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In this article, we derive the geodesic equations in the U(1)? dyonic rotating black hole spacetime. We
present their solutions in terms of the Kleinian ¢ function and in special cases in terms of the Weierstraf} o,
o, and ¢ functions. To give a list of all possible orbits, we analyze the geodesic motion of test particles and
light using parametric diagrams and effective potentials.
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I. INTRODUCTION

For many years, quantum theory and general relativity
have passed all tests. Nevertheless, the unification of both
theories is still an open task. One interesting development in
this case is the AdS/CFT correspondence discovered in late
1997 [1]. Therefore, a conformal field theory (CFT) acting on
the boundary of an anti-de Sitter (AdS) space is dual to a
string theory with AdS background. Analyzing the structure
of black holes in such a background could give insight into
unsolved problems of the corresponding CFT. Another
unsolved question is the problem of dark matter and dark
energy, which possibly can be solved by introducing
(pseudo)scalar fields such as dilatons and axions [2,3].
One interesting spacetime containing both fields and a
nonconstant scalar potential is the dyonic rotating black
hole with four electromagnetic charges of the U(1)? gauged
supergravity found by Chow and Compere [4]. This black
hole has many subcases. With pairwise equal charges and
vanishing Newman-Unti-Tamburino (NUT) charge, we
obtain the Kerr-Newman-AdS black hole, and the ungauged
solution with four independent electromagnetic charges is
given in Ref. [5]. Furthermore, by setting two of the charges
equal to zero, we obtain the previously analyzed Einstein-
Maxwell-dilaton-axion (EMDA) black hole solution [6].

To understand the properties of a spacetime, it is
mandatory to study the geodesic behavior of test particles
and light and solve the equations of motion. In this article,
we derive these equations by separating the Hamilton-
Jacobi equation, the separability of which can be shown by
constructing Killing tensors [7,8]. This has been done for a
large class of black holes in Ref. [9] and for U(1)? dyonic
rotating black holes in Ref. [4].

Previously analytical solutions were found in terms of
the WeierstraB o, o, and ¢ functions for the Schwarzschild
solution [10], the Taub-NUT solution [11], the Reissner-
Nordstrom solution [12], the five-dimensional Myers-Perry
solution in the special case of equal rotation parameters [13],
the Kerr-Newman spacetime for charged particles [14], the
Kerr-Newman-Taub-NUT spacetime [15], and the EMDA
spacetime with vanishing NUT parameter in Ref. [16],
also called the Sen solution [17]. In more general cases,
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the solutions can be stated in terms of derivatives of the
Kleinian ¢ functions and were used to solve the geodesic
equations in the four-dimensional Schwarzschild-de Sitter
[18,19] and in various higher-dimensional spacetimes like
the Schwarzschild(-anti-de Sitter) and Reissner-Nordstrom
solution [20]. The solutions were also found for the
Kerr(-anti-de Sitter) spacetime [21], the higher-dimensional
Myers-Perry black hole [22], and the Horava-Lifshitz black
hole [23] and in f(R)-gravity [24,25].

In this article, we will derive the geodesic equations in
the U(1)? dyonic rotating black hole spacetime and present
their analytical solutions in two cases: first with a vanishing
gauge coupling constant or for light in terms of the
Weierstrall @, o, and { functions and second in terms of
the hyperelliptic Kleinian ¢ functions. We will use para-
metric diagrams and effective potentials to analyze the
radial and latitudinal motion and present a list of all
possible orbit types afterward.

II. U(1)2 DYONIC ROTATING BLACK HOLE

For U(1)? dyonic rotating black holes in asymptotically
AdS coordinates, the metric is given by [4]

A N2 B-aA
<dt—:d¢> Ak
= Rg

©,a*sin*9 B 2 B—4A
—(dt——d de?, 1
i B —aA < az ¢> N 0, m

ds? = — R,

with
R,=r*—2mr+a*+ e — N; + ¢[r
+ (a* +6N; — 2v*)r* + 3N (a* — N})]

_ 2 2
0, = 1 —a*g*cos*d — 4a’ N, cos 9

39
A = asin®9 + 4N sin’ >
B

r?+ (N, +a)* —v*
E=1-4N,ag* - a*¢*. (2)

