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We continue our study on corrections from canonical quantum gravity to the power spectra of
gauge-invariant inflationary scalar and tensor perturbations. A direct canonical quantization of a
perturbed inflationary universe model is implemented, which leads to a Wheeler-DeWitt equation.
For this equation, a semiclassical approximation is applied in order to obtain a Schrödinger equation
with quantum-gravitational correction terms, from which we calculate the corrections to the power
spectra. We go beyond the de Sitter case discussed earlier and analyze our model in the first slow-
roll approximation, considering terms linear in the slow-roll parameters. We find that the dominant
correction term from the de Sitter case, which leads to an enhancement of power on the largest
scales, gets modified by terms proportional to the slow-roll parameters. A correction to the tensor-to-
scalar ratio is also found at second order in the slow-roll parameters. Making use of the available
experimental data, the magnitude of these quantum-gravitational corrections is estimated. Finally,
the effects for the temperature anisotropies in the cosmic microwave background are qualitatively
obtained.
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I. INTRODUCTION

The search for a theory of quantum gravity will only be
successful if one eventually finds a way to test the candidate
theories by experiment or observation [1,2]. Because of the
extremely high energies at which quantum-gravitational
effects are expected to be strong, many researchers have
looked for features of quantum-gravitational origin in the
anisotropies of the cosmic microwave background (CMB);
see, for example, [3–16]. These anisotropies are thought to
originate during the inflationary phase of the primordial
universe from quantum fluctuations of the metric and the
scalar inflaton field. Hence, they are in a sense already a
consequence of the quantum nature of space-time and thus
an effect of quantum gravity. In the following we derive the
corrections that arise from quantizing the Universe as a
whole in the canonical formalism that leads to the Wheeler-
DeWitt equation.
One way to obtain corrections to the power spectra of

the inflationary scalar and tensor perturbations, which lead
to the CMB anisotropies, is to perform a semiclassical
approximation of the Wheeler-DeWitt equation [17]. This
procedure leads to a Schrödinger equation with quantum-
gravitational correction terms, which can be used to
calculate the corrected power spectra. This was analyzed
for a simple model containing only non-gauge-invariant

perturbations of a scalar field in [3–5]. An alternative
semiclassical approximation was presented in [18] and was
used to calculate CMB corrections in [6–11]. The results of
both approaches were essentially the same, with differences
only in the numerical factors.
We have previously studied the corrections to the power

spectra of gauge-invariant scalar and tensor perturbations
and have made explicit calculations for the de Sitter case
[19]. Here, we shall extend our analysis and use a generic
slow-roll approximation that is compatible with all obser-
vational data obtained so far and which encompasses a
wide range of inflaton potentials.
Our paper is organized as follows. In Sec. II, we

summarize the quantization procedure and the semi-
classical approximation. This leads to the equations we
use in Sec. III to obtain general expressions for the power
spectra without and with quantum gravity corrections.
In Sec. IV, we introduce the slow-roll approximation, and
in Sec. V we calculate the corresponding uncorrected
power spectra. Section VI represents the main part of
the paper; here, we calculate the slow-roll power spectra
with the quantum-gravitational corrections. In Sec. VII,
we derive from this the corrections to the spectral index,
to its running, and to the tensor-to-scalar ratio. We also
comment on the observability of the calculated effects
and compute the correction for the CMB temperature
anisotropies. Finally, in Sec. VIII, we summarize and
perform an outlook. We also compare our results with the
results obtained in [11].

*david.brizuela@ehu.eus
†kiefer@thp.uni‑koeln.de
‡m.kraemer@wmf.univ.szczecin.pl

PHYSICAL REVIEW D 94, 123527 (2016)

2470-0010=2016=94(12)=123527(16) 123527-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.123527
http://dx.doi.org/10.1103/PhysRevD.94.123527
http://dx.doi.org/10.1103/PhysRevD.94.123527
http://dx.doi.org/10.1103/PhysRevD.94.123527


