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In general relativity, relativistic gravity gradiometry involves the measurement of the relativistic tidal
matrix, which is theoretically obtained from the projection of the Riemann curvature tensor onto the
orthonormal tetrad frame of an observer. The observer’s 4-velocity vector defines its local temporal axis
and its local spatial frame is defined by a set of three orthonormal nonrotating gyro directions. The general
tidal matrix for the timelike geodesics of Kerr spacetime has been calculated by Marck [Proc. R. Soc. A
385, 431 (1983)]. We are interested in the measured components of the curvature tensor along the inclined
“circular” geodesic orbit of a test mass about a slowly rotating astronomical object of mass M and angular
momentum J. Therefore, we specialize Marck’s results to such a “circular” orbit that is tilted with respect
to the equatorial plane of the Kerr source. To linear order in J, we recover the gravitomagnetic beating
phenomenon [B. Mashhoon and D. S. Theiss, Phys. Rev. Lett. 49, 1542 (1982)], where the beat frequency
is the frequency of geodetic precession. The beat effect shows up as a special long-period gravitomagnetic
part of the relativistic tidal matrix; moreover, the effect’s short-term manifestations are contained in certain
post-Newtonian secular terms. The physical interpretation of this effect is briefly discussed.
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I. INTRODUCTION

In Newton’s theory of gravitation, gravity gradiometry
involves the measurement and study of the variations in the
acceleration of gravity. Imagine two nearby test masses ma
and mb falling freely in the gravitational potential U of
external sources. Let ξ ¼ xaðtÞ − xbðtÞ be the instanta-
neous deviation between the trajectories of the two neigh-
boring masses; then, it follows from Newton’s second law
of motion that to linear order in ξ,

d2ξi

dt2
þ κijξ

j ¼ 0; ð1Þ

where, in this tidal equation, κij is the Newtonian tidal
matrix,

κijðxÞ ¼
∂2U

∂xi∂xj ; ð2Þ

evaluated along, say, xaðtÞ, taken to be the reference
trajectory. In the source-free region under consideration
here, Poisson’s equation for U reduces to Laplace’s
equation ∇2U ¼ 0. The tidal matrix is thus symmetric
and traceless; moreover, each element of the Newtonian
tidal matrix is a harmonic function, since in this case
∇2κij ¼ 0. It is clear from the tidal equation (1) that when
tides dominate, the shape of a tidally deformed body would
generally tend to either a cigar-like or a pancake-like
configuration, since the traceless tidal matrix can in general
have either two positive and one negative or one positive
and two negative eigenvalues, respectively. It is important
to note that the tidal matrix is completely independent of

the test masses as a consequence of the universality of
gravitational interaction, namely, the principle of equiv-
alence of gravitational and inertial masses. Historically, the
science of gravity gradiometry goes back to Eötvös, who
used a torsion-balance method to test the principle of
equivalence (1889–1922). The magnitude of a gravity
gradient is expressed in units of Eötvös, 1E ¼ 10−9 s−2.
Gravity gradiometry has many significant practical appli-

cations. Furthermore, gravity gradiometers of high sensitiv-
ity have been developed that are suitable for use in basic
physics experiments. In this connection, we must mention
the highly sensitive superconducting gravity gradiometer
developed by Paik et al., which employs superconducting
quantum interference devices [1–3]. Regarding possible
future space applications, gravity gradiometry has also
become possible using atom interferometry [4,5].
Relativistic gravity gradiometry involves themeasurement

of the Riemannian curvature of spacetime. In Einstein’s
general relativity (GR), the gravitational field is represented
by the spacetime curvature. When an observer measures a
gravitational field, the curvature tensor must be projected
onto the tetrad frame of the observer. Imagine an observer
following a future-directed timelike geodesic world line
xμðτÞ in spacetime, where τ is the proper time of the observer
along the geodesic. The observer carries an orthonormal
parallel-propagated tetrad frame λμα̂,

gμνλμα̂λνβ̂ ¼ ηα̂ β̂;
Dλμα̂
dτ

¼ 0; ð3Þ

where λμ0̂ ¼ dxμ=dτ is the unit timelike tangent vector that
is the observer’s 4-velocity and λμ î, i ¼ 1, 2, 3, are unit
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spacelike “gyroscope” directions that form the local spatial
frame of the observer. In Eq. (3), ηα̂ β̂ is theMinkowskimetric
given by diagð−1; 1; 1; 1Þ; in our convention, the signature of
the metric is þ2 and we choose units such that G ¼ c ¼ 1,
unless specified otherwise. The measured components of the
Riemann tensor are then the scalars given by

Rα̂ β̂ γ̂ δ̂ ¼ Rμνρσλ
μ
α̂λ

ν
β̂λ

ρ
γ̂λ

σ
δ̂: ð4Þ

It is interesting to take into account the symmetries of the
Riemann tensor and express Eq. (4) in the standard manner
as a 6 × 6 matrix ðRABÞ, where A and B are indices that
belong to the set f01; 02; 03; 23; 31; 12g. The general form
of this matrix is

�
E H

H† S

�
; ð5Þ

where E and S are symmetric 3 × 3 matrices and H is
traceless. Here, H† is the transpose of matrix H. The
relativistic tidal matrix E represents the measured gravito-
electric components of the Riemann curvature tensor, while
H and S represent its gravitomagnetic and spatial compo-
nents, respectively [6,7]. In the vacuum region exterior to
material sources and free of nongravitational fields, the
spacetime is Ricci flat as a consequence of Einstein’s
field equations of GR and the measured components of the
curvature tensor are then given by

�
E H

H −E
�
; ð6Þ

where E and H are symmetric and traceless. In this case,
the Riemann curvature tensor degenerates into the Weyl
conformal curvature tensor whose gravitoelectric and
gravitomagnetic components are then

Eâ b̂ ¼ Cαβγδλ
α
0̂λ

β
âλ

γ
0̂λ

δ
b̂; Hâ b̂ ¼ C�

αβγδλ
α
0̂λ

β
âλ

γ
0̂λ

δ
b̂;

ð7Þ

where C�
αβγδ is the unique dual of the Weyl tensor

given by

C�
αβγδ ¼

1

2
ημναβCμνγδ; ð8Þ

since the right and left duals of the Weyl tensor coincide.
Here, ημνρσ is the Levi-Civita tensor and in our convention,
η0̂ 1̂ 2̂ 3̂ ¼ 1, while η0̂ â b̂ ĉ ¼ ϵâ b̂ ĉ. Let us note that

Hâ b̂ ¼
1

2
ημναβCμνγδλ

α
0̂λ

β
b̂λ

γ
0̂λ

δ
â ¼

1

2
ημν0̂ b̂Cμν0̂ â

¼ 1

2
C0̂ â ĉ d̂ϵ

ĉ d̂
b̂: ð9Þ

Consider next a congruence of free test masses
(“observers”) following geodesics in a gravitational field.
We choose a reference observer in this congruence and set
up a Fermi coordinate system along its world line. This
amounts to constructing a local quasi-inertial system of
coordinates in the immediate neighborhood of the reference
observer [8]. Let λμα̂ðτÞ be the natural orthonormal tetrad
frame that is parallel transported along the path of the
reference observer as in Eq. (3). The quasi-inertial Fermi
system with Fermi coordinates Xμ̂ ¼ ðT ;XÞ is a natural
geodesic reference system along the world line of the
observer and is based on the nonrotating orthonormal tetrad
frame λμα̂. Along the reference geodesic T ¼ τ, X ¼ 0 and
gμ̂ ν̂ ¼ ημ̂ ν̂ by construction. The Fermi coordinates are
admissible within a cylindrical spacetime region around
the world line of the reference observer of radius ∼R,
where R is the radius of curvature of spacetime [9].
The geodesic equation in these Fermi coordinates is the

equation of motion of a free test particle in the congruence
relative to the reference observer that is fixed at the spatial
origin of Fermi coordinates. It can be expressed as

d2Xî

dT2
þR0̂ î 0̂ ĵX

ĵ þ 2Rî k̂ ĵ 0̂V
k̂Xĵ

þ 2

3
ð3R0̂ k̂ ĵ 0̂V

îVk̂ þRî k̂ ĵ l̂V
k̂Vl̂ þR0̂ k̂ ĵ l̂V

îVk̂Vl̂ÞXĵ ¼ 0;

ð10Þ

which is valid to linear order in the separation X.
This geodesic deviation equation is a generalized Jacobi
equation [9] in which the rate of geodesic separation (i.e.,
the relative velocity of the test particle) V ¼ dX=dT is in
general arbitrary (jVj < 1 at X ¼ 0). It is clear from
Eq. (10) that all of the curvature components in Eq. (4)
can be measured from a careful study of the motion of the
test masses in the congruence relative to the fiducial
observer. Neglecting terms in relative velocity, Eq. (10)
reduces to the Jacobi equation, namely,

d2Xî

dT 2
þKî

ĵX
ĵ ¼ 0; ð11Þ

which is the relativistic analog of the Newtonian tidal
equation given by Eq. (1). In Eq. (11),

Kî ĵ ¼ R0̂ î 0̂ ĵ; ð12Þ

which is an element of the symmetric matrix E evaluated
along the reference geodesic. This relativistic tidal matrix
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reduces in the nonrelativistic limit to the Newtonian tidal
matrix (2).
The exterior gravitomagnetic field of the Earth has

recently been measured directly via the Gravity Probe B
(“GP-B”) experiment [10], which involved four super-
conducting gyroscopes and a telescope that were launched
in 2004 into a polar orbit about the Earth aboard a drag-free
satellite. The gravitomagnetic field of a rotating mass can
also influence the relative (tidal) acceleration of nearby
test particles via its contribution to the spacetime curvature.
In 1980, Braginsky and Polnarev [11] proposed an experi-
ment to measure the relativistic rotation-dependent tidal
acceleration of the Earth in a space platform in orbit
around the Earth, since they claimed that such an approach
could circumvent many of the difficulties associated with
the GP-B experiment. However, Mashhoon and Theiss [12]
demonstrated that to measure the relativistic rotation-
dependent tidal acceleration in a space platform, the local
gyroscopes carried by the space platform must satisfy the
same performance criteria as in the GP-B experiment.
In future space experiments, it may be possible to

combine the achievements of the GP-B with Paik’s
superconducting gravity gradiometer [13] in order to
measure the tidal influence of the gravitomagnetic field
using an orbiting platform [14,15]. The main purpose
of this paper is to clarify the nature of the tidal matrix in
such experiments.