Here, m is the mass parameter, a is the rotation parameter,
e and v are charge dependant, N, corresponds to the NUT
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FIG. 1. Parametric g — N, diagram for a = 0.4, ¢ = 0.38,
v = 1.3, and m = 0.5. The blue line represents r = 0 as a zero,
and the green line shows where double zeros appear.

charge, and g denotes the gauge coupling constant. For
further information on the parameters, see Ref. [4]. The
coordinate system (7, r, 9, ¢) is Boyer-Lindquist like, and
the transformation to Cartesian-like coordinates reads as

x =1/(r* +a*)sindcos ¢
y=1/(r* + a*)sin9dsing
z=rcosd. (3)

The horizon equation R, = 0 is a polynomial equation of
order 4, the solution of which can be stated analytically in
the case of g =0 as

ri:mj:\/mz—az—eerNf], (4)
which is similar to the Kerr-Newman-Taub-NUT black
hole and also, in order to have real horizons, leads to the
condition m*—a*—e*+N2>0 for the ungauged
solution.
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In the case of g # 0, the existence of four horizons,
where at least one has to be negative, is possible. Here, we
identify the event horizon and the Cauchy horizon from
known subcases. If we want to analyze the possible zeros of
R, in general, we need to check, where double zeros appear.
This leads to the condition

ng(r)
dr

R,(r) =0 and =0. (5)
The configuration of horizons also changes, if r =0
is a zero of R,. Combining both leads to the parametric
¢* = N, diagrams in Fig. 1.

We distinguish between the following configurations:

(1) Region 1: R(r) has only complex zeros.

(2) Region 2: Two positive zeros.

(3) Region 3: One positive and one negative zero.

(4) Region 4: Two positive and two negative zeros.

(5) Region 5: One positive and three negative zeros.

The boundary of the ergoregion exists where g,, changes
signs and therefore is defined by

a*®,sin’9 — R, =0, (6)
which is similar to the Kerr-Newman-Taub-NUT black hole
for g = 0.

Because of the divergence in the Kretschmann
scalar, the singularity is defined by B —aA = r’+
(N, +acos9)* —v?> =0. The NUT parameter N, and
the charge parameter v influence the shape of the singu-
larity in such a way that it varies from ring singularities to
three-dimensional structures in contrast to the Kerr metric,
where only a ring is possible. We observed this feature
in the Einstein-Maxwell-dilaton-axion spacetime [16]
due to the presence of a dilaton charge at negative radial
coordinate, but here these structures can also appear for a
positive one. In Fig. 2, a two-dimensional projection is
shown.
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(a) Ng =0.2,a=0.3 and v = 0.08

FIG. 2. Plots of the singularity given by B — aA = 0; the dotted blue line represents » < 0, and the red line represents r > 0.

(b) Ng =0.2,a=0.3 and v =0.1
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A. Geodesic equations

We use the Hamilton-Jacobi formalism to derive the
geodesic equation of test particles and light. The ansatz for
the action

1
S:§5T—Et+Lg0+S,(r) + S5(9) (7)

solves the Hamilton-Jacobi equation

05 , 1,5
07

oS 85
Oxt oxv (8)

Here, ¢ is either equal to zero for light or equal to 1 for
massive particles; 7 is an affine parameter along the
geodesic, which corresponds to the proper time for
particles; and E and L are the energy and the angular
momentum of the test particle.

We obtain one differential equation for each coordinate,
by separating the Hamilton-Jacobi equation (8) with the
Carter [26] constant K,

dr\2
— =X, 9
<d7> ©)
d9\?
sin?d (—) =Y, (10)
dy
(@)_aé(im—aié) Z(AE - LE) (an
dy R Osin29
di\ B(BE-alLZ) A(L=-AE
(_)_ (BE-al%) ALE-Ap)
dy R Osin? 9
Here, we used dimensionless quantities
- r 5 t - T N N,
]"27, = _—, =, —_
2m 2m T om 7 2m
Ao b i, P S
“Tom g==ms. “Tom YT ome
- K ~ L
K=—, L=— 13
2m 2m (13)

and the Mino time [27] y with d7 = (B —aA)dy. The
definition of a Mino-time simplifies the equation by

absorbing the r- and 9-dependent prefactor (B —@A).
We also defined the functions
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X = (BE—-aLZ)?+ R(K — Bs),

