a continuous eigenoperator spectrum, the
latter always including relevant directions. The properties at the Gaussian fixed point are understood in
particular depth, but also detailed studies of the local potential approximation, and the full Oð∂2Þ
approximation are given. These results are related to evidence for asymptotic safety found by other authors.
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I. INTRODUCTION

When applied to quantum gravity, asymptotic safety is
the idea that the renormalization group (RG) flow of
gravitational couplings approaches a viable interacting
nonperturbative fixed point in the far ultraviolet, such that
physical observables are rendered ultraviolet finite despite
perturbative nonrenormalizability [1]. Ever since a func-
tional (i.e. “exact” [2]) RG equation adapted to this case
was put forward in Ref. [3], a steady increase of interest in
the asymptotic safety program for quantum gravity has
produced a wealth of results which so far paint an overall
promising picture. For reviews and introductions see [4–8].
One apparent advantage of such an approach was already

pointed out in Ref. [3]. The Euclidean signature functional
integral for the Einstein-Hilbert action suffers from the
well-known conformal factor problem [9], which is that the
negative sign for the kinetic term of the conformal factor,
ϕðxÞ, yields a wrong-sign Gaussian destroying conver-
gence of the integral. On the other hand providing the
cutoff is adapted, the change in sign “seems not to pose any
special problem” for the exact RG flow equation [3]. As we
will see in this paper, however, this one sign change has
profound consequences for the RG properties of the
solutions, broadly resulting in a continuum of fixed points
supporting both a discrete and a continuous eigenoperator
spectrum, the latter always including relevant directions. In
the following we will review the exact RG approaches to
asymptotic safety only inasmuch as to highlight how these
effects have been overlooked until now and to highlight the
technical developments that have been necessary in order to
clearly uncover them.
Given that at first sight there is no special problem, the

complexity of the extra technology and approximations

necessary to make progress with such a functional RG
approach to quantum gravity (many already developed in
Ref. [3]) obscures these effects. In brief, in order to adapt
the infrared cutoff employed in constructing the flow
equation [10–12], the background field method is
employed and thus the full metric gμν and a background
metric gμν are introduced. Gauge fixing and infrared cutoff
terms are introduced in a way that leaves the diffeo-
morphism invariance for the background metric undis-
turbed. The gauge fixing requires ghosts, which must
themselves be regulated with background covariant cutoff
terms. In almost all works further fields are then introduced
in order to reexpress the fluctuation in a transverse-traceless
decomposition which facilitates the computation of the
inverse Hessian involved in constructing the flow equa-
tions, and these fields must be similarly treated. Also to
facilitate this computation, the cutoff terms are introduced
typically in some way which is adapted to the form of the
Hessian. In standard fashion, diffeomorphism invariance of
the total metric gμν becomes Becchi Rouet Stora invariance,
which is, however, broken by the cutoff. In principle it can
be recovered once the flow is complete, providing modified
Ward identities are satisfied [3].
Physics should depend only on the full metric, and not

also on the background metric gμν that was introduced by
hand as part of the background field technique. We will call
this the requirement of background independence. In the
literature the construction of the effective action about a
general background metric gμν, and thus computing in
effect on all backgrounds simultaneously, is also referred to
as background independence. As explained in Ref. [13],
this usage follows that in loop quantum gravity [14–17].
However as emphasized in Ref. [18], background inde-
pendence in the sense we mean it is much more than this,
and in fact is a strong extra constraint. This requirement can
in principle also be recovered providing certain modified
split Ward identities (msWI) are satisfied [19–28] (see
however the discussion in the conclusions of Ref. [29]).
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Finally, in order to actually calculate anything, some
approximations have to be made. Of these, of most interest
to our discussion are the so-called single-metric approxi-
mation, and what we will refer to as “polynomial trunca-
tions.” The former approximation amounts to identifying
gμν and gμν at an appropriate point in the calculation. The
latter approximation results from retaining only a finite
number of operators in the effective action. These two
approximations are not always made, but almost without
exception one or other approximation is made, and both
contribute to obscuring the consequences of the wrong-sign
kinetic term for the conformal factor.
Clearly, in order to expose these consequences, it helps

to concentrate on this component of the metric alone. This
is known in the literature as conformally reduced quantum
gravity. A small number of works have studied this using
the exact RG, starting with Ref. [30]. In fact in this
reference only the conformally reduced Einstein-Hilbert
(CREH) truncation was actually computed. This is an
example of a polynomial truncation. As we show explicitly
in Sec. VIII, the problem with this type of truncation is that
by construction they can only give isolated fixed points
with a quantized eigenoperator spectrum, and it is thus very
difficult to ascertain the true situation this way. In Ref. [13]
a full local potential approximation (LPA) is derived for the
conformal factor field. This functional truncation keeps a
general potential for the field and incorporates infinitely
many operators. In the Taylor expansion these are all
positive integer powers of the field. Such an approximation
therefore overcomes the limitations of the polynomial
truncations but, however, background independence (in
the sense we mean it) was not incorporated, which means
that the equations have a separate dependence on two
fields: ϕ and also its background value χ.1 Nevertheless
some indication of there being an infinite number of
relevant directions was uncovered [13]. Finally, in
Ref. [25] not only was an LPA approximation derived
but also the msWI that imposes background independence.
Unfortunately, as discussed in Ref. [18] (see also [29]), the
msWI and flow equation derived there were not compatible
with each other and furthermore again only polynomial
truncations were actually computed. In a separate develop-
ment [31–34], the conformal factor is involved although not
explicitly. Instead the degrees of freedom are duplicated by
introducing a “dilaton” (also known as a spurion or
compensator field) in order to investigate the rôle of
Weyl invariance, and also all other components of the
metric are included. Furthermore, single metric type
approximations are made, and apart from the nonlocal
Riegert action [31] (which reproduces the trace anomaly)

only polynomial truncations are considered. Finally in
Ref. [35] the single metric type approximation is again
considered, and furthermore the exact RG is replaced with a
“proper time flow.”Again the focus is on the CREH, but the
significance of the flow equations for the conformal factor
being of backward parabolic type is realized and inves-
tigated within a more general LPA setting. We will come
back to this observation in Sec. III. As we will see however,
the wrong-sign kinetic term actually has more immediate
and profound effects on the properties of the fixed points
themselves and their eigenspectra, as we have already
mentioned.
In fact a continuum of fixed points and a continuous

eigenoperator spectrum have already been found in full
quantum gravity calculations in the so-called fðRÞ approxi-
mation [36]. But it was possible to blame this on a
breakdown of such an LPA-type approximation [37] and
on the use of the single field approximation [18,21].
Furthermore, as we discuss in the conclusions, the resulting
background dependence of this type of approximation
obscures the significance of the large R asymptotic behav-
ior, and from the scalar field study in Ref. [21] it is
particularly clear that the single field approximation intro-
duces spurious effects and leads to significantly more
complicated equations which obscure the basic structure.
These problems are overcome for conformally truncated

gravity in Ref. [18]. Guided by a remnant of background
diffeomorphism invariance, flow equations and msWI are
derived which can be compatible with each other after
derivative expansion approximation [29]. Indeed compat-
ibility is shown to hold for general anomalous dimension,
η, if and only if power-law cutoff profiles are used [29].
Such cutoff profiles have another advantage in that they
preserve a reparametrization invariance [38–40] turning the
fixed point equations into nonlinear eigenvalue equations
for η [38,41–45], and thus removing one further arbitrari-
ness in these approximations. Finally, background inde-
pendence is achieved for conformally truncated gravity for
slow background field χ (equivalent to LPA) and fully at
Oð∂2Þ for the fluctuation field, and for general choice of
parametrization, fðϕÞ, of the conformal factor. Taking the
approximation fully toOð∂2Þ in this way avoids the traps of
polynomial truncations, and ensures that break down of the
LPA [37] is avoided, although as we will see, such a
breakdown does not in any case take place here. It also
allows us to explore the equations for general η in a context
where the corresponding scalar equations result in unique
values for critical exponents including η, and the scaling
equation of state [46], which are in good agreement with
other approaches [41–43]. As shown in Ref. [18], the
resulting equations can be combined together and recast in
terms of background-independent variables, whereupon not
only does all dependence on χ disappear but also all
dependence on the form of parametrization f.
The underlying simplicity of the result is highlighted by

the fact that the background-independent flow equations

1The situation is further obscured by there being no unique
way to fix the anomalous dimension, η, leading to dependence on
some arbitrary value of the field ϕ1. This should be contrasted
with the treatment here and in Ref. [18] as discussed later.
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are in fact equivalent to flow equations naturally adapted to
scalar field theory with a wrong-sign kinetic term, as we
will see in Sec. III. The consequences for the eigenspec-
trum are then particularly transparent for the Gaussian fixed
point (and furthermore independent of cutoff profile).
Likewise the reason for a continuum of fixed points is
particularly clear from an asymptotic analysis of the LPA
fixed point equation. (Furthermore this is demonstrated for
general cutoff profile, spacetime and field dimensions.) For
this reason Secs. IV and V form central parts of the paper.
The LPAwith η ¼ 0 can be solved completely analytically.
We derive the continuum of fixed points, each supporting
continuous eigenspectra, in Sec. VI. This behavior is
established for the full Oð∂2Þ equations in Sec. VII by a
combination of numerical analysis and analytical asymp-
totic analysis, except for a small region η ∈ R where likely
there are no solutions. Asymptotic analysis is used in
Sec. VII C to establish that also at Oð∂2Þ the eigenoperator
spectrum has a continuous part. We see this already in
Sec. IV, but here it is established for all the continuum of
fixed point solutions at this level. In Sec. VIII, polynomial
truncations are considered, and finally in Sec. IX we
present our conclusions. This last section is likewise one
of the central parts of the paper. It starts with a potted
summary of the main findings, discussing also their
significance and highlighting possible extensions, and ends
with a detailed discussion of how these findings fit with the
existing literature.
We start however with a miniature review of the results

from Refs. [18,29], sufficient for the rest of the paper.

II. REVIEW

In this section we very briefly review some of the results
from refs. [18,29] so that we can set out the notation and
equations we will need. We will set out the equations in d
dimensions, but we will then mostly specialize to d ¼ 4
dimensions (in particular whenever we derive concrete
solutions). We work in Euclidean signature with a con-
formally truncated metric gμν ¼ fðϕÞδμν. Here ϕ is the total
conformal factor field and f is some choice of para-
metrization which is left arbitrary. The background field
method is employed, with the background metric set equal
to gμν ¼ fðχÞδμν. The fluctuation conformal factor field is
φ ¼ ϕ − χ. In order to truncate the effective action of the
conformal factor Γk½φ; χ� we make use of a derivative
expansion. This is an expansion scheme that has proved
successful in applications of the functional RG to other
quantum field theories such as scalar field theory, e.g. [41].
We simplify matters by specializing to a slow back-

ground field such that ∂μχ is neglected. We are then able to
preserve a remnant diffeomorphism invariance (scaling of
the coordinates) which is sufficient at this level of approxi-
mation to fix how fðχÞ must appear, in much the same way
that appearances of the background metric gμν are fixed by

full diffeomorphism invariance in the flow equation for full
quantum gravity [18]. The effective action then takes the
form

Γk½φ; χ� ¼
Z

ddxfðχÞd2
�
−
1

2

Kðφ; χÞ
fðχÞ ð∂μφÞ2 þ Vðφ; χÞ

�
ð2:1Þ

in which we keep a general scalar potential Vðφ; χÞ at
zeroth order of the derivative expansion and a general scalar
function Kðφ; χÞ at Oð∂2Þ for the fluctuation field φ. It
is understood that both of them depend on the RG time
t ¼ lnðk=μÞ (μ is a fixed physical mass scale).
The infrared cutoff Rðp2=fÞ depends on the background

field χ as required by (remnant) background diffeomor-
phism invariance.2 However this means that the flow
equation and thus effective action depend separately on
both χ and φ. The fact that the underlying theory depends
only on the total field ϕ is expressed through a msWI which
is derived through considering the breaking of the “split”
invariance φðxÞ ↦ φðxÞ þ ϵðxÞ, χðxÞ ↦ χðxÞ − ϵðxÞ.
Providing the flow equations and the msWI are compatible,
imposing the msWI at any scale k then ensures that split
invariance is recovered in the limit k → 0. At the exact level
the equations are automatically compatible but this needs to
be verified once approximations are made [29].
After performing the derivative expansion of the flow

equation and the msWI, we tidy up the equations a little by
redefining

V ↦
~Ωd−1

2
V; K ↦

~Ωd−1

2
K; R↦

~Ωd−1

2
R; ð2:2Þ

where the constant ~Ωd−1 ¼ Ωd−1=ð2πÞd, and Ωd−1 is the
surface area of the (d − 1)-dimensional sphere. Then the
flow equation and msWI for the potential can be written

∂tVðφ; χÞ ¼ fðχÞ−d
2

Z
dppd−1Q0

_R; ð2:3aÞ

∂χV − ∂φV þ d
2
∂χ ln fV

¼ fðχÞ−d
2

Z
dppd−1Q0

�
∂χRþ d

2
∂χ ln fR

�
; ð2:3bÞ

where we have made use of the Hessian at zeroth order of
the derivative expansion,

Q0 ¼ ½∂2
φV − Kp2=f þ Rðp2=fÞ�−1: ð2:4Þ

In the same way, the flow equation and msWI for the
kinetic term are

2Here and in the ensuing, f without qualification means fðχÞ.
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f−1∂tKðφ; χÞ ¼ 2f−
d
2

Z
dppd−1Pðp2;φ; χÞ _R; ð2:5aÞ

f−1
�
∂χK − ∂φK þ d − 2

2
∂χ ln fK

�

¼ 2f−
d
2

Z
dppd−1Pðp2;φ; χÞ

�
∂χRþ d

2
∂χ ln fR

�
; ð2:5bÞ

where P is given by

P ¼ −
1

2

∂2
φK

f
Q2

0 þ
∂φK

f

�
2∂3

φV −
2dþ 1

d

∂φK

f
p2

�
Q3

0

−
��

4þ d
d

∂φK

f
p2 − ∂3

φV

��
∂p2R −

K
f

�

þ 2

d
p2∂2

p2R

�∂φK

f
p2 − ∂3

φV

���
∂3
φV −

∂φK

f
p2

�
Q4

0

−
4

d
p2

�
∂p2R −

K
f

�
2
�
∂3
φV −

∂φK

f
p2

�
2

Q5
0: ð2:6Þ

In fact the msWIs in the derivative expansion approxima-
tion above are compatible with the flow equations if and
only if one of two conditions are met: (1) either the
anomalous scaling dimension of the fields happens to
vanish or (2) as functions of p [29],

_R ∝
�
∂χRþ d

2
∂χ ln fR

�
: ð2:7Þ

Furthermore there are no solutions to the combined
system unless the msWIs are compatible with the flow
[29]. Since we will mostly be interested in the case where
the anomalous dimension is nonvanishing we will restrict
the cutoff profile to satisfy the above condition.3

Using dimensional analysis [18,29], we find that this is
ensured if

Rðp2=fÞ ¼ −kd−η−d
2
dfr

�
p2

k2−dff

�
; ð2:8Þ

with

rðzÞ ¼ 1

zn
; ð2:9Þ

where n is chosen to be an integer. We have taken the
scaling dimension of f to be df. Although classically the
conformal factor is naturally dimensionless, we allow for
an anomalous scaling dimension ½φ� ¼ ½χ� ¼ η=2. To
ensure finiteness of the integrals on the right-hand sides
of (2.3) and (2.5), the exponent n has to be chosen such

that n > d=2 − 1, cf. [41]. From (2.8) we also need to
ensure that

n ≠
η

2 − df
−
d
2
; ð2:10Þ

otherwise R becomes independent of k. The respective
flow equations and msWIs can then be combined into
linear partial differential equations which can be solved to
yield background independent variables [18],

Vðk;φ; χÞ ¼ fðχÞ−d
2 ~Vð~k;ϕÞ;

Kðk;φ; χÞ ¼ fðχÞ−d
2
þ1 ~Kð~k;ϕÞ;

~k ¼ kfðχÞ1α; ð2:11Þ
where ϕ ¼ φþ χ is the total field. The constant α is
given by