II. GRAVITY GRADIOMETRY
IN KERR SPACETIME

Let us first consider the exterior Kerr spacetime with the
metric [16]

−ds2 ¼ −dt2 þ Σ
Δ
dr2 þ Σdθ2 þ ðr2 þ a2Þsin2θdϕ2

þ 2Mr
Σ

ðdt − asin2θdϕÞ2; ð13Þ

where M is the mass of the gravitational source, a ¼ J=M
is the specific angular momentum of the source, ðt; r; θ;ϕÞ
are the standard Boyer–Lindquist coordinates and

Σ ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2Mrþ a2: ð14Þ

In this paper, we consider a test mass m and assume that its
trajectory is a future-directed timelike geodesic world line
about a Kerr source.
The Kerr metric contains the gravitoelectric and grav-

itomagnetic potentials U and V , which correspond to the
mass and angular momentum of the source, respectively,
and are given by the dimensionless quantities

U ¼ GM
c2r

; V ¼ GJ
c3r2

: ð15Þ

For instance, in the case of the Earth with r ≈ R⊕¼
6.4×108 cm, we have U⊕≈6×10−10 and V⊕ ≈ 4 × 10−16.
Therefore, for the exterior of the Earth

a
cr

¼ V
U

ð16Þ

is a quantity that is < 10−6. Furthermore, let us define the
ratio ρðrÞ by

ρðrÞ ≔ a

cr
ffiffiffiffi
U

p ; ð17Þ

so that ρðrÞ is independent of the speed of light c as well as
dimensionless. For the exterior of the Earth,

ρðrÞ < ρ⊕ ≈ 3 × 10−2: ð18Þ
It turns out that ρðrÞ will play a significant role in the
considerations of this paper.
If we ignore, for the sake of simplicity, terms of order

ða=rÞ2 and higher in the treatment of the Kerr metric,
Eq. (13) reduces to the Schwarzschild metric plus the
Thirring-Lense term, namely,

−ds2 ¼ −
�
1 −

2M
r

�
dt2 þ dr2

1 − 2M
r

þ r2dθ2 þ r2sin2θdϕ2

−
4aM
r

sin2θdtdϕ: ð19Þ

We recall that the exterior vacuum field of a spherically
symmetric source in general relativity is static and is
uniquely given by the Schwarzschild metric. Small devia-
tions of the source from spherical symmetry can be treated
via perturbations of the Schwarzschild metric. This general
approach leads to the post-Schwarzschild approximation
scheme. It will be employed later on in this paper using the
gravitational field given by the metric (19) for the treatment
of the beat phenomenon [12], which appears in the
gravitomagnetic part of the relativistic tidal matrix when
neighboring test particles follow an inclined “circular” orbit
about a slowly rotating mass. It is important to emphasize
that in Eq. (19), the mass of the gravitating source is taken
into account to all orders, while the angular momentum of
the source is taken into account only to linear order; see
Sec. VII. The rest of the present section is devoted to a
discussion of future-directed timelike geodesic orbits and
their parallel-propagated tetrad frames in the exterior Kerr
spacetime.

A. Circular equatorial geodesics

Imagine a stable circular geodesic orbit of fixed radius r0
in the equatorial ðx; yÞ plane with θ ¼ π=2. As is well
known, such orbits exist from infinity all the way down to
the last stable circular geodesic orbits rðLSOÞ�, which are
solutions of the equation
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1 −
6M
r

� 8a

ffiffiffiffiffi
M
r3

r
− 3

a2

r2
¼ 0: ð20Þ

We use the convention that the upper (lower) sign refers to
orbits where m rotates in the same (opposite) sense as the
source. For r < rðLSOÞ�, there are unstable circular orbits
that end at the null circular geodesic orbits given by

1 −
3M
r

� 2a

ffiffiffiffiffi
M
r3

r
¼ 0: ð21Þ

We define the Keplerian frequency ω0 for the circular
orbits of radius r0 under consideration here as

ω2
0 ¼

M
r30

: ð22Þ

The sign of ω0 would normally indicate the sense of the
orbit; however, it is interesting to note that in Eqs. (20)
and (21), a prograde orbit becomes retrograde and vice
versa when a → −a. In the field of a central rotating mass,
an orbit can in general be either prograde or retrograde;
therefore, it is natural to expect that certain orbital proper-
ties would depend upon aω0 (see below). The reference
world line is a geodesic; hence,

t ¼ 1þ aω0

N
τ; ϕ ¼ ω0

N
τ þ φ0; ð23Þ

where τ is the proper time along the fiducial equatorial
geodesic such that t ¼ τ ¼ 0 at ϕ ¼ φ0, φ0 is a constant
angle and

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3M
r0

þ 2aω0

s
: ð24Þ

It is clear from a comparison of Eqs. (21) and (24) that
N ¼ 0 in the limiting case of null circular orbits. In
connection with the timelike and azimuthal Killing vectors
∂t and ∂ϕ of the background Kerr spacetime, the reference
geodesic path has constants of motion, namely, specific
energy E and orbital angular momentum Φ, respectively,
given by

E ¼ 1

N

�
1 −

2M
r0

þ aω0

�
;

Φ ¼ r20ω0

N

�
1 − 2aω0 þ

a2

r20

�
: ð25Þ

Furthermore, Carter’s constant K, associated with the
Killing-Yano tensor of Kerr spacetime, is given for the
circular geodesic orbit by [17]

K ¼ ðΦ − aEÞ2 ¼ ðr20ω0 − aÞ2
N2

: ð26Þ

1. Tetrad frame λμα̂
Next, we must determine λα̂ ¼ λμα̂∂μ, which is an

orthonormal tetrad frame that undergoes parallel propaga-
tion along the reference geodesic world line with
λμ0̂ ¼ dxμ=dτ. To this end, let us first consider the natural
tetrad frame field Λα̂ ¼ Λμ

α̂∂μ carried by the static observ-
ers in the exterior Kerr spacetime. In terms of the Boyer-
Lindquist coordinates, the natural orthonormal tetrad of the
static observers in the equatorial plane along the ðt; r; θ;ϕÞ
coordinate directions is given by

Λ0̂ ¼
1

A
∂t; Λ1̂ ¼

ffiffiffiffi
Δ

p

r
∂r;

Λ2̂ ¼
1

r
∂θ; Λ3̂ ¼ −

2Ma

rA
ffiffiffiffi
Δ

p ∂t þ
Affiffiffiffi
Δ

p ∂ϕ; ð27Þ

where

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r
: ð28Þ

Let us now subject this tetrad frame field, restricted to be
along the fiducial orbit at r ¼ r0, to a Lorentz boost with
speed ~β, Λμ

α̂ ↦ ~λμα̂, such that ~λ0̂ ¼ λ0̂ is the unit vector
tangent to the reference world line. In this way, we get an
orthonormal tetrad frame along the fiducial orbit given by

~λ0̂ ¼ ~γ½Λ0̂ þ ~βΛ3̂�; ~λ1̂ ¼ Λ1̂; ð29Þ

~λ2̂ ¼ Λ2̂; ~λ3̂ ¼ ~γ½Λ3̂ þ ~βΛ0̂�; ð30Þ

where ð~β; ~γÞ is a Lorentz pair. That is, ~γ is the Lorentz
factor corresponding to speed ~β. This Lorentz pair can be
determined from ~λ0̂ ¼ λ0̂; hence, we find

~β ¼
ffiffiffiffiffiffi
Δ0

p
ω0

EN
; ~γ ¼ E

A0

; ð31Þ

where Δ0 ≔ Δðr ¼ r0Þ and, similarly, A0 ≔ Aðr ¼ r0Þ,
namely,

Δ0 ¼ r20

�
1 −

2M
r0

þ a2

r20

�
; A0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r0

s
: ð32Þ

It follows from Eq. (31) that, for a > 0 as in Fig. 1, ~β is
positive (negative) for prograde (retrograde) orbits; more-
over, ~γ diverges at the null orbits (N ¼ 0).
It is clear from our construction of the boosted tetrad that

the spatial triad ~λâ, a ¼ 1, 2, 3, points primarily along the
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spherical polar coordinate directions, namely, the radial,
normal and tangential directions with respect to the circular
orbit; see Fig. 1. Intuitively, to have a frame that is parallel
propagated, we need to rotate the boosted frame back, as
illustrated in Fig. 1. That is, we must solve the parallel
transport equations for the angle Ψ such that the resulting
tetrad λα̂ would be parallel propagated along the orbit.
Thus we have

λ0̂ ¼ ~λ0̂; λ1̂ ¼ ~λ1̂ cosΨ − ~λ3̂ sinΨ;

λ2̂ ¼ ~λ2̂; λ3̂ ¼ ~λ1̂ sinΨþ ~λ3̂ cosΨ: ð33Þ

The covariant derivative of λâ vanishes along the orbit;
hence, we find

Ψ ¼ ω0τ; ð34Þ

where we have assumed that Ψ ¼ 0 at τ ¼ 0. Any other
parallel-transported spatial frame along the orbit can be
determined from λâ by a constant rotation involving, for
instance, three constant Euler angles.
The difference between the angles ϕ and Ψ in Fig. 1 is

due to the precession of an ideal gyro in the field of a
rotating mass. Indeed,

ϕ −Ψ ¼
�
1

N
− 1

�
Ψ; ð35Þ

which, to first order in M=r0 ≪ 1 and a=r0 ≪ 1 can be
written as

ϕ −Ψ ≈
�
3

2

M
r0

ω0 −
J
r30

�
τ: ð36Þ

In the equatorial plane, the difference between these angles
is due to a combination of prograde geodetic and retrograde
gravitomagnetic precessions.
The end result of our approach to the construction of the

frame λα̂ along the circular geodesic orbit of test mass m in
the equatorial plane of exterior Kerr geometry can be given
in ðt; r; θ;ϕÞ coordinates as

λ0̂ ¼
1

N
½ð1þ aω0Þ∂t þ ω0∂ϕ�;

λ1̂ ¼
1ffiffiffiffiffiffi
Δ0

p
�
−Φ sinðω0τÞ∂t þ

Δ0

r0
cosðω0τÞ∂r

− E sinðω0τÞ∂ϕ

�
;

λ2̂ ¼
1

r0
∂θ;

λ3̂ ¼
1ffiffiffiffiffiffi
Δ0

p
�
Φ cosðω0τÞ∂t þ

Δ0

r0
sinðω0τÞ∂r

þ E cosðω0τÞ∂ϕ

�
: ð37Þ

It is important to recognize that the parallel-propagated
spatial frame is unique up to a constant spatial rotation.