Y = —(AE - LE)* + Bsin’9(aAs - K),

R=F —F+a>+& — NS P[* + (@ + 6N, — 27?7
N2 @ =N,

0 =1 - @3 cosd + 4a*FN,, cos 9,

a*sin?9 + 2N, (1 — cos 9),

P+ (N, +a)* -,

1-a*@ —4aN, 7. (14)

oot
([

[1]2

III. CLASSIFICATION OF THE
GEODESIC MOTION

The characteristics of the geodesic motion are defined by
the function Y and the polynomial X. We will study their
properties with the aim of giving a full classification of the
possible orbits. To obtain real values for 7 and 9, Egs. (9)
and (10) lead to the conditions X > 0 and Y > 0. From the
second condition, we derive that K > aASif © >0 and

K < aAsif® < 0. Because of its shape, the conditions for
a particle orbit that ends in the singularity can only be
analyzed in special cases.

A. 9 motion

The zeros of the function Y are the turning points of the
latitudinal motion. We substitute v = cosd into Y and
analyze the zeros in the interval v = [—1, 1]. The number of
zeros changes if v =1 or v = —1 is crossed or if Y has a
double zero. The first condition Y(v = 1) =0 is only

possible if L =0 and Y(v = —1) = 0 holds if

. 4EN
L=—2". (15)

[1]x

Double zeros appear if

dY(v)
dv

We distinguish between four configurations (a)—(d) (com-
pare Figs. 3 and 4):
(1) Region (a): Only negative zeros in the interval
€ [-1,1]. The motion takes place below the
equatorial plane.

(2) Region (b): Positive and negative zeros are possible
in the interval v € [—1, 1]. The motion crosses the
equatorial plane.

(3) Region (c): Only positive zeros in the interval

€ [-1,1]. The motion takes place above the
equatorial plane.

(4) Region (d): No zeros in the interval v € [—1,1].
Geodesic motion is only possible if Y >0 for
all v € [-1,1]

Y(v) =0 and =0. (16)
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FIG. 3. Parametric L — E?-diagrams for § =0, a = 0.4, g = 0.1, 1\79 =02,2=03, % =0.2, and K = 0.1. The continuous lines
represent double zeros of Y(v) in blue and X(7) in green. The dashed lines show zeros at 7 = 0 and v = 0.

The results of all conditions will be combined with the 7
motion in parametric L — E? diagrams.

B. 7 motion

First of all, let us introduce possible orbits for
ro>r_>0,

(1) Transit orbit (TrO): 7 € (—o0, )

(2) Escape orbit (EO): 7€ (F; >0,00) or 7 € (—00, Fy),
with 7, <0

(3) Two-world escape orbit (TEO): 7 € (7|, ), with
O<r<r_

4) Crossover two-world
re (;1, 00), with ;’1 <0

(5) Bound orbit BO): 7 € [F, F»], with 7,7, > r,,0 <
Fl<TF<r_orr,r<0

orbit (CTEO):

escape
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(a) Y-motion

(6) Crossover bound orbit (CBO): F € [Fy, 7], with
71<0and 0 <7y <r_
(7) Many-world bound orbit (MBO): 7 € [, ], with
O<r<r_andr, <7
(8) Crossover many-world bound orbit (CMBO):
re [;1,;2], with ;1 < 0 and ry < ;'2
We can characterize the radial motion by analyzing the
zeros of the polynomial X, since these are the turning
points. As for the 9 motion, double zeros appear if

dXx(7)

X(r) =0 d =0, 17
(=0 and = (17)

and the number of positive or negative zeros changes, if one
zero crosses 7 = 0. In Figs. 3 and 4, we show two examples

of parametric L — E? diagrams for the  and the 7 motion.

2.57

=~

0.57

(b) 7-motion

FIG. 4. Parametric L — E? diagrams for § = 0, @ = 0.4, § = 0.55, N, = 0.2, & = 0.3, # = 0.2, and K = 0.1. The continuous lines
represent double zeros of Y(v) in blue and X(7) in green. The dashed lines show zeros at 7 = 0 and v = 0.

124013-4



ANALYTIC SOLUTIONS OF THE GEODESIC EQUATION ...