α ¼ 2

�
1 −

η

dþ 2n

�
− df; α ≠ 0; ð2:12Þ

where the inequality follows from (2.10). Defining a mass
dimension one background-independent scale

k̂ ¼ ~k
α

αþdf ¼ k
α

αþdffðχÞ
1

αþdf ; ð2:13Þ
we can define dimensionless background-independent
quantities via

~V ¼ k̂dV̂; ~K ¼ k̂d−2−ηK̂; ϕ ¼ k̂
η
2ϕ̂; p ¼ k̂ p̂ :

ð2:14Þ

Note that if ½~k� ¼ 0 we cannot make variables dimension-
less by using ~k, and the definition of k̂ then makes no
sense. Since making the variables dimensionless is equiv-
alent to the blocking step in the Wilsonian RG framework
[41,43], in this case the Wilsonian RG framework breaks
down. We therefore need to utilize the freedom to choose
the cutoff exponent n so that

α ≠ −df or equivalently η ≠ dþ 2n; ð2:15Þ

using (2.12). In terms of these dimensionless variables
the flow equations and msWIs then collapse to two
background-independent flow equations which will be
the subject of our study from now on,

∂ t̂V̂ þ dV̂ −
η

2
ϕ̂V̂ 0 ¼ −ðd − ηþ 2nÞ

Z
dp̂p̂d−1Q̂0rðp̂2Þ;

ð2:16aÞ

∂ t̂K̂ þ ðd − 2 − ηÞK̂ −
η

2
ϕ̂K̂0

¼ −2ðd − ηþ 2nÞ
Z

dp̂p̂d−1P̂ðp̂2; ϕ̂Þrðp̂2Þ: ð2:16bÞ3The alternative case (1) is studied in Ref. [29] and shown to
lead to closely similar results for general cutoff profile.
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where t̂ ¼ lnðk̂=μÞ and where now

Q̂0 ¼ ½V̂ 00 − K̂p̂2 − rðp̂2Þ�−1; ð2:17Þ

P̂ ¼ −
1

2
K̂00Q̂2

0 þ K̂0
�
2V̂ 000 −

2dþ 1

d
K̂0p̂2

�
Q̂3

0

þ
��

4þ d
d

K̂0p̂2 − V̂ 000
�
ðr0ðp̂2Þ þ K̂Þ

þ 2

d
p̂2r00ðp̂2ÞðK̂0p̂2 − V̂ 000Þ

�
ðV̂ 000 − K̂0p̂2ÞQ̂4

0

−
4

d
p̂2ðr0ðp̂2Þ þ K̂Þ2ðV̂ 000 − K̂0p̂2Þ2Q̂5

0; ð2:18Þ

and primes denote derivatives with respect to ϕ̂ (except on
r where they denote derivatives with respect to its argu-
ment p̂2). We see that (2.16) takes the form of two partial
differential equations for Vk̂ðϕ̂Þ and K̂k̂ðϕ̂Þ with respect to
the RG scale k̂ and the total conformal factor field ϕ̂.
When we specialize these equations to the case of most

interest, namely d ¼ 4 dimensions, we will set n ¼ 2, since
this is the smallest possible (integer) choice for the
exponent in the power law cutoff to ensure convergence,
cf. below (2.9). A third virtue of the power-law cutoff (2.9)
besides ensuring compatibility of the msWI and flow
equations, and facilitating the combination of the flow
equation with the msWI, is that the flow equations (2.16)
enjoy a (nonphysical) scaling symmetry (which thus
preserves the quantization of the anomalous dimension
in nongravitational systems, e.g. scalar field theory [41–43]).
In d ¼ 4 this is characterized by the following scaling
dimensions:

½V̂� ¼ 4; ½K̂� ¼ −6; ½ϕ̂� ¼ 4; ½p̂� ¼ 1:

ð2:19Þ

III. COMPARISON TO SCALAR FIELD THEORY

As noted in Ref. [18], the background-independent flow
equations (2.16) bear a very close resemblance to those of
scalar field theory. If the potential is renamed as V̂ ↦ −V̂,
and the anomalous dimension is reparametrized as

η ¼ d − 2þ ηðsÞ; ð3:1Þ

then the resulting flow equations are exactly the ones that
would be derived at Oð∂2Þ for scalar field theory in d
dimensions with power-law cutoff profile (2.9) [41], except
for an overall sign on the right-hand side of the flow
equations. The background-independent definitions result
in the cutoff term turning into

f
d
2Rðp2=fÞ ¼ −k̂d−ηrðp2=k̂2Þ ≕ Rk̂ðpÞ; ð3:2Þ

which after the translation (3.1) is the form expected for
scalar field theory, except for the sign that is needed to
match the wrong-sign kinetic term of the conformal
factor field.
As we will shortly verify, it follows that the flow

equations can be derived from the Oð∂2Þ expansion of

∂ t̂Γk̂ ¼ −
1

2
Tr

�
δ2Γk̂

δϕδϕ
− Rk̂

�−1
∂ t̂Rk̂; ð3:3Þ

where the change of variables (2.11) together with (2.13)
turns the effective action (2.1) into

Γk̂½ϕ� ¼
Z

ddx

�
−
1

2
~Kk̂ðϕÞð∂μϕÞ2 þ ~Vk̂ðϕÞ

�
: ð3:4Þ

Note that the explicit dependence on background has also
disappeared from the action, with the action depending on
the background field χ only through k̂.
To verify this we start by noting that the two signs on

the right-hand side of (3.3) are absent in scalar field theory.
However making the indicated change ~V ↦ − ~V and
recognizing that (3.4) is then minus the effective action

ΓðsÞ
k̂
½ϕ� of scalar field theory at Oð∂2Þ, we see that (3.3)

indeed turns into

∂ t̂ΓðsÞ ¼ −
1

2
Tr

�
δ2ΓðsÞ

δϕδϕ
þ Rk̂

�−1
∂ t̂Rk̂; ð3:5Þ

the flow equation for scalar field theory except for an
overall sign on the right-hand side, as claimed.
As it turns out, a more fruitful way to make the

comparison is to “Wick rotate” the field ϕ ¼ iϕðsÞ where
the latter is a real field and thus the functional integral
over the conformal factor field is to be done along a path
along the imaginary axis. This is exactly the cure for the
conformal factor problem in the functional integral, as
proposed in Ref. [9], and indeed is nothing but the required
choice of contour (steepest descents) that follows from
the assumption of analyticity. Making the identifications
that KðsÞðϕðsÞÞ ¼ ~KðiϕÞ and VðsÞðϕðsÞÞ ¼ ~VðiϕÞ, both the
action (3.4) and the flow equation (3.3), and hence also the
Oð∂2Þ flow equations (2.16), turn into the standard ones for
scalar field theory (i.e. now with all signs correct).
At first sight the extra signs in (3.3) and (3.4), or

equivalently the overall sign on the right-hand side of
(3.5), are harmless since unlike the original functional
integral, the flow equations seem well defined even with the
wrong-sign kinetic term [3]. In fact such RG flows are then
backward-parabolic meaning that the Cauchy problem for
flow towards the infrared is not well posed. Instead, for a
general “initial” effective action, well-defined RG flows
only exist towards the ultraviolet [35]. Strictly speaking this
already undermines the Wilsonian interpretation [18], but
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as we will see the sign difference actually has more
immediate and profound effects on the properties of both
fixed points themselves and their eigenspectra.

IV. THE GAUSSIAN FIXED POINT AND ITS
EIGENOPERATOR SPECTRUM

At the risk of some confusion, for typographical clarity
from here on we drop all the hats; however, we emphasize
that all quantities will still refer to scaled background-
independent variables except where explicitly stated.
These equations are already very informative if we

analyze the properties of the Gaussian fixed point. For a
Gaussian fixed point we want to find a solution where V ¼
VGFP� and K ¼ KGFP� > 0 are constants, independent of
both ϕ and t, so that (3.4) amounts to a free massless field
theory. Substituting such constant values into (2.16b), we
see from (2.18) that P vanishes and thus at Oð∂2Þ
consistency demands that η ¼ d − 2. Thus at the
Gaussian fixed point the background-independent version
of the conformal factor naturally acquires the scaling
dimension ½ϕ� ¼ ðd − 2Þ=2 of a Gaussian scalar field.
We now set d ¼ 4, so now η ¼ 2 and ½ϕ� ¼ 1. As we

noted at the end of Sec. II, we set n ¼ 2. By the scaling
symmetry (2.19), we can choose the canonical value
KGFP� ¼ 1. From (2.16a) we thus find

VGFP� ¼ 3

2

Z
∞

0

dp
p3

1þ p6
¼ π

2
ffiffiffi
3

p ≈ 0.9069: ð4:1Þ

Linearizing the flow equations (2.16) about these values by
writing

Vðϕ; tÞ ¼ VGFP� þ δVðϕ; tÞ and Kðϕ; tÞ ¼ 1þ δKðϕ; tÞ;
ð4:2Þ

we have by separation of variables that

δVðϕ; tÞ ¼ ϵVðϕÞe−λt and δKðϕ; tÞ ¼ ϵKðϕÞe−λt;
ð4:3Þ

where ϵ is a small proportionality factor. Thus we find

ð4 − λÞV − ϕV 0 ¼ ðV 00 − 2KÞ=2a2;
−λK − ϕK0 ¼ K00=2a2; ð4:4Þ

where we have written a2 ¼ 3
ffiffiffi
3

p
=4π. Solving these

equations yields the eigenoperators

−
1

2
KðϕÞð∂μϕÞ2 þ VðϕÞ ð4:5Þ

with their associated RG eigenvalues λ. Providing the
linearized analysis is valid [43,46–48], we deduce that
the eigenvalue is the scaling dimension of the associated

coupling ϵμλ, while the scaling dimension of VðϕÞ is 4 − λ
and the scaling dimension of KðϕÞ is −λ.
Before analyzing the perturbations further, we recall that

in scalar field theory about the Gaussian fixed point [47,48]
or in fact any fixed point [43,46], the eigenperturbations
divide into two classes: the quantized perturbations that
grow as a power for large ϕ, and the nonquantized
perturbations that grow like the exponential of a fixed
power of ϕ for large ϕ. Any function of the field that grows
slower than the latter can be expanded uniquely as a series
in the power-law perturbations. This may be proven by
using Sturm-Liouville theory [49] to show that power-law
perturbations are orthogonal and complete with respect to
the appropriate measure. Furthermore for the power-law
perturbations the scaling dimension deduced from linear-
ized analysis is valid, and thus for RG eigenvalue λ ≥ 0 the
perturbations can be associated to renormalized couplings
ϵμλ; on the other hand the non-power-law perturbations
cannot be associated to renormalized couplings but instead
follow mean-field evolution for large ϕ which, under any
evolution to the infrared, falls back into the space of
functions that can be expanded in terms of the power-
law perturbations [43,46–48].
In the current case, just as for the Gaussian fixed point in

scalar field theory, quantized solutions are related to
Hermite polynomials Hn (equivalent for even n to the

generalized Laguerre polynomials L
−1
2

n=2 analyzed in
Ref. [48]). More specifically, let us write

OnðϕÞ ≔ HnðiaϕÞ=ð2iaÞn
¼ ϕn þ nðn − 1Þϕn−2=4a2 þ � � � ; ð4:6Þ

with n a non-negative integer. The potential perturbations
are then

VnðϕÞ ¼ OnðϕÞ; λ ¼ 4 − n; ð4:7Þ

[with KðϕÞ ¼ 0], and perturbations with a nonvanishing
kinetic term contribution take the form

KnðϕÞ ¼ OnðϕÞ with VðkinÞ
n ðϕÞ

¼ −4OnðϕÞ=a2; λ ¼ −n: ð4:8Þ

We see that the RG eigenvalues and corresponding dimen-
sions are just the engineering ones expected at the Gaussian
fixed point. The polynomials are of the expected form:
generated by an integer power of the field plus successive
tadpole corrections [50], see Fig. 1. The only new feature is
the presence of i in the definition (4.6). Its only effect is to
remove the alternating signs we would otherwise have had
in the sum over lower powers, for example in scalar field
theory the ϕn−2 term in (4.6) appears with a minus sign.
This is a direct consequence of the wrong-sign kinetic term
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for the conformal factor, which provides an extra minus
sign for every propagator in Fig. 1.
These adaptations so far seem innocuous, nevertheless

the sign change has far reaching consequences. First the
polynomials only formally satisfy orthonormality relations,Z

∞

−∞
dϕea

2ϕ2

OnðϕÞOmðϕÞ ¼ −
i
a

�
−

1

2a2

�
n
n!

ffiffiffi
π

p
δnm;

ð4:9Þ
which we can justify only by Wick rotation of the
conformal factor to an integral along the imaginary axis,
as already introduced at the end of Sec. III, and then
defining the result by analytic continuation back to an
integral along the real line. Since these integrals do not
converge as integrals along the real line, they cannot be
used to derive a completeness relation for functions over
the real line. For example, for a perturbation VðϕÞ other
than a polynomial, it is not possible to write VðϕÞ ¼P

mVmOmðϕÞ for some coefficients Vm because there is no
notion of convergence for real ϕ of the sum

XN
m¼0

VmOmðϕÞ ð4:10Þ

to VðϕÞ as N → ∞. Indeed a translation of the usual proof
of completeness would demonstrate that

Z
∞

−∞
dϕea

2ϕ2

�
VðϕÞ −

XN
n¼0

VnOnðϕÞ
�2

ð4:11Þ

tends to zero as N → ∞, but clearly this can make sense in
general only if the integral is taken along the imaginary
axis. In fact, since (4.10) is a polynomial, the integral can
only converge along the real line if VðϕÞ is already the same
polynomial plus a term that decays exponentially fast.
Let us illustrate these issues with a simple example.

Suppose that the linearized perturbation (at t ¼ 0) is given by

VðϕÞ ¼ 1

1þ a4ϕ4
: ð4:12Þ

Integrating along the ϕ imaginary axis, the Vm can be
computed using (4.9). We see from Fig. 2 that the resulting
sum, (4.10), approximates the original function well along
the imaginary axis, forN sufficiently large, as required by the
vanishing of the norm (4.11) as N → ∞. Note that
differences visible at large �iaϕ are exponentially damped
in the integrand of the norm-squared of the difference (4.11).
In fact with N ¼ 15, this integrand is never more than
5 × 10−4. However, as seen in Fig. 2, the approximation
breaks down completely for real ϕ.
There are two related issues. First we can no longer cast

the equation in terms of a Sturm-Liouville operator [49]
that is self-adjoint in an appropriate space and thus we are
also unable to show that the eigenvalues λ must be real.
Since the differential equations are real, we would then
have a complex pair of solutions associated to a complex
pair of eigenvalues. (This type of situation was analyzed in
Ref. [36].) Although the analysis we present can be
extended to the case of complex λ we will in the ensuing
only analyze the subset of perturbations with real λ.
Second, the nonquantized solutions to (4.4) are no longer

excluded. In the following we consider only the potential
perturbations with K≡ 0 which thus from (4.4) satisfy

FIG. 2. The example V in (4.12) is plotted in blue, and the partial sum (4.10) with N ¼ 15, plotted as a dashed line in orange. They are
plotted along the imaginary axis in the left panel and along the real axis in right panel.