2. Measured components of curvature

The projection of the Weyl tensor on the frame λα̂ along
the circular orbit in the equatorial plane of the source-free
exterior region of spacetime under consideration may be
expressed in the standard manner as

E ¼ ω2
0

2
64
k1 0 k0

0 k2 0

k0 0 k3

3
75; H ¼ ω2

0

2
64
0 h 0

h 0 h0

0 h0 0

3
75;

ð38Þ

where E and H are 3 × 3 symmetric and traceless matrices
containing respectively the gravitoelectric and gravitomag-
netic components of the Weyl curvature tensor. Here, k2 ¼
−ðk1 þ k3Þ is constant and is given by k2 ¼ 3γ2 − 2, while

k1 ¼ 1 − 3γ2cos2ðω0τÞ; k3 ¼ 1 − 3γ2sin2ðω0τÞ;
k0 ¼ −3γ2 sinðω0τÞ cosðω0τÞ; h ¼ −3γ2β cosðω0τÞ;
h0 ¼ −3γ2β sinðω0τÞ: ð39Þ

In these equations, ðβ; γÞ is a new Lorentz pair
given by

FIG. 1. This schematic plot depicts the construction of a natural
spatial triad that is parallel propagated along a stable circular
geodesic orbit in the equatorial ðx; yÞ plane of the exterior Kerr
spacetime. The result coincides in this case with the general frame
constructed by Marck for an arbitrary geodesic world line in the
exterior Kerr spacetime. That is, Marck’s construction can be
viewed as a simple generalization of the method illustrated in this
figure.
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β ¼ r20ω0 − affiffiffiffiffiffi
Δ0

p ; γ ¼
ffiffiffiffiffiffi
Δ0

p
r0N

: ð40Þ

We note that for the null orbits (N ¼ 0), γ diverges and as
a → 0, ðβ; γÞ → ð ~β; ~γÞ in the Schwarzschild limit. To linear
order in a=r0 ≪ 1, we can write

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

u
1 − 2u

r �
1 −

aω0

u

�
þO

�
a2

r20

�
ð41Þ

and

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2u
1 − 3u

r �
1 −

aω0

1 − 3u

�
þO

�
a2

r20

�
; ð42Þ

where u is the dimensionless quantity

u ≔
M
r0

; ð43Þ

which is much less than unity for the practical consid-
erations that have motivated this work. In particular, for
orbits around the Earth with ω0 > 0, u < U⊕ and β > 0,
since r20ω0 > a. This relation follows from ρðr0Þ ¼
aω0=ðc2uÞ < 3 × 10−2 by Eq. (18).
The measured components of the curvature are periodic

in this case; in fact, the gravitoelectric part (i.e., the
relativistic tidal matrix) consists of constant terms plus
Fourier terms that vary with frequency 2ω0 with respect to
proper time τ, while the gravitomagnetic terms are all off-
diagonal and vary with frequency ω0 with respect to τ. It is
intuitively clear that the periodic nature of the measured
curvature components would be preserved under a constant
rotation of the spatial frame.
It is interesting to observe that when 0 ≤ a ≤ M,

β ∈ ½− 1
2
; 1
2
� for the circular orbits under consideration; in

fact, β is positive (negative) for a prograde (retrograde)
orbit and jβj ∼ ffiffiffi

u
p

far away from the source ðr0 ≫ 2MÞ.
Therefore, β → 0 as r0 → ∞; hence jβj monotonically
decreases from 1=2 to zero as r0 increases from rðLSOÞ�
to infinity. On the other hand, when a > M, β is always
negative for retrograde orbits, but is not always positive for
prograde orbits; indeed, β vanishes for a prograde orbit of
radius r0 ¼ a2=M.
Our results for the relativistic tidal matrix E are in

agreement with the work of Marck [17].

3. Components of curvature projected on ~λα̂
To gain further insight into the nature of the measured

components of curvature, it is interesting to study the
projection of the Weyl tensor on the frame ~λα̂ that is rotated
by angle Ψ relative to frame λα̂ as in Eq. (33). In this case,
the measured components of the curvature tensor are

�
~E ~H
~H − ~E

�
ð44Þ

where ð ~E; ~HÞ are related to ðE;HÞ via the rotation (33).
Let us denote the transformation of the triad in Eq. (33)
by the rotation matrix S, S† ¼ S−1, where

S ¼

2
64
cosΨ 0 − sinΨ

0 1 0

sinΨ 0 cosΨ

3
75: ð45Þ

Under such a rotation, it is straightforward to show that the
gravitoelectric part (i.e., the relativistic tidal matrix) and
the gravitomagnetic part of the Weyl tensor undergo a
similarity transformation, namely,

E ¼ S ~ES−1; H ¼ S ~HS−1; ð46Þ
which can be expressed in components as

1

2
ðE11 − E33Þ ¼

1

2
ð ~E11 − ~E33Þ cos 2Ψ − ~E13 sin 2Ψ;

E13 ¼ ~E13 cos 2Ψþ 1

2
ð ~E11 − ~E33Þ sin 2Ψ;

E22 ¼ ~E22;

E12 ¼ ~E12 cosΨ − ~E23 sinΨ;

E23 ¼ ~E23 cosΨþ ~E12 sinΨ; ð47Þ
while for H we have

1

2
ðH11 −H33Þ ¼

1

2
ð ~H11 − ~H33Þ cos 2Ψ − ~H13 sin 2Ψ;

H13 ¼ ~H13 cos 2Ψþ 1

2
ð ~H11 − ~H33Þ sin 2Ψ;

H22 ¼ ~H22;

H12 ¼ ~H12 cosΨ − ~H23 sinΨ;

H23 ¼ ~H23 cosΨþ ~H12 sinΨ: ð48Þ
It is clear that the transformations (47) and (48) can be
simply reversed if Ψ is replaced by −Ψ.
For the circular equatorial geodesic under consideration,

we find from the inverse of the transformations (47)–(48)
with Ψ ¼ ω0τ that

~E ¼ ω2
0

2
64
1 − 3γ2 0 0

0 −2þ 3γ2 0

0 0 1

3
75;

~H ¼ ω2
0

2
64

0 −3γ2β 0

−3γ2β 0 0

0 0 0

3
75: ð49Þ
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We recover the expected diagonal Newtonian tides in the
gravitoelectric components of the curvature tensor as
ðβ; γÞ → ð0; 1Þ for r0 → ∞. These results are clearly
consistent with the nature of the frame under consider-
ation, which corresponds to the radial, normal and
tangential directions along the circular geodesic orbit.
In this natural frame, we note the presence of only off-
diagonal gravitomagnetic components of the curvature
tensor.

B. Marck’s frame for an arbitrary geodesic orbit

We now turn our attention to an arbitrary geodesic world
line in the exterior Kerr spacetime. As is well known, the
geodesic equation can be integrated in this case and the first
integrals of the motion are given by

ΔΣ
dt
dτ

¼ ½ðr2 þ a2ÞΣþ 2Mra2sin2θ�E − 2MraΦ; ð50Þ

Σ2

�
dr
dτ

�
2

¼ ½ðr2 þ a2ÞE − aΦ�2 − Δðr2 þ KÞ; ð51Þ

Σ2

�
dθ
dτ

�
2

¼ K − a2cos2θ −
�
aE sin θ −

Φ
sin θ

�
2

; ð52Þ

ΔΣ
dϕ
dτ

¼ 2MraEþ ðΣ − 2MrÞ Φ
sin2 θ

: ð53Þ

1. Marck’s tetrad frame λμα̂
Marck has shown how the procedure we followed for a

circular orbit can be generalized to an arbitrary geodesic in
the exterior Kerr spacetime [17]. Using Kerr’s Killing-Yano
tensor fμν ¼ −fνμ, whose nonvanishing components are
given by

ftr ¼ −a cos θ;

ftθ ¼ ar sin θ;

frϕ ¼ −a2 cos θsin2θ;

fθϕ ¼ ðr2 þ a2Þr sin θ; ð54Þ

and which satisfies

∇ρfμν þ∇νfμρ ¼ 0; ð55Þ

together with λμ0̂ ¼ dxμ=dτ, the 4-velocity of an arbitrary
geodesic, one can construct Lμ ¼ fμνλν0̂. This vector is
then orthogonal to λ0̂ and is parallel propagated along the
geodesic orbit. Carter’s constant is defined by K ≔ LμLμ,
so that K is positive by construction, since Lμ is a spacelike
vector. Moreover, K is constant along the orbit. In this way,
Marck obtained

λμ2̂ ¼
1ffiffiffiffi
K

p fμνλν0̂: ð56Þ

Next, Marck found by inspection ~λμ1̂ and ~λμ3̂, which
together with ~λμ2̂ ¼ λμ2̂ and ~λμ0̂ ¼ λμ0̂ form an orthonormal
tetrad frame. However, to get a frame that is parallel
propagated, one must find Ψ such that

λ1̂ ¼ ~λ1̂ cosΨ − ~λ3̂ sinΨ; λ3̂ ¼ ~λ1̂ sinΨþ ~λ3̂ cosΨ:

ð57Þ

The result is [17]

dΨ
dτ

¼
ffiffiffiffi
K

p

Σ

�ðr2 þ a2ÞE − aΦ
r2 þ K

þ a
Φ − aEsin2θ
K − a2cos2θ

�
; ð58Þ

which must be integrated along the orbit to determine Ψ.
Explicitly, for a general orbit given by Eqs. (50)–(53),
Marck’s tetrad coframe can be obtained from

λ0̂ ¼ λμ0̂dx
μ ¼ −Edtþ Σ

Δ
_rdrþ Σ_θdθ þ Φdϕ; ð59Þ

where an overdot denotes differentiation with respect to
proper time τ, and

~λ1̂ ¼
1ffiffiffiffi
K

p Uαdxα; ~λ2̂ ¼ λ2̂ ¼
1ffiffiffiffi
K

p Vαdxα;

