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Electromagnetic field configurations with vanishing Lorentz force density are known as force-free and
appear in terrestrial, space, and astrophysical plasmas. We explore a general method for finding such
configurations based on formulating equations for the field lines rather than the field itself. The basic object
becomes a foliation of spacetime or, in the stationary axisymmetric case, of the half-plane. We use this
approach to find some new stationary and axisymmetric solutions, one of which could represent a rotating
plasma vortex near a magnetic null point.
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I. INTRODUCTION

A Maxwell field Fμν satisfying FμνJν ¼ 0, where Jμ ¼
∇νFμν is the four-current, is known as force-free. Force-
free fields are ubiquitous in nature: they can be found in the
laboratory [1], in the solar corona [2], near neutron stars
[3,4], and near black holes [5]. After decades of study by
plasma physicists, solar physicists, and astrophysicists,
there has recently been new interest in the force-free
equations from the general relativity and high energy
physics communities [6–36]. As a simple nonlinear system
with a nevertheless intricate structure, these equations are
of mathematical interest in their own right.
The force-free equations are written compactly in terms

of the Maxwell two-form Fμν as

Fμν∇ρFρν ¼ 0; ∇½μFνρ� ¼ 0: ð1:1Þ

The first equation is the force-free condition, while the
second is the statement that the form is closed (no magnetic
monopoles). (Here, ∇μ is compatible with the spacetime
metric gμν.) Vacuum solutions with Jμ ¼ ∇νFμν ¼ 0 com-
prise a trivial subset on which the equations become linear.
Provided that Jμ ≠ 0, Eqs. (1.1) imply that the two-form
Fμν is simple or, equivalently, degenerate,

F½μνFρσ� ¼ 0: ð1:2Þ

Reviews of the rich physics of force-free fields may be
found in Refs. [2,17]. In this paper, we concentrate on the
mathematical problem of finding solutions to the nonlinear
system (1.1).
The technique we pursue is motivated by a beautiful

observation due to Carter [37]: degenerate, closed

two-forms define a foliation of spacetime into two-surfaces
(see also Refs. [17,38]). These surfaces are spanned by the
vectors Vμ such that FμνVν ¼ 0, and are interpreted as
worldsheets of magnetic field lines in the magnetically
dominated case FμνFμν ¼ 2ðB2 − E2Þ > 0 of physical
interest. Since force-free fields are degenerate, each
force-free field determines a foliation. The converse is
not true in general, but if a foliation does determine a force-
free field (in the magnetic case), then that field is unique
(see Appendix A). This means that the force-free condition
can be reexpressed as a condition on foliations. Thus, one
passes from the field to the field lines as the fundamental
variable.
One can hope that such a reformulation will lead to new

insights and results. In this paper, we perform a version of
this reformulation specialized to stationary, axisymmetric,
force-free fields. Such fields are characterized by three
scalars defined on the “poloidal (half-)plane” spanned by
the cylindrical radius ρ > 0 and height z: the flux function
ψðρ; zÞ, polar current IðψÞ, and field angular velocityΩðψÞ.
Many of the most interesting exact solutions have been
found by guessing a common functional dependence on
some scalar u, i.e., by making the ansatz ψ ¼ ψðuÞ,
I ¼ IðuÞ, and Ω ¼ ΩðuÞ. One then examines the force-
free condition to see if an associated solution exists or not.
Previously, this has been done on a case-by-case basis, but
it would be desirable to have a more systematic method for
checking whether a function u is admissible or not, i.e., to
pass to u as the basic variable. Since the level sets of u are
the poloidal projections of the magnetic field lines, this is a
version of the foliation strategy outlined above.
We are able to eliminate ψ and IðψÞ in favor of the

foliation representative u, but in general, ΩðuÞ remains
present. We give the equation in coordinate form as well as
in terms of geometric invariants of the foliation, and
ultimately work in a general stationary, axisymmetric
(circular) spacetime. The equation is most useful in the
case Ω ¼ 0 (or more generally, constant Ω), where it
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becomes a single “foliation condition” on u. There is a
large gauge redundancy in this description, since two
functions u with parallel gradient have the same level sets
and hence correspond to the same foliation. This makes the
foliation equation appear more complicated than the
original force-free equation (at least when written in
coordinate form), but it also means that it has many more
solutions, thereby making them easier to guess. We can use
the foliation equation as a consistency condition to check
whether or not a force-free solution exists. If the check is
successful, then it is straightforward to reconstruct the
solution.
Having this foliation condition enables automation of

the guesswork by computer algebra programs. In Sec. II,
we describe a simple algorithm to generate guesses from a
basic set of atoms and operations. We implemented this
algorithm in MATHEMATICA and used it to find new force-
free solutions, one of which could represent a rotating
force-free vortex near a magnetic null point. We anticipate
that it will be possible to find many more solutions by
improving the algorithm and its implementation, experi-
menting with the choice of primitives, and running for a
longer time on faster computers. While finding solutions is
one goal of this approach, we also hope that the reformu-
lation will lead to new insight into the structure of the
equations. We therefore take care to elucidate the math-
ematical properties of our approach. We follow the con-
ventions of Ref. [17].

II. FORCE-FREE MAGNETIC FIELDS
IN FLAT SPACETIME

Stationary force-free configurations with vanishing elec-
tric field in flat spacetime are called force-free magnetic
fields. In vector notation, they obey the following
equations:

~B ¼ ~Bð~xÞ; ~∇ · ~B ¼ 0; ~∇ × ~B ¼ ~J; ~J × ~B ¼ 0:

ð2:1Þ

Such fields are also known as “Beltrami flows” and form
steady solutions of the incompressible Euler equations.1

In the following, we will consider axisymmetric force-free
magnetic fields,

L∂tF ¼ L∂ϕF ¼ 0; ∂t · F ¼ 0: ð2:2Þ

Under these assumptions, a degenerate, closed two-form
may always be written in the form (see e.g., Ref. [17])

F ¼ I
2πρ

dz ∧ dρþ dψ ∧ dϕ; ð2:3Þ

where we work in cylindrical coordinates ft;ϕ; z; ρg.
The scalars Iðρ; zÞ and 2πψðρ; zÞ are respectively equal
to the electric current and magnetic flux in the upward z
direction through a loop of revolution at fixed ðρ; zÞ.2 We
will refer to these as the polar current and flux function,
respectively. The magnetic field Bi ¼ ð⋆FÞti is given by

~B ¼
~∇ψ × ϕ̂

ρ
þ I
2πρ

ϕ̂; ð2:4Þ

where ϕ̂ ¼ ρ−1∂ϕ and we used the standard orientation
ϵρϕz ¼ þρ to define the cross product. The first term is
the poloidal field and the second term is the toroidal
(azimuthal) field. The level sets of ψ are the projections
of field lines onto the poloidal plane, or poloidal field lines.
These field lines provide the plane foliation that will
become our fundamental variable in this paper.
Under the assumptions (2.2) [or equivalently, given the

form (2.3)], the force-free condition implies

dI ∧ dψ ¼ 0 ½or equivalently; I ¼ IðψÞ�; ð2:5Þ

as well as

∂2
ρψ þ ∂2

zψ −
1

ρ
∂ρψ ¼ −

IðψÞI0ðψÞ
4π2

: ð2:6Þ

This last equation is called the stream equation. If IðψÞ is
specified as some definite function, then the stream
equation is a second-order elliptic partial differential
equation. We may eliminate I from the equation by acting
with ∂zψ∂ρ − ∂ρψ∂z on both sides, resulting in

ð∂zψ∂ρ − ∂ρψ∂zÞð∂2
ρψ þ ∂2

zψ − ρ−1∂ρψÞ ¼ 0: ð2:7Þ

This replaces the pair of Eqs. (2.5) and (2.6) with a single
higher-order equation. Once a solution is found, the current
can be reconstructed by integrating Eq. (2.6),

I ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−8π2

Z
dψ

�
∂2
ρψ þ ∂2

zψ −
1

ρ
∂ρψ

�s
: ð2:8Þ

If ψ is not a convenient integration variable, one may
substitute dψ ¼ ∂ρψdρ, dψ ¼ ∂zψdz, or some other con-
venient choice over suitable domains of the integral.
The integration constant may always be chosen so that

1By the identity ~u · ~∇ ~u ¼ ð ~∇ × ~uÞ × ~uþ ~∇ð1
2
j~uj2Þ, the field

~u ¼ ~B solves the three-dimensional incompressible Euler equa-
tions ~∇ · ~u ¼ 0 and ~u · ~∇ ~u ¼ − ~∇p with pressure p ¼ − 1

2
j~Bj2.