PHYSICAL REVIEW D 94, 124013 (2016)

"1 | 5 | i '
——j———f———r—— | :I l
| |
! | ! Iy L !
| | o
H |
+ 0
I I v Al I M
| | [ — , :
| | | -2 -1 190 1 Nl 2
' | I L r
' | I | Bl |
[ ol B | Wl
———I———T—_ | I
| | | ]
! | || | i '
| ' - , ——— —— | | |
-05 0 N 0.5 1 -4 -3 -2 -1 1 2 3 4 %« I
r r ! Al I
() §=0,a=04,G=0,N;=0,6=0,(b)d=1,a=04,5=0,Ng=0,6=0,(c) d =0,a = 04, § =2, Nj =01,
=0, K=—1and L =4.6 =0, K=—10 and L = 2.3 =038, 5=13 K=—land L = 1.3

FIG. 5.

Illustration of the effective potential V. and energies for examples of orbit types of Table I. The blue line represents V., and

the green line represents V_. The red dots denote the turning points of the particle, and the grey area forbids geodesic motion

due to X <0.

The areas in Figs. 3 and 4 are named to distinguish
between configurations of the zeros of the polynomial X:
(1) Region (I): X(7) has no real zero for 7 € (—o0, ).
Only TrO are possible.
Region (II): Two real zeros 7, and 7, in the interval
(=0, ). Here, MBO are possible.
Region (III): Two real zeros 7, and 7, with
71 € (—00,0] and 7| € [0, o). The new class of a
CMBO is possible.
Region (IV): Four positive real zeros exists. In this
region, BO and MBO exist.
Region (V): Four real zeros 7y, 7,, r3, ry with
71 € (—00,0] and 7,, 73, 74 € [0, ). Here, CBO
and MBO are possible.
Region (VI): Two positive and two negative real
zeros. Here BO and MBO exist.
Region (VII): One positive and three negative real
zeros. BO and MBO are possible.
Region (VIII): Six real zeros 7y, 7, F3, F4, F's, I With
;1, ;2, ;3, ;'4 (S (—00,0} and ;5, ;6 S [0, 00) Here,
BO and MBO are possible.
Region (IX): Three positive and three negative real
zeros. Possible orbits are a BO and a CBO which
could lie inside the singularity.
In addition, we can rewrite X as

(@)
3

“)
®)

(6)
)
®)

®

X=fAE-V)E=-V_) (18)
to determine an effective potential V.. Now, we can visualize
the turning points of the 7 motion with the intersections of E
and V. Figures 5(a) and 5(b) show two examples of the
effective potential V., where orbits are shown with vanishing
gauge coupling constant. In Fig. 5(c), we can see that
negative horizons have the same effect on the effective
potential as the horizons at positive 7. We assume that similar
orbits are possible and only take a look at the particle motion

for two positive horizons. To summarize, we present a list of
all possible orbit types in Table I.

C. Comparison to previous work

Comparing the orbit types found in the U(1)? dyonic
rotating black hole spacetime to previous work, we notice
the following.

Common escape (EO) and bound orbits (BO), which can
also cross the horizons (TEO, MBO), are present in most of
the previously analyzed spacetimes, like the Kerr-(anti)-de
Sitter spacetime [21], the Taub-NUT spactime [11], the
Reissner-Nordstrom spacetime [ 12], the Kerr-Newman space-
time [14], the Sen black hole in Ref. [16], and many more.

Crossover orbits, which cross 7 = 0, can of course only
be found in spacetimes where the shape of the singularity
allows the geodesics to reach negative 7. Unbound cross-
over orbits like TrOs and CTEOs exist, for example, in the
Kerr-de Sitter spacetime, the Taub-NUT spactime, the Kerr-
Newman spacetime, and the Sen black hole. Bound cross-
over orbits (CBO and CMBO) can be seen in the Kerr-AdS
spacetime, the Taub-NUT spactime, and the Kerr-Newman
spacetime, but not for the Sen black hole.

In the spacetime of a U(1)? dyonic rotating black hole,
we find the orbit types A—L shown in Table I. The orbit
types A, B, D, E, F_, G, H, and I also exist around the Sen
black hole. B, F,, and G can be seen in the Reissner-
Nordstrom spacetime. A, B, D, E, G, H, and I are found in
the Kerr spacetime. A, D, E, H, and I are also present in the
Kerr dS spacetime, while C, F',, F_, G, J, and K are found
in the Kerr AdS spacetime.