~λ3̂ ¼
1

Σ
Wαdxα: ð60Þ

To avoid confusion here, we mention that we denote frame
vectors and coframe 1-forms using the same symbol,
namely, ~λα̂. We find, using the results given by Marck
[17], that

U0 ¼ −α̂r_r − β̂a2 sin θ cos θ _θ;

U1 ¼ α̂
r
Δ
½ðr2 þ a2ÞE − aΦ�;

U2 ¼ β̂a cos θ

�
aE sin θ −

Φ
sin θ

�
;

U3 ¼ α̂asin2θr_rþ β̂aðr2 þ a2Þ sin θ cos θ _θ; ð61Þ

V0 ¼ −a cos θ_rþ ar sin θ _θ;

V1 ¼
a cos θ
Δ

½ðr2 þ a2ÞE − aΦ�;

V2 ¼ −r
�
aE sin θ −

Φ
sin θ

�
;

V3 ¼ a2 cos θsin2θ_r − rðr2 þ a2Þ sin θ _θ ð62Þ

and
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W0 ¼ −α̂½ðr2 þ a2ÞE − aΦ� þ β̂aðaEsin2θ − ΦÞ;

W1 ¼ α̂
Σ2

Δ
_r;

W2 ¼ β̂Σ2 _θ;

W3 ¼ α̂asin2θ½ðr2 þ a2ÞE − aΦ�
− β̂ðr2 þ a2ÞðaEsin2θ − ΦÞ; ð63Þ

where

α̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K − a2cos2θ

K þ r2

s
; β̂ ¼ 1

α̂
: ð64Þ

For a recent discussion of Marck’s frame, see Ref. [18].

III. TILTED SPHERICAL ORBIT ABOUT
A SLOWLY ROTATING MASS

We now wish to work out Marck’s tetrad system for the
tilted “circular” Keplerian orbit of a test mass m about a
slowly rotating astronomical mass M. Henceforward, the
orbit will be assumed to have a positive Keplerian fre-
quency ω0 > 0. We will do this calculation in several steps,
starting with a circular orbit in the exterior Schwarzschild
spacetime.

A. Equatorial circular orbit with a= 0

Let us return to the stable circular orbit in the equatorial
ðx; yÞ plane of Kerr spacetime and turn off the rotation of
the source, i.e., we set J ¼ 0. Then, the Schwarzschild
circular orbit with ω0 > 0 is given by

t ¼ ω

ω0

τ; r ¼ r0; θ ¼ π

2
; ϕ ¼ ωτ þ φ0:

ð65Þ

Here, we have introduced

ω ≔
ω0

N0

; N0 ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3

M
r0

s
: ð66Þ

Moreover, for the orbit under consideration here, the
specific energy E0, specific orbital angular momentum
Φ0 and Carter’s constant K0 are now given by

E0 ¼
A2
0

N0

; Φ0 ¼ r20ω; K0 ¼ Φ2
0: ð67Þ

B. Tilted circular orbit with a= 0

Because of spherical symmetry we can have an arbitrary
stable circular Keplerian orbit around a Schwarzschild
source. We first need to choose such an orbit and later

perturb it to linear order in a ¼ J=M. To this end, let us
consider the transformation from the background space to
the tilted orbital plane. We first consider a rotation about the
z axis by an angle ψ

x ¼ x0 cosψ − y0 sinψ ;

y ¼ x0 sinψ þ y0 cosψ ;

z ¼ z0: ð68Þ

Next, we rotate about the x0 axis by the tilt angle α

x0 ¼ x00;

y0 ¼ y00 cos α − z00 sin α;

z0 ¼ y00 sin αþ z00 cos α: ð69Þ

A general rotation of spatial axes would involve three
rotation angles. For an arbitrary orbit, we therefore need
another rotation about the z00 axis; however, such a rotation
is redundant as the orbit is circular in the ðx00; y00Þ plane.
Therefore, we write the parametric equations of the orbit as

x00 ¼ r0 cosðωτ þ η0Þ; y00 ¼ r0 sinðωτ þ η0Þ;
z00 ¼ 0; ð70Þ

where r0 is the radius of the circular orbit and η0 is a
constant angle.
It proves useful to define η,

η ≔ ωτ þ η0: ð71Þ

Transforming back to the coordinates ðx0; y0; z0Þ, we have
for the parametric equations of the orbit

x0 ¼ r0 cos η; y0 ¼ r0 cos α sin η;

z0 ¼ r0 sin α sin η: ð72Þ

Finally, in terms of ðx; y; zÞ coordinates we find

x ¼ r0ðcosψ cos η − cos α sinψ sin ηÞ;
y ¼ r0ðsinψ cos ηþ cos α cosψ sin ηÞ;
z ¼ r0 sin α sin η: ð73Þ

In polar coordinates x ¼ r0 sin θ cosϕ, y ¼ r0 sin θ sinϕ
and z ¼ r0 cos θ, the parametric equations of the orbit can
be summarized as

cos θ ¼ sin α sin η;

tanϕ ¼ sinψ cos ηþ cos α cosψ sin η
cosψ cos η − cos α sinψ sin η

: ð74Þ

In order to recover Eq. (65) for α ¼ 0, we set
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ψ ¼ φ0 − η0: ð75Þ

Equation (73) simplifies in the case of small inclination;
that is, for α ≪ 1,

x ¼ r0 cosðωτ þ φ0Þ; y ¼ r0 sinðωτ þ φ0Þ;
z ¼ r0α sin η; ð76Þ

so that in polar coordinates we have to linear order in α

r ¼ r0; θ ¼ π

2
− α sin η; ϕ ¼ ωτ þ φ0: ð77Þ

Let us now return to the general case and note that in
Eq. (74), we can write

tanϕ ¼ tanψ þ cos α tan η
1 − cos α tan η tanψ

: ð78Þ

It is useful to define χ such that

tan χ ¼ cos α tan η: ð79Þ

Then, it follows from Eq. (78) that ϕ ¼ ψ þ χ. On the other
hand, we know from Eq. (75) that ψ ¼ φ0 − η0. Putting all
these results together, we conclude that the general tilted
circular geodesic orbit in Schwarzschild spacetime is
given by

t ¼ ω

ω0

τ; r ¼ r0; θ ¼ arccosðsin α sin ηÞ;

ϕ ¼ arctanðcos α tan ηÞ þ φ0 − η0; ð80Þ

where η ¼ ωτ þ η0. Next, substituting Eq. (80) in the
geodesic Eqs. (50)–(53), we find the generalization of
Eq. (67) for the general tilted circular orbit, namely,

E0 ¼
A2
0

N0

; Φ0 ¼ r20ω cos α; K0 ¼ r40ω
2: ð81Þ

This orbit is depicted in Fig. 2. Before we leave
Schwarzschild spacetime, it is useful to collect here some
formulas for future reference; that is, u ¼ M=r0,

A0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2u

p
; N0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3u

p
; r0ω0 ¼

ffiffiffi
u

p
:

ð82Þ

C. Tilted “circular” orbit to linear order in a= J=M

Let us now turn on rotation, but only to first order in the
small dimensionless parameter a=r0. It turns out that at this
order of approximation the geodesic equation allows r ¼ r0
to remain constant, but the orbit is no longer planar. Thus
we have a tilted spherical orbit in a slowly rotating
Kerr spacetime. Indeed, regular spherical orbits in Kerr

spacetime have been studied in detail [19]; however, the
orbits under consideration here are tilted spherical orbits.
In practice, the tilted spherical orbit is in effect “circular,” as
it tends to stay rather close to a circular orbit.
To simplify the analysis, let us define functions θðτÞ and

ϕðτÞ as follows:

θðτÞ ¼ arccosðsin α sin ηÞ;
ϕðτÞ ¼ arctanðcos α tan ηÞ þ φ0 − η0; ð83Þ

where, as before, η ¼ ωτ þ η0. We note that cos θ ¼
sin α sin η and since θ∶0 → π, we have sin θ ≥ 0 and

sin θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2α sin2η

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ηþ cos2α sin2η

q
: ð84Þ

Moreover,

dθ
dτ

¼ −
ω sin α cos η

sin θ
;

dϕ
dτ

¼ ω cos α

sin2θ
: ð85Þ

Then, the perturbed “circular” orbit to linear order in a is
assumed to be of the form

t ¼ ω

ω0

τ þ aTðτÞ; r ¼ r0; θ ¼ θðτÞ þ aΘðτÞ;

ϕ ¼ ϕðτÞ þ aFðτÞ; ð86Þ

where T, Θ and F are to be determined from the solution
of the geodesic equation in Kerr spacetime to linear order
in a=r0 such that at τ ¼ 0, Tð0Þ ¼ Θð0Þ ¼ Fð0Þ ¼ 0. It
follows from a detailed examination of the geodesic
equation that

FIG. 2. Schematic depiction of the tilted circular orbit followed
by a test massm around a Schwarzschild source of massM ≫ m.
The inclination of the orbit is given by the angle α. Moreover,
η is the angular position of m in the orbital plane measured
from the line of the ascending node. At τ ¼ 0, m has spherical
polar coordinates ðr0; θ0;ϕ0Þ, where cos θ0 ¼ sin α sin η0 and
ϕ0 ¼ arctanðcos α tan η0Þ þ φ0 − η0.
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T ¼ −3
u cos α
N2

0

ωτ; ð87Þ

Θ ¼ 3

�
A0

N0

�
2

ω0 sin α cos α
ωτ cos η

sin θ
; ð88Þ

F ¼ 2ω0ωτ − 3

�
A0

N0

�
2

ω0cos2α
ωτ

sin2θ
: ð89Þ

It is useful to write the orbital equations as

t ¼ ω

ω0

τ − að3ω3r20 cos αÞτ;

r ¼ r0;

θ ¼ θ þ a
�
3
ω3

ω0

ð1 − 2uÞ sin α cos α
�
τ cos η

sin θ
;

ϕ ¼ ϕþ a

�
2ωω0 − 3

ω3

ω0

ð1 − 2uÞ cos
2α

sin2θ

�
τ: ð90Þ

For this orbit, the constants of the motion can be calculated
from Eqs. (50)–(53) and the results are

E ¼ A2
0

N0

− a
ω0u
N3

0

cos α;

Φ ¼ r20ω cos α − 3a
uA2

0

N3
0

cos2α;

K ¼ r40ω
2 − 2a

r20ω0A2
0

N4
0

cos α; ð91Þ

where K > 0 for an orbit around the Earth by Eq. (18).
Equations (90) and (91) are derived in Appendix A.