There also exists a different relationship to two-dimensional
Eulerian flows. See e.g., Ref. [39] for further discussion.

2The scalar ψ must be constant on the rotation axis for the field
F to be smooth. We use the gauge freedom ψ → ψ þ const to
make ψ vanish on the rotation axis, in which case it gains the
interpretation of the magnetic flux.
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the quantity in the square root is positive on any particular
region of space where a solution is desired. The choice of
� corresponds to the direction of current flow, and its
presence follows from the underlying time-reversal invari-
ance of the equations.

A. Foliation approach

As noted above, the level sets of ψ correspond to the
poloidal field lines, which foliate the poloidal plane. We
wish to pass from the field to the foliation as the
fundamental variable. We may describe a foliation as an
equivalence class of functions uðρ; zÞ whose gradients are
parallel and nonvanishing. That is, two functions u1 and u2
are equivalent if ∂ρu1 ¼ α∂ρu2 and ∂zu1 ¼ α∂zu2 for some
non-negative (or nonpositive) function αðρ; zÞ, or equiv-
alently, if u1 ¼ fðu2Þ for an invertible function f. A good
equation on foliations u should always be covariant under
this gauge freedom u → fðuÞ.
The stream equation is not a good equation on foliations,

since it only holds for a particular representative ψ (namely,
the physical magnetic flux). To pass to an equation on
foliations, we let ψ ¼ ψðuÞ and eliminate ψ in favor of u.
From Eq. (2.5), we then have I ¼ IðuÞ as well, and hence
Eq. (2.6) becomes

Aψ 0ðuÞ þ Bψ 00ðuÞ ¼ −
IðuÞI0ðuÞ
4π2ψ 0ðuÞ ; ð2:9Þ

where A and B are given by

A ¼ uρρ þ uzz − ρ−1uρ; B ¼ u2ρ þ u2z : ð2:10Þ

(Here and henceforth, we use a subscript to denote partial
differentiation.) To eliminate ψ , we take derivatives tangent
to the foliation, as done to produce Eq. (2.7). For these
purposes, we introduce the differential operator (or tangent
vector field3)

T ¼ uz∂ρ − uρ∂z: ð2:11Þ

We will denote the application of T by LT (the Lie
derivative). Acting on Eq. (2.9) one and two times yields,
respectively,

ψ 0LTAþ ψ 00LTB ¼ 0; ψ 0L2
TAþ ψ 00L2

TB ¼ 0; ð2:12Þ

which can be rewritten as the system

�
LTA LTB

L2
TA L2

TB

��
ψ 0

ψ 00

�
¼

�
0

0

�
: ð2:13Þ

The foliation condition for a (nontrivial) solution is simply
the vanishing of a determinant,

det

�
LTA LTB

L2
TA L2

TB

�
¼ 0: ð2:14Þ

We have now obtained an equation for the foliation
representative u without reference to the magnetic flux
function ψ . We refer to Eq. (2.14) as the “foliation
condition.” As shown explicitly below, the field ψ can
be reconstructed from any solution satisfying LTB ≠ 0
or LTA ¼ LTB ¼ 0.

B. Field reconstruction

Provided that LTB ≠ 0, Eq. (2.12) can be written
equivalently as

LTA
LTB

¼ −
ψ 00

ψ 0 : ð2:15Þ

The foliation condition (2.14) is equivalent to

LT

�
LTA
LTB

�
¼ 0: ð2:16Þ

This condition ensures that the left-hand side of
Eq. (2.15) depends only on u, so that we may integrate
to find

ψ 0ðuÞ ¼ exp

�
−
Z

du
LTA
LTB

�
: ð2:17Þ

Performing a second integration to obtain ψðuÞ is usually
not necessary, since only dψ appears in the field strength
(2.3). The current I may be reconstructed via Eq. (2.8), or
alternatively, from Eq. (2.9) by

I ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−8π2

Z
du½Aðψ 0Þ2 þ Bψ 00ψ 0�

s
; ð2:18Þ

where again only ψ 0ðuÞ appears. Although A and B are not
functions of u alone, the foliation condition guarantees that
the integrands in Eqs. (2.17) and (2.18) will only depend
on u.
If LTB ¼ 0, then Eq. (2.12) requires LTA ¼ 0 as well, so

that both A and B are functions of u. Equation (2.9) then
becomes

2AðuÞ½ψ 0ðuÞ�2 þ BðuÞ d
du

f½ψ 0ðuÞ�2g ¼ −
1

4π2
d
du

f½IðuÞ�2g:
ð2:19Þ

This is a linear equation in ½ψ 0ðuÞ�2. Given any current IðuÞ
along the field lines, we can straightforwardly solve for the

3We adopt the viewpoint/definition that vectors are partial
differential operators (see e.g., Ref. [40]). Equivalently, the vector
T is defined by having ðρ; zÞ components ðuz;−uρÞ.
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magnetic flux ψðuÞ. A class of solutions to this equation,
corresponding to the vertical foliation u ¼ ρ2, which obeys
LTB ¼ 0, was described in Refs. [41,42]. The magnetic
field admits an arbitrary toroidal component, Bϕ ¼ IðuÞ

2πρ, no
radial component, Bρ ¼ 0, and has a vertical component
Bz ¼ ∂ρψ deduced from (2.19).

C. Regularity

Amagnetic field of the form (2.3) [or equivalently, of the
form (2.4)] is not regular on the axis unless ψ and I both
vanish there.4 If ψ does not vanish, then field lines originate
from the axis, indicating the presence of a line current of
magnetic monopoles. If ψ does vanish but I does not, then
an ordinary electric current flows along the axis. We may
always ensure the vanishing of ψ (lack of magnetic
monopoles) by choosing a foliation representative that is
constant on the axis. Such foliations have a field line along
the axis. On the other hand, the vanishing of I (lack of line
current) cannot be imposed in all cases, because this
demand picks out a unique integration constant in
Eq. (2.18) [or equivalently, in Eq. (2.8)], which may be
incompatible with the requirement that the quantity under
the square root be positive.
To summarize, force-free solutions satisfying the con-

ditions (2.2) may be constructed by finding solutions to
Eq. (2.14) satisfying uðz ¼ 0Þ ¼ 0 as well as LTB ≠ 0, and
then using Eqs. (2.3), (2.17), and (2.18) to reconstruct the
field strength. Depending on the foliation, a line current
may be required to flow on the axis to support the
solution.