In Ref. [14], the motion of charged particles around an
electrically and magnetically charged Kerr-Newman black
hole was investigated. There, the structure of the orbit types
is similar to the U(1)? dyonic rotating black hole, and the
same orbit types A-J are present. The orbit types K and L.
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TABLE I Possible types of orbits in the U(1)? dyonic rotating black hole spacetime. The thick lines represent the range of 7. 7 = 0 is
represented by blank circle, and the horizons are represented by two vertical lines. The turning points are indicated by thick dots.
Type Zeros Region Range of 7 Orbit

A 0 TrO

B 2 II a,b,c o o o MBO

C 2 III a,c o o CMBO

D 2 O c EO, TEO

E 2 —e o EO, CTEO

F 4 Va o o—0 o CBO, MBO
F. IV ab o—@ o—0C o BO, MBO

F_ VI a,b,c —e—e 0O o o BO, MBO

G 4 IVa o o o o o MBO, BO

H 4 O o o—0 EO, MBO, EO
I 4 e—o0—o *—eo EO, BO, TEO
J 4 VII a,b,c —o o o BO, CMBO

K 6 VIII a,b —0—0—0—20 o—0 o BO, BO, MBO
L 6 IX a —o o o —e BO, CBO, BO

do not exist in the Kerr-Newman spacetime since six zeros
are required and the r equation in the Kerr-Newman
spacetime only allows up to four zeros. It is likely that
adding a negative cosmological constant to the electrically
and magnetically charged Kerr-Newman black hole will
produce orbits of the types K and L.

IV. SOLUTION OF THE GEODESIC EQUATIONS

In this section, we present the analytical solution
of the equations (9)—(12) in two cases. The first ones are
|

ag = —~25

1. Elliptic case

For g or 6 equal to zero, ag = 0, and therefore X is a
polynomial of order 4. With the substitution 7 = :I:% + ry,
where ry is a zero of X, Eq. (9) becomes

valid for vanishing gauge coupling constant g or for
light (0 = 0) and are given in terms of the Weierstral} ¢,
o, and ¢ functions. The second ones can be used for any
values of the parameters but are more complicated to
handle. These solutions are given in terms of the Kleinian
o function.

A. F equation

In general, the right-hand side of (9) is an order-6
polynomial X = >"%_ @, with the coefficients

g

(19)

(20)

with fixed coefficients. With x:h%(4y—%), Eq. (9)
becomes
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dy\? 3 7 7 7
) = - gy — g5 = P5(y), (21)
%
with
_ bbby _ bibyby bob? b3
P22 219 - 2095 % i
DTN T BT T4 6 216 (%2

Equation (21) is a differential equation in the standard
Weierstrall form which can be solved by [28]

y(7) = oy = v: 95. 95)- (23)

where y/ only depends on the initial value 7, by

Yio = Vin + [ —Ltyd_ﬁ with yi, = £+ %, With
resubstitutlon, we can obtain the solution of Eq. (9),
- b

4o(y = Vins 95 95) —

2. Hyperelliptic case

Now, we look at Eq. (9) for nonvanishing g and massive
particles. We can transform this equation to

d\2 K,
(xd_y> = ; bix' =: PL(x) (25)
with 7 = £1 4 ry. Separation leads to
x xdx
r—tn= | ——.
W \JPL)
Equation (26) contains a hyperelliptic integral of the first

kind and can be solved in terms of derivatives of the
Kleinian ¢ function,

(26)

(27)

o

0) 700) '

where ¢; = agf)

UF” o) F>

These methods were developed in Ref. [29]. By resub-
stitution, we get the full solution of (9),

=+ Fy. (29)

B. 9 equation

Equation (10) can be solved similarly to the 7 equa-
tion (9). By introducing v = cos 9, Eq. (10) becomes

PHYSICAL REVIEW D 94, 124013 (2016)
dv\ 2 6 4
(§) - > = 1.0) (30)

with the coefficients

/ _ _5‘62"4
= —65Ngg a*
da, :59 4o E232 — Ka*@

—sa(8aN 3 — a*(a +2N,) — a)
dy = 657a*N, — 4E’N,a —4K N, 7
—as(-4aN, P (a+2N,) - 2N,)
dy = K(1+ &) + as(8N,*ai — a
—(@+2N,)(1+ @)
d, =4KaN,3 —as(4aN, 3 (a+2N,) - 2N,)
+4N,E*(a+2N,) —4N,LE(1 —4N,a 5 - &%)
ay = ad(a+2N,) — K + (E(a +2N,)
—L(1-4N,a 3 + @3))*. (31)