IV. TETRAD FRAME FOR THE TILTED
SPHERICAL ORBIT

The spherical orbit (90) represents the geodesic world
line of the test mass m in Kerr spacetime linearized in a.
Therefore, we specialize the general results of Marck for
this specific orbit under consideration here in order to find
the spatial frame for this orbit. Integrating Eq. (58), we
obtain

Ψ ¼ ω0τ þOða2Þ; ð92Þ

where we have set the constant of integration equal to zero
for the sake of consistency with the Schwarzschild limit.
Next, we must now work out ~λ1̂, ~λ2̂ and ~λ3̂ for this spherical
orbit. It follows from Eqs. (60)–(64) that the coframe is
given by

~λ1̂ ¼
1

A0

dr −
�
aA0

r0ω0

sin α cos α
sin η

sin θ

�
dθ

−
�
aA0

r0ω0

sin2α sin η cos η

�
dϕ;

~λ2̂ ¼ λ2̂ ¼ −
a
r0
sin α cos ηdtþ a

ω0r20
sin α sin ηdr

þ
�
r0 cos α

sin θ
−

a
r0ω0

Y2

�
dθ

þ
�
r0 sin α cos ηþ

a
r0ω0

Y3

�
dϕ;

~λ3̂ ¼ −r0ω0Z0dtþ Z2dθ þ Z3dϕ; ð93Þ
where

Y2 ¼
A2
0sin

2α cos η

sin θ

�
cos ηþ

�
3u
N2

0

�
ωτ

cos2α sin η

sin2θ

�
;

Y3 ¼
�
A0

N0

�
2

sin α cos α½ð1 − 3uÞ cos ηþ 3uωτ sin η�;

Z0 ¼
A0

N0

�
1 −

aω0 cos α
N2

0

�
;

Z2 ¼ −r0
A0

N0

sin α

sin θ

�
cos ηþ

�
A0

N0

�
2

aω0

× cos α

�
1 − 6uþ 6u2

uð1 − 2uÞ cos ηþ 3ωτ
sin η cos2α

sin2θ

��
;

Z3 ¼ r0
A0

N0

�
cos α − aω0

�
3u

1 − 3u
cos2α

þ 1 − 3u
u

sin2α sin2η

��
: ð94Þ

Let us nowcompute ~λμ1̂, ~λ
μ
2̂ and ~λ

μ
3̂.Along the orbit, ~λ

μ
î¼

gμν ~λνî, where the inversemetric to linear order ina is given by

g00 ¼ −
1

A2
; g11 ¼ A2; g22 ¼ 1

r2
;

g33 ¼ 1

r2sin2θ
; g03 ¼ −2

J
r3A2

: ð95Þ

We find that the frame is given by

~λ1̂ ¼ A0∂r −
�
aA0

r30ω0

sin α cos α sin η

sin θ

�
∂θ

−
�
aA0

r30ω0

sin2α sin η cos η

sin2θ

�
∂ϕ;

~λ2̂ ¼
a
r0

sin α cos η∂t þ
aA2

0

r20ω0

sin α sin η∂r

þ
�

cos α

r0 sin θ
−

a
r30ω0

Y2

�
∂θ þ B3∂ϕ;

~λ3̂ ¼ C0∂t þ
Z2

r20
∂θ þ C3∂ϕ; ð96Þ
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where

B3 ¼
sin α cos η

r0 sin θ
þ a

r30ω0sin2θ

×

�
Y3 − 3u

�
A0

N0

�
2 sin3α cos α sin η cos2η

sin2θ
ωτ

�
;

C0 ¼
r0ω0

A0N0

�
1 − 3aω0 cos α

�
A0

N0

�
2
�
;

C3 ¼
1

r20sin
2θ

�
1 − 2aΘ

cos θ

sin θ

�
Z3 þ

2ar0ω3
0

A2
0

Z0: ð97Þ

As before, with an abuse of notation, we have denoted
frame vectors and coframe 1-forms using the same symbol,
namely, ~λα̂. Moreover, we recall that Θ is given in Eq. (88),
so that aΘ ¼ θ − θ and we have to first order in the Kerr
rotation parameter a

sin θ ¼ sin θ þ aΘ cos θ: ð98Þ

To first order in α,

sin α ≈ α; cos α ≈ 1; sin θ ≈ 1 ð99Þ

and hence the spatial frame (96) simplifies such that one
recovers previous results given in Ref. [20], which were
obtained by a different method based on directly integrating
in this case the equations in Eq. (3). In this connection, it is
important to notice that three typographical errors occur in
Ref. [20] that must be corrected. In Eq. (22) of Ref. [20], r0
in the denominator of the last term must be replaced by the
speed of light c. Furthermore, in Eqs. (11) and (13) of
Ref. [20], the temporal components must be divided by c.

V. MEASURED CURVATURE COMPONENTS
FOR THE SPHERICAL ORBIT

Let us first express the projection of the Weyl tensor on
the tetrad frame ~λα̂ associated with the spherical orbit under
consideration here. We find that

~E ¼ ω2
0

2
64
1 − 3Γ2 Ξ 0

Ξ −2þ 3Γ2 0

0 0 1

3
75;

~H ¼ ω2
0

2
64
ð4 − 7uÞϒ H 0

H ð4u − 3Þϒ 0

0 0 ð3u − 1Þϒ

3
75: ð100Þ

Here we have defined

Γ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2u
1 − 3u

r �
1 −

aω0 cos α
1 − 3u

�
ð101Þ

and

H ≔ −3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð1 − 2uÞp
1 − 3u

�
1 −

1 − u
uð1 − 3uÞ aω0 cos α

�
; ð102Þ

such that for α ¼ 0, they reduce to γ and −3γ2β, respec-
tively, to linear order in a=r0; see Eqs. (41) and (42).
Moreover,

Ξ ≔ −3ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2u

p ð1þ 2uÞ
1 − 3u

sin α sin η; ð103Þ

where ξ is the dimensionless quantity ρ, defined in Eq. (17),
evaluated along the spherical orbit, namely,

ξ ≔ ρðr0Þ ¼
J

Mr20ω0

ð104Þ

and

ϒ ≔ 3ξ

ffiffiffi
u

p
1 − 3u

sin α sin η: ð105Þ

When α ¼ 0, so that the inclination of the orbit vanishes,
the spherical orbit turns into the circular equatorial orbit
with Ξ ¼ ϒ ¼ 0 and Eq. (100) reduces to Eq. (49).
It is now straightforward to use Eqs. (47)–(48) with

Ψ ¼ ω0τ from Eq. (92) to find the components of E andH.
The main results of this paper are thus

E1̂ 1̂ ¼ ω2
0½1 − 3Γ2cos2ðω0τÞ�;

E1̂ 2̂ ¼ ω2
0Ξ cosðω0τÞ;

E1̂ 3̂ ¼ −3ω2
0Γ2 sinðω0τÞ cosðω0τÞ;

E2̂ 2̂ ¼ ω2
0ð3Γ2 − 2Þ;

E2̂ 3̂ ¼ ω2
0Ξ sinðω0τÞ;

E3̂ 3̂ ¼ ω2
0½1 − 3Γ2sin2ðω0τÞ� ð106Þ

and

H1̂ 1̂ ¼ −ω2
0ϒ½1 − 3u − 5ð1 − 2uÞcos2ðω0τÞ�;

H1̂ 2̂ ¼ ω2
0H cosðω0τÞ;

H1̂ 3̂ ¼ 5ω2
0ð1 − 2uÞϒ sinðω0τÞ cosðω0τÞ;

H2̂ 2̂ ¼ ω2
0ð4u − 3Þϒ;

H2̂ 3̂ ¼ ω2
0H sinðω0τÞ;

H3̂ 3̂ ¼ −ω2
0ϒ½1 − 3u − 5ð1 − 2uÞsin2ðω0τÞ�: ð107Þ

The tidal matrix (106) agrees with the results of Marck [17],
when Marck’s tidal matrix is linearized in angular momen-
tum J and specialized to the tilted spherical orbit under
consideration in this paper. The expressions for E1̂ 2̂ and E2̂ 3̂

contain the beat phenomenon [12].
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It is important to note that for a ¼ 0, the spherical orbit
reduces to the inclined circular orbit in the exterior
Schwarzschild spacetime, which is depicted in Fig. 2.
Moreover, E and H for a ¼ 0 become independent of
the inclination α as a consequence of the spherical
symmetry of the background gravitational field; indeed,
they reduce to the corresponding quantities given in
Eq. (38) when we set a ¼ 0. Let us recall here that
in this case the components of E and H are all periodic
in proper time τ. That is, the relativistic tidal matrix varies
with frequency 2ω0 with respect to τ, while the components
of H are all off-diagonal and vary with frequency ω0 with
respect to τ.
We recover from these results to first order in a=r0 and

with α ¼ 0, the measured components of the curvature for
the equatorial circular orbit in Kerr spacetime. Moreover, to
first order in α, Eq. (106) reduces to the results given in
Ref. [20]. It is important to note that even though there are
secular terms proportional to τ in both the inclined spherical
orbit (90) and the components of the spatial frame,
cf. Eqs. (96) and (97), the measured curvature components
(106)–(107) do not contain such terms. Indeed, except for
E2̂ 2̂ that is independent of time τ, the rest involve periodic
variations with respect to τ. In particular, the time-
dependent components of the tidal matrix ðEâ b̂Þ contain
Fourier terms with frequencies 2ω0, ωþ ω0 and ω − ω0

with respect to proper time τ; similarly, the elements of
ðHâ b̂Þ involve Fourier terms with frequencies ω, ω0,
2ω0 þ ω and 2ω0 − ω. Furthermore, while the relativistic
tidal matrix naturally contains purely Newtonian terms as
well as their general-relativistic corrections, the gravito-
magnetic components of the curvature, ðHâ b̂Þ, all vanish as
1=c, when we formally let c → ∞.
It is interesting to consider the eigenvalues of the

matrices E and H. These eigenvalues are invariant under
similarity transformations of these matrices; therefore, we
can calculate the eigenvalues just as well using ~E and ~H.
It is straightforward to see from Eq. (100) that the
eigenvalues of E are given to linear order in a=r0 by

1 − 3Γ2; −2þ 3Γ2; 1; ð108Þ

since Ξ2 is of second order in a=r0 and can be neglected.
It is remarkable that the eigenvalues of the tidal matrix E are
independent of time. This circumstance is consistent with
the notion that the beat phenomenon [12] comes about as a
consequence of the parallel propagation of the observer’s
frame.