II. QUANTIZATION AND SEMICLASSICAL
APPROXIMATION OF A PERTURBED

INFLATIONARY UNIVERSE

Here and in the next section, we present a brief self-
contained summary of our earlier results from [19]. We
model an inflationary universe as a flat Friedmann-
Lemaître-Robertson-Walker (FLRW) space-time plus fluc-
tuations. The matter content is supposed to be a massive
scalar inflaton field ϕ with potential VðϕÞ, and a vanishing
cosmological constant is assumed. For convenience, we
will use conformal time η, which is defined in terms of the
cosmic time t and the scale factor aðtÞ by dη=dt ¼ a−1.
Furthermore, by introducing four space-time functions A,
B, ψ , E to describe the scalar perturbations, as well as the
symmetric spatial tensor hij to encode the tensorial degrees
of freedom, the metric of the FLRW space-time plus
fluctuations reads (see, for example, [20,21])

ds2 ¼ a2ðηÞf−ð1 − 2AÞdη2 þ 2ð∂iBÞdxidη
þ ½ð1 − 2ψÞδij þ 2∂i∂jEþ hij�dxidxjg: ð1Þ

The additional scalar perturbations φðη;xÞ of the field ϕ
can be combined with the scalar metric perturbations to
construct a master gauge-invariant quantity called the
Mukhanov-Sasaki variable [20,21]:

vðη;xÞ ≔ a

�
φþ ϕ0

ℋ
ðAþ 2ℋðB − E0Þ þ ½B − E0�0Þ

�
; ð2Þ

where we have indicated the derivative with respect to η
with a prime and used the definition ℋ ≔ a0=a.
We denote the Fourier transform of (2) as vk and also

introduce the Fourier-transformed perturbation variable of
the gauge-invariant tensor perturbations hij with polariza-
tion λ ∈ fþ;×g as

vðλÞk ≔
ahðλÞkffiffiffiffiffiffiffiffiffiffiffi
16πG

p : ð3Þ

We note that an important feature in the definition of these
variables is the rescaling with respect to a.
The action S for our perturbed inflationary universe then

takes the form

S ¼ 1

2

Z
dη

�
L3

�
−

3

4πG
ða0Þ2 þ a2ðϕ0Þ2 − 2a4VðϕÞ

�

þ 1

L3

X
k

½v0kv�k0 þ Sω2
kvkv

�
k�

þ 1

L3

X
λ¼þ;×

X
k

h
vðλÞ0k vðλÞ�0k þ T

ω2
kv

ðλÞ
k vðλÞ�k

i�
: ð4Þ

Here, we have introduced the “frequencies” Sω and
Tω by

Sω2
kðηÞ ≔ k2 −

z00

z
; Tω2

kðηÞ ≔ k2 −
a00

a
; ð5Þ

where z is defined as z ≔ aϕ0=ℋ.
In order to avoid the infinity arising from the volume

integral of the action, it is necessary to introduce a
maximum length scale L, which can be thought of as
the maximum size of the universe under consideration (see
e.g. the Appendix of [22]). We will later have to specify a
value for L when comparing our results to observations;
however, up to that point it is possible to remove L from the
notation by applying the following redefinitions [9,19]:

anew ¼ aoldL; ηnew ¼ ηold
L

;

knew ¼ koldL; vnew ¼ vold
L2

: ð6Þ

Note that, after these rescalings, a obtains the dimension of
a length, whereas η, k, and vk are dimensionless.
In order to perform an entirely consistent quantization,

one should use a real set of variables instead of the complex
vk variables. Such real variables can be constructed from
a double copy of the complex variables and the wave
function; see, for instance, [23]. Nonetheless, since such a
redefinition will not influence our calculations later on, we
will not introduce these new variables and thus treat vk as if
it were real in order to keep our presentation brief and
concise.
After a canonical quantization [1] of (4) and choosing a

product ansatz for the full wave function, we end up with a
Wheeler-DeWitt equation of the following form, for each
mode k and for both the scalar and tensor perturbations,