D. Function builder and solutions

One advantage of the foliation equation over the original
stream equation is that it makes it far simpler to guess
solutions. The reason is that for each exact solution ψ of the
stream equation, there exist an infinite number of solutions
uðψÞ to the foliation equation. One merely needs to chance
upon a single representative uðρ; zÞ in order to find the
exact solution ψðρ; zÞ.
To search for solutions, we have designed and imple-

mented a simple algorithm to build representatives uðρ; zÞ
frombasic elements and operations.We initiate the algorithm
at depth 1 with the four building functions ρ, z, ρ2 þ z2, and
ρ=z. New functions are built at depth nþ 1 from binary
operations among the functions at depth n − p and p with
1 ≤ p ≤ n. (Unary operations would only create dependent
functions.) The binary operations that we considered are
addition, subtraction, multiplication, division, geometric
sum, as well as the operations ðx; yÞ →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − 1Þ2 þ y2

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 1Þ2 þ y2

p
, xey, and x log y. After building the list, we

check each function individually, first for regularity and then
(if regular) for satisfaction of the foliation constraint. In
practice, we save computational time by only evaluating the
foliation constraint at one particular point, whichwe selected
to be ρ ¼ 4

5
, z ¼ 6

7
, using exact arithmetic. If the constraint is

exactly 0 at that point, the constraint is tested in the entire
plane. The resulting solutions are then checked for mutual
independence and a list of independent regular solutions is
produced. We perform this step last since its complexity is
quadratic in the number of functions, as compared with the
linearity of the previous steps.
This algorithm generates approximately 66 000 func-

tions up to depth 4. After imposing regularity and the
foliation constraint as well as removing redundancy, we are
left with only seven mutually independent foliation repre-
sentatives. Of these, six turn out to be vacuum solutions
(I ¼ 0, or more generally, I ¼ const).
After selecting the simplest representative u, the list of

vacuum solutions reads as follows:

vertical field ðexternal dipoleÞ : u ¼ ρ2 ¼ r2cos2θ;

ð2:20aÞ

X point ðexternal quadrupoleÞ : u ¼ ρ2z ¼ r3cos2θ sin θ;

ð2:20bÞ

radial : u ¼ 1 − z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ρ2

q
¼ 1 − cos θ; ð2:20cÞ

dipolar : u ¼ ρ2=ðz2 þ ρ2Þ3=2 ¼ sin2θ=r; ð2:20dÞ

parabolic : u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ρ2

q
− z ¼ rð1 − cos θÞ; ð2:20eÞ

hyperbolic :u¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2þðρ−bÞ2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2þðρþbÞ2

p
2b

: ð2:20fÞ

Here, b is a constant which was found by the algorithm to
be 1 but which we subsequently generalized to be arbitrary.
Note that we can shift any solution by z → zþ c with
constant c and still have a solution. These vacuum solutions
are all known. The first four arise as multipolar solutions
when the equation is separated using spherical coordinates,
while the latter two are associated with separation in other
coordinate systems. In the first five cases, the flux function
is given by ψ ¼ ψ0u, while in the last case, it is given by
ψ=ψ0 ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
. The solutions in this list are vacuum,

but all have rotating counterparts that are nonvacuum (see
next section), some of which are new.
The algorithm finds a single nonvacuum regular solution

family,

4More generally, ψ may take a constant value on the axis, but
one may always shift ψ by this constant without affecting the
field strength. Moreover, only the choice ψ ¼ 0 on the axis is
consistent with the interpretation of ψ as the magnetic flux.
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bent : u ¼ ρ2e−2kz; ψ ¼ ψ0u;

I ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I20 − ð4πkψ0uÞ2

q
; ð2:21Þ

where k, ψ0, and I0 are constants. The field lines are
vertical when k ¼ 0 and bend over for nonzero k (hence the
name, “bent”). As far as the authors are aware, this solution
is new. In Cartesian coordinates ðx; y; zÞ, the magnetic field
has components

~B ¼ 2ψ0e−2kzðkx; ky; 1Þ

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

I0
2πðx2 þ y2Þ

�
2

− ð2kψ0e−2kzÞ2
s

ðy;−x; 0Þ:

ð2:22Þ

The foliations corresponding to the seven solutions are
illustrated in Fig. 1.

E. Gauge covariance

An equation for uðρ; zÞ can only be considered as an
equation for foliations if it holds for all representatives fðuÞ
of the foliation. In particular, the equation should transform
covariantly (i.e., retain its form) under u → fðuÞ. This is
guaranteed by construction in the derivation of the foliation
condition, but it is instructive to check it explicitly. By
direct calculation, the transformation laws for the various
quantities are

T → f0ðuÞT; ð2:23aÞ
A → f0ðuÞAþ f00ðuÞB; ð2:23bÞ

(a) (b) (c)

(d) (e) (f)

(g)

FIG. 1. Poloidal field lines of force-free solutions found by the foliation-searching algorithm. The X point, dipolar, and bent solutions
appear to be new (in the first two cases, when rotation of the field lines is considered).
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B → ½f0ðuÞ�2B; ð2:23cÞ

LTA → f0ðuÞ½f0ðuÞLTAþ f00ðuÞLTB�; ð2:23dÞ

LTB → ½f0ðuÞ�3LTB; ð2:23eÞ

L2
TA → ½f0ðuÞ�2½f0ðuÞL2

TAþ f00ðuÞL2
TB�; ð2:23fÞ

L2
TB → ½f0ðuÞ�4L2

TB: ð2:23gÞ

Since the left-hand side of Eq. (2.14) transforms covariantly
with an overall factor of ½f0ðuÞ�6, the invariance of the
foliation condition follows.
Note that in the generic case LTB ≠ 0, one may always

find a gauge where LTA ¼ 0 and u ¼ ψ , which amounts to
returning to the more basic formulation (2.7). To do so, one
solves f0ðuÞLTAþ f00ðuÞLTB ¼ 0 for fðuÞ. In particular,
one can divide by LTBf0ðuÞ and integrate along u since
LTðLTA=LTBÞ ¼ 0 by Eq. (2.16).

III. ROTATING MAGNETOSPHERES

Thus far, we have restricted to vanishing electric field.
When electric fields are included, the general form of a
stationary, axisymmetric, degenerate two-form becomes5

[compare to Eq. (2.3)]

F ¼ I
2πρ

dz ∧ dρþ dψ ∧ ðdϕ −ΩdtÞ; ð3:1Þ

for some function Ω ¼ ΩðψÞ. The magnetic field sheets
discussed in the Introduction are generated by the poloidal
field lines ψ ¼ constant rotating with angular velocity
ΩðψÞ; hence, ΩðψÞ is interpreted as the rotation frequency
of the field line ψ .
The stream equation for rotating magnetospheres reads

½1 − ρ2Ω2ðψÞ�∇2ψ −
2

ρ
∂ρψ − ρ2ΩðψÞΩ0ðψÞð∇ψÞ2

¼ −
IðψÞI0ðψÞ

4π2
: ð3:2Þ

Upon setting Ω ¼ 0 and after using the three-dimensional
Laplacian, we recover Eq. (2.6). In the special case of
constant Ω ¼ Ω0 (“rigid rotation”), the term involving Ω0
does not appear, and one can straightforwardly follow the
steps of the previous section to derive a foliation condition.
This condition is again the determinant (2.14), except with
the following new definitions for A and B:

A ¼ ð1 − ρ2Ω2
0Þðuρρ þ uzzÞ −

1þ ρ2Ω2
0

ρ
uρ; ð3:3Þ

B ¼ ð1 − ρ2Ω2
0Þðu2ρ þ u2zÞ: ð3:4Þ

One can search for rigidly rotating magnetospheres by
running the algorithm we described in the previous section
with this new choice of A and B.
In the general case Ω ¼ ΩðψÞ, it is not possible to

eliminate Ω from the equation by the strategy we have
pursued. Instead, applying the same manipulations as
above, we again obtain Eq. (2.9), but this time with