A. Relativistic tidal matrix Eâ b̂

Inspection of the relativistic tidal matrix, Eq. (106),
reveals that, except for E1̂ 2̂ and E2̂ 3̂ which are proportional
to Ξ and have dominant amplitudes proportional to ω2

0ξ,
the other elements of the tidal matrix contain expected

Newtonian and post-Newtonian terms. In fact, the off-
diagonal components of E that are proportional to Ξ
represent the beat phenomenon [12]. Moreover, the other
components contain expected Newtonian terms propor-
tional to ω2

0 ¼ GM=r30, a series of post-Newtonian gravito-
electric terms with dominant amplitude proportional to

ω2
0u ¼ G2M2

c2r40
ð109Þ

and a series of post-Newtonian gravitomagnetic terms with
dominant amplitude proportional to

ω3
0a cos α ¼ ω2

0

aω0

c2
cos α ¼ G2M2

c2r40
ξ cos α: ð110Þ

These Newtonian and dominant post-Newtonian ampli-
tudes occur in the first detailed post-Newtonian (pN)
treatment of the tidal matrix presented in Refs. [14,15].
However, as pointed out in Ref. [15], if the frame that is
employed is parallel transported, then in the post-
Newtonian approximation certain secular terms occur in
the tidal matrix as well. In Ref. [15], a more complete
treatment that would take the secular terms into account
was deferred to a future publication. The promised secular
terms, which are the short-term manifestations of the beat
phenomenon [12], are given in the following section.

B. Secular terms in Eâ b̂

According to general relativity, the response of a
gradiometer in orbit about the Earth is the projection of
the Earth’s Riemann curvature tensor onto the parallel-
transported tetrad frame of the gradiometer. We naturally
assume that the spatial frame of the gradiometer is
determined by three orthogonal gyroscopes, while its
temporal axis is fixed by the gradiometer orbit. Let us
first consider the secular motion of the gyroscopes as they
orbit the Earth.
The motion of an ideal test gyroscope with spin S in orbit

about a central rotating source of mass M and angular
momentum J has been thoroughly studied in the first
post-Newtonian approximation [10] and the result can be
expressed as

dS
dτ

¼ ðΩge þ ΩgmÞ × S; ð111Þ

where

Ωge ¼
3

2

GM
c2r3

l; Ωgm ¼ G
c2r5

½3ðJ · xÞx − Jr2�; ð112Þ

jxj ¼ r and l ¼ x × v is the specific angular momentum of
the orbit of the gyroscope. Here, Ωge is the (gravitoelectric)
geodetic precession frequency of the gyroscope, while Ωgm
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is its gravitomagnetic precession frequency. These preces-
sion frequencies have been directly measured via Gravity
Probe B [10], which involved four superconducting gyro-
scopes and a telescope that were launched on 20 April,
2004 into a polar Earth orbit of radius 642 km aboard a
drag-free satellite.
The post-Newtonian equation for the motion of the spin

describes the slow precession of the spin vector, which is
cumulative. That is, in contrast to the “fast” orbital motion,
the geodetic and gravitomagnetic motions of the spin
vector are “slow,” with long periods proportional to c2.
We therefore expect that over a period of time τ, corre-
sponding to the duration of a satellite gradiometry experi-
ment in an inclined spherical orbit of radius r0, the motion
of the spatial frame of the gradiometer would accumulate
geodetic and gravitomagnetic precession angles of order

GM
c2r0

ω0τ;
GJ
c2r30

τ; ð113Þ

respectively. These results are consistent with Eq. (36) for
the parallel propagation of the spatial frame along an
equatorial circular geodesic orbit in the exterior Kerr
spacetime.
In practice, the projection of the Riemann tensor onto the

tetrad frame of the gradiometer necessitates detailed cal-
culations in which the symmetries of the Riemann tensor
need to be taken into account; that is, Eâ b̂ ¼ R0̂ â 0̂ b̂, which
is given by Eq. (4). If, after such detailed calculations, any
post-Newtonian secular terms survive in the final result, we
would expect them to be of the type presented in Eq. (113)
multiplied by ω2

0, since the dominant terms in the Riemann
curvature tensor are Newtonian in origin and proportional
to ω2

0. Thus possible secular terms in Eâ b̂ would be
expected to be of order

GM
c2r0

ω3
0τ ¼ uω3

0τ;
GJ
c2r30

ω2
0τ ¼

a
c2

ω4
0τ; ð114Þ

respectively.
It is an important consequence of GR that the secular

terms (114) do not survive for a gradiometer following the
circular equatorial orbit in Kerr spacetime; see Eq. (39).
Moreover, GR predicts that even off the equatorial plane the
(gravitoelectric) geodetic secular term does not survive for
a spherical orbit; however, the gravitomagnetic secular term
remains in this case [see Eq. (139)]. To arrive at these
conclusions as well as the precise form of the beat
phenomenon [12] in this case requires detailed evaluation
of R0̂ â 0̂ b̂ within the framework of GR; see Eqs. (136)
and (137).

VI. BEAT PHENOMENON

TheMarck tetrad frame that we have used in this paper to
illustrate the beat phenomenon [12] is unique up to a

constant rotation of the spatial frame. Thus up to such a
rotation, the beat effect is given by the off-diagonal terms in
the tidal matrix (106) given by

E1̂ 2̂ ¼ ω2
0Ξ cosðω0τÞ; E2̂ 3̂ ¼ ω2

0Ξ sinðω0τÞ; ð115Þ

where Ξ is defined by Eq. (103). The remarkable property
of such basically relativistic terms is that their amplitudes
are independent of the speed of light c. Let us write these
terms in the form

E 1̂ 2̂ ¼ −
3

2
ω2
0ξ sin α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2u

p ð1þ 2uÞ
1 − 3u

× fsin½ðω − ω0Þτ þ η0� þ sin½ðωþ ω0Þτ þ η0�g
ð116Þ

and

E2̂ 3̂ ¼ −
3

2
ω2
0ξ sin α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2u

p ð1þ 2uÞ
1 − 3u

× fcos½ðω − ω0Þτ þ η0� − cos½ðωþ ω0Þτ þ η0�g:
ð117Þ

These expressions indicate the presence of a beat phe-
nomenon involving frequencies ω and ω0 with a beat
frequency

ωF ≔ ω − ω0: ð118Þ

This Fokker frequency (≈3uω0=2) is the gravitational
analog of the Thomas precession frequency; that is, the
gravitoelectric Fokker precession is the geodetic precession
frequency of an ideal gyroscope on a circular orbit in the
field of a spherical mass M.
In this paper, we have used the approach developed by

Marck [17] to illustrate the beat effect. However, the
original work of Mashhoon and Theiss [12] was done
before the work of Marck [17] and involved finding the
solutions to the equations in Eq. (3) using a linear
perturbation treatment. In the extensive calculations that
had to be performed, one could see explicitly that the new
effect came about due to a small denominator phenomenon
involving the beat frequency ωF in the calculation of the
frame that is parallel transported along the orbit. That is, the
near commensurability of frequencies ω and ω0 led to a
small divisor that is ultimately responsible for the effect
under consideration here. The phenomenon of small
divisors is well known in celestial mechanics, since
Laplace in 1785 elucidated the commensurability of the
mean motions of Jupiter and Saturn about the Sun.
In connection with the origin of the beat effect, let us first

note that it is not intrinsic to the Kerr field; that is, the
curvature of the Kerr field does not exhibit such a
phenomenon (see Appendix B). The measured components
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of the curvature tensor basically involve the curvature
tensor projected onto the tetrad frame of the observer.
The small denominator (“resonance”) phenomenon involv-
ing ω and ω0 described above that underlies the beat effect
must therefore originate in the parallel-propagated frame of
the tilted spherical orbit, as there is no trace of a beat
phenomenon in the orbital equations. The off-diagonal
terms (115) are essentially “Newtonian” in the sense that
they do not vanish as c → ∞; therefore, they can be
combined with the diagonal Newtonian part of the tidal
matrix via a constant rotation such that at any given time
the amplitude of the effect can be reduced to zero. However,
the tidal term then exhibits a beat phenomenon; that is, it is
oscillatory with increasing amplitude and achieves its full
tidal amplitude over a time comparable to the Fokker period
2π=ωF. To see how this can come about, let us consider a
constant rotation of the spatial frame given by

λ0
1̂
¼ λ1̂ þ ϵ sin η0λ2̂;

λ0
2̂
¼ −ϵ sin η0λ1̂ þ λ2̂ − ϵ cos η0λ3̂;

λ0
3̂
¼ ϵ cos η0λ2̂ þ λ3̂; ð119Þ

where ϵ, 0 < jϵj < 1, is proportional to a ¼ J=M
and hence will be treated to linear order. Under such a
rotation R,

E0 ¼ RER†; ð120Þ

where

R ¼

2
64

1 ϵ sin η0 0

−ϵ sin η0 1 −ϵ cos η0
0 ϵ cos η0 1

3
75: ð121Þ

To linear order in a, the only terms in E0 that are different
from E are the following off-diagonal terms:

E0
1̂ 2̂

¼ ω2
0½Ξ cosðω0τÞ þ 3ϵðΓ2 − 1Þ

× sin η0 þ 3ϵΓ2 sinðω0τ þ η0Þ cosðω0τÞ�; ð122Þ

E0
2̂ 3̂

¼ ω2
0½Ξ sinðω0τÞ þ 2ϵð3Γ2 − 2Þ cos η0

− 3ϵΓ2 cosðω0τ þ η0Þ cosðω0τÞ�: ð123Þ

Let us write ω ¼ ωF þ ω0, where ωF is the Fokker
frequency and note that Ξ ¼ Ξ0 sin η, where