FIG. 1. The eigenoperators at the Gaussian fixed point are
linear in an n-point interaction (here n ¼ 6), with lower powers of
ϕ being generated by successive tadpole corrections.
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ð4 − λÞV − ϕV 0 ¼ V 00=2a2: ð4:13Þ

[It is straightforward to adapt the arguments to the case of
kinetic term perturbations (4.8).] It is worth noting that up
to scaling, Eq. (4.13) is universal, independent of the choice
of cutoff profile just as is true for scalar field theory [48].
In scalar field theory, the nonquantized perturbations

grow exponentially for large ϕ, in particular about the
Gaussian fixed point as ϕλ−5 expða2ϕ2Þ, invalidating the
linearized approximation (4.2) for sufficiently large ϕ, no
matter how small we set ϵ in (4.3). In turn this tells us that
these nonquantized perturbations cannot be associated with
renormalized couplings and instead follow at large ϕ a
mean-field evolution that instantly collapses the interaction
back into the space spanned by the quantized operators as
the perturbation is evolved under the RG towards the IR
[43,46–48].
On the contrary here, for any real λ, neither solution can

be ruled out by such arguments applied to its large ϕ
behavior. The general solution is given by the linear
combination

V ¼ C1ϕM

�
λ

2
−
3

2
;
3

2
;−a2ϕ2

�
þC2M

�
λ

2
− 2;

1

2
;−a2ϕ2

�
;

ð4:14Þ

in terms of the Kummer M-function [51] and constants Ci.
The linearly independent solutions are smooth (in fact
entire) functions of ϕ, with the first being an odd function
of ϕ and the second an even function of ϕ. For general λ
and for large ϕ both of these behave as a power law

V ∝ ϕ4−λ þ ð4 − λÞð3 − λÞ
4a2

ϕ2−λ þOðϕ−λÞ; ð4:15Þ

which is an asymptotic series with exponentially decaying
corrections ∼ϕλ−5 expð−a2ϕ2Þ. Only for λ ¼ 4 − n (n a
non-negative integer) is there the additional possibility to
exclude the decaying exponential corrections and arrive at
the polynomial solutions (4.6), and only for λ ¼ 5þ n is it
possible to exclude the power-law part and have a solution
that for ϕ → �∞ decays as ∼ϕλ−5 expð−a2ϕ2Þ. These
latter “super-relevant” perturbations take the form of
polynomials times the exponential factor. The first two are

V ¼ expð−a2ϕ2Þ; λ ¼ 5 and

V ¼ ϕ expð−a2ϕ2Þ; λ ¼ 6: ð4:16Þ

They clearly fulfill the linearization approximation (4.2)
ever more accurately for large ϕ, confirming that they
evolve as an operator of scaling dimension 4 − λ associated
to a renormalized coupling ϵμλ. If a solution is taken with
asymptotics (4.15), then, since the nonlinear terms depend
only on V 00, it likewise continues to fulfill the linearization

approximation for 2 − λ ≤ 0 (for 2 − λ < 0 ever more
accurately) as ϕ → �∞, while for 2 − λ > 0, mean-field
evolution takes over for large ϕ but does allow the RG time
dependence of the leading term to be associated to
evolution of g ¼ ϵμλ.
To justify this last conclusion, we note that for 2 − λ > 0,

the linearization approximation is invalid for sufficiently
large ϕ. Following the analysis of Refs. [43,46–48], we add
the perturbation (4.2) but recognize that separation of
variables as in (4.3) is no longer justified. Instead we set
δVðϕ; 0Þ ¼ ϵVðϕÞ, and using this boundary condition
determine the correct t-evolution at large ϕ. Since the
perturbation is then no longer small, we need to work with
the full flow equation, which from (2.16a) for Vðϕ; tÞ reads

∂tV − ϕV 0 þ 4V ¼ 3F ðV 00Þ; ð4:17Þ

where

F ðzÞ ≔ 2

Z
∞

0

dp
p3

1 − p4zþ p6
: ð4:18Þ

We notice that F is a strictly positive monotonically
increasing function where the allowed range for its
argument is

−∞ < z < 3 · 2−2=3 ð4:19Þ

to guarantee finiteness of the integral. Since VðϕÞ is a finite
smooth solution for all finite ϕ, providing we add it with
small enough ϵ we can ensure the integral is well defined,
providing we also choose the Ci so that V 00 < 0 for
ϕ → �∞. Then we see from (4.15) that actually V 00 →
−∞ asymptotically, which forces F → 0. Therefore for
large ϕ only the left-hand side of (4.17) matters, which is
solved by mean-field evolution δVðϕ; tÞ ¼ e−4tδVðϕet; 0Þ.
Now using (4.15), we see that its power-law behavior
ensures that the t dependence factorizes so that we get back
the linearized result δVðϕ; tÞ ¼ ϵVðϕÞe−λt, but here holding
even when ϵVðϕÞ is no longer small.
Thus we conclude that for conformally reduced gravity,

around the Gaussian fixed point there are two independent
relevant couplings for every real positive λ. In the next
sections we will uncover another RG consequence of the
conformal factor instability: that fixed points are likewise
no longer isolated but instead form continuous sets.

V. FIXED POINTS IN THE LOCAL
POTENTIAL APPROXIMATION

In order to show very clearly that it is the change in sign
of the kinetic term which forces fixed points to form
continuous sets, in this section we will treat the LPA for the
flow equation of standard single-component scalar field
theory. We will show that the large-field dependence forces
the fixed point equation to have at most a discrete set of
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fixed points. On changing the sign of the kinetic term we
will see that the same large-field behavior is mapped to one
that allows a continuum of fixed points.
We will show this without specifying the precise form of

the cutoff profile r, in order to emphasize that these effects
are independent of this choice. Therefore the existence of a
continuum of fixed points is universal, as we showed also to
be the case for the continuous spectrum of perturbations
around the Gaussian fixed point [cf. below (4.13)].
Furthermore we will prove that the effects are indepen-

dent of any specific value for the space-time dimension d or
the scaling dimension dϕ of the field ϕ. We will only need
that dϕ > 0 and that d=dϕ > 2. Although we will not
specify them beyond these inequalities, let us note that at
LPA level it would be typical to neglect the anomalous
dimension ηðsÞ and thus set dϕ ¼ ðd − 2þ ηðsÞÞ=2 ¼
ðd − 2Þ=2. In this case dϕ > 0 for d > 2, after which
d=dϕ > 2 holds automatically.
The restriction to dϕ > 0 is necessary, since a continuum

of fixed points is found anyway for standard scalar field
theory when dϕ ¼ 0 (the critical sine-Gordon models) [42].
We will see in the next section that dϕ ¼ 0 still leads to a
continuum of fixed points if the sign of the kinetic term is
reversed (this is also shown for optimized cutoff profile in
Ref. [29]), but moreover they support continuous eigenop-
erator spectra. It is possible straightforwardly to extend the
analysis in this section to show that in LPA there also exists
a continuous eigenoperator spectrum for dϕ > 0, again
without specifying r, d and dϕ. For a general cutoff profile
we have already seen this at the Gaussian fixed point in the
previous section, while in Sec. VII C we will establish the
continuous spectrum for power-law cutoff at Oð∂2Þ.
It is of course no surprise that the fixed point equations

for standard scalar field theory yield only discrete fixed
points when dϕ > 0 and indeed also only discrete spectra of
eigenoperators. Specifically, with the power-law cutoff
profile as used in this paper, it has long been established
that the fixed point equations have no fixed singularities,
but yield only discrete fixed points and spectra, as can be
understood by counting parameters in the large-field
behavior [41,42]. Nevertheless the analysis in this section
closes one small gap in that these studies were not
performed in d ¼ 4 dimensions, and indeed close a gap
by showing that all of this, including the effects of negative
kinetic term, is actually insensitive to d, dϕ and choice of
cutoff profile r (conditions for which are supplied below).
After tidying up the equations by redefining in a similar

fashion to (2.2), the LPA equation for the fixed point
potential V�ðϕÞ in standard single-component scalar field
theory can be written as

dV� − dϕϕV 0� ¼ F ðsÞðV 00�Þ; ð5:1Þ

where (r0 ≡ ∂p2r),

F ðsÞðzÞ ≔ −
Z

∞

0

dðp2Þ pd−2r0ðp2Þ
zþ p2 þ rðp2Þ : ð5:2Þ

Wewill only require that the cutoff profile rðp2Þ is positive,
monotonically decreasing, and that it ensures a finite
integral for z > 0. Notice that these properties imply that
F ðsÞðzÞ is positive and monotonically decreasing, and has
limit F ðsÞðzÞ → 0 as z → ∞.
For example the properties hold true for the optimized

cutoff r ¼ ð1 − p2Þθð1 − p2Þ [52,53], and for the choice in
this paper (d ¼ 4 and the power-law cutoff r ¼ 1=p4).
With these choices one finds F ðsÞðzÞ ¼ 2

d
1

1þz and F
ðsÞðzÞ ∼

3
2
lnðzÞ=z respectively. [The notation gðzÞ ∼ fðzÞ means

asymptotically equal, i.e. limz→∞gðzÞ=fðzÞ ¼ 1.]
The fixed point equation for scalar field theory with

wrong-sign kinetic term is related by the transformation at
the beginning of Sec. III and thus at the LPA level is
simply4

dV� − dϕϕV 0� ¼ F ðsÞð−V 00�Þ: ð5:3Þ

Starting with the standard scalar field theory equa-
tion (5.1) we now recover the conclusions in
Refs. [41,42,54]. We note that at large ϕ, the equation is
solved by solving the left-hand side only, with thus
V� ∼ VA, where

VAðϕÞ ≔ Ajϕjd=dϕ ; ð5:4Þ

and A > 0 is a parameter. To see this, note that since
d=dϕ > 2, V 00

A diverges for large jϕj, and thus we must have
A > 0 in order for (5.2) to be well defined; furthermore
F ðsÞ then supplies corrections that vanish in the limit of
large jϕj.
Since (5.1) is a second-order differential equation, we

would expect to find two parameters in the solution. To
discover what happened to the other parameter, we linear-
ize (5.1) around the solution (5.4) by writing

V� ¼ VAðϕÞ þ BvðϕÞ; ð5:5Þ

where B is some small parameter, and thus

dv − dϕϕv0 ¼ v00F ðsÞ0ðV 00
AÞ: ð5:6Þ

One solution to this equation is of course v ¼ jϕjd=dϕ
corresponding to A↦AþB. The other solution is given by

v ¼ exp fðϕÞ; ð5:7Þ

4For d ¼ 4, dϕ ¼ ðd − 2Þ=2 ¼ 1 and rðp2Þ ¼ 1=p4, this
equation plus (5.2) appear already as (4.17) and (4.18) (after
rescaling the right-hand side by 3=2, by replacing K ¼ 1 with
K ¼ 2=3 and sending V ↦ 2V=3; p2 ↦ 2p2=3).
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where f0 is diverging for large ϕ. In this regime v00 ∼ ðf0Þ2v
and thus we find

f0 ∼ −dϕϕ=F ðsÞ0ðV 00
AÞ: ð5:8Þ

From dϕ > 0 and the properties of F ðsÞ set out below (5.2),
we see that f0 > 0 and diverges faster than linearly as
ϕ → ∞. Thus

f ∼ −dϕ
Z

dϕϕ=F ðsÞ0ðV 00
AÞ ð5:9Þ

is also positive and diverging faster than ϕ2. What we have
found therefore is that in the neighborhood of the solution
(5.4), the other parameter is associated to an exponentially
growing perturbation. However, for any B, and for suffi-
ciently large ϕ, Bv is no longer small compared to VA,
ruling out the linearization used to find it. Therefore
asymptotically, the fixed point solution takes the form of
an isolated one-parameter set V� ∼ VA in both regimes
ϕ → �∞ (with a priori different parameters A ¼ A�). This
thus provides two constraints, also known as boundary
conditions, fixing the solution space to a discrete set.5 As
we know, what happens to the Bv perturbations is that once
the nonlinear terms become important the solution ends in a
moveable singularity [41,42,54].
Now let us see what changes if we flip the sign of the

kinetic term. For the fixed point equation (5.3), the only
change is that the argument of F ðsÞ picks up a sign. This
implies that asymptotically the equation can be solved now
by V� ∼ −VA (where we keep A > 0). Linearizing as in
(5.5), the only change is then an overall sign on the right-
hand side,

dv − dϕϕv0 ¼ −v00F ðsÞ0ðV 00
AÞ: ð5:10Þ

Thus the other solution is in this case again of form (5.7)
where

f ∼þdϕ

Z
dϕϕ=F ðsÞ0ðV 00

AÞ ð5:11Þ

diverges faster than ϕ2 but is now negative. Therefore v
is now an exponentially decaying solution which fulfils
the linearized approximation ever more accurately as
ϕ → �∞. We see that asymptotically the solution therefore
has two parameters and thus no longer constrains the
solution space. Indeed asymptotically it is of the form (5.5)
where B is a free parameter, since Bv is exponentially
smaller than VA for sufficiently large ϕ.
From here on we return to power-law cutoff profile as

required for the validity of the background-independent
flow equations (2.16).

VI. LOCAL POTENTIAL APPROXIMATION
WITH VANISHING ANOMALOUS

DIMENSION

Before delving into aspects of an analysis of the full
system of flow equations, it is also instructive to derive the
space of fixed points in one other version of the LPA.
We specialize to the lowest order of the derivative

expansion by setting K̂ ¼ 1 and discarding the second
equation in (2.16). Although a nonvanishing anomalous
dimension can be justified in the LPA [55], and we have
already seen that atOð∂2Þ the Gaussian fixed point requires
η ¼ d − 2, we will adopt the traditional stance in this
section and set η ¼ 0 [2,54,56]. This simplifies the equa-
tions sufficiently to allow for an exact analysis, from which
we will gain yet more insight.
Untying the changes of variables (2.14) and (2.11) with

(2.13) shows that this corresponds to setting the original
K ¼ kd−2kð1−d=2Þdf in the original effective action (2.1); i.e.
we indeed obtain the LPA as characterized by a field-
independent coefficient of the kinetic term. In contrast to
scalar field theory this coefficient is here the appropriate
power of the RG scale due to the vanishing classical scaling
dimension of the conformal factor field ϕ̂ and the non-
vanishing scaling dimension of df ¼ ½fðχÞ�
With these provisions (2.16a) in d ¼ 4 dimensions

becomes

∂tVðϕ; tÞ þ 4V ¼ 4F ðV 00Þ; ð6:1Þ
where we have already introduced F in (4.18). The fixed
point potential is therefore a solution of V�ðϕÞ ¼ F ðV 00�Þ.
Forming first-order perturbations Vðϕ; tÞ ¼ V�ðϕÞþ
δVðϕ; tÞ, we have by separation of variables that
δVðϕ; tÞ ¼ ϵVðϕÞe−λt, where ϵ is a small proportionality
factor, and thus from (6.1),

ð4 − λÞVðϕÞ ¼ V 00ðϕÞ=ρðϕÞ; ð6:2Þ

where we have introduced for later purposes

1

ρðϕÞ ≔ 4F 0ðV 00�Þ ¼ 8

Z
∞

0

dp
p7

ð1 − p4V 00� þ p6Þ2 : ð6:3Þ

A. The LPA Gaussian fixed point and its
operator spectrum

Let us again analyze the Gaussian fixed point, i.e. the
simple exact solution where V� is a constant independent of
ϕ, but this time with η ¼ 0. Evaluating the integral, we have
in this case that

V� ¼ F ð0Þ ¼ 2π

3
ffiffiffi
3

p ¼ 1.2092; ð6:4Þ

[ðdþ 2nÞ=ð2þ 2nÞ times (4.1), the Oð∂2Þ answer].
Although this is a Gaussian fixed point, the eigenoperators

5Alternatively one can require ϕ ↦ −ϕ invariance; then
V 0�ð0Þ ¼ 0 provides one of the boundary conditions.
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again have unusual properties compared to standard quan-
tum field theory. From (6.2)

ð4 − λÞVðϕÞ ¼ 8π

9
ffiffiffi
3

p V 00ðϕÞ: ð6:5Þ

As before, apparently none of the solutions are forbidden,
and thus we find that λ is continuous, being any real number,
with two independent eigenoperators for each λ. Define

ωðλÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

ffiffiffi
3

p

8π
jλ − 4j

s
: ð6:6Þ

For λ > 4,

V ¼ cosðωϕÞ and V ¼ sinðωϕÞ; ð6:7Þ

for λ < 4,

V ¼ coshðωϕÞ and V ¼ sinhðωϕÞ; ð6:8Þ

and, finally, when λ ¼ 4,

V ¼ 1 and V ¼ ϕ: ð6:9Þ
In Sec. VI D, we show that there are no restrictions on this
eigenoperator spectrum coming from the leading large ϕ
behavior.