1. Elliptic case

As for the 7 equation (9), we can first set g or 6 to zero to
get a differential equation, which can be solved by the
Weierstral ¢ function. The substitution v = ii + vy,

where vy is a zero of Y, leads to the form
d,u)2 3 .
— ) =) b (32)
(dV ;
Finally, u =5 | (4¢ -
WeierstraB form

72) transforms (10) into the standard

<j—i>2 =4 —924g 93 = P’Q(f) (33)

which has the solution

Ey) = oy — Vi 5. 85). (34)

_ 0o dé : — bi b/z
whete v = v+ 8 g With Gn=Fg 5
Here, the constants are
gV BB b bR B
2712 40 B 48 16 216
Now, we can state the solution of (10) after

resubstitution as

b/
I(y) = arccos ( 3 7 + uy> (36)
Ap(y =i 5. 93) — 7
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2. Hyperelliptic case

To derive the full solution of Eq. (10), we substitute
cosd = i%—i—yy and get

(d”)2 ;b’ = (37)

the solution of which can be formulated as

_’/
9 = arccos <:F 62(}:"0) + Uy), (38)

/

01 (}/ oo)
with

vdy
() el F>
C. ¢ equation

We need to use Egs. (9) and (10) to rewrite the ¢

PHYSICAL REVIEW D 94, 124013 (2016)
1. Elliptic case

Again, in the case of g = 0 or § = 0, the solution is much
simpler. We start with the 7-dependent integral /; and

substitute 7 = j:4b3,,2 + 7y and apply a partial fraction
Y3

decomposition,

I;:/yi <C0+;y_ > Pr; ; (42)

where C; are constants which arise from the partial
fraction decomposition and p; are first-order poles of I;.

With the last substitution y = o(v'; g5, ¢5) = p:(v'), where
v =y -yl we get

1;:// <C0+Z

v,
in

)dv (43)

The 9-dependent integral /4 can be stated in a similar form

equation (11) in the form with the substitution cosd = i%?( )—i + v,
GZ(BE-aLZ) df Z(AE-LZ) dY
¢ R VX Osind VY (40) Iy = /// <C/ + Z )dU” (44)
and in integral form ”
e e where C; are the corresponding constants from the partial
_ ["a S(BE-aLE) ﬂ fraction decomposition and p’, are the first-order poles of I
¢ ¢m ~ ]
i R VX and py(v") = p(v"; 65, ¢3), with v =y —y/. Both inte-
YZ(AE—-LE) dI ~ grals are third kind elliptic integrals and can be solved in
+ / ﬂ\/—f =I;(7) + 1,(9). (41) terms of the Weierstral @, o, and ¢ functions (see
Oin sl Ref. [11,12,23]). Therefore, we can state the solution of
I; and Iy can be solved separately. Eq. (11) as
2 / / / /
_ I IN(ad o) oz (v' = v}) ox(v' + vj)
d(y) — i = Co(v' —vi,) + ;(ZC;(UI-)(U -vj,)+ lna;(vin v - 1n6;(v{n )
2 " 7 7 "
/ o 1" 63(” — Ui) 68(” + Ui)
X Colo” =)+ ; <2C19( (= v) Fln op(vlh — o) n oo(vlh + 7))’ (43)
|
with p; = p:(v}), p; = po(v]) and where Ps(x) is a polynomial of fifth order in x and Z is a
pole. This is a hyperelliptic integral of the third kind, and
9 9 . -
pi(v) = p(v, 92’ Qs)v ps(v) = p(v, 95, 95), following Ref. [23], it can be solved by
£i(v) = L(v. 63, 63). Lo(v) = (v, 95. 65). 2 /x . (7 o([5dZ— [7d2)
- dz/dfz—i-ln( o ¢ q>
~ = J a9 X Z
oi(v) = o(v, G5, 43), o9(v) = o(v, 95. 93)- (46) /P5(Z) Jx, e o( [&dZ+ [7dz)