A ¼ ½1 − ρ2Ω2ðuÞ�ðuρρ þ uzzÞ −
1þ ρ2Ω2ðuÞ

ρ
uρ

− ρ2ΩðuÞΩ0ðuÞðu2ρ þ u2zÞ; ð3:5Þ

B ¼ ½1 − ρ2Ω2ðuÞ�ðu2ρ þ u2zÞ: ð3:6Þ

Equation (2.14) is now a first-order differential equation for
ΩðuÞ which is consistent only for specific foliations
where all fields are u dependent only. If consistent, it
can then be solved for ΩðuÞ, and the current IðuÞ can then
be reconstructed from Eq. (2.18).
While it is difficult to directly solve the foliation

condition (2.9) with A and B as given in Eqs. (3.5)
and (3.6), it is straightforward to check by hand whether
the nonrotating solutions (2.20) have rotating counterparts.
One must simply evaluate Eq. (2.14) assuming one of the
seven foliations found in Sec. II, and then check consis-
tency. We find that all of the nonrotating solutions found in
Sec. II have rotating counterparts.6 Four of them (vertical,
radial, parabolic, hyperbolic) are special in that any ΩðuÞ
gives a solution. These four solutions were all previously
known [4,27,43,44], but we present them again here for the
sake of completeness:

vertical : ψ ¼ ψ0u; Ω ¼ ΩðuÞ; I ¼ �4πψ0uΩðuÞ;
ð3:7aÞ

radial : ψ ¼ ψ0u; Ω ¼ ΩðuÞ;
I ¼ �2πψ0uð2 − uÞΩðuÞ; ð3:7bÞ

parabolic : ψ ¼ ψ0

Z
duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ½uΩðuÞ�2
p ;

Ω ¼ ΩðuÞ; I ¼ � 4πψ0uΩðuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½uΩðuÞ�2

p ;

ð3:7cÞ5More precisely, we consider the conditions (2.2) without
F · ∂t ¼ 0, but also with F · ∂ϕ ≠ 0 to ensure there is some
poloidal field. An analogous form exists for the case F · ∂ϕ ¼ 0
[17], and there is an analogous foliation equation which for
simplicity, we do not consider here.

6However, superpositions of the vacuum solutions (2.20), which
are valid when Ω ¼ 0, do not admit rotating generalizations.
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hyperbolic : ψ ¼ ψ0

Z
uduffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − u2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ½bΩðuÞu2�2
p ;

Ω ¼ ΩðuÞ; I ¼ � 2πψ0ΩðuÞu2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½bΩðuÞu2�2

p :

ð3:7dÞ

We have chosen the integration constant I0 to ensure global
regularity.
The remaining three solutions require special choices of

ΩðuÞ and appear to be new:

X point : u ¼ ρ2z; ψ ¼ ψ0u; Ω ¼ Ω0;

I ¼ �4πψ0Ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I20 þ u2

q
; ð3:8Þ

dipolar : u ¼ ρ2

ðz2 þ ρ2Þ3=2 ; ψ ¼ ψ0u;

Ω ¼ Ω0

u2
; I ¼ �4πψ0Ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I20 þ

1

u2

r
; ð3:9Þ

bent : u ¼ ρ2e−2kz; ψ ¼ ψ0u; Ω ¼ Ω0

u
;

I ¼ �4πkψ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I20 − u2

q
: ð3:10Þ

In these solutions, we include the integration constant I0.
The dipolar and bent solutions have singularities and hence
could only be realized over a finite region. On the other
hand, we may ensure global regularity of the X point
solution by fixing the integration constant to be I0 ¼ 0.
This solution is a rotating quadrupolar field configuration
and could represent a “force-free vortex” near a magnetic
null point. We have not checked whether the configuration
is stable.

IV. GENERALIZATION TO CURVED
SPACETIME

We now generalize to an arbitrary stationary, axisym-
metric, circular spacetime. For the basic formulation of the
force-free equations, we follow the approach and notation
of Ref. [17]. We work in coordinates ft;ϕ; xag, where the
timelike and axial Killing fields are ∂t and ∂ϕ, respectively,
and xa are two arbitrary poloidal coordinates (such as
Boyer-Lindquist r and θ for the Kerr metric). The metric
takes the general form

ds2 ¼ −α2dt2 þ ρ2ðdφ −ΩZdtÞ2 þ gPabdx
adxb; ð4:1Þ

where all metric components depend only on the poloidal
coordinates xa. Here, ρ is the cylindrical radius, while α and
ΩZ respectively denote the redshift factor and angular
frequency of observers orbiting at fixed θ with zero angular

momentum. A degenerate, stationary, axisymmetric field
with F · ∂ϕ ≠ 0 may always be written as

F ¼ IðψÞ
2παρ

ϵP þ dψ ∧ ½dϕ −ΩðψÞdt�; ð4:2Þ

where ϵP is the metric-compatible poloidal volume element
given by

ffiffiffiffiffi
gP

p
times the Levi-Cività symbol. Here, ψ , I,

and Ω have the same physical interpretation as in flat
spacetime. The stream equation is

αρ∇aðαρjηj2∇aψÞ þ ρ2Ω0ðψÞ½ΩðψÞ −ΩZ�∇aψ∇aψ

¼ −
IðψÞI0ðψÞ

4π2
; ð4:3Þ

where ∇a is the covariant derivative compatible with the
poloidal metric, and we have introduced the one-form
η≡ dϕ −ΩðψÞdt. In terms of the functions appearing in
the metric (4.1), we have

jηj2 ¼ 1

ρ2
−
½ΩðψÞ − ΩZ�2

α2
: ð4:4Þ

We now follow the steps of the previous sections to
derive the foliation condition. We consider an arbitrary
foliation representative u on the poloidal plane, and assume
without loss of generality that ψ is a function of u. We
define the length of the gradient l as well as the unit normal
and tangent vectors,

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∇au∇au

p
; na ¼ ∇au=l; ma ¼ ϵabP nb:

ð4:5Þ

For the tangent vector Ta, one may choose any normali-
zation, which we fix as

Ta ¼ l
ffiffiffiffiffi
gP

p
ma: ð4:6Þ

This choice ensures that T ¼ uz∂ρ − uρ∂z, in agreement
with the simple form (2.11) that the vector field took in flat
spacetime. The foliation condition once again takes the
determinant form (2.14) (or LTA ¼ LTB ¼ 0), but with A
and B now given by

A ¼ α2ρ2jηj2l½κn þ Ln log jαρjηj2lj�
þ ρ2l2Ω0ðuÞ½ΩðuÞ −ΩZ�; ð4:7Þ

B ¼ α2ρ2jηj2l2; ð4:8Þ

where κn ¼ ∇ana is the extrinsic curvature of the foliation.
The flux and current can be reconstructed in the same way
as before, using the formulas in Sec. II B.
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We have used the foliation condition to rederive two
known solutions corresponding to foliations u ¼ cos θ and
u ¼ r in the Kerr metric in Boyer-Lindquist coordinates.
Unfortunately, we did not find any new solutions in the
Kerr metric. The perfectly radial foliation u ¼ cos θ was
found in Ref. [45] and satisfies the foliation condition in
Kerr provided that we define

ΩðuÞ ¼ 1

að1 − u2Þ : ð4:9Þ

The orthogonal, or dual, perfectly circular foliation u ¼ r
was found in Ref. [46]. It satisfies the foliation condition
provided that we define

ΩðuÞ ¼ a
u2 þ a2

: ð4:10Þ

However, this foliation is not tangent to the z axis and
hence, the associated solution is singular.