B. The plane of fixed points at the LPA level

First we will show that there is a continuous set of fixed
point solutions at the LPA level. We follow Ref. [42] to
solve the fixed point equation V�ðϕÞ ¼ F ðV 00�Þ. We pro-
ceed as for Newton’s equation for a particle in one
dimension and find a first integral by inverting the function
F and solving dU=dV� ¼ −F−1ðV�Þ so that the solutions
are labeled by one parameter E and satisfy E ¼
1=2ðV 0�Þ2 þUðV�Þ. Note that in this Newtonian analogy,
V� plays the rôle of the position of the particle and ϕ plays

the rôle of the time. From the properties of F , we see that
the “Newtonian potential” U exists only for positive
“position” V�, and has a maximum U ¼ Umax at
V� ¼ F ð0Þ. Here the particle can just sit stationary at
the top of the potential, corresponding the constant poten-
tial Gaussian fixed point solution (6.4) we have already
discussed.
The potentialU can be determined numerically and takes

the form shown in Fig. 3. Globally valid solutions are
obtained only if E is not greater than Umax, and if V�
accordingly takes values corresponding to the region to the
right of F ð0Þ and in fact at or above the lower bound
provided by the intersection of the horizontal E line withU,
as illustrated in Fig. 3. All other solutions end at the
singularity V� → 0⇔V 00� → −∞ at some finite “time”
ϕ ¼ ϕc. If a solution is globally definedwe see thatV�ðϕÞ →
∞ asymptotically which entailsV 00�ðϕÞ → 3 · 2−2=3; i.e.V 00� is
asymptotically approaching the upper limit of the conver-
gence range (4.19). From the second derivative tending to a
constant, one already expects a two-parameter set of sol-
utions. The additional parameter besidesE is slightly hidden
in the approach using the first integral U here but it can be
recovered by exploiting the “time” translation symmetry
V�ðϕÞ ↦ V�ðϕþ cÞ for any solution at fixed E of the fixed
point equation V�ðϕÞ ¼ F ðV 00�Þ. This symmetry can be
exploited to implement ϕ ↦ −ϕ symmetry of the solutions
V�ðϕÞ, corresponding to time reflection symmetry in the
Newtonian analogy.6

Hence, the fixed point equation has a two-parameter set
of solutions that can be thought of as parametrized by
V 0�ð0Þ, or equally ϕ0 defined by V 0�ðϕ0Þ ¼ 0, and
E ≤ Umax. If we choose to implement the condition
V 0�ð0Þ ¼ 0 to obtain even solutions, this set reduces to a
single ray as given by E ≤ Umax. Illustrative solutions in
this case are displayed in Fig. 4. Note that as E → Umax,

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

FIG. 3. Characterizing the solutions of V�ðϕÞ ¼ F ðV 00�Þ, with the Newtonian potential UðV�Þ. At value E for the first integral, V�ðϕÞ
ranges over values indicated by the dashed line.

6Note here the distinction between a symmetry of the fixed
point equation and a symmetry of its solutions.

FIXED POINT STRUCTURE OF THE CONFORMAL FACTOR … PHYSICAL REVIEW D 94, 124014 (2016)

124014-11



V�ð0Þ → F ð0Þ from above and the potential takes longer
and longer to reach its asymptotic regime. In the limit E ¼
Umax we reach the Gaussian fixed point V�ðϕÞ≡ F ð0Þ.

C. Eigenoperator spectrum about a general
fixed point in the LPA

We first note that (6.2) continues to have the exact
solutions (6.9) if λ ¼ 4. For λ ≠ 4, it is straightforward to
derive the general properties that we will need from the
following observations. We note that ρðϕÞ, defined in (6.3),
is a positive function of ϕ. For all fixed point solutions apart
from the Gaussian fixed point, we also know that ρ → 0 as
ϕ → �∞, since V 00�ðϕÞ tends towards the upper limit of the
convergence range (4.19). Rewriting (6.2) as

−V 00ðϕÞ þ ð4 − λÞρðϕÞVðϕÞ ¼ 0; ð6:10Þ
we recognize that VðϕÞ may interpreted as the zero-energy
wave function solution for the Schrödinger equation of a
particle at “position” ϕ in a “potential” ð4 − λÞρðϕÞ. If λ >
4 the potential is negative for all finite ϕ, implying that a
zero-energy solution must have positive kinetic energy and
therefore generically asymptotically the two solutions can
be chosen to obey VðϕÞ → cosðωϕÞ and VðϕÞ → sinðωϕÞ,
for some positive function ωðE; λÞ, where the parameter
E < Umax labels the choice of fixed point as discussed in
the previous section, and by linearity we can normalize so
that the leading term has unit amplitude as shown. For some
discrete value of λ, we may also expect to find a zero-
energy bound state with an exponentially fast fall off for
VðϕÞ at infinity. We note that the other fixed point
parameter ϕ0 has no effect on ω since it just labels the
position of the peak of ρðϕÞ. If λ < 4 the potential is
positive at all finite ϕ, therefore the zero-energy solution
must have negative kinetic energy, implying that asymp-
totically as ϕ → �∞, the two solutions can be chosen as
VðϕÞ → coshωϕ and VðϕÞ → sinhωϕ, for some positive

functionωðE; λÞ.7 Comparing to (6.7)–(6.9), we see that the
asymptotic behavior is the same; indeed, we identify the
explicit solution in (6.6) as nothing but ωðλÞ≡ ωðUmax; λÞ.

D. RG properties of the eigenoperators

As we will see the RG properties of the eigenoperators
about the general η ¼ 0 LPA fixed point turn out to be the
same as the RG properties of the eigenoperators about the
η ¼ 0 LPA Gaussian fixed point. To determine these
properties we consider the perturbation

Vðϕ; tÞ ¼ V�ðϕÞ þ ϵVðϕÞe−λt ð6:11Þ
more carefully than is usually done.
For the exact solutions at λ ¼ 4, namely (6.9), the right-

hand side of (6.1) is still 4F ðV 00�Þ. Since the left-hand side
of (6.1) is already linear, these solutions therefore are exact
even when ϵVðϕÞe−4t is not small. Therefore we can safely
conclude that these solutions are legitimately associated to
renormalized dimension 4 couplings g ¼ ϵe−4t.
The leading large-field behavior of the other eigenoper-

ators determines the RG properties of their associated
couplings [43,46–48], an observation used already inSec. IV.
For λ > 4 we have seen that the large-field behavior is (at

worst) oscillatorywith fixed amplitude (normalized to unity).
Therefore if ϵ is small enough in (6.11) to justify linearization
in (6.1) at finiteϕ, it remains small enough to justify this step
for all ϕ. It follows that the RG time dependence is really
given by (6.11) as the perturbation exits the fixed point, and
that it is therefore legitimate to regard the combination ϵe−λt

as the associated renormalized coupling, with scaling
dimension λ. Note that this alreadymeanswehave uncovered
a twofold continuous infinity of relevant directions.
Finally, for λ < 4 we have seen that the behavior as ϕ →

∞ is exponential; for the moment we will concentrate on
the even solution V ∼ coshωϕ. Now, no matter how small
we choose ϵ, the large ϕ behavior ensures that the
perturbation in (6.11) is no longer small and therefore
the linearized equation (6.2) is no longer justified.
Fortunately for sufficiently large ϕ we can solve the
original flow equation (6.1) instead. Choosing the boun-
dary condition at t ¼ 0 as Vðϕ; 0Þ ¼ V�ðϕÞ − ϵVðϕÞ,
where for the moment the minus sign is required to stay
within the range (4.19) as ϕ → �∞, we have for large ϕ
that the right-hand side of (6.1) can be neglected since
V 00ðϕÞ → −∞. Since only the left-hand side remains, we
can solve to find that Vðϕ; tÞ ∼ e−4t coshωϕ. We see that
since ϕ carries no scaling dimension, we can absorb the t
dependence into a renormalized coupling g ¼ ϵe−4t which
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FIG. 4. Potentials V�ðϕÞ translated so that V 0�ð0Þ ¼ 0 with the
other initial condition being V�ð0Þ ¼ 7.03, 1.86 and 1.25; this is
to be compared to the Gaussian solution V�ðϕÞ ¼ 1.2092 in (6.4).

7If ϕ0 ¼ 0 it is clear by ϕ reflection symmetry that the
solutions VðϕÞ can be chosen to be even or odd and thus behave
asymptotically as stated for both ϕ → ∞ and ϕ → −∞. Since the
ϕ0 ≠ 0 case is just a shift of these solutions by ϕ ↦ ϕþ ϕ0, we
see that, by linear combinations, it is again true that the solutions
can be chosen to behave asymptotically as stated in both regimes.
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however has dimension 4 and not the dimension λ we find
from the linearized analysis. Since at large ϕ, Vðϕ; tÞ grows
exponentially with t as we flow towards the IR, the
perturbation is relevant, even if λ < 0. But Vðϕ; tÞ does
not evolve with a single well-defined scaling dimension.
For Oð1Þ values of ϕ, Vðϕ; tÞ is OðϵÞ and its t dependence
is given e−λt (which may be growing or decaying depending
on the sign of λ). At a crossover region ωϕ ∼ lnð1=ϵÞ þ 4t,
the t dependence changes, and then for much larger ϕ, the
perturbation always grows as e−4t. Since λ < 4, it is this
behavior that gives the dominant amplitude eventually as t
reduces, and also we see that the crossover region moves in
towards the origin.
Note that, in general, the existence of the RG flow (6.1)

near t ¼ 0 requires through (4.19) that if operators are added
with λ < 4, then the operators added with the lowest λ (most
positive ω) are such that the one that behaves as coshωϕ
for largeϕ, has a negative coupling (larger inmagnitude than
the operator that behaves as sinhωϕ if this is also present).
With this restriction in place a general sumover λ < 4 of both
even and odd operators can be considered, and we would
still establish that this combination is relevant, scaling as e−4t

for large ϕ. This does not establish that the flow exists for all
t, but we would expect that some solutions do exist for all t,
for example if we choose to restrict to the coshωϕ-type
operators and give all these negative couplings.
Even though the oscillatory perturbations form a continu-

ous spectrum, they do forma complete set for theSchrödinger
equation (6.10) [for theLPA η ¼ 0Gaussian these are just the
Fourier modes (6.7)]; however, they span the space of
functions that are bounded as ϕ → �∞. The exponential
modes we have just discussed lie outside this space and stay
outside this space under RGevolution to the infrared, again in
contrast to the situation for scalar field theory in d > 2
dimensions. (We will contrast with the situation for scalar
field theory in d ¼ 2 dimensions in Sec. VI E below.)
In summary, then, there is a continuous spectrum of

perturbations about any fixed point in the line of fixed
points, with two eigenoperators per RG eigenvalue λ. For
λ ¼ 4 these are the ones given in (6.9), and might equally
be classified as discrete, but they are fully embedded in the
continuous spectrum. For λ ≥ 4 there are two operators for
each λ and they have renormalized relevant couplings with
the expected scaling dimension λ. For all λ < 4, the two
perturbations do not have well-defined scaling dimensions
but nevertheless are relevant, the latter being in contra-
diction with the naïve answer for λ < 0. This is reflected in
their large ϕ dependence, which eventually takes over the
whole function, where it grows as e−4t characteristic of an
associated coupling of scaling dimension 4 and indepen-
dent of the value of λ < 4.

E. Comparison to scalar field theory in two dimensions

As we have reviewed in Sec. III, the background-
independent flow equations (2.16) are closely related to

those of scalar field theory. After the map V ↦ −V and a
change in parametrization of the scaling dimension, the
result is the flow equations for scalar field theory except for
an overall sign on the right-hand side of the flow equations,
with however important differences in physical interpreta-
tion. At the level of the form of LPA discussed in this
section, the differences in physical interpretation also lead
to a mathematical difference since we here assume the field
to have zero overall scaling dimension. Therefore despite
the fact that the momentum integral on the right -hand side
is fundamentally four-dimensional, the flow equation most
closely resembles the LPA description of scalar field theory
in two dimensions. There also, since the ϕV 0 term is
missing from the left-hand side, the fixed point solutions
can be studied by means of an effective Newtonian
potential U [42]. Since U was bounded below, this resulted
in a semi-infinite line of periodic solutions for V�ðϕÞ,
corresponding to critical sine-Gordon models [42]. With
the periodicity of the field thus fixed, the eigenoperator is
discrete since it must have the same periodicity. The overall
sign difference on the right-hand side, however, maps
U ↦ −U; as we have seen, this then results instead in a
semi-infinite line of fixed point solutions that support an
eigenoperator spectrum which remains continuous, lacking
the quantization that comes from either periodicity or
leading large-field RG constraints [43,46–48].

VII. FIXED POINTS AND EIGENOPERATORS
AT ORDER DERIVATIVE SQUARED

The fixed point equations pertaining to the full system
(2.16) in d ¼ 4 dimensions and with n ¼ 2 in the cutoff
(2.8) are

4V� −
η

2
ϕV 0� ¼ −ð8 − ηÞ

Z
∞

0

dp
p

Q0; ð7:1aÞ

ð2 − ηÞK� −
η

2
ϕK0� ¼ −2ð8 − ηÞ

Z
∞

0

dp
p

Pðp2;ϕÞ; ð7:1bÞ

where we continue to omit the hats and Q0 and P are now
given by the corresponding versions of (2.17) and (2.18),

Q0 ¼
�
V 00� − K�p2 −

1

p4

�
−1

ð7:2aÞ

P ¼ −
1

2
K000� Q2

0 þ K0�

�
2V 000� −

9

4
K0�p2

�
Q3

0

þ
�
f2K0�p2 − V 000� g

�
K� −

2

p6

�
þ 3

p6
ðK0�p2 − V 000� Þ

�
× ðV 000� − K0�p2ÞQ4

0

− p2

�
K� −

2

p6

�
2

ðV 000� − K0�p2Þ2Q5
0; ð7:2bÞ
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and we now allow for a nonvanishing anomalous
dimension.
As to the general structure of the system of fixed point

equations, differentiating (7.1a) once, solving for the third
derivative V 000� and substituting the result into (7.1b) reveals
that (7.1) is of second order in both V� andK� and therefore
admits a four-dimensional space of local solutions around
any generic initial value ϕ ¼ ϕ0. For the present purpose of
finding global solutions valid on the whole real line
−∞ < ϕ < ∞, we can take ϕ0 ¼ 0 and start with the local
parameter space spanned by V�ð0Þ; V 0�ð0Þ; K�ð0Þ; K0�ð0Þ.
Since there are no explicit appearances of the field ϕ in
(7.2) the fixed point equations do not feature any fixed
singularities. However from (7.2a), the generalization of
(4.19) now takes the form

V 00�ðϕÞ < 3

�
K�ðϕÞ

2

�
2=3

and K�ðϕÞ > 0; ð7:3Þ

and any violation of these inequalities on a finite range for
ϕ will lead to a moveable singularity, thus placing a
restriction on parameter space.
Indeed the integrals converge for p → ∞ if and

only if K� ≠ 0, while Q0 diverges at finite positive p
if K� is negative. If K�>0, the polynomial p4=Q0 ¼
p4V 00� − K�p6 − 1 reaches a maximum at p2 ¼ 2V 00�=3K�,
where it takes the value

p
4Q0

¼ 4

27

V 003�
K2�

− 1: ð7:4Þ

Clearly if this maximum is negative, Q0 is negative and
finite over the whole integration range, and if it is otherwise
then p4=Q0 crosses or touches the axis, and again Q0 will
diverge for finite p. This gives the first inequality in (7.3).
Rescaling all quantities in (7.1) with the power of a real

number as given in (2.19) leaves the fixed point equations
unchanged. This can be exploited to eliminate one parameter
of solution space.Note however that the scaling prescriptions
donot allowus to change the signof eitherV� orK�. From the
inequalities in (7.3) it is therefore convenient to eliminate the
parameter K�ð0Þ by fixing it to K�ð0Þ ¼ 2.
Finally, since the fixed point equations (7.1) are sym-

metric under ϕ ↦ −ϕ one may choose to impose V 0�ð0Þ ¼
K0�ð0Þ ¼ 0 to restrict to even fixed point solutions. It has to
be emphasized, however, that at this point requiring either
V� or K� or both to be even is an additional assumption. We
will address this further in the discussion and conclusions,
Sec. IX.
Following this route and regarding the anomalous dimen-

sion as just an additional parameter, we so far find from
parameter counting that we are left with only the two
parameters V�ð0Þ and η. In general, however, an asymptotic
analysis of the fixed point equations (7.1) is needed to capture
possible constraints on parameter space as ϕ → ∞ and to
arrive at conclusive results for parameter counting [36,41,42].