Ξ0 ≔ −3ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2u

p ð1þ 2uÞ
1 − 3u

sin α: ð124Þ

Moreover, η ¼ ðωFτ þ η0Þ þ ω0τ, and hence

sin η ¼ sinðωFτ þ η0Þ cosðω0τÞ þ cosðωFτ þ η0Þ sinðω0τÞ:
ð125Þ

If we choose ϵ such that

Ξ0 ¼ −3ϵΓ2; ϵ ¼ ξ
1þ 2uffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2u

p sin α; ð126Þ

then, we find

E0
1̂ 2̂

¼ ω2
0Ξ0

�
SFcos2ðω0τÞ þ CF sinðω0τÞ cosðω0τÞ

−
u

1 − 2u
sin η0

�
; ð127Þ

E0
2̂ 3̂

¼ ω2
0Ξ0

�
SF sinðω0τÞ cosðω0τÞ þ CFsin2ðω0τÞ

−
1þ 2u
1 − 2u

cos η0

�
; ð128Þ

where the amplitudes of the “fast” variation, with twice the
Keplerian frequency, are given by

SF ¼ sinðωFτ þ η0Þ − sin η0

¼ 2 sin
�
1

2
ωFτ

�
cos

�
1

2
ωFτ þ η0

�
; ð129Þ

CF ¼ cosðωFτ þ η0Þ − cos η0

¼ −2 sin
�
1

2
ωFτ

�
sin

�
1

2
ωFτ þ η0

�
: ð130Þ

It follows that Eqs. (127) and (128) can be written as

E0
1̂ 2̂

¼ ω2
0Ξ0

�
2 sin

�
1

2
ωFτ

�
cosðω0τÞ cosðω0τÞ

−
u

1 − 2u
sin η0

�
; ð131Þ

E0
2̂ 3̂

¼ ω2
0Ξ0

�
2 sin

�
1

2
ωFτ

�
cosðω0τÞ sinðω0τÞ

−
1þ 2u
1 − 2u

cos η0

�
; ð132Þ

where

ω0 ≔
1

2
ðωþ ω0Þ: ð133Þ

The amplitude of the beat effect is proportional to

sin

�
1

2
ωFτ

�
; ð134Þ
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which vanishes at τ ¼ 0 and becomes unity at half the
Fokker period, i.e., at proper time τ ¼ π=ωF. Indeed, for
a near-Earth orbit, ξ ≈ 3 × 10−2 and the Fokker period
2π=ωF is about 105 years.
For ωFτ ≪ 1, we have

sin

�
1

2
ωFτ

�
≈
3

4

GM
c2r0

ω0τ; ð135Þ

so that for τ ≪ ω−1
F , Eqs. (131) and (132) can be written as

E0
1̂ 2̂

¼ −
9

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2u

p ð1þ 2uÞ
1 − 3u

ω2
0 sin α

�
GJτ
c2r30

�

× cosðω0τÞ cosðω0τÞ − ω2
0Ξ0

u
1 − 2u

sin η0 ð136Þ

and

E0
2̂ 3̂

¼ −
9

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2u

p ð1þ 2uÞ
1 − 3u

ω2
0 sin α

�
GJτ
c2r30

�

× sinðω0τÞ cosðω0τÞ − ω2
0Ξ0

1þ 2u
1 − 2u

cos η0: ð137Þ

These results clearly bring out the short-term secular nature
of the beat effect that would be useful in any gravity
gradiometry experiment. It is interesting to compare the
dominant amplitude of the short-term secular beat effect in
Eqs. (136) and (137), namely, ∼ω2

0 sin αGJτ=ðc2r30Þ, with
the first post-Newtonian periodic gravitomagnetic ampli-
tude given in Eq. (110). The ratio of these amplitudes is
ω0τ tan α, so that for τ ≪ ω−1

F , the beat effect increases
linearly with time, which is important for the experimental
detection of this gravitomagnetic effect [12,21].

A. Physical interpretation of the beat effect

The beat effect has been discussed by Anandan [22], Gill
et al. [23] as well as Blockley and Stedman [24]. More
recently, the beat effect has received attention in connection
with future satellite gradiometry experiments [25–27]. It is
therefore useful to recapitulate here the main features of the
beat effect that have been demonstrated in this paper.
For a gravity gradiometer on an inclined “circular” orbit

about a central slowly rotating mass, the beat effect shows
up in the gravitomagnetic part of the relativistic tidal matrix
when the local spatial frame is parallel transported along
the orbit. The nonrotating frame is fixed up to a constant
rotation; therefore, the appearance of the beat effect can be
adjusted by a constant rotation of the local frame.
The beat effect involves a subtle beat phenomenon

involving the Fokker frequency ωF ¼ ω − ω0, which cor-
responds to the geodetic precession frequency of an ideal
gyro on a circular orbit about a spherical mass.
Suppose that by a constant rotation we set the beat effect

equal to zero at τ ¼ 0. The beat effect then consists of

periodic terms that appear in certain components of the
relativistic tidal matrix with an amplitude proportional to

6ω2
0ξ sin α sin

�
1

2
ωFτ

�
; ð138Þ

where ξ ¼ J=ðMr20ω0Þ is independent of the speed of
light c.
The Fokker period for a near-Earth orbit is ∼105 years.

In any gravity gradiometry experiment, τ ≪ 2π=ωF; there-
fore, over the short term, the beat effect appears as a first
post-Newtonian secular gravitomagnetic contribution to the
relativistic tidal matrix with amplitude

9

2
ω2
0 sin α

GJ
c2r30ω0

ðω0τÞ ¼
9a
2c2

ω4
0τ sin α; ð139Þ

cf. Eqs. (136) and (137). The corresponding secular term in
the spatial frame is consistent with the first post-Newtonian
gravitomagnetic precession of the frame [20,24].
It is possible to identify and study the gravitomagnetic

terms proportional to ξ in the parallel-propagated spatial
frame that are responsible for the appearance of the beat
effect in the relativistic tidal matrix; see, for instance,
Ref. [20]. Such terms are not, however, of interest exper-
imentally, since the relevant long-term periodic motion
of the parallel-propagated spatial frame along the tilted
spherical orbit clearly goes beyond the short-term grav-
itomagnetic precession that has been verified by the GP-B
experiment [10]. The whole long-term motion of the frame
is a periodic gravitomagnetic nodding and has been termed
“relativistic nutation” [20,28].

B. Comparison of the beat effect with calculations
using the first post-Newtonian approximation

As already mentioned, the calculations by Mashhoon
and Theiss [12,21,29] that originally led to the beat effect
were rather long and cumbersome. As Mashhoon and
Theiss [12,21,29] worked in the post-Schwarzschild
approximation, thus taking the mass M of the source into
account to all orders but the angular momentum J only to
first order, the same long-period results could presumably
be obtained from the summation of an appropriate post-
Newtonian series. To circumvent the details of the calcu-
lations, but illustrate how the small divisor (“resonance”)
phenomenon could possibly produce the effect, Gill et al.
developed a simple model of the beat effect [23]. We only
wish to illustrate here the essential shortcoming of this
approach, which has been recently adopted by Xu and Paik
[25] with erroneous results.
To illustrate the approach adopted by Gill et al. [23],

consider the equation for the parallel propagation of a
component of the spatial frame to first post-Newtonian
(1 pN) order. Gill et al. proposed to integrate this equation
exactly; indeed, their “explanation” of what they called

RELATIVISTIC GRAVITY GRADIOMETRY PHYSICAL REVIEW D 94, 124009 (2016)

124009-15



“the Mashhoon-Theiss “anomaly”” is based on this exact
solution of an equation that is valid only at the 1 pN level.
But in writing the original 1 pN equation, they neglected
the 2 pN, 3 pN,…, terms, so that the only physical content
of the correct solution of this equation should remain within
the 1 pN approximation scheme. Their exact solution is not
logically consistent; hence, they do not have a correct
explanation of the long-period beat effect. Their contention
that “there is no “new” relativistic (resonant) effect related
to rotating masses” (Gill et al. [23], penultimate sentence of
their abstract) is therefore erroneous.
More recently, Xu and Paik [25] erroneously claimed the

existence of secular gravitoelectric terms in the relativistic
tidal matrix due to the geodetic precession of the frame; see
Eq. (22a) in Ref. [25]. However, it follows from Eq. (106)
that there are no secular gravitoelectric contributions to the
tidal matrix; in fact, for a ¼ 0, the relativistic tidal matrix is
simply periodic in τ with frequency 2ω0 [see Eq. (39)].

C. Detection of the beat effect

The beat effect is not an anomaly; indeed, as demon-
strated in this paper, it is a direct consequence of general
relativity within the post-Schwarzschild approximation
scheme. In any experiment involving the Earth’s gravity
gradients, for instance, the mass and angular momentum of
the Earth will naturally contribute to the result of the
experiment to all orders. The beat effect is based on the
exterior Kerr spacetime linearized in angular momentum.
To go beyond the linear order in angular momentum is
conceptually straightforward, but our preliminary consid-
erations indicate that it would involve rather long and
complicated calculations. Such an endeavor is beyond the
scope of the present work.
To compare the beat effect with observational results in

gravity gradiometry, it is necessary to take advantage of the
fact that the predicted result is unique up to an arbitrary
rotation of Marck’s tetrad frame. Once the initial directions
of the gyros are chosen as in, say, Marck’s frame, it is
necessary to introduce possible errors in the orientation of
the orthonormal frame characterized by dimensionless
parameters ϵi, for i ¼ 1, 2, 3, as illustrated in Eq. (121)
for the simple situation considered above. The beat effect
should then show up in time as a secular modulation of
certain periodic terms of the relativistic tidal matrix.

VII. POST-SCHWARZSCHILD
APPROXIMATION

Gravitation can be identified with the curvature of
spacetime according to the general theory of relativity.
The weakness of the gravitational interaction therefore
makes it possible in most situations to treat gravitation as a
small perturbation on flat Minkowski spacetime. The
Newtonian approximation emerges as the zeroth-order
perturbation that is independent of the speed of light.