V. GEOMETRIC FORMULATION

We have emphasized that meaningful equations on
foliations must transform covariantly under u → fðuÞ.
The form (2.14) does not make covariance manifest, since
none of the building blocks (2.23) are individually covar-
iant. This is akin to expressing the Einstein field equations
in terms of partial derivatives rather than (spacetime-)
covariant derivatives, after which covariance of the entire
equation would be seen only after many miraculous
cancellations. It is clearly preferable to have manifestly
covariant expressions, which requires expressing all quan-
tities in terms of geometric invariants of the foliation.
The fundamental building blocks of this geometric

formulation are the extrinsic curvatures of the foliation
of unit normal na and of the orthogonal foliation of unit
normal ma,

κn ¼ ∇ana ¼ gab∇anb ¼ mamb∇anb; ð5:1Þ

κm ¼ ∇ama ¼ ϵab∇anb ¼ −namb∇anb: ð5:2Þ

All nongeometric quantities (such as l) need to be replaced
by objects that are invariant under u → fðuÞ. In order to
describe all quantities of interest, it is convenient to
introduce the additional invariants

Δn ¼ Ln log jαρjηj2j þ κn;

Δm ¼ Lm log jα2ρ2jηj2j − κm;

αm ¼ Lm log jα2jηj2j: ð5:3Þ

All factors of α, ρ, and jηj2 can be expressed in terms of
these invariants. Finally,ΩZ is another independent invariant.
In Appendix B, we reformulate the foliation condition (2.14)
in terms of invariants, leading to

det

� XþXΩ Δm − κm

ð~Lm þΔmÞXþ ð~Lm þ κmÞXΩ LmðΔm − κmÞ

�
¼ 0;

ð5:4Þ

where

X ¼ ð~Lm þ κmÞΔn − ð~Ln þ κnÞκm ¼ ∇a½Δnma − κmna�;
ð5:5Þ

XΩ ¼ l
α2jηj2Ω

0ðuÞf½ΩðuÞ −ΩZ�ðΔm − κm − αmÞ−LmΩZg:

ð5:6Þ

The notation ~Lm emphasizes that the Lie derivative is an
operator acting on its argument on the right. All quantities in
Eq. (5.4) are manifestly invariant under reparameterizations
of the foliation.
The condition LTB ≠ 0 is equivalent to Δm − κm ≠ 0.

When Ω0ðuÞ ¼ 0, the condition LTB ¼ LTA ¼ 0 is equiv-
alent to X ¼ 0 and Δm − κm ¼ 0. Finally, note that the
foliation condition (5.4) is homogeneous of degree 4 in
derivatives along poloidal coordinates. Indeed, the diagonal
entries of the matrix (5.4) are homogeneous of degree 2, the
upper right entry is homogeneous of order one, and the
lower left entry is homogeneous of order three.
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APPENDIX A: THE FOLIATION DETERMINES
THE FIELD

Every degenerate, closed two-form Fμν defines a
foliation of spacetime into two-dimensional submanifolds
spanned by the vectors vμ such that Fμνvμ ¼ 0 [17,37,38].
In particular, a force-free solution defines a foliation. The
converse is not true, but we now show that in the timelike
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case (FμνFμν > 0) of physical interest, if a foliation has an
associated force-free solution, then that solution is unique.
The result also holds in the spacelike case, but not for null
foliations.
We use the Newman-Penrose formulation [47] and (in

this appendix only) work in the signature ðþ;−;−;−Þ.
The two-form is represented in terms of three complex
scalars by

ϕ0 ¼ Fμνlμmν; ðA1Þ

ϕ1 ¼
1

2
Fμνðlμnν þmμmνÞ; ðA2Þ

ϕ2 ¼ Fμνmμnν; ðA3Þ

where the null tetrad flμ; nμ; mμ; mμg satisfies l · n ¼ 1
and m ·m ¼ −1, with all other inner products vanishing.
(Here, l and n are real null vectors, while m is a complex
null vector.) Given a timelike foliation, we may erect a
Newman-Penrose tetrad by taking l and n to lie in the
foliation. In particular, F · l ¼ F · n ¼ 0, so we have

ϕ0 ¼ ϕ2 ¼ 0; ϕ1 ¼
iB
2
: ðA4Þ

Here, B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FμνFμν=2

p
is the magnetic field strength.

With the conditions (A4), Maxwell’s equations become
(see e.g., Ref [48])

ðl ·∇ − 2ρÞϕ1 ¼ 2πJl; ðA5Þ

−ðn ·∇þ 2μÞϕ1 ¼ 2πJn; ðA6Þ

ðm · ∇ − 2τÞϕ1 ¼ 2πJm; ðA7Þ

−ðm · ∇þ 2πÞϕ1 ¼ 2πJm: ðA8Þ

The scalars ρ, μ, τ, π on the left-hand sides are spin
coefficients that characterize derivatives of the tetrad
vectors [47]. (The π’s on the right-hand sides are just
the usual number 3.14…) We also introduce the projection
of J onto the null tetrad, e.g., Jl ¼ J · l. The current is
reconstructed by J ¼ Jlnþ Jnl − Jmm − Jmm.
Since l and n span a surface, we have τ ¼ −π by

Proposition (4.14.3) of Ref. [49], making the last two
equations equivalent. The condition F · J ¼ 0 becomes
Jm ¼ Jm ¼ 0, and the force-free equations are

ðl · ∇ − 2Re½ρ�ÞB ¼ 0; ðA9aÞ

ðn ·∇þ 2Re½μ�ÞB ¼ 0; ðA9bÞ

ðm · ∇ − 2τÞB ¼ 0: ðA9cÞ

The remaining two equations, 2πJl ¼ Im½ρ�B and 2πJn ¼
−Im½μ�B serve to compute the current once B is found.
Equations (A9) are four transport equations for the single
scalar B, which uniquely determine the solution if it exists.
For most foliations, no consistent solution of Eqs. (A9)

will exist. Determining the integrability conditions in terms
of geometric properties of the foliation would constitute the
general foliation formulation of force-free electrodynamics.
While integrability conditions for Eqs. (A9) can be deter-
mined by working out the commutators of the relevant
differential operators, the result is a complicated expression
that depends on arbitrary choices in erecting the tetrad in
addition to the geometric properties of the foliation. It
would be desirable to eliminate (or at least understand) this
gauge arbitrariness to produce what could be called the
foliation formulation of force-free electrodynamics.

APPENDIX B: DETAILED DERIVATIONS

In this appendix, we present the derivation of the
geometric form of the foliation condition, Eq. (5.4). All
calculations are done using the poloidal metric and volume
element, as indicated by the continued use of latin indices.

1. Preliminaries

Recall from Eq. (4.6) that we defined Ta ¼ l
ffiffiffiffiffi
gP

p
ma.