From the structural similarity of (7.1) to standard scalar
field theory, as discussed in Ref. [18] and Sec. III, one may
be led to investigate the corresponding asymptotic behavior
given to leading order by solving the left-hand sides of the
fixed point equations,

V�ðϕÞ ¼ Aϕ8=η þ � � � and K�ðϕÞ ¼ Bϕ4=η−2 þ � � � ;
ð7:5Þ

for constants A, B (assuming η ≠ 0). From this one finds
that for 0 < η < 8 the dominant term at large field in the
first inequality in (7.3) is V 00� and the only way to avoid a
movable singularity is therefore to have A < 0, leading to a
potential unbounded below. We will discuss the implica-
tions of this in Sec. IX. In fact our numerical investigations
uncovered only fixed point potentials that are bounded
below, and this is also what we found in our LPA study in
Sec. VI. Expanding (7.2a) in V 00� we have

Q0 ¼ −
p4

K�p6 þ 1
−

p8

ðK�p6 þ 1Þ2 V
00�

−
p12

ðK�p6 þ 1Þ3 ðV
00�Þ2 − � � � ; ð7:6Þ

The fixed point equation (7.1a) for the potential then
evaluates to

4V� −
η

2
ϕV 0�

¼ ð8 − ηÞπ
3

ffiffiffi
3

p
�

1

K2=3
�

þ 1

3

V 00�
K4=3

�
þ

ffiffiffi
3

p

4π

ðV 00�Þ2
K2�

þ � � �
�
: ð7:7Þ

We see a posteriori that this expansion is useful as long as,
asymptotically for large ϕ, V 00�=K

2=3
� is small. With the

assumed asymptotic form (7.5), this is the case precisely for
η < 0 or η > 8. A brief calculation shows, however, that for
these ranges of η the right-hand side in (7.7) cannot be
neglected compared to the left-hand side and thus that the
asymptotic behavior (7.5) is not consistent. Since η ¼ 8 is
excluded by (2.15), standard scalar field theory asymptotic
behavior seems therefore to be completely excluded. We
therefore assume that the leading asymptotic behavior of
solutions to (7.1) is not determined by scaling dimensions,
meaning that the quantum corrections on the right-hand
side of (7.1) cannot be neglected in the large-field regime.
While this is surprising from the point of view of scalar
field theory, the same situation was encountered in
Ref. [36] for the asymptotic behavior in the fðRÞ trunca-
tion. A much more comprehensive asymptotic analysis is
therefore required in the present case and we come back to
this in Sec. VII B.

A. Numerical solution

In principle, the integrals on the right in (7.1) can be
evaluated using contour integration in the complex plane.
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The length of the resulting expressions is however such that
they become unmanageable. For integrating (7.1) numeri-
cally, it is therefore advisable to also perform a numerical
evaluation of the integrals at each step of the solver. To
bring the system (7.1) into normal form for actual compu-
tations, we solve the differentiated version of (7.1a) for V 000�
and trade the initial condition V�ð0Þ for V 00�ð0Þ, while
Eq. (7.1b) is easily solved for the highest derivative K00�.
Figure 5 shows one example integration for negative

anomalous dimension on the left and a second for positive
anomalous dimension on the right. In both cases the
numerical integration can be carried out to arbitrarily large
field, limited only by the efficiency of the solver, and it is
interesting to note that the constraints (7.3) seems to
saturate asymptotically [ruling out an expansion of the
form (7.7), in fact]. This numerical evidence will provide
the clue to solving the asymptotic behavior, as we will see
in the next section.
By varying the two parameters η and V 00�ð0Þ one finds

that solving the fixed point equations (7.1) numerically is in
general not hampered by the appearance of movable

singularities as caused by violation of (7.3) at finite field.
However, as for parameter counting, an effective and
comprehensive numerical analysis of the system (7.1)
has to build on a thorough understanding of the fixed
point solutions at large field.

B. Asymptotic regime of the fixed point equations

Numerically one finds that for many initial conditions at
ϕ ¼ 0 the system of fixed point equations (7.1) leads to
solutions that for large ϕ tend to saturate the first inequality
in (7.3) by forcing the maximum of p4=Q0 ever closer to
the axis. This can be exploited to expand in an asymptoti-
cally small function so that computing the integral on the
right-hand side of the fixed point equations results in a
comparatively simple expression. To this end we proceed
by setting

K�ðϕÞ ¼ 2uðϕÞ3 and V 00�ðϕÞ ¼ 3uðϕÞ2½1 − vðϕÞ2�;
ð7:8Þ

FIG. 5. Numerical integration of (7.1) for η ¼ −0.3; V 00�ð0Þ ¼ −2 in the left panel and for η ¼ 0.7; V 00�ð0Þ ¼ 0.5 on the right. The top
panels display V�ðϕÞwhile the bottom panels display both V 00�ðϕÞ andK�ðϕÞ. The other initial conditions have been fixed as discussed in
the text.
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where we omit the corresponding asterisk on the new
functions uðϕÞ and vðϕÞ, and we note from (7.3) that
uðϕÞ > 0. From (7.4), p4=Q0 touches the axis asymptoti-
cally if

vðϕÞ → 0 for ϕ → ∞: ð7:9Þ
As mentioned before, the integrals on the right-hand side of
(7.1) can be evaluated using contour integration in the
complex plane. Suppose in general that we want to compute
the integralI ¼ R

∞
0 dxHðxÞ, whereH is assumed to have the

necessary properties for the following discussion. We then
consider the auxiliary function FðzÞ ¼ HðzÞ lnðzÞ in the
complex plane with the branch cut of the logarithm located
on the ray of non-negative real numbers. Using the appro-
priate contour for this branch cut and the property
limε→0 lnðxþ iεÞ¼ 2πiþ limε→0 lnðx− iεÞ for real x > 0,
the residue theorem leads to

I ¼
Z

∞

0

dxHðxÞ ¼ −
X
n

ResfHðzÞ lnðzÞ; zng; ð7:10Þ

with the sum encompassing all residues of the function FðzÞ
in the complex plane. The location of each residue in this
formula is given by zn.
We now use this technique to derive the asymptotic form

of the fixed point equations (7.1) valid in the regime
characterized by (7.9). By analyzing these equations we
will gain crucial insights into the large-field behavior of the
fixed point solutions that will allow us to reliably apply the
parameter counting method [36,41,42]. The locations zn of
the residues needed in (7.10) for the evaluation of the
integrals in (7.1) follow from (7.2a), and are given by the
following cubic complex polynomial equation [which is
nothing but p4=Q0 after the change of variables (7.8) and
with z ¼ p2]:

1þ 2u3z3 þ 3u2ðv2 − 1Þz2 ¼ 0: ð7:11Þ
The zeros of (7.11) and the corresponding residues in

(7.10) needed for the integrals in (7.1) can then be
expanded as a series in vðϕÞ. Differentiating (7.1a) once,
and using (7.8), thus allows V 0�ðϕÞ to be expressed as a
series in vðϕÞ. Substituting this back into (7.1a) allows
V�ðϕÞ itself to be expressed as a series in vðϕÞ. On the other
hand differentiating (7.1a) twice allows all occurrences of
V� (and K�) to be eliminated in favor of u and v via (7.8).
Doing the same with (7.1b), and keeping track of different
orders by introducing the bookkeeping parameter ε via the
replacement vðϕÞ ↦ εvðϕÞ, the system then takes the
following form:

3u½ðη− 4Þuþ ηϕu0� þOðε2Þ

¼ ðη− 8Þπ
6u4v3ε

ð2v02u2 − 2u00v2uþ 4v0u0uv− vv00u2 þ 6u02v2Þ

þ ðη− 8Þð3þ lnð2ÞÞ
9u4

ðu00u− 3u02Þ þOðεÞ; ð7:12aÞ

u2½2ðη − 2Þuþ 3ηϕu0�

¼ ðη − 8Þπ
72v5u3ε3

ð12u00v2uþ 15v02u2 − 30v0u0vu − 41u02v2Þ
þOð1=εÞ: ð7:12bÞ

As indicated in these equations, the left-hand side of the
first equation does not have anOðεÞ piece and the left-hand
side of the second equation is exact, while its right-hand
side has a vanishing Oðε−2Þ term. These equations can
easily be derived to higher orders in ε but we have
displayed only the terms needed in the following.
Using power-law Ansätze in the system (7.12), one finds

that

uðϕÞ ¼ u0ðϕÞ ≔ Aϕ−1
4
ð2þqÞ;

vðϕÞ ¼ v0ðϕÞ ≔ −
πqðq − 2Þðη − 8Þ

18A4ððq − 2Þηþ 16Þϕ
q ð7:13Þ

with the exponent

q ¼ −
86

331
−

8

331

ffiffiffiffiffiffiffiffi
219

p
≈ −0.6175 ð7:14Þ

and A a real parameter, solves (7.12a) by balancing the left-
hand and right-hand sides but without the Oðε0Þ term on
the right-hand side, and solves just the right-hand side
of (7.12b). We first note that v0ðϕÞ → 0 for ϕ → ∞ as
required. Furthermore, one easily confirms that u0 and v0
are indeed valid leading terms for u and v by verifying that
the left-hand side of (7.12b) and the second term on the
right of (7.12a) are subleading. One can also explicitly
confirm that higher orders in ε are also subleading, as
expected, but this will become evident in a moment.
Converting the solutions (7.13) back to work out the

leading asymptotic behavior for K� and V� we find

K� ∼ 2A3ϕ−3
4
ð2þqÞ and V� ∼

12A2

qðq − 2Þϕ
1−q=2: ð7:15Þ

Numerically the exponents are given by − 3
4
ð2þ qÞ ≈

−1.037 and 1 − q=2 ≈ 1.309.
We now proceed to work out explicitly the subleading

terms. We immediately see from (7.13) that the expansion
in vðϕÞ will become an expansion in ϕq=A4 and thus that
we should regard uðϕÞ4 as accompanied by a factor of 1=ε.
This observation motivates the further change of variables

wðϕÞ ¼ 1=uðϕÞ4; wðϕÞ ↦ εwðϕÞ: ð7:16Þ
Eliminating uðϕÞ in favor ofwðϕÞ and ε in this way does not
change the relative orders as expressed by powers of ε on the
right-hand sides of (7.1). This can be seen from the two terms
on the right-hand side of (7.12a) and can be confirmed for
higher orders not displayed for both (7.12a) and (7.12b). At
the same time, the change (7.16) leads to the left-hand side of
(7.12a) being of the same order in ε as the first term on the
right-hand side, as implied by the solution (7.13).
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Since the relevant terms of the system (7.12) are second-
order differential equations in u and v, or equivalently in w
and v, the equations have three additional solutions beyond
(7.13). Due to the nonlinearity of the relevant terms in (7.12)
it is difficult to find explicit expressions for these additional
solutions. However, for the purposes of the asymptotic
analysis here, a full investigation of the nonlinear leading
terms of (7.12) is not necessary, since we will already find
from analyzing the leading corrections to (7.13) that it is part
of a solution for which the dimension of parameter space is
unrestricted and which for large ϕ match on well to the
numerical solutions we have found, such as those in Fig. 5.
To find the leading corrections, we implement the

change of variable (7.16) and substitute

wðϕÞ ¼ w0ðϕÞ þ εw1ðϕÞ and vðϕÞ ¼ v0ðϕÞ þ εv1ðϕÞ
ð7:17Þ

in (7.12), where w0 ¼ 1=u40 and v0 are the leading solutions
from (7.13). As we will see, this next order in ε gives us
both the next terms in the expansion in powers of ϕq

and new powers ϕsiðηÞ which for a range of η are all
subleading compared to ϕq. All terms in (7.12a) now
contribute to give the result

2ϕ2½ηðq − 2Þ þ 16�w00
1 − ϕ½ηð7qþ 4Þðq − 2Þ

þ 32ð3qþ 2Þ�w0
1 þ 2½ηð3qþ 2Þðq − 2Þðqþ 1Þ

þ 8ð5q2 þ 8qþ 2Þ�w1 þ
18ðηðq − 2Þ þ 16Þ2ϕ2

qðq − 2Þðη − 8Þπ
× f4ϕ2v001 − 4ϕð3q − 2Þv01 þ 3qð3 − 2Þv1g

þ 3þ ln 2

54
ffiffiffiffi
A

p ðη − 8Þq2ðq − 2Þðqþ 2Þϕ2qþ2 ¼ 0: ð7:18Þ

After the change (7.16), the left-hand side of (7.12b)
becomes Oð1=εÞ and thus still does not contribute. The
linearization of the right-hand side is

24ϕ2w00
1 − ϕð79qþ 38Þw0

1 þ ðqþ 2Þð55qþ 14Þw1

þ 27ðηðq − 2Þ þ 16Þϕ2

qðq − 2Þðη − 8Þπ
× f40ϕð5qþ 2Þv01 − ð531q2 þ 252q − 20Þv1g

¼ 0: ð7:19Þ
The first equation (7.18) is nonhomogeneous due to the last
term on its left-hand side. The associated particular solution
(of both equations), which does not contain a new param-
eter, is found to take the form

w1ðϕÞ ¼
c

36
ffiffiffiffi
A

p ð131q2 þ 92q − 20Þϕ2qþ2; ð7:20aÞ

v1ðϕÞ ¼ −
c

972
ffiffiffiffi
A

p πq2ðq − 2Þð7q − 34Þðη − 8Þ
ðq − 2Þηþ 16

ϕ2q;

ð7:20bÞ

where the constant c is a function of the exponent q and the
anomalous dimension

c ¼ ðq − 2Þðqþ 2Þð3þ ln 2Þðη − 8Þ
ðq − 2Þð7q − 34Þðqþ 2Þη − 8ð379q2 þ 316qþ 76Þ :

ð7:21Þ
Using this solution to eliminate the nonhomogeneous
term in (7.18), the four-dimensional solution space of
the remaining homogeneous system is then made up of
the already known leading solutions w0 and v0 as well as
three additional power-law solutions,

w1ðϕÞ ¼ ðB1ϕ
s1 þ B2ϕ

s2 þ B3ϕ
s3Þϕ2 ð7:22aÞ

v1ðϕÞ ¼ κ1B1ϕ
s1 þ κ2B2ϕ

s2 þ κ3B3ϕ
s3 : ð7:22bÞ

Here, the Bi are free parameters, whilst the κi are relative
normalization constants and are lengthy functions of
the anomalous dimension η, the leading exponent q, and
the power si. The powers si are the three roots of the
polynomial

0 ¼ 192½ηðq − 2Þ þ 16�s3 − 8½ηðq − 2Þ þ 16�ð277qþ 2Þs2
þ ½2ðq − 2Þð3969q2 − 16q − 164Þη
þ 32ð3669q2 − 136q − 164Þ�s
− 3ðq − 2Þð5qþ 2Þð637q2 − 364qþ 20Þη
− 96ð1327q3 − 399q2 − 304qþ 20Þ: ð7:23Þ

While for the particular solution (7.20) the anomalous
dimension appears only in one of the coefficients and the
exponents are independent of η, the exponents of the
solutions (7.22) all depend on the anomalous dimension.
Their values are plotted in Fig. 6. In the indicated ranges, two
of them become a complex conjugate pair a� ib, in which
case the corresponding real solutions are

ϕa cosðb lnϕÞ and ϕa sinðb lnϕÞ: ð7:24Þ

Collecting the solutions (7.13) with (7.16), (7.20) and
(7.22), as well as renaming B0 ¼ 1=A4, the generic asymp-
totic fixed point behavior in the regime (7.9) is therefore

wðϕÞ ¼ ϕ2

�
B0ϕ

q þ cB2
0

36
ð131q2 þ 92q − 20Þϕ2q

þ B1ϕ
s1 þ B2ϕ

s2 þ B3ϕ
s3

�
; ð7:25aÞ

vðϕÞ ¼ −
πqðq − 2Þðη − 8ÞB0

18ððq − 2Þηþ 16Þ ϕq

−
cB2

0

972

πq2ðq − 2Þð7q − 34Þðη − 8Þ
ðq − 2Þηþ 16

ϕ2q

þ κ1B1ϕ
s1 þ κ2B2ϕ

s2 þ κ3B3ϕ
s3 ; ð7:25bÞ
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where the si are the three roots of (7.23). These subleading
contributions are included only if they are genuinely sub-
leading, i.e. the exponents satisfy ℜðsiÞ < q. As shown in
the plot Fig. 6, we find that for η ∈ R ¼ ½ηc; 16