2. Hyperelliptic case

For the full solution, we can write the integrals /; and I
in a form like
x dx’

[ 47
vy (X = Z)/Ps(x) )

(48)

» (a(f;‘s" @z - J? dz>)’

o [Xmdz + EZZdZ)

where e, is a zero of Ps(x) and

. dx xdx T
& <\Fps<x> ’ \/P‘s<x>) )
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Escape Orbit

0.2, Ny = —0.07, (b) § =1, a = 0.4, § =0, Ny
= 5=0,K=-10, L =

PHYSICAL REVIEW D 94, 124013 (2016)

0,6=0,(c)d=1,a=04,§=0, N, =0, & =0,
= 1.953: =0, K=-10, L = 2.3, E = 1.953:
Many-world bound orbit

2.3, E

FIG. 6. Orbits of test particles in the dyonic rotating black hole spacetime. The orbit is represented by the blue line, and the outer and

inner horizons are denoted by gray and black ellipsoids.

& (24:]‘ xkdx i:(k N xkdx )T
y = iyl F——> — L)z —F/——
k=1 ' 4/ Ps(x) k=2 ’ 4,/ Ps(x)
(50)

are holomorphic and meromorphic differentials. Here, a;
denote the coefficients of the polynomial Ps(x).

D. ¢ equation

The 7 equation (12) can be solved analogously to the ¢
equation (11) and has solutions of the form of Eq. (45) for
g=0 or 6§ =0 or of the form of Eq. (48) for the full
solution.

V. ORBITS

Now, we can use the analytical solutions to visualize the
possible orbits in this spacetime. In Fig. 6, examples of a

bound orbit, an escape orbit, and a many-world bound orbit
are shown. Figure 6(a) shows the special case of a zoom-
whirl orbit, where the particle makes several turns near the
horizon, then escapes to a region far away from the black
hole and turns back to the near-horizon regime. Figure 7(a)
shows a BO which lies inside the singularity. We cut out a
part of the ringoid structure to make it visible. The orbit in
Fig. 7(b) shows an escape orbit around a naked singularity
for negative 7. The singularity has a toroidal form, and it
may be possible to fly through the hole in the middle. The
last orbit in Fig. 7(c) shows a two-world escape orbit, where
the turning point is very close to the inner horizon. The
singularity for this black hole is an ellipsoid.

VI. CONCLUSION

In this paper, we derived the equations of motion for test
particles and light in the U(1)? dyonic rotating black hole

FIG. 7.

Escape orbit with 7 < 0

=0,Nyg=02¢&=()d =1,a =04, 3§ =0, Nj = 0.35,
1,L=3 E=4: &=0354%=01 K =01, L = 3,
E = 2: Two-world escape orbit

Orbits of test particles in the dyonic rotating black hole spacetime. The orbit is represented by the blue line, and the outer and

inner horizons are denoted by gray and black ellipsoids. The gray structure denotes the singularity.

124013-9



KAI FLATHMANN and SASKIA GRUNAU

spacetime and stated their analytical solution in two cases.
For the full solution, we had to use methods for solving
hyperelliptic differential equations of the first and third
kinds. For a vanishing gauge coupling constant or light, the
solution can be formulated in an easier form, since we only
had to solve elliptic differential equations. We were able to
characterize the possible orbit types for two-horizon black
holes. These were orbits we already know from the special
cases of the spacetimelike escape orbits and bound orbits.
A special feature are bound orbits and many-world bound
orbits, which cross ¥ = 0. We call these CBO or CMBO.
In addition, we found an interesting structure of the
singularity varying from toruslike structures to ellipsoids
for 7 > 0 in contrast to the EMDA black hole [16].
Future work could be the characterization of geodesic
motion for black holes with more than two horizons,
especially the influence of the negative valued horizon on

PHYSICAL REVIEW D 94, 124013 (2016)

the particle motion. Another step is to derive the equa-
tions of motion for charged particles or to consider an
even more general black hole with more charges. In these
cases, we have to deal with hyperelliptic integrals of
genus bigger than 2 or even more complicated differential
equations. The analytical solutions we derived can now
be used to calculate observables like the periastron shift,
the light deflection, or the shadow of the black hole,
which eventually can be compared to observations in the
future.
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