This implies that

LTϕ ¼ l
ffiffiffiffiffi
gP

p
Lmϕ: ðB1Þ

The definition ofma in Eq. (4.5) can be inverted to give the
useful relation

na ¼ −ϵabP mb: ðB2Þ

It then follows that

κm ¼ ∇ama ¼ ∇aðϵabP nbÞ ¼ ∇a

�
ϵabP

∇bu
l

�

¼ ϵabP ∇a

�
1

l

�
∇buþ 1

l
ϵabP ∇a∇bu;

where in the last step, we used the compatibility of the
Levi-Cività tensor ϵP. Since the Riemann tensor always
vanishes in two dimensions, ∇a∇bu is symmetric. Hence,
its contraction ϵabP ∇a∇bu with the antisymmetric symbol
vanishes, leaving

κm ¼ ϵab∇a

�
1

l

�
∇bu ¼ −

1

l2
ϵab∇al∇bu

¼ −
1

l

�
ϵab

∇bu
l

�
∇al ¼ −

1

l
ma∇al ¼ −

1

l
Lml:

As such, we have established that
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Lm logl ¼ −κm: ðB3Þ

For future reference, note also that

nb∇anb ¼
1

2
∇aðnbnbÞ ¼

1

2
∇a1 ¼ 0: ðB4Þ

Next, we define the acceleration of the foliation,

αa ¼ nb∇bna; ðB5Þ

which obeys naαa ¼ 0, and therefore, αa ∝ ma. As such,
there exists some proportionality constant λ such that
αa ¼ λma. From the unit normalization of ma, we see that
maαa ¼ λmama ¼ λ. Hence,

λ ¼ maαa ¼ manb∇bna ¼ ðmanb − nambÞ∇bna

¼ ðgacgbd − gadgbcÞmcnd∇bna;

where in the penultimate step we used Eq. (B4) to see
that namb∇bna ¼ 0. Invoking the geometric identity
gacgbd − gadgbc ¼ ϵabϵcd, we find that

λ ¼ ϵabP ϵcdP mcnd∇bna ¼ mcðϵcdP ndÞ∇bðϵabP naÞ
¼ mcmc∇bð−mbÞ ¼ −∇bmb ¼ −κm:

As such, the acceleration of the foliation is related to its
normalized tangent by

αa ¼ −κmma: ðB6Þ

The extrinsic curvature is defined as

Kab ¼ ∇anb − naαb: ðB7Þ

Note that

naKab ¼ na∇anb − nanaαb ¼ αb − αb ¼ 0; ðB8Þ

nbKab ¼ nb∇anb − nbnaαb ¼ 0 − nbnað−κmmbÞ ¼ 0;

ðB9Þ

where in the second line, we used Eq. (B4) together with
the orthogonality condition nbmb ¼ 0. Since the projec-
tions of Kab along na all vanish, it results that we must
necessarily have

Kab ¼ τmamb ðB10Þ

for some proportionality constant τ, which may be deter-
mined from the unit normalization of ma:

τ¼ τðmamaÞðmbmbÞ¼mambKab ¼mambð∇anb−naαbÞ
¼mambð∇anbþ κmnambÞ¼mamb∇anb ½by Eq: ðB:6Þ�
¼mamb∇anbþnanb∇anb ¼ðmambþnanbÞ∇anb

½by Eq: ðB:4Þ�
¼ ðmaϵbcnc−naϵbcmcÞ∇anb¼ðmanc−namcÞ∇aðϵbcnbÞ
¼−ðmanc−namcÞ∇aðϵcbnbÞ¼−ðmanc−namcÞ∇amc

¼−mbndðgabgcd−gadgbcÞ∇amc ¼−mbndϵacϵbd∇amc

¼−mbðϵbdndÞ∇aðϵacmcÞ¼−mbmb∇að−naÞ
¼∇ana ¼ κn:

In conclusion,

Kab ¼ κnmamb: ðB11Þ

We can now compute the commutator ½m; n�a:
½m;n�a ¼ mb∇bna − nb∇bma ¼ ϵbcnc∇bna − nb∇bðϵacncÞ

¼ ϵbcncðKb
a þ nbαaÞ − ϵacαc ¼ ϵbcncKba

þ ϵbcncnbαa − ϵacðκmmcÞ
¼ mbKba þ 0− κmðϵacmcÞ ¼ mbðκnmbmaÞ− κmna

¼ κnma − κmna:

Knowing this, we can now show that

LmLn logl ¼ ½Lm;Ln� loglþ LnLm logl

¼ L½m;n� logl − Lnκm ½by Eq: ðB:3Þ�
¼ ðκnLm logl − κmLn loglÞ − Lnκm

¼ κnð−κmÞ − κmLn logl − Lnκm

¼ −ð~Ln þ κn þ Ln loglÞκm;

where the arrow on top of Ln indicates that it acts as a
differential operator on any term outside the parentheses.
By acting with this operator again, we obtain the identity

L2
mLn logl ¼ LmðLmLn loglÞ

¼ −~Lmð~Ln þ κn þ Ln loglÞκm
¼ −~Lmð~Ln þ κnÞκm − ðLmLn loglÞκm
− ðLmκmÞLn logl:

In summary, we have obtained the following useful
relations:

LTϕ ¼ l
ffiffiffiffiffi
gP

p
Lmϕ; ðB12Þ

κn ¼ ∇ana ¼ gab∇anb ¼ mamb∇anb; ðB13Þ
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κm ¼ ∇ama ¼ ϵab∇anb ¼ −namb∇anb; ðB14Þ

αa ¼ nb∇bna ¼ −κmma; ðB15Þ

Kab ¼ ∇anb − naαb ¼ κnmamb; ðB16Þ

½m; n�a ¼ κnma − κmna; ðB17Þ

Lm logl ¼ −κm; ðB18Þ

LmLn logl ¼ −ð~Ln þ κn þ Ln loglÞκm; ðB19Þ

L2
mLn logl ¼ −~Lmð~Ln þ κnÞκm − ðLmLn loglÞκm

− ðLmκmÞLn logl: ðB20Þ

2. Derivation of the geometric formulation

We can now recast the terms entering the foliation
condition (2.14) in terms of the geometric invariants
introduced in Eq. (5.3). First, recall from Eqs. (4.7)
and (4.8) that

A ¼ −gT jηj2lðκn þ Ln log j
ffiffiffiffiffiffiffiffi
−gT

p
jηj2ljÞ þ AΩ; ðB21Þ

AΩ ¼ −
gTl2

α2
Ω0ðuÞ½ΩðuÞ −ΩZ�; ðB22Þ

B ¼ −gT jηj2l2; ðB23Þ

where gT ¼ −α2ρ2 is the determinant of the toroidal metric.
We will assume for the moment that ΩðuÞ is a constant, in
which case AΩ ¼ 0, and we can thus omit this term. Then,
we see that

LTB ¼ l
ffiffiffiffiffi
gP

p
LmB ¼ l

ffiffiffiffiffi
gP

p
Lmð−gT jηj2l2Þ

¼ l
ffiffiffiffiffi
gP

p
ð−gT jηj2l2ÞLm log j−gT jηj2l2j

¼ lB
ffiffiffiffiffi
gP

p
½Lm log j − gT jηj2j þ Lm logl2�

¼ lB
ffiffiffiffiffi
gP

p
ðΔm þ κm þ 2Lm loglÞ

¼ lB
ffiffiffiffiffi
gP

p
ðΔm − κmÞ:

Proceeding in the same vein, we find that

L2
TB¼LTðLTBÞ¼l

ffiffiffiffiffi
gP

p
Lm½lB

ffiffiffiffiffi
gP

p
ðΔm− κmÞ�

¼l
ffiffiffiffiffi
gP

p
½LmðlÞB

ffiffiffiffiffi
gP

p
ðΔm− κmÞ

þlLmðBÞ
ffiffiffiffiffi
gP

p
ðΔm−κmÞ

þlBLmð
ffiffiffiffiffi
gP

p
ÞðΔm−κmÞþlB

ffiffiffiffiffi
gP

p
LmðΔm−κmÞ�

¼l
ffiffiffiffiffi
gP

p
½ð−lκmÞB

ffiffiffiffiffi
gP

p
ðΔm−κmÞþðLTBÞðΔm−κmÞ

þlB
ffiffiffiffiffi
gP

p
Lmðlog

ffiffiffiffiffi
gP

p
ÞðΔm− κmÞ

þlB
ffiffiffiffiffi
gP

p
LmðΔm− κmÞ�:

After substituting the previous formula for LTB, this
simplifies to

L2
TB ¼ l2BgP½−κmðΔm − κmÞ þ ðΔm − κmÞ2

þ Lm log
ffiffiffiffiffi
gP

p
ðΔm − κmÞ þ LmðΔm − κmÞ�

¼ l2BgPð~Lm þ Δm − 2κm þ Lm log
ffiffiffiffiffi
gP

p
ÞðΔm − κmÞ:

Next, note that A may be rewritten as

A ¼ B
l
ðΔn þ Ln loglÞ: ðB24Þ

Hence,

LTA ¼ l
ffiffiffiffiffi
gP

p
LmA ¼ l

ffiffiffiffiffi
gP

p
Lm

�
B
l
ðΔn þ Ln loglÞ

�

¼ B
ffiffiffiffiffi
gP

p
LmðΔn þ Ln loglÞ

þ ðΔn þ Ln loglÞl
ffiffiffiffiffi
gP

p
Lm

�
B
l

�
:

Since

l
ffiffiffiffiffi
gP

p
Lm

�
B
l

�
¼

ffiffiffiffiffi
gP

p
LmBþ l

ffiffiffiffiffi
gP

p
BLm

�
1

l

�

¼ 1

l
LTB −

1

l

ffiffiffiffiffi
gP

p
BLml

¼ B
ffiffiffiffiffi
gP

p
ðΔm − κmÞ −

1

l

ffiffiffiffiffi
gP

p
Bð−lκmÞ

¼ B
ffiffiffiffiffi
gP

p
Δm;

it immediately follows that

LTA ¼ B
ffiffiffiffiffi
gP

p
ð~Lm þ ΔmÞðΔn þ Ln loglÞ: ðB25Þ

Finally, we can compute

FORCE-FREE FOLIATIONS PHYSICAL REVIEW D 94, 124012 (2016)

124012-11



L2
TA ¼ LTðLTAÞ ¼ l

ffiffiffiffiffi
gP

p
Lm

�
B

ffiffiffiffiffi
gP

p LTA

B
ffiffiffiffiffi
gP

p
�

¼ l
ffiffiffiffiffi
gP

p �
LmðBÞ

ffiffiffiffiffi
gP

p LTA

B
ffiffiffiffiffi
gP

p þ BLmð
ffiffiffiffiffi
gP

p
Þ LTA

B
ffiffiffiffiffi
gP

p

þ B
ffiffiffiffiffi
gP

p
Lm

�
LTA

B
ffiffiffiffiffi
gP

p
��

:

Since

LmB ¼ 1

l
ffiffiffiffiffi
gP

p LTB ¼ 1

l
ffiffiffiffiffi
gP

p ½lB
ffiffiffiffiffi
gP

p
ðΔm − κmÞ�

¼ BðΔm − κmÞ;

we can factorize the previous expression as

L2
TA ¼ lBgP

�
ðΔm − κmÞ

LTA

B
ffiffiffiffiffi
gP

p þ Lmðlog
ffiffiffiffiffi
gP

p
Þ LTA

B
ffiffiffiffiffi
gP

p

þ Lm

�
LTA

B
ffiffiffiffiffi
gP

p
��

¼ lBgPð~Lm þ Δm − κm þ Lm log
ffiffiffiffiffi
gP

p
Þ
�

LTA

B
ffiffiffiffiffi
gP

p
�
:

In summary, we have shown that

LTA ¼ B
ffiffiffiffiffi
gP

p
ð~Lm þ ΔmÞðΔn þ Ln loglÞ; ðB26Þ

LTB ¼ lB
ffiffiffiffiffi
gP

p
ðΔm − κmÞ; ðB27Þ

L2
TA ¼ lBgPð~Lm þ Δm − κm þ Lm log

ffiffiffiffiffi
gP

p
Þ
�

LTA

B
ffiffiffiffiffi
gP

p
�
;

ðB28Þ

L2
TB ¼ l2BgPð~Lm þ Δm − 2κm þ Lm log

ffiffiffiffiffi
gP

p
ÞðΔm − κmÞ:

ðB29Þ

Next, recall that the foliation condition (2.14) can be
written as detM ¼ 0, where the matrix M is

M ¼
�
LTA LTB

L2
TA L2

TB

�
: ðB30Þ

We are thus free to replace the foliation condition by a new
equation

det ~M ¼ 0; ðB31Þ

where ~M can be taken to be any matrix whose determinant
is proportional to that of M,

detM ¼ σ det ~M; σ ≠ 0: ðB32Þ

The simplest choice we could find is

~M ¼
�

X Y

ð~Lm þ ΔmÞX LmY

�
; ðB33Þ

where

X ¼ ð~Lm þ κmÞΔn − ð~Ln þ κnÞκm ¼ ∇a½Δnma − κmna�;
ðB34Þ

Y ¼ Δm − κm; ðB35Þ

σ ¼ l2B2ðgPÞ3=2: ðB36Þ

3. Derivation of the determinant form

To obtain ~M starting from M, we apply a sequence of
transformations that leave the determinant unchanged.
First, following Eq. (B32), we note that we can strip from
detM an overall factor of σ ¼ l2B2ðgPÞ3=2 [hence,
Eq. (B36)], leaving the nontrivial part

M ¼
�

M11 Δm − κm

ð~Lm þ Δm − κm þ Lm log
ffiffiffiffiffi
gP

p
ÞM11 ð~Lm þ Δm − 2κm þ Lm log

ffiffiffiffiffi
gP

p
ÞðΔm − κmÞ

�
;

where the matrix entry M11 ¼ ð~Lm þ ΔmÞðΔn þ Ln loglÞ. In terms of Y ¼ Δm − κm, this is just

M ¼
�

M11 Y

ð~Lm þ Δm − κm þ Lm log
ffiffiffiffiffi
gP

p
ÞM11 ð~Lm þ Δm − 2κm þ Lm log

ffiffiffiffiffi
gP

p
ÞY

�
:

Next, we define a new matrix M by multiplying M with a matrix O of unit determinant,

M ¼ OM;O ¼
�

1 0

κm − Δm − Lm log
ffiffiffiffiffi
gP

p
1

�
;
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so that detM ¼ detM ¼ σ−1 detM still encodes the foli-
ation condition. The result is

M ¼
�
M11 Y

M21 M22

�
;

where the new matrix entries are

M21 ¼ ðκm − Δm − Lm log
ffiffiffiffiffi
gP

p
ÞM11

þ ð~Lm þ Δm − κm þ Lm log
ffiffiffiffiffi
gP

p
ÞM11

¼ LmM11 ¼ ~Lmð~Lm þ ΔmÞðΔn þ Ln loglÞ;
M22 ¼ ðκm − Δm − Lm log

ffiffiffiffiffi
gP

p
ÞY

þ ðþ~LmΔm − 2κm þ Lm log
ffiffiffiffiffi
gP

p
ÞY

¼ ð~Lm − κmÞY ¼ ð~Lm − κmÞðΔm − κmÞ:

Thus, we can simplify M to

M ¼
�

M11 Y

LmM11 ð~Lm − κmÞY

�
:

Note that at this point, the foliation condition in the form

of the determinant of M is manifestly independent of the
poloidal metric gP, as it should be (because only the
foliation should matter). In order to proceed, we must
now expand

M11 ¼ ð~Lm þ ΔmÞðΔn þ Ln loglÞ
¼ ð~Lm þ ΔmÞΔn þ ΔmLn loglþ LmLn logl:

The last termLmLn logl can be simplified using Eq. (B19),
leading to

M11 ¼ ð~Lm þΔmÞΔn − ð~Ln þ κnÞκm þ ðΔm − κmÞLn logl

¼ X þ YΔn þ YLn logl;

where in the last step we used the definitions (B34)
and (B35) of X and Y. It now results that

M ¼
� X þ YðΔn þ Ln loglÞ Y

Lm½X þ YðΔn þ Ln loglÞ� ð~Lm − κmÞY

�
;

which has determinant

detM ¼ ½X þ YðΔn þ Ln loglÞ�ð~Lm − κmÞY − YLm½X þ YðΔn þ Ln loglÞ�
¼ XLmY − YLmX − XYκm þ YðΔn þ Ln loglÞð~Lm − κmÞY − YLm½YðΔn þ Ln loglÞ�
¼ XLmY − YLmX − XYκm þ YΔnLmY − YΔnκmY þ YLn loglð~Lm − κmÞY
− YðΔn þ Ln loglÞLmY − Y2LmðΔn þ Ln loglÞ

¼ XLmY − YLmX − XYκm − YΔnκmY þ YLn loglð−κmÞY − Y2LmðΔn þ Ln loglÞ
¼ XLmY − YLmX − XYκm þ Y2½−κmðΔn þ Ln loglÞ − LmðΔn þ Ln loglÞ�:

Now observe that

XYκm ¼ XYðΔm þ κm − ΔmÞ ¼ XYΔm − XY2; ðB37Þ
and hence, that

detM ¼ XLmY − YLmX − XYΔm

þ Y2½X − κmðΔn þLn loglÞ−LmðΔnþLn loglÞ�:
The term in brackets vanishes:

X − κmðΔn þ Ln loglÞ − LmðΔn þ Ln loglÞ
¼ X − κmðΔn þ Ln loglÞ − LmΔn − LmLn logl

¼ X − κmðΔn þ Ln loglÞ − LmΔn

þ ð~Ln þ κn þ Ln loglÞκm
¼ X − ½ð~Lm þ κmÞΔn − ð~Ln þ κnÞκm� ¼ 0:

In conclusion, we have found that

detM ¼ XLmY − YLmX − XYΔm:

By Eq. (B32), this proves the claim (B33) that

det ~M ¼ XLmY − YLmX − XYΔm ¼ detM ¼ detM

¼ σ−1 detM

still encodes the foliation condition.

4. The case of nonconstant field line angular velocity

So far, we have assumed that ΩðuÞ is a constant, which
made AΩ vanish. We now generalize to the case of ΩðuÞ
nonconstant, and consequently reintroduce AΩ. The foli-
ation condition detM ¼ 0 is then modified to

detðM þMΩÞ ¼ detM þ detMΩ ¼ 0; ðB38Þ
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where

MΩ ¼
�
LTAΩ LTB

L2
TAΩ L2

TB

�
: ðB39Þ

Recalling the definition (B22) of AΩ and the fact that
LmfðuÞ ¼ 0 for any function f, we see that

LTAΩ ¼ l
ffiffiffiffiffi
gP

p
LmAΩ

¼ l
ffiffiffiffiffi
gP

p
Lm

�
−
gTl2

α2
Ω0ðuÞ½ΩðuÞ −ΩZ�

�

¼ l
ffiffiffiffiffi
gP

p
Lm

�
−
gTl2

α2

�
Ω0ðuÞ½ΩðuÞ −ΩZ�

− l
ffiffiffiffiffi
gP

p �
−
gTl2

α2

�
Ω0ðuÞLmΩZ

¼ l3gT
ffiffiffiffiffi
gP

p
α2

Ω0ðuÞ
�
−½ΩðuÞ − ΩZ�Lm log

����− gTl2

α2

����
þ LmΩZ

�
:

Using the invariants the defined in Eq. (5.3), note that

Lm log

����−g
Tl2

α2

���� ¼ Lm log

����−g
T jηj2l2

α2jηj2
����

¼ Lm log j − gT jηj2j − Lm log jα2jηj2j
þ 2Lm logl

¼ Δm þ κm − Lm log jα2jηj2j − 2κm

¼ Δm − κm − αm:

Hence,

LTAΩ ¼ l3gT
ffiffiffiffiffi
gP

p
α2

Ω0ðuÞf−½ΩðuÞ − ΩZ�
× ðΔm − κm − αmÞ þ LmΩZg: ðB40Þ

We now define

XΩ ¼ l
α2jηj2Ω

0ðuÞf½ΩðuÞ−ΩZ�ðΔm − κm − αmÞ−LmΩZg:

ðB41Þ

This quantity is invariant under changes of the foliation.
The overall prefactor in XΩ is chosen for later convenience.
In terms of this new quantity, we have

LTAΩ ¼ −l2gT
ffiffiffiffiffi
gP

p
jηj2XΩ; ðB42Þ

and thus,

L2
TAΩ ¼ LTðLTAΩÞ ¼ l

ffiffiffiffiffi
gP

p
LmðLTAΩÞ

¼ −l
ffiffiffiffiffi
gP

p
Lmðl2gT

ffiffiffiffiffi
gP

p
jηj2XΩÞ

¼ −l3gTgPjηj2½Lm log jl2gT
ffiffiffiffiffi
gP

p
jηj2jXΩ þ LmXΩ�:

As before, we can expand

Lm log jl2gT
ffiffiffiffiffi
gP

p
jηj2j ¼ 2Lm loglþ Lm log jgT jηj2j

þ Lm log
ffiffiffiffiffi
gP

p
¼ −2κm þ Δm þ κm þ Lm log

ffiffiffiffiffi
gP

p
¼ Δm − κm þ Lm log

ffiffiffiffiffi
gP

p
;

from which it follows that

L2
TAΩ ¼ −l3gTgPjηj2½ðΔm − κm þ Lm log

ffiffiffiffiffi
gP

p
ÞXΩ

þ LmXΩ�: ðB43Þ

In summary, we have established that

LTAΩ ¼ −l2gT
ffiffiffiffiffi
gP

p
jηj2XΩ; ðB44Þ

LTB ¼ lB
ffiffiffiffiffi
gP

p
ðΔm − κmÞ; ðB45Þ

L2
TAΩ ¼ −l3gTgPjηj2½ðΣm þ κmÞXΩ þ LmXΩ�; ðB46Þ

L2
TB ¼ l2BgPðΣm þ ~LmÞðΔm − κmÞ; ðB47Þ

Σm ¼ Δm − 2κm þ Lm log
ffiffiffiffiffi
gP

p
: ðB48Þ

Once again following Eq. (B32), we note that we can strip
from detMΩ an overall factor of σ ¼ −l4BgTðgPÞ3=2jηj2 ¼
l2B2ðgPÞ3=2 [in agreement with the σ defined in Eq. (B36)],
leaving the nontrivial part

MΩ ¼
� XΩ Y

ðΣm þ κmÞXΩ þ LmXΩ ðΣm þ ~LmÞY

�
;

where Y ¼ Δm − κm as usual. The matrix MΩ has
determinant

detMΩ ¼ σ−1 detMΩ ¼ XΩðΣm þ ~LmÞY − YðΣm þ κmÞXΩ

− YLmXΩ

¼ XΩLmY − Yð~Lm þ κmÞXΩ ¼ det ~MΩ;

where in the last step, we defined the final matrix

~MΩ ¼
� XΩ Y

ð~Lm þ κmÞXΩ LmY

�
: ðB49Þ
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Finally, since the sum of the determinants of both matrices (B33) and (B49) equals the original determinant detðM þMΩÞ
up to the overall common scaling factor σ, one can rewrite the complete geometric foliation condition as Eq. (5.4).
This completes our derivation.
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