2−qÞ ≈
½5.7003; 6.113Þ two roots violate this condition. At the
upper limit the s3 and s2 terms in (7.23) simultaneously
vanish, and the only root is s ¼ q. A more detailed analysis
is therefore needed for this one point, which we will not
further pursue here. Otherwise we see that for η ∈ R we
have only one subleading correction ϕs1 (s1 < q and real),
while for η ∉ R ¼ ½ηc; 16

2−q�, i.e. outside the closed interval,
all three roots satisfy ℜðsiÞ < q.
For η ∈ R there are thus in total two free parameters: B0,

B1. Since four parameters are expected in general, we see that
asymptotically two restrictions are placed on the parameter
space. As discussed before, the fixed point equations (7.1)
enjoy the scaling symmetry (2.19) which can be used as a
condition on parameter space. Furthermore we chose to
restrict to even solutions by imposing the conditions
V 0�ð0Þ ¼ K0�ð0Þ ¼ 0. Since we can be confident that these
five conditions act independently, this overconstrains the
parameter space at fixed η, or alternatively provides exactly
the right number of conditions for η a free parameter. In other
words, for η ∈ Rwe can expect atmost a discrete set of fixed
point solutions with quantized value of η. We emphasize
however that the counting argument does not guarantee that
this discrete set is nonempty. Especially since η is already
restricted to the small rangeR, it seems likely that there are in
fact no solutions in this range.
On the other hand, for η ∉ R there are four free

parameters B0;…; B3. In this case, requiring that the fixed
point solutions exist for arbitrarily large field does not place
any restrictions on parameter space for the asymptotic
regime (7.9). We thus have only the three conditions from

evenness and scaling, leaving us with a line of fixed points
for each η, or in other words a two-dimensional space of
global solutions including ranges of η.
Of course, the expressions (7.25) only contain the first

terms of an infinite asymptotic series for wðϕÞ and vðϕÞ.
One could proceed to the next order in ε by continuing
(7.17) with an appropriate Oðε2Þ term and by taking into
account the corresponding higher-order terms of the
asymptotic differential equations (7.12). However the order
we have taken it to is already sufficient numerically.
The two example solutions plotted in Fig. 5 both show
the asymptotic behavior characterized by (7.9). Hence the
asymptotic solutions (7.25) apply, and, since η ∉ R, with
all four parameters Bi. The result of matching the numerical
solution to the asymptotic solution is displayed in Fig. 7. It
can be seen that the asymptotic expansions agree very well
with numerical solutions for sufficiently large ϕ.
Varying the parameters V 00�ð0Þ and η around their values

for the example solutions of Fig. 5, the solution can be
integrated unhampered by movable singularities to the
large-field regime, where it can again be matched onto
the asymptotic solution (7.25). Although we do not report
the details, we have also confirmed solutions for η ¼ 0.
In this way one obtains numerical confirmation, including
ranges of negative as well as positive values for the
anomalous dimension, of the prediction from parameter
counting that the fixed point equations (7.1) admit
continuous two-dimensional sets of global solutions
for η ∉ R.

C. Asymptotic behavior of eigenoperators

In this section we will demonstrate that the eigenoperator
spectrum, about any of these fixed points, has again

FIG. 6. The three exponents s1, s2, s3 of the solution (7.22) as a function of the anomalous dimension η in the range −2 ≤ η ≤ 11.
The dotted lines mark s ¼ q and η ¼ 16=ð2 − qÞ. For η outside the plotted range, all exponents are real and satisfy si < q. Whenever the
exponents are complex, the plot shows only the real part. This happens for the upper curves for 2.0≲ η≲ 5.9, and for the lower curves
from 16=ð2 − qÞ ≤ η≲ 8.9.
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quantized and continuous components. In standard fashion,
we find the eigenoperators by writing V ¼ V�ðϕÞ þ
δVðϕ; tÞ and K ¼ K�ðϕÞ þ δKðϕ; tÞ, and then linearizing
the flow equations (2.16). By separation of variables we
factorize the exponential t dependence as in (4.3), thus
introducing the RG eigenvalue λ, eigenoperator compo-
nents V and K, and converting the equations to a coupled
pair of ordinary differential equations. Since these equa-
tions are linear with well-behaved coefficients, solutions
exist for any λ. Whether they are acceptable or not crucially
depends on their large-field behavior [43,46–48], an
observation used already in Secs. IV and VI D. We there-
fore concentrate on the asymptotic solution of these
eigenoperators.
The asymptotic form of the perturbation equations can

be derived directly from the variation of (7.12)
(u ↦ uþ δu, v ↦ vþ δv), by extending the change of
variables (7.8) to apply now for t-dependent functions
Kðϕ; tÞ; V 00ðϕ; tÞ and uðϕ; tÞ and vðϕ; tÞ, and remembering
to include now −δ _V 00ðϕ; tÞ on the left-hand side of the first
equation and −δ _Kðϕ; tÞ on the left-hand side of the second

equation.8 Note that in a similar way to before, cf. below
(7.11), the (linearized) flow equation (2.16a) and its first ϕ
differential will allow us to reconstruct δVðϕ; tÞ. Recalling
the further change of variables (7.16) (which is similarly
now extended to t-dependent quantities) it is thus conven-
ient to reexpress the perturbations through

δKðϕ; tÞ ¼ −
3

2
wðϕÞ−7=4δwðϕ; tÞ;

δV 00ðϕ; tÞ ¼ −
3

2
wðϕÞ−3=2½1 − vðϕÞ2�δwðϕ; tÞ

− 6wðϕÞ−1=2vðϕÞδvðϕ; tÞ: ð7:26Þ

The resulting perturbation equations are too long to display
but are straightforwardly derived. By separation of varia-
bles we can write

FIG. 7. The solutions displayed in Fig. 5 expressed in terms of the variables vðϕÞ and wðϕÞ in black, and the corresponding asymptotic
solutions (7.25) in brown.

8This works because the only terms that depend explicitly on
the time are the very first terms in (2.16). There is an overall sign
difference between (2.16) and (7.12), and of course we have used
d ¼ 4 and n ¼ 2.

FIXED POINT STRUCTURE OF THE CONFORMAL FACTOR … PHYSICAL REVIEW D 94, 124014 (2016)

124014-19



δvðϕ; tÞ ¼ vðϕÞe−λt and δwðϕ; tÞ ¼ wðϕÞe−λt: ð7:27Þ

Retaining just the leading (B0) term in (7.25), the pertur-
bation equations can be solved with the Ansatz

v ¼ b0ϕr and w ¼ ϕrþ2; ð7:28Þ

where we have used linearity to normalize w. We thus find

b0 ¼
1

483840

ð8 − ηÞð55q − 24r − 34Þð331q − 50Þπ
η − 16=ð2 − qÞ

ð7:29Þ

and

λ¼ −
1

11200
ð33578þ 32769qÞ

�
η−

16

2− q

�

×

�
r3 −

277qþ 2

24
r2
�

þ
�
−
9357703

432600
þ24523η

16800
−
170502403q

865200
þ997303ηq

33600

�
r

þ 8848

515
þ 121ηq

10
−
12η

5
−
34424q
515

: ð7:30Þ

Apart from the one value η ¼ 16
2−q ¼ supR, which we must

exclude since the asymptotic behavior of the fixed point
equations themselves needs a more detailed analysis
(cf. Sec. VII), solving this last equation gives three powers
r for every real λ. The three powers are either all real, or one
power is real and the other two form a complex pair. In the
case of complex r ¼ a� ib, the real solutions correspond-
ing to ϕr are given by (7.24). In fact as already mentioned
in Sec. IV, since the Sturm-Liouville properties [46] are
broken by the wrong sign in the kinetic term, there is no
reason to expect that the eigenvalues are real. Again in this
case since the differential equations are real, we would have
a complex pair of solutions associated to a complex pair of
eigenvalues. In any case we see that there are three
solutions with large ϕ asymptotics (7.28) for every RG
eigenvalue λ, and the general solution is a linear combi-
nation of these.
To compute the subleading terms for these solutions, we

need to reintroduce the subleading terms from (7.25) and
the bookkeeping ε as in (7.12), (7.16) and (7.17). Similarly
we write v ¼ v0 þ εv1, w ¼ w0 þ εw1. The leading sol-
utions v0 and w0 are those in (7.28), and solve the Oð1=εÞ
of the δV 00 equation and the Oð1=ε3Þ part of the δK
equation. The subleading pieces v1 and w1 thus solve
the Oð1Þ and Oð1=ε2Þ parts respectively. However the
general solution merely reproduces the solutions (7.28) as
expected. By inspection it can be seen that the particular
solutions are linear combinations, with calculable coeffi-
cients, of terms

v1 ∼ ϕrþq and w1 ∼ ϕ2þrþq; ð7:31Þ

which since q < 0, are indeed subleading, and

v1 ∼ ϕrþsi−q and w1 ∼ ϕ2þrþsi−q; ð7:32Þ

which are also subleading since these si solutions are
included only when ℜðsiÞ < q. We see that the asymptotic
series can be developed in this way, and no further
restrictions arise.
We have thus found by linearization about the fixed point

that asymptotically there are three independent solutions of
form (7.28), for every choice of eigenvalue λ. The next
question we must ask is whether the linearization step
remains valid for large ϕ [36,43,46]. This is true if and only
if δKðϕ; tÞ=K�ðϕÞ and δV 00ðϕ; tÞ=V 00�ðϕÞ remain small as
ϕ → �∞. Using (7.26) and (7.8) together with u ¼ w−1=4,
then substituting the leading terms from (7.25) and the
linearization result (7.27) and (7.28), it is straightforward to
show that the large ϕ dependence of both ratios is
controlled by the ratio δw=w and hence that linearization
remains valid if and only if ℜðrÞ ≤ q. Whether this is
satisfied for the solutions r to the cubic (7.30), clearly
depends on the value of η at the underlying fixed point.
Scanning over the possibilities for λ, we will then find that
we are left with nrðλÞ solutions (7.28), where a priori nrðλÞ
can take any integer value from 0 to 3 inclusive, depending
on λ.
Since the eigenvalue equations are equivalent to linear

coupled second-order ordinary differential equations, there
are in fact four independent solutions. Since the analysis
above found a maximum of three, we have in fact
determined that there is another linearized solution which
does not adhere to a power law for large ϕ. Given the
behaviors uncovered for the Gaussian fixed point and in
η ¼ 0 LPA in Secs. IV and VI D respectively, it is a
reasonable conjecture that the missing solution decays
faster than any power and thus is actually always a
legitimate linearized perturbation. However, since the main
point we want to demonstrate is that the fixed points we
have uncovered do support a continuous spectrum of
eigenoperators, we will for the moment assume the most
constraining scenario, which is that the missing solution is
illegitimate, and then show that even under this assumption
we can still uncover a continuous spectrum. With this
assumption we are left with nrðλÞ legitimate solutions, and
thus we conclude that requiring the linearized solutions to
remain valid for ϕ → �∞ leads to 4 − nrðλÞ constraints.
Since we have chosen to focus on fixed points that are

even under ϕ ↦ −ϕ, the eigenperturbations are (or if
degenerate can be taken to be) even or odd, and therefore
satisfy two constraints, namely V 0ð0Þ ¼ K0ð0Þ ¼ 0 or
Vð0Þ ¼ Kð0Þ ¼ 0 respectively. Linearity allows us to
impose one further constraint, for example Kð0Þ ¼ 2 or
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K0ð0Þ ¼ 2 respectively. In total therefore we have 7 − nr
constraints. Recalling that for each λ, we have a priori a
four-dimensional vector space of linearized solutions,
and recalling that the non-power-law linearized solution
could after all be legitimate—leading then to only 6 − nr
constraints—we conclude that nrðλÞ ¼ 3 provides us with a
continuous spectrum of at least one even and one odd
operator for every such eigenvalue λ: nrðλÞ ¼ 2 will lead to
an extra constraint that may be sufficient to quantize the
spectrum, i.e. such that it can only be satisfied for discrete
values of λ in this range, while nrðλÞ < 2 leads to a
quantized spectrum or no solutions.
Since linearization is valid for all the remaining sol-

utions, they are confirmed as eigenoperators which are (ir)
relevant if ℜðλÞ is (negative) positive, and if relevant their
RG evolution can be attributed to renormalized couplings
g ¼ ϵμλ. Solving the cubic (7.30) for the roots r, and
scanning over η, we have computed numerically the range
of real λ where all nrðλÞ ¼ 3 roots satisfy ℜðriÞ ≤ q, where
thus these eigenoperators definitely form a continuous
spectrum. The results are displayed in Fig. 8 (for com-
parison over the same range as in Fig. 5). We see that the
continuous spectra always include relevant directions
ðλ > 0), and that the range grows ever larger for both
negative and positive η. In the interval Rquant ¼ ðηq; 16

2−qÞ,
where ηq ≈ 5.916, we find that we have only nrðλÞ ¼ 2, and
therefore the eigenvalues in principle may only form a
discrete spectrum here (depending on the status of the
“missing” non-power-law perturbation). It is interesting
that Rquant is a subset of R (a proper subset since ηq > ηc)
where, by the counting argument, the fixed points them-
selves must form a discrete set. However, as discussed in
Sec. VII, it is unlikely that fixed point solutions actually
exist in this range.
In fact the existence of Rquant may be proven as follows.

Rearrange (7.30) so that it reads

r3 þ a2r2 þ a1ðηÞrþ a0ðη; λÞ
¼ ðr − r1Þðr − r2Þðr − r3Þ ¼ 0: ð7:33Þ

Note that a2 ¼ −ð277qþ 2Þ=24 is a constant, and a1
depends only on η. Since we take λ to be real, the roots
ri are either all real, or two form a complex pair. Either way
we see that the requirement that all three roots satisfy
ℜðriÞ ≤ q implies the three conditions

a2 ≥ −3q; a1 ≥ 3q2; a0 ≥ −q3: ð7:34Þ

Recalling (7.14), we see that the a2 condition is satisfied.
The a0 condition can always be satisfied for suitable λ.
However it is straightforward to show that the a1 condition
is violated if and only if η ∈ Rquant.
Following our discussion above, depending on the status

of the “missing” non-power-lawperturbation, the continuous
spectrum may extend beyond the limits displayed in Fig. 8
and then, depending also on the value of nrðλÞ < 3, at some
larger values of λ a discrete spectrum takes over or there
are no further eigenoperators. Following the findings at the
Gaussian fixed point, cf. Sec. IV, we expect that the
eigenoperators that follow legitimately from linearization
do not form a complete set (in contrast to scalar field theory).
As in Secs. IV and VI A, we therefore expect that there are
small finite perturbations that are relevant (i.e. grow as t
decreases) but which cannot be described by a sum over the
legitimate linearized eigenoperators. We saw in Secs. IVand
VI A that they are also continuous in number.

VIII. POLYNOMIAL TRUNCATIONS

Of course we are dealing only with conformally reduced
gravity, a severe truncation of full quantum gravity.
However, given that the conformal sector mainly governs
the structure of the fixed points [57] and given the level of
sophistication incorporated in the equations of Ref. [18],

FIG. 8. The eigenoperators that follow legitimately from linearization form a continuous spectrum over a range of λ, with at least one
odd and one even operator for every real λ in the blue-shaded regions. The gap is the interval η ∈ Rquant ≈ ð5.916; 6.113Þ ⊂ R.
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one might have hoped that the description of fixed points
would be a clear advance on the standard lore [4–8].
Unfortunately the fixed point structure we have uncovered
(continuous sets of fixed points supporting continuous
eigenspectra) bears no relation to the picture built up in
that research, although it does show similarity to the results
[21] from solving the fðRÞ approximation developed in
Ref. [58]. We will discuss this latter similarity further in
the conclusions. Here we note that by far the weight of
evidence for the standard picture of an isolated fixed point
with three relevant eigenoperators comes from polynomial
truncations. By construction, however, polynomial trunca-
tions can only give isolated fixed points with a quantized
eigenoperator spectrum. It is therefore interesting to see to
what extent polynomial truncations of (2.16) reflect the
standard lore and/or if there are any imprints of the true
situation in the current case. We will find that such
polynomial truncations neither support the standard lore
nor properly reflect the true situation.