The pN corrections then provide an approximation scheme
for the weak-field and slow-motion situations in which the
prediction of relativistic gravitation can be compared with
observations. The pN framework has been employed in a
wide variety of problems and it is widely expected to be
adequate for the theoretical description of the results of
experiments for the foreseeable future. In certain special
circumstances, however, other approximation schemes can
be developed; this paper has been about one such pos-
sibility, namely, the post-Schwarzschild approximation and
the comparison of its results with the pN framework.
Gravitational phenomena in the exterior vacuum region

of an almost spherically symmetric mass distribution can be
described in a post-Schwarzschild approximation scheme,
since in the absence of any deviation from spherical
symmetry the exterior field can be uniquely described
by the Schwarzschild spacetime. For instance, if the central
mass is slowly rotating, the Thirring-Lense term can be
treated as a first-order perturbation on the Schwarzschild
background. Therefore, in the first post-Schwarzschild
approximation the proper rotation (or oblateness) of the
body is considered to first order whereas the mass of the
central body is taken into account to all orders. Compared
to the standard pN approximation, the nonlinear character
of general relativity is more strongly reflected in the post-
Schwarzschild scheme. Mashhoon and Theiss developed
the post-Schwarzschild approximation for the investigation
of the relative (i.e., tidal) acceleration of two bodies
orbiting a rotating central mass [12,21,30]. The results
have been used for the analysis of the tidal influence of the
Sun on the Earth-Moon system [20,28,29,31,32].
The results of the post-Schwarzschild approximation

described thus far pertain to a first-order rotational pertur-
bation of the background Schwarzschild field. The question
naturally arises whether similar results hold for other
deviations of the source from spherical symmetry. In fact,
most astronomical bodies are oblate. The effect of oblate-
ness, treated as a first-order static deformation of the
source, has been investigated by Theiss [30,33] for the
case of two test particles moving on a circular geodesic
orbit of small inclination α about a central oblate body of
mass M. In these calculations, the Erez-Rosen metric [34]
linearized in the quadrupole momentQ has been employed.
Theiss’ calculations show that the contribution of the
quadrupole moment Q of the central mass to the gravity
gradient along the orbit contains a relativistic part with a
leading amplitude of the form

6α
Qc2

Mr40
sin

�
1

2
ωFτ

�
; ð140Þ

which is similar to the case of gravitomagnetism,
cf. Eq. (138), and shows a temporal variation with a
frequency comparable with the Fokker frequency. This
new relativistic effect can also be explained by the

DONATO BINI and BAHRAM MASHHOON PHYSICAL REVIEW D 94, 124009 (2016)

124009-16



occurrence of a small divisor which shows up in the
solution of the parallel transport equations [30,33]. For
τ ≪ 1=ωF, the above amplitude reduces to a Newtonian
expression of order αGQω0τ=r50. It should be mentioned
that, as in the gravitomagnetic case, the relativistic quadru-
pole contributions to the tidal acceleration strongly depend
upon the choice of the local inertial frame of reference. In
Ref. [33], this frame has been chosen so as to cancel the
resonance-like terms in the tidal matrix at τ ¼ 0. Further
discussion of this effect is contained in Ref. [32].

VIII. DISCUSSION

In relativistic gravity gradiometry, one measures the
elements of the relativistic tidal matrix, which is theoreti-
cally obtained in general relativity via the projection of the
spacetime curvature tensor on the nonrotating tetrad frame
of an observer. In a gravity gradiometry experiment on a
space platform in orbit about the Earth, the mass M⊕,
angular momentum J⊕, quadrupole momentQ⊕ and higher
moments of the Earth are all expected to contribute to the
result of the experiment. For geodesic orbits in the exterior
Kerr spacetime, Marck has calculated the relativistic tidal
matrix [17]. We employed Marck’s results in this paper to
linear order in angular momentum J in order to determine
the relativistic tidal matrix for an observer following an
inclined “circular” geodesic orbit about a slowly rotating
spherical massM. The result was then used to illustrate the
beat phenomenon [12], which involves the long-period
gravitomagnetic part of the relativistic tidal matrix as well
as subtle cumulative effects that can be measured in
principle via relativistic gravity gradiometry.

ACKNOWLEDGMENTS

D. B. thanks the International Center for Relativistic
Astrophysics Network (ICRANet) for partial support.

APPENDIX A: DERIVATION OF THE TILTED
SPHERICAL ORBIT

Let us substitute Eq. (86) in the first integrals of the
geodesic equation, namely, Eqs. (50)–(53), keeping only
terms that are at most linear in a=r0. We want to find T, Θ
and F such that at τ ¼ 0, Tð0Þ ¼ Θð0Þ ¼ Fð0Þ ¼ 0.
The substitution of t ¼ ðω=ω0Þτ þ aT in Eq. (50) simply

results in the relationT ¼ Cτ, whereC is a constant given by

C ¼ 1

A2
0

ðE1 − 2uω cosαÞ; ðA1Þ

where E ¼ E0 þ aE1 and we recall that E0 ¼ A2
0=N0.

Next, Eq. (51) with r ¼ r0 implies that

K1 ¼
2r20
N0

ðE1 − ω cosαÞ; ðA2Þ

where K ¼ K0 þ aK1 and we recall that K0 ¼ r40ω
2.

To linear order in a, Eq. (52) reduces to

sin2θ

�
dθ
dτ

�
2

¼ ðω2 þ ar−40 ~KÞsin2θ − ω2cos2α

− 2
aω
r20

cos αΦ1; ðA3Þ

where

~K ¼ K1 þ 2
r20
N0

A2
0ω cos α; ðA4Þ

Φ ¼ Φ0 þ aΦ1 and Φ0 ¼ r20ω cos α. In Eq. (A3), we
substitute θ ¼ θ þ aΘðτÞ. It proves useful to introduce
sin θΘ ≔ D; then, after some algebra, we get

r20ω sin α cos η

�
dD
dτ

þ ω tan ηD

�

¼ ω cos αΦ1 −
1

2r20
~Ksin2θ: ðA5Þ

This equation has the solution

D ¼ D0τ cos η; ðA6Þ

where

~K cos α ¼ 2r30ωΦ1; ~K sin α ¼ −2r40ωD0: ðA7Þ

Finally, we substitute ϕ ¼ ϕþ aF in Eq. (53). The
introduction of

F ¼ 2ωω0τ þ
L

sin2 θ
ðA8Þ

leads to much simplification. We find that

L ¼ 1

r20
Φ1τ: ðA9Þ

Putting all these results together, we see that we have the
solution for the orbit, but of the three unknown constants
E1, Φ1 and K1, only two are determined. To find the last
remaining relation, we must go back to the geodesic
equation Dλμ0̂=dτ ¼ 0, namely,

d2xμ

dτ2
þ Γμ

αβ

dxα

dτ
dxβ

dτ
¼ 0; ðA10Þ

where xμ ¼ ðt; r; θ;ϕÞ in Boyer-Lindquist coordinates.
For r ¼ r0, the radial component of the geodesic equation
reduces to
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�
dθ
dτ

�
2

þ sin2θ

�
dϕ
dτ

�
2

¼ ω2 þ 2aωω0ðC − ω cos αÞ:

ðA11Þ

Substituting our solution in this equation, we find, after
much algebra, that

D0 ¼ −ω0ðC − 3ω cos αÞ sin α: ðA12Þ

With this additional equation, the spherical orbit is fully
determined and we recover Eqs. (90) and (91).

APPENDIX B: CURVATURE OF KERR
SPACETIME AS MEASURED BY

STATIC OBSERVERS

It turns out that the curvature of the Kerr field can be
represented by

E ¼ E

2
64
−2 0 0

0 1 0

0 0 1

3
75; H ¼ H

2
64
−2 0 0

0 1 0

0 0 1

3
75; ðB1Þ

with respect to the canonical Petrov tetrad of the Kerr
field [35]. Here,

Eþ iH ¼ M
ðrþ ia cos θÞ3 : ðB2Þ

The Kerr field is of type D in the Petrov classification and
this accounts for the “parallelism” between the gravito-
electric and gravitomagnetic components of its curvature in
Eq. (B1). To elucidate this feature of the Kerr spacetime
further, it is interesting to study the curvature of the Kerr
field as measured by the static family of accelerated
observers with the adapted frame

e0̂ ¼
1ffiffiffiffiffiffiffiffi−gtt

p ∂t; e1̂ ¼
1ffiffiffiffiffiffi
grr

p ∂r;

e2̂ ¼
1ffiffiffiffiffiffi
gθθ

p ∂θ; e3̂ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gϕϕ −
g2tϕ
gtt

r �
−
gtϕ
gtt

∂t þ ∂ϕ

�
;

ðB3Þ

where the tetrad axes are primarily along the Boyer-
Lindquist coordinate directions. We recall that the Kerr
metric (13) is given by −ds2 ¼ gμνdxμdxν; that is,

−
gtϕ
gtt

¼ −2
Jr

Σ − 2Mr
sin2θ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gϕϕ −
g2tϕ
gtt

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣΔ

Σ − 2Mr

r
sin θ;

ffiffiffiffiffiffi
−g

p ¼ Σ sin θ: ðB4Þ

We assume that θ ≠ 0; π. Moreover, static observers only
exist in the exterior Kerr spacetime outside the stationary
limit surface given by

Σ − 2Mr ¼ Δ − a2 sin2 θ ¼ 0: ðB5Þ

With respect to these static observers, the nonvanishing
components of the tidal matrix are given by

E1̂ 1̂ ¼ −2E
Δþ 1

2
a2sin2θ

Δ − a2sin2θ
;

E1̂ 2̂ ¼ −3a sin θH
Δ1=2

Δ − a2sin2θ
;

E2̂ 2̂ ¼ E
Δþ 2a2sin2θ
Δ − a2sin2θ

;

E3̂ 3̂ ¼ E; ðB6Þ

where

E ¼ Mrðr2 − 3a2cos2θÞ
Σ3

;

H ¼ −
Mað3r2 − a2cos2θÞ cos θ

Σ3
: ðB7Þ

Moreover, the nonzero elements of the gravitomagnetic
part of the Weyl curvature are given by

H1̂ 1̂ ¼ −2H
Δþ 1

2
a2sin2θ

Δ − a2sin2θ
;

H1̂ 2̂ ¼ 3a sin θ E
Δ1=2

Δ − a2sin2θ
;

H2̂ 2̂ ¼ H
Δþ 2a2sin2θ
Δ − a2sin2θ

;

H3̂ 3̂ ¼ H: ðB8Þ

These same electric and magnetic components of the
curvature tensor given by Eqs. (B6) and (B8) were
presented by us in a rather different context in
Appendix B of Ref. [36]. Comparing the results given
here with those in Ref. [36], we note that the sign of the
expression for E1̂ 2̂ should be changed in our previous work;
moreover, similar sign errors have occurred there in the
magnetic components of curvature that must be corrected.
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