1

2

�
e−2α

�
1

m2
P

∂2

∂α2 −
∂2

∂ϕ2
þ 2e6αVðϕÞ

�

−
∂2

∂v2k þ ω2
kðηÞv2k

�
Ψkðα;ϕ; vkÞ ¼ 0: ð7Þ

We have combined the notation for the scalar and tensor
modes and thus removed the superscripts S, T and (λ).
We also have set (besides c ¼ 1) ℏ ¼ 1 and introduced the
dimensionless quantity α ≔ ln ða=a0Þ, where a0 is a refer-
ence scale factor. For simplicity, we will not write out this
reference scale in the following (or, equivalently, a0 ¼ 1
will be imposed), but it is implicitly understood that a factor
a0 is associated with every factor of eα. We have also
defined a rescaled Planck mass mP in order to incorporate
several numerical prefactors,

m2
P ≔

3

4πG
: ð8Þ

We shall use m2
P as the parameter with respect to which

the semiclassical approximation of (7) is carried out [3,17].
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For this purpose, ϕ has to be rescaled to the dimensionless
variable

~ϕ ≔ m−1
P ϕ: ð9Þ

More precisely, the reason behind this rescaling is that we
will subsequently perform an expansion in inverse powers
of mP, and in order to obtain the correct classical back-
ground equations at first order in that expansion, it is
necessary that the first two terms in square brackets of (7)
have the same power ofmP. In any case, once the expansion
is made, we will revert and provide all expressions in terms
of ϕ.
The approximation is then performed by expanding

the wave function Ψk using the functions Siðα; ~ϕ; vkÞ,
i ¼ 0; 1; 2;…, as follows:

Ψk ¼ exp
h
iðm2

PS0 þm0
PS1 þm−2

P S2 þ…Þ
i
: ð10Þ

After inserting this WKB-type ansatz into (7), the terms
containing a certain power of mP are collected, and their
sum is set equal to zero.
At order m2

P, we obtain the Hamilton-Jacobi equation of
the minisuperspace background,

−
�∂S0
∂α

�
2

þm2
P

�∂S0
∂ϕ

�
2

þ 2e6α

m2
P
VðϕÞ ¼ 0: ð11Þ

The Planck mass occurs explicitly here because the
expansion in (7) is performed in the form of the equation
using ~ϕ instead of ϕ.
At the next order, m0

P, it is possible to write the
corresponding equation for S1 as a Schrödinger equation

for a related wave function ψ ð0Þ
k in the following way,

Hkψ
ð0Þ
k ¼ i

∂
∂η ψ

ð0Þ
k ; ð12Þ

where the conformal time is defined in terms of the
minisuperspace variables by

∂
∂η ≔ e−2α

�
−
∂S0
∂α

∂
∂αþm2

P
∂S0
∂ϕ

∂
∂ϕ

�
; ð13Þ

and the perturbative Hamiltonian operator is given as
follows,

Hk ≔ −
1

2

∂2

∂v2k þ 1

2
ω2
kðηÞv2k: ð14Þ

The information at the next order,m−2
P , can be encoded in a

wave function ψ ð1Þ
k , related to the function S2, which obeys

the following corrected Schrödinger equation:

i
∂
∂η ψ

ð1Þ
k ¼ Hkψ

ð1Þ
k −

ψ ð1Þ
k

2m2
Pψ

ð0Þ
k

�ðHkÞ2
V

ψ ð0Þ
k

þ i
∂
∂η

�
Hk

V

�
ψ ð0Þ
k

�
: ð15Þ

Here, we have defined an auxiliary potential as

Vða;ϕÞ ≔ 2a4

m2
P
VðϕÞ; ð16Þ

which has the dimension of a length squared.
In summary, the most important relations of this section

are the two wave equations (12) and (15). The former one
describes quantum fluctuations evolving on a classical
(FLRW) background space-time, while the latter one also
encodes corrections arising from the quantum behavior of
that background. The aim of this paper is thus to solve these
two equations with relevant initial conditions in order to
obtain the power spectra with quantum-gravitational cor-
rections for inflationary perturbations. In the next section,
the ansatz to be used for such a purpose is described, as
well as the explicit form of the power spectra.