A. Gaussian fixed point

The Gaussian fixed point (4.1) (K� ¼ 1) itself is still an
exact solution in polynomial truncations. For the eigenop-
erators, polynomial truncations only find the polynomial
solutions (4.7) and (4.8) of Eqs. (4.4). They therefore miss
entirely the continuum of solutions (4.14), despite the fact
that these are not excluded by their behavior at large ϕ.

B. Local potential approximation with vanishing
anomalous dimension

First we treat the LPA Gaussian fixed point with η ¼ 0,
analyzed exactly in Sec. VI A. The corresponding Gaussian
fixed point (6.4) (K ≡ 1) itself is also an exact solution of
polynomial truncations. For the eigenoperators in this
case we find that all the λ ≠ 4 operators are invisible in
polynomial truncations. Substituting

V ¼
X∞
m¼0

Vm

m!
ϕm; ð8:1Þ

into (6.5), gives Vmþ2 ¼ �ω2Vm. As usual a polynomial
truncation is imposed by requiring Vm ¼ 0 ∀ m > n and
keeping only the equations for m ≤ n. If ω ≠ 0, then for
m ¼ n we deduce Vn ¼ 0. Likewise for m ¼ n − 1 we find
Vn−1 ¼ 0. By iteration we thus find all the coefficients
vanish. Therefore the only solutions are those we obtain
whenω ¼ 0. These are in fact the exact λ ¼ 4 solutions (6.9).
More generally, all fixed point solutions to V�ðϕÞ ¼

F ðV 00�Þ can be derived through translations of fixed point
solutions that are even functions of ϕ. We already know this
from the exact solution as derived in Sec. VI B, but here we
furnish an alternative proof that does not presuppose
knowledge of the exact solution. We first note that since
ϕ does not appear explicitly, fixed points actually appear as
lines of fixed points V�ðϕ − cÞ, parametrized by the

translation c. Since the integrand cannot change sign
without causing the integral to diverge, the right-hand side
F is a strictly positive function whenever it is defined.
Therefore V�ðϕÞ is bounded below and has a minimum at
some point c, where it thus satisfies V 0�ðϕÞjϕ¼c ¼ 0.
Changing variables ϕ ↦ ϕþ c, we obtain a solution with
V 0�ð0Þ ¼ 0. Since V�ðϕÞ ¼ F ðV 00�Þ is also symmetric under
ϕ ↦ −ϕ, such a solution is an even function of ϕ. From
here on we will concentrate on the fixed points V�ðϕÞ that
are even functions.
Similarly to above, to obtain the truncations to poly-

nomials of rank 2n, we Taylor expand

V�ðϕÞ ¼
Xn
m¼0

V2m

ð2mÞ!ϕ
2m; ð8:2Þ

making the Ansatz that the ϕ2nþ2 coefficient vanishes (and
likewise all higher coefficients). Taylor expanding V�ðϕÞ ¼
F ðV 00�Þ to power ϕ2n gives nþ 1 equations for the nþ 1
free coefficients. Real solutions can thus be found numeri-
cally. [The right-hand side contains integrals over p of
p2rþ1ð1 − p4V2 þ p6Þ−s for some positive integers r and s,
which are straightforward to handle numerically.]
Since the fixed point potential is an even function, we

can assume the eigenoperators to be even or odd. We will
concentrate only on the even ones. Having obtained the
rank 2n approximation to the fixed points, we likewise
expand the eigenperturbation VðϕÞ to rank 2n and sub-
stitute both of these into the Taylor-expanded eigenoperator
equation (6.2). The Ansatz V2nþ2 ¼ 0 then results in a
matrix eigenvalue equation determining nþ 1 eigenvalues
λ and corresponding eigenvectors ðV0;V2;…;V2nÞ. We
will label them as λ ¼ λj, ordered in decreasing relevance.
These coincide with the definition of the “critical expo-
nents” θj that can be found in the literature.
The results are displayed in Tables I–III. However we

exclude the Gaussian fixed point since that was already
treated at the beginning of this subsection. Up to rank 12,
there is always a nontrivial fixed point solution bounded
below, as in fact is true of the exact solutions cf. the
argument above (8.2) and Sec. VI B. The fixed point
couplings are displayed in Table I. For ranks 6, 10 and
12, a second nontrivial solution appears which corresponds
to a fixed point potential that is instead bounded above.
These fixed point couplings are displayed in Table III.
There seems to be no sign however of the fact that the
fixed points form a continuum. Recall from Sec. VI B that,
analyzed exactly at the LPA level, these symmetric V�ðϕÞ
form a line of fixed points ending at the Gaussian fixed
point (6.4), this latter characterized by V0 ¼ 1.2092 (to 5
sf) with all other V2n ¼ 0. We see from Table I that with
increasing rank, the nontrivial polynomial truncations are
in fact rapidly converging towards the Gaussian fixed point.
Likewise the upside-down fixed point potentials in Table III
appear also to be converging towards the Gaussian fixed
point, though more slowly.
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The RG eigenvalues corresponding to the truncations in
Table I are displayed in Table II, while the RG eigenvalues
corresponding to the truncations in Table III are displayed
in the same Table III (apart for lack of space λ6 ¼
−57.4;−29.4;−25.2 in rows 1–3, respectively). One eigen-
value is always found exactly, namely λ ¼ 4 corresponding
toVðϕÞ ¼ V0, sowe use this to determine the order of all the
other eigenvalues in the tables in order to judge convergence.
In Table II, the nontrivial eigenvalue λ6 seems clearly to be
converging to 4, or to a number close to 4. Less convincingly
the same may be true of λ5 in Table III. The data for all the
other eigenvalues suggests convergence but to numbers other
than 4. We also see that the number of relevant perturbations
grows linearly with increasing rank, so that we would
conclude for both sequences (Tables II and III) that even-
tually at infinite rank we would have a discrete spectrum but
with an infinite number of relevant directions.

C. Order derivative squared

We briefly investigate the situation atOð∂2Þ for low-rank
truncations, to check if the situation is significantly differ-
ent to the studies above. Now we also Taylor expand

K�ðϕÞ ¼
Xn
m¼0

K2m

ð2mÞ!ϕ
2m; ð8:3Þ

making the Ansatz that the ϕ2nþ2 coefficient vanishes (and
likewise all higher coefficients). Recall that we have the
scaling symmetry (2.19). We use that in this subsection to
normalize K�ð0Þ ¼ K0 ¼ 1 so as to be directly compa-
rable to the previous subsections. At Oð∂2Þ we can
determine the anomalous dimension η. For polynomial
truncations, the scaling symmetry (2.19) ensures that η is
in fact quantized. We exclude the Gaussian solution that
was already treated in Sec. VIII A. The results are
displayed in Table IV. Now rank 2 already yields a
nontrivial solution; however, note that the fixed point
potential is unbounded below. Such a property is not
a priori excluded for the exact solutions of (2.16) but it is
not what we found for the exact solutions at the LPA level
in Sec. VI B or for the sample numerical (plus asymptotic)
solutions found at Oð∂2Þ in Sec. VII. At rank 4, we find
already two fixed point solutions, one with potential
unbounded below and one with potential unbounded
above. It is interesting to note however that the kinetic
term function KðϕÞ is bounded below for all these three
cases. The polynomial truncations to the eigenoperators
now have two exact solutions: VðϕÞ ¼ V0;KðϕÞ ¼ 0 with
λ ¼ 4 as in LPA, and a redundant solution with λ ¼ 0,
following from an infinitesimal application of the scaling
symmetry (2.19)[37,41]. We exclude both of these eige-
noperators from the table. Even to the low level of
truncation we have investigated, we already see evidence
that the number of relevant directions is growing. It also
interesting to see tentative evidence that V0 is tending to
the Gaussian fixed point value (4.1). In the first rank 4
approximation, the other values for the fixed point itself
are close to this (i.e. η ¼ 2 V2 ¼ V4 ¼ K2 ¼ K4 ¼ 0). To
the level we have taken it, it seems clear that the Oð∂2Þ
results suffer the same problems we uncovered at the level
of the LPA in Sec. VIII B.

D. Interpretation

Drawing together all the results, we have seen that at the
Gaussian fixed point itself the continuum of nonpolynomial
eigenperturbations is invisible to polynomial truncations.
The continuum of fixed point solutions themselves are also
invisible in this approximation. However nontrivial fixed
point solutions do emerge. When organized by increasing

TABLE III. Coefficients for the nontrivial fixed point polynomial truncations with potential unbounded below, which appear at rank
n ¼ 6, 10 and 12. The corresponding eigenvalues appear on the right of the table.

V0 V2 V4 V6 V8 V10 V12 λ1 λ2 λ3 λ4 λ5 λ6

1.57 0.653 0.838 −1.56 4 3.52 −6.09
1.25 0.0939 0.215 0.372 −0.375 −8.10 11.1 6.17 4 3.87 −2.71
1.22 0.0378 0.0908 0.198 0.235 −1.50 −15.6 10.7� 1.80i 5.45 4 3.91 −2.13

TABLE I. Coefficients for nontrivial fixed point polynomial
truncations of rank n ¼ 4, 6, 8, 10 and 12. These are given to 3
significant figures (sf) except for V0 where the later values are
given to 5 sf to compare to the Gaussian fixed point V0 ¼ 1.2092
(at 5 sf).

V0 V2 V4 V6 V8 V10 V12

18.2 1.88 0.00292
1.24 0.0695 0.163 0.313
1.2156 0.0158 0.0387 0.0910 0.178
1.2107 0.00376 0.00930 0.0228 0.0537 0.106
1.2096 0.000915 0.00227 0.00561 0.0138 0.0325 0.0641

TABLE II. RG eigenvalues corresponding (by row) to the
truncations in Table I.

λ1 λ2 λ3 λ4 λ5 λ6 λ7

4 −108 −5260
5.64 4 3.90 −2.79

5.66� 0.331i 4 3.95 −1.90
5.76� 1.75i 4.76 4 3.97 −1.43

5.63 5.26� 2.58i 4.53 4 3.98 −1.14
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rank, they divide into two families depending on whether
the fixed point potential is bounded above or below, and in
each family these solutions appear to converge towards the
Gaussian fixed point. Meanwhile the number of relevant
RG eigenvalues keeps increasing with increasing rank.
Although there is not much sign at this stage of the fact that
the eigenvalues actually form a continuum, it could be that
at very high rank truncation, these eigenvalues move closer
together as well as beginning to spread over the whole of
the real line and thus form a better reflection of the true
situation at the Gaussian fixed point, despite the fact that
the Gaussian fixed point itself is not faithfully represented.
Of course none of this picture reflects the weight of
evidence for asymptotic safety found in polynomial trun-
cations in other studies [4–8]. We will return to this at the
end of the conclusions.

IX. SUMMARY, DISCUSSION
AND CONCLUSIONS

In this paper we take theOð∂2Þ system of flow equations
and Ward identities for conformally reduced gravity
derived in Ref. [18], which involve no other approximation
except to use the slow-field limit for the background field χ,
and use these to investigate thoroughly the structure of
fixed points and corresponding spectra of eigenoperators in
this model. As discussed in Ref. [18] and Sec. III (see also
Sec. VI E), the resulting background-independent flow
equations have a very close similarity to scalar field theory.
This stems from the fact that the conformal factor field is a
single component field with a wrong-sign kinetic term as in
(2.1). Modified split Ward identities implement the back-
ground independence, and imply a change of variables
which absorbs all dependence on the background field χ.
After this change to background-independent variables, the
effective action becomes (3.4), which is precisely that of
scalar field theory with a wrong-sign kinetic term, and
similarly the flow equations become those of scalar field
theory adapted to this change in sign.
Nevertheless this one sign change has far-reaching

consequences for the exact RG flow, which have not until
now been recognized.9 At the end of this discussion, we

will show how these properties underlie the evidence for
asymptotic safety in the literature.
For the eigenoperator spectrum, the consequences are

already clear from studying the Gaussian fixed point, as we
saw in Sec. IV. The anomalous dimension η of the
conformal factor field ϕ is then fixed by the equations
to be η ¼ 2, and thus its total scaling dimension is that of a
scalar field at its Gaussian fixed point. The tower of
polynomial eigenperturbationsOnðϕÞ, which for the poten-
tial are associated to renormalized couplings with dimen-
sion10 λ ¼ 4 − n, are the ones expected from scalar field
theory except for the obvious sign changes induced by the
wrong-sign propagator. However these polynomials are no
longer orthonormal nor do they any longer form a complete
set. Although a generic polynomial interaction can still be
expanded in terms of them, it is no longer possible to
approximate an interaction which is nonpolynomial by a
sum over theOnðϕÞwith suitable coefficients (as we saw in
an explicit example). A related effect is that nonquantized
eigenperturbations can no longer be excluded by the large ϕ
test, i.e. excluded by their behavior at large ϕ using the
arguments developed in Refs. [43,46–48]. For any real λ,
both the even and odd solution to the RG eigenperturbation
equation (4.13) now grow at most as a power of the field for
large ϕ, as in Eq. (4.15), while for λ ¼ 5þ n there is a
tower of super-relevant eigenperturbations that take
the form of polynomials times expð−a2ϕ2Þ, for example
those displayed in Eq. (4.16). By the analysis of
Refs. [43,46–48], we are thus led to conclude that there
is thus a continuum of relevant couplings, in fact two
independent relevant couplings for every real positive λ.
In contrast to the one (Gaussian) fixed point we would

find for scalar field theory [54], we now find a continuous
set of fixed points. Although the details of the spectrum of
eigenperturbations about the nonperturbative fixed points
in this continuous set differs from the Gaussian case above,
we again find that around each fixed point there is a
continuous spectrum which includes relevant couplings.
Although in this paper we analyze only the perturbations
with real RG eigenvalues λ, it is no longer possible to
justify excluding complex λ. The analysis we presented
here could be extended to this case. However, it would of

TABLE IV. Fixed point solutions and corresponding eigenvalues for rank 2 and 4 truncations. K0 ¼ 1 and the λ ¼ 4 eigenvalue is not
listed. No attempt is made to match eigenvalues across different rank.

η V0 V2 V4 K2 K4 λ1 λ2 λ3 λ4

1.70 0.875 −0.270 0.289 3.43 1.29
2.05 0.869 −0.104 −0.279 −0.0471 0.0383 2.00 −1.18 −1.34� 1.28i
1.28 0.919 −0.324 0.600 0.682 0.752 15.3 4.52 1.78 1.07

9They are separate from the issues associated their backward-
parabolic nature (see Ref. [35] and Sec. III), which means that the
natural Wilsonian RG flow is towards the ultraviolet.