III. GAUSSIAN ANSATZ AND EXPRESSIONS
FOR THE POWER SPECTRA

We use a Gaussian ansatz for both the uncorrected
Schrödinger equation (12) and the corrected one (15), with
the normalization factor Nð0;1Þ

k ðηÞ and the inverse Gaussian

widths Ωð0;1Þ
k ðηÞ [19],

ψ ð0;1Þ
k ðη; vkÞ ¼ Nð0;1Þ

k ðηÞe−1
2
Ωð0;1Þ

k ðηÞv2k : ð17Þ

Here, and in the following, the superscript (0) stands for
the uncorrected case and (1) for the corrected case. As will
be shown below, in order to obtain the power spectra for
the scalar and tensor perturbations, we have to find the

solutions for Ωð0;1Þ
k . For the uncorrected Schrödinger

equation, we have to solve

iΩð0Þ0
k ðηÞ ¼ ðΩð0Þ

k ðηÞÞ2 − ω2
kðηÞ; ð18Þ

while for the corrected Schrödinger equation, we have to
find a solution to

iΩð1Þ0
k ðηÞ ¼ ðΩð1Þ

k ðηÞÞ2 − ~ω2
kðηÞ: ð19Þ

In this last expression the corrected frequencies ~ωk have
been defined as follows:

~ω2
k ≔ ω2

k −
1

2m2
PV

Re½ð3Ωð0Þ
k − iðlnVÞ0Þðω2

k − ðΩð0Þ
k Þ2Þ

þ 2iωkω
0
k�: ð20Þ
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As is explicitly written in this definition, in this paper we
will only consider the real part of the correction terms for
the frequencies since the imaginary part tends to exhibit
unphysical behavior, in particular, unitarity violation. The
presence of this term can be traced back to the fact that
the starting point is the Wheeler-DeWitt equation, not the
Schrödinger equation. Its treatment is subtle and not fully
understood. Such a term can be relevant for calculating the
probability of cosmological instabilities [24], but we do not
expect it to play a role in the corrections of the power
spectrum. For a more detailed discussion about this point,
we refer the reader to [19].
Since the equation for Ωð1Þ

k is nonlinear, it is reasonable

to linearize it around the background solution Ωð0Þ
k by

defining ~Ωð1Þ
k ≔ Ωð1Þ

k −Ωð0Þ
k . After neglecting the quadratic

term, one obtains the following linear equation:

i ~Ωð1Þ0
k ¼ 2Ωð0Þ

k
~Ωð1Þ
k − ð ~ω2

k − ω2
kÞ: ð21Þ

Since it is usually possible to find an analytical solution

for Ωð0Þ
k , one is then left with only a linear equation for

~Ωð1Þ
k , which is easier to solve than the full nonlinear

equation (19).
Apart from the equations themselves, another important

key aspect of the analysis is to choose appropriate and
meaningful initial conditions. For the uncorrected case, as it
is usually done in quantum field theory, the Bunch-Davies
vacuum will be chosen, which in this setting means

Ωð1Þ
k ¼ k. The case of an initial non-Bunch-Davies state

was recently discussed in [25]. Moreover, as we have
discussed in [19], the most natural initial conditions for
the corrected case should be those that best resemble the
properties of the Bunch-Davies vacuum. Namely, when the
mode is well inside its Hubble radius, it should be
oscillating with a fixed constant frequency and amplitude.
This is achieved by choosing

ReðΩð1Þ
k Þ2 ¼ Reð ~ω2

kÞ;
ImðΩð1Þ

k Þ ¼ 0: ð22Þ

Since the imaginary part of the corrected frequencies has
been neglected, these two relations can simply be written as

Ωð1Þ
k ¼ ~ωk. For the linearized function the above conditions

are rewritten as ~Ωð1Þ
k ¼ k − ~ωk. Therefore, the latter is

the condition that will be used as initial data at early
times (η → −∞).
The power spectrum for the scalar perturbations includ-

ing the quantum-gravitational corrections is given by

Pð1Þ
S ðkÞ ¼ 4πG

a2ϵ
k3

2π2
1

2ReSΩð1Þ
k

≈ Pð0Þ
S ðkÞf1þ ΔSg; ð23Þ

where ϵ is the slow-roll parameter defined below in (28),

and Pð0Þ
S ðkÞ is the usual scalar power spectrum defined by

inserting Ωð0Þ
k instead of Ωð1Þ

k into this expression. The
quantum-gravitational effects are thus encoded in the term