10Throughout this discussion we are working in d ¼ 4
dimensions, and n is a non-negative integer. In the literature λ
is also called the “critical exponent” θ.
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course not alter the discovery we have already made that a
continuous spectrum of relevant perturbations exists around
each of these fixed points.
In Sec. VII we show that η can take a range of values that

includes η ¼ 0. In Sec. VI we set η ¼ 0 and analyze exactly
the LPA in this case. We find that there exists a two-
parameter set of fixed point potentials V�ðϕÞ. All of these
potentials have a minimum, which thus rules out a break-
down of the LPA [37] as an explanation for the continuous
spectrum of eigenoperators. One parameter is accounted for
by invariance under shifts in ϕ, which can be used to set the
minimum of V� at ϕ ¼ 0. There then remains a line of
ϕ ↦ −ϕ symmetric fixed point potentials ending at a
Gaussian fixed point (whose detailed properties differ from
the one above because we have imposed η ¼ 0). The
eigenoperator spectrum about any of these fixed points,
however, is again continuous. The spectrum around any of
these fixed points includes the constant and linear pertur-
bations (6.9) with λ ¼ 4, and λ ≠ 4 perturbations that for
large ϕ are either sinusoidal or grow exponentially. The
sinusoidal perturbations correspond to super-relevant per-
turbations with λ > 4 and survive the large ϕ tests, thus
yielding two relevant renormalized couplings for every
λ > 4. The exponentially growing perturbations are asso-
ciated to λ < 4 (and also survive the large ϕ analysis since
the scaling dimension of ϕ has been set to zero). However
we see that at large ϕ, these actually behave as relevant
perturbations with a t dependence that is characteristic of a
dimension-4 coupling (independent of the value of λ < 4).
In this paper we have chosen to use a power-law cutoff

profile (2.9) since this is required for the Oð∂2Þ system of
flow equations and Ward identities to be compatible when
η ≠ 0 [29]. However for η ¼ 0 any cutoff profile can be
used. In Ref. [29], it was shown that for the optimized
cutoff profile [52,53], the LPAwith η ¼ 0 system can again
be solved in terms of background-independent variables,
leading to a flow equation that can be analyzed with the
methods in Sec. VI. In fact the analysis in Sec. VI depends
only on qualitative features of the corresponding
Newtonian potential U and thus it is straightforward to
verify that we obtain with the optimized cutoff precisely the
same conclusions as above. At the same time it is also clear
that the analysis for the potential perturbations around the
Gaussian fixed point will reproduce exactly what we found
in Sec. IV. Indeed, up to scaling the corresponding
eigenoperator equation (4.13) is identical [48]. Finally,
in Sec. V the asymptotic analysis of the LPA fixed point
equation for standard scalar field theory was carried out for
general cutoff profile, space-time dimension and field
dimension. There we saw precisely why the change in
sign of the kinetic term turns the fixed point equation from
one with only a discrete set of solutions into one with a
continuum of solutions.
In Sec. VII we analyze the full background-independent

Oð∂2Þ equations. In our numerical investigation of the
fixed point equations we chose to restrict to ϕ ↦ −ϕ

symmetric solutions, which thus provides two boundary
conditions V 0�ð0Þ ¼ K0�ð0Þ ¼ 0. Power-law cutoff provides
us with an extra scaling symmetry (2.19) which allows us to
set a third condition; as we saw, it is convenient to set
K�ð0Þ ¼ 2. This still leaves us with two parameters which
we are free to take as η and V 00�ð0Þ, cf. Sec. VII A. Although
the equations have no fixed singularities, solutions for
given choices of this pair could a priori end at finite ϕ in a
moveable singularity. However, in the examples of η that
we chose, we did not find this restriction. We have
confirmed numerically that solutions exist for η ¼ 0
and a range of V 00�ð0Þ. Two example solutions with η ≠ 0
are displayed in Fig. 5: η ¼ −0.3; V 00�ð0Þ ¼ −2 and
η ¼ 0.7; V 00�ð0Þ ¼ 0.5. As in the η ¼ 0 LPA case analyzed
in Sec. VI, we find in all cases that the potential is bounded
below and is such that the quantum corrections, the right-
hand sides of (7.1), cannot be neglected and in fact become
ever more important for larger ϕ. This numerical insight
gives us the condition (7.9) that allows us to solve
analytically for the asymptotic behavior (7.25) that applies
to these solutions, in terms of two new functions w ¼ 1=u4

and v, where u and v are defined in (7.8). As can be seen
from Fig. 7 the numerical solutions match well onto this
asymptotic behavior and thus we can confirm that these
solutions exist for all real ϕ. For fixed η such as the choices
above, the asymptotic behavior has four free parameters
(B0, B1, B2 and B3) and thus imposes no further constraints
on the solution. Thus from the counting arguments devel-
oped in Refs. [36,41,42] we would expect that the examples
displayed in Fig. 5 are part of a continuous two-dimen-
sional set of solutions. By varying V 00�ð0Þ and η numerically
and integrating out to large ϕ where we can again match
into (7.25), we have confirmed that this is the case.
We see that in moving from the LPA η ¼ 0 case in

Sec. VI to the full Oð∂2Þ equations, the space of ϕ ↦ −ϕ
symmetric fixed point solutions has gone from one-
dimensional to two-dimensional, reflecting the extra free-
dom to choose η. This should however be contrasted with
the situation in scalar field theory [41–43,59] where the
extra scaling symmetry (2.19) afforded by a power-law
cutoff, and constraints from the asymptotic behavior,
overconstrain the equations resulting in η [and V 00�ð0Þ]
taking quantized values.
We saw that the LPA η ¼ 0 case also had fixed points

corresponding to translating the minimum of V�ðϕÞ away
from the origin, equivalently relaxing the condition
V 0�ð0Þ ¼ 0. Although we did not investigate it in this paper,
it would be interesting to explore whether at Oð∂2Þ there
are in fact further fixed point solutions obtained after
relaxing the conditions V 0�ð0Þ ¼ K0�ð0Þ ¼ 0. In (single-
component) scalar field theory, it turns out these latter
conditions come for free once η ≠ 0, in the sense that then
there are no known examples for fixed points where these
conditions are violated. However we have already uncov-
ered numerous differences with scalar field theory. In fact,
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depending on fðϕÞ, i.e. the way in which the conformal
factor is parametrized, the range of ϕ could be naturally
restricted, for example to ϕ ≥ 0 [18]. This would be the
case for example if we choose fðϕÞ ¼ ϕ2. Since in
restricting the range of ϕ, we lose no solutions, but have
less opportunity for encountering movable singularities, we
might expect thus to find yet further fixed point solutions.
Given the mapping of the background-independent

equations to scalar field theory with a wrong sign kinetic
term, stability in Minkowski space signature would appear
to require the potential should be bounded above. The flow
equations themselves are subject to a weaker constraint that
sets an upper bound on V 00ðϕÞ, cf. Eq. (7.3). In fact the
nonperturbative solutions we found for the fixed point
potentials, while still satisfying (7.3), are bounded below
and unbounded above, cf. Figs. 4 and 5. At first sight this
means that all the solutions we found lead to dynamical
instability in Minkowski space. However this property
should be determined from the physical potential and
kinetic term, that is, the unscaled background-dependent
objects in Eq. (2.11), and then only after the functional
integral has been performed completely by taking the limit
k → 0. In general this requires adding relevant perturba-
tions, computing the full evolution as k → 0, and then
studying stability of the result for ranges of the correspond-
ing couplings. Even if we stick to the fixed point values, the
k → 0 limit will result in physical potentials that either
diverge [η > 16=ð2 − qÞ], vanish [0 ≤ η < 16=ð2 − qÞ] or
become independent of the physical conformal factor ϕ
(η < 0). [Interestingly only for the excluded point η ¼
16=ð2 − qÞ does the physical potential tend to a nontrivial
finite limit.] Therefore, even for the fixed points them-
selves, further analysis is required, which we do not
describe further here.
As we saw in Sec. VII B there is in fact one interval

η ∈ R ¼ ½ηc; 16
2−qÞ ≈ ½5.7003; 6.113Þ where the asymptotic

behavior does provide sufficient constraints to lead to such
quantization. Furthermore, the single point η ¼ 16

2−q, where
the cubics involved in the asymptotic analysis degenerate,
was not analyzed further in this paper. It is also intriguing
that, as we saw in Sec. VII C, there is an even smaller
region Rquant ¼ ðηq; 16

2−qÞ, with ηq ≈ 5.916, where the eige-
noperator spectrum may be fully quantized. However over
such a small interval R ¼ ½ηc; 16

2−q�, it seems unlikely that
there are in fact fixed point solutions in this range. Even if
such solutions exist, we have no dynamical principle for
excluding the fixed points from the continuous set.
Within the continuous set, we saw in Sec. VII C that even

among the legitimate linearized11 eigenoperators, although
we can expect a quantized spectrum over some ranges of λ,
there is also a continuous spectrum of eigenoperators that

covers at the least the range shown in Fig. 8 and in
particular therefore includes a continuum of relevant
directions at each such fixed point.
Our analysis has assumed no restriction on the space

spanned by the eigenoperators other than that which comes
out naturally. Thus in scalar field theory one finds that
under any flow towards the infrared (no matter how small),
solutions of the linearized flow equations are driven back
into a Hilbert space spanned by the quantized perturbations
[43,46–48]. This does not happen here, but we can ask
whether one could impose by hand a suitable restriction on
the large-field behavior. This could be interpreted as a
restriction on the function space arising as part of the
definition of quantization [13]. However such a restriction
would have to be preserved by the full nonlinear flow
equations and we note that even a restriction to exponen-
tially decaying perturbations leaves the infinitely many
super-relevant perturbations such as those in Eq. (4.16).
Finally, in Sec. VIII we considered polynomial trunca-

tions. By construction, such truncations can only give
isolated fixed points with a quantized eigenoperator spec-
trum. We found indeed that at the Gaussian fixed point, the
continuous spectrum is invisible to such an approximation,
and beyond this the continuum of fixed points is similarly
missing. However sequences of nontrivial fixed points
emerge that appear to converge towards the Gaussian fixed
point, but which support increasing numbers of relevant
directions, and in this sense reflect some of the true
situation at the Gaussian fixed point itself.
The picture that we have uncovered, of continuous sets

of fixed points supporting both discrete and continuous
spectra of eigenoperators, seems at first to be strongly at
variance with the asymptotic safety literature where a single
fixed point with a handful of relevant directions, typically
three, is found (see e.g. the reviews [4–8]). However the
great majority of this work focuses on the single field
approximation and/or polynomial truncations. Apart from
the exceptions already discussed in the Introduction
[13,25], even when functional truncations are considered,
these have utilized the single-field approximation. A space
of constant background scalar curvature R (usually a
Euclidean four-sphere) is typically chosen, thus deriving
a flow for the effective Lagrangian fðRÞ [57,58,60–70],
written in dimensionless variables.
Note that the R → ∞ regime corresponds to fixed

physical curvature and k → 0. This latter limit must exist
because it must be possible to remove the infrared cutoff
which was after all a technical device that was inserted by
hand. Nevertheless it is unclear what significance should be
attached the behavior of fðRÞ for R ≫ 1 since in this case
the size of the space is much smaller than the cutoff 1=k
[64,69]. In fact in reality all results should be independent
of the background, including the background curvature R,
so the puzzle is actually an artifact of the single-metric
approximation [more generally an artifact of the violation

11That is, perturbations that stay sufficiently small to justify the
linearization step even for large ϕ.
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of the (modified) split Ward identities]. If we set this puzzle
aside, then the similarities with our own findings become
evident.
First we have just discussed why this situation would be

hard to divine in polynomial approximations. Nevertheless,
the very-high-order polynomial truncations considered in
Ref. [65,71], when plotted [72], can be seen to track closely
a partial solution to the exact fðRÞ fixed point equations
derived in Ref. [61]. (An exact solution is impossible since
the equations of Ref. [61] have no global fixed point
solutions [36].) We therefore see that existence of an
asymptotically safe fixed point solution, even in polyno-
mial truncations, is determined ultimately by the under-
lying functional solution, irrespective of the significance
attached to the large R behavior.
Second, it has been noted that the structure of the

solutions is mainly governed by the conformal factor sector
[36,57]. Furthermore it is clear from much recent work
[36,57,63–70] that the presence of fixed singularities in the
fixed point equations, induced by the form of the cutoff
functions, plays an important rôle in yielding an isolated
fixed point. Indeed if the type and magnitude of endomor-
phisms in the cutoffs are chosen carefully, sufficient
numbers of fixed singularities can be arranged to ensure
[36] that only discrete fixed points are allowed [57,69].
However the very freedom that exists in how and where
almost all of these are introduced suggests that these fixed
singularities are unphysical artifacts and should be elim-
inated wherever possible.12

We already know that when these singularities are
sufficiently eliminated [58], the fðRÞ approximation yields
qualitatively the same conclusions as in this paper, in that it
yields a continuum of fixed points supporting continuous
spectra of eigenoperators [36]. It is the lack of constraints
from the large-field behavior that is ultimately responsible
for this, as discussed in Sec. V. For the fðRÞ approximation,
just as for the Oð∂2Þ equations in Sec. VII, it is enabled by
the nondecoupling of the quantum part (the right-hand side)
in the asymptotic expansion. In fact we already noted in
Ref. [36] that it is precisely the quantum fluctuations of the
conformal factor part (called there “the physical scalar”)
that are responsible, leading us to tentatively suggest that
these effects are a reflection of the conformal mode
instability.
Therefore, far from being at variance with the literature,

we see that the properties we have found for fixed points
in conformally reduced gravity have an analogue in the
conformal factor sector of fðRÞ truncations, and in this
way underlie the evidence for asymptotic safety that has
been reported up to now. Indeed we see that evidence for

asymptotic safety arises from the underlying continuum of
solutions caused by this sector which are then constrained
by the fixed singularities induced through choices of
cutoff.
Now we address to what extent these conclusions could

change in other approaches to asymptotic safety or through
extending the approach of Refs. [18,29]. We have already
noted in Sec. III that, following from the assumption of
analyticity, we would be led to Wick rotate the conformal
factor field ϕ ¼ iϕðsÞ, just as Gibbons et al. proposed [9],
and in so doing turn our background-independent flow
equations and effective action into precisely the flow
equations and effective action for a real scalar field ϕðsÞ.
In this way we of course recover the Hilbert space structure
of a complete orthonormal discrete set of eigenoperators
[43,46–48], as we saw explicitly in Sec. IV. However there
is then no asymptotic safety, since in d ¼ 4 dimensions
only the Gaussian fixed point exists (see e.g. [2,54]). In
view of this, it seems important to establish whether similar
conclusions can be drawn for such a Wick rotation, not just
for the conformal factor on its own but also in the context of
full quantum gravity.
Although we have argued that topology change could in

principle cure the problem [36], see also [64], and we
further blamed the effect on a breakdown of the fðRÞ
approximation [37] and on the single-field approximation
[21], the latter two drawbacks are absent now, while it is no
longer clear in this setting how topology change can be
admitted.
In Ref. [73] it was shown that in the fðRÞ approximation

on a maximally symmetric space, if an fðRÞ-independent
cutoff is used, then about a fixed point with the expected
properties, the spectrum is discrete with a finite number of
relevant directions. However the conformal factor, called
there the gauge-invariant trace mode h, is treated differ-
ently. In order to compare, working in dimensionless
variables, we take the limit of large mode number n on
a four-sphere, where the eigenvalues of the scalar Laplacian
are λn;0 ∼ n2R=12 [58]. Keeping p2 ≔ λn;0 finite, we thus
have R → 0, so that the Hessian goes over to the one for flat
space,

9f00ð0Þp4 þ 3f0ð0Þp2 þ 2fð0Þ: ð9:1Þ

It is assumed that solutions exist such that f00ðRÞ, and thus
in particular f00ð0Þ, is positive. Although we are here
dealing with fixed point values, on the full renormalized
trajectory for sufficiently small cutoff k, we must have
f0ð0Þ large and negative, since this is required for small
positive Newton’s constant. This is where the conformal
factor instability lies since it implies that the Hessian will be
negative in some domain. As we have seen in our simpler
setting, a negative Oðp2Þ piece leads to a continuum of
solutions. In the other works on the fðRÞ approximation
[36,57,58,60–70] an adaptive cutoff is used which in

12See also Refs. [36,58,73]. For fðRÞ-type approximations
with cutoffs of “type I” [61] the singularity at R ¼ 0 cannot be
moved or eliminated and is there for a clear physical reason
[36,58].
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particular allows the sign to adapt to the sign of the Hessian.
However in Ref. [73], adaptive cutoff functions were
eschewed (as here), precisely to avoid the issues with fixed
singularities discussed above, and also to avoid dependence
on f000ðRÞ. Instead a cutoff profile 16chrðp2Þ is added to
(9.1). If the free parameter ch > 0 is chosen large enough
we can then ensure that the regularized inverse Hessian is
everywhere well defined as required. However it is not
known whether a suitable asymptotically safe fixed point
solution exists with these choices.
We have worked only at the LPA and Oð∂2Þ, equiv-

alently Oðp2Þ, levels. Including higher derivatives, for
example already at Oð∂4Þ as just discussed, could with
suitable parametrization provide sufficient stability, and

therefore it is important to understand the implications for
asymptotic safety in this case. At this level we would also
have to take into account the Weyl anomaly [31,33,74–76].
Working with the full metric while respecting the Ward
identities for background independence and diffeomor-
phism invariance, might also qualitatively alter the results.
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