ΔS ≔ −
ReS ~Ωð1Þ

k

ReSΩð0Þ
k

: ð24Þ

This ratio has to be computed in the limit of super-Hubble
scales (or late times), given by kη → 0−, when the pertur-
bations get “frozen.”
The power spectrum for the tensor perturbations is,

consequently, obtained by

Pð1Þ
T ðkÞ ¼ 64πG

a2
k3

2π2
1

2ReTΩð1Þ
k

≈ Pð0Þ
T ðkÞf1þ ΔTg: ð25Þ

Here, the same comment as in the scalar case about taking
the super-Hubble scale limit for ReΩk applies, and the
corrections are given by the term

ΔT ≔ −
ReT ~Ωð1Þ

k

ReTΩð0Þ
k

: ð26Þ

Finally, the corrected tensor-to-scalar ratio rð1Þ is defined as

rð1Þ ≔
Pð1Þ

T ðkÞ
Pð1Þ

S ðkÞ
≈ rð0Þð1þ ΔT − ΔSÞ; ð27Þ

where rð0Þ is the ratio found at the order of approximation
that corresponds to quantum field theory on a fixed, curved
background. In the de Sitter case, since S ~ωk ¼ T ~ωk, both
corrections are the same,ΔT ¼ ΔS, and thus in our previous
work [19] there appeared no correction to this quantity
at the considered order of approximation. This will be
different here.
To recap, note that the task of obtaining quantum-

gravitational corrections to the scalar and tensor power
spectra reduces to solving Eq. (21) with initial data (22).
Once this is done, one only needs to compute the corre-
sponding power spectra using the relations (23) and (25).

IV. THE SLOW-ROLL APPROXIMATION

In this section the well-known slow-roll approximation
is described in order to clarify and set up the notation. In
addition, several physical quantities, which appear in the
key equations of motion (18) and (21), will be explicitly
given up to linear order in the slow-roll parameters, which
we will define below.
Using the Hubble parameter H ¼ _a=a, we can define

the first slow-roll parameters ϵ and δ [see e.g. Eqs. (8.37)
and (8.38) in [21]],
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ϵ ≔ −
_H
H2

¼ 1 −
ℋ0

ℋ2
; ð28Þ

δ ≔ ϵ −
_ϵ

2Hϵ
¼ −

ϕ̈

H _ϕ
: ð29Þ

In terms of the slow-roll parameter ϵ, the equation _a ¼ Ha
and the Hamiltonian constraint equation can be written as
follows:

ä
a
¼ ð1 − ϵÞH2; ð30Þ

H2

�
1 −

ϵ

3

�
¼ 2

m2
P
VðϕÞ; ð31Þ

or, using the conformal time η,

a00

a
¼ ð2 − ϵÞℋ2; ð32Þ

ℋ2

�
1 −

ϵ

3

�
¼ 2a2

m2
P
VðϕÞ: ð33Þ

No approximation has been assumed yet, so these relations
are exact.
The first order of our approximation scheme employs

the function S0, which satisfies the Hamilton-Jacobi equa-
tion (11) of the background. One cannot write down, of
course, a general solution of (11) for general ϵ and thus for
general potential VðϕÞ. However, it is possible to recover
(31) from the Hamilton-Jacobi equation (11) in the slow-
roll approximation, in which terms quadratic and higher of
ϵ and δ are neglected. At this level of approximation, we
find

S0 ¼ −
a3

mP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

VðϕÞ
3 − ϵðϕÞ

s
; ð34Þ

where

ϵðϕÞ ¼ m2
P

12V2

�∂V
∂ϕ

�
2

: ð35Þ

This is a well-known expression for ϵ; see, for example,
Eq. (8.49) in [21].1 Note that the sign of S0 is not fixed by
(11), and it is chosen such that the flux of time (13) points
in the direction of the expansion of the universe.
Let us now introduce in more detail the slow-roll

approximation. It essentially consists in assuming

_ϕ2 ≪ V; ϕ̈ ≪ 3H _ϕ: ð36Þ

It can be shown that this is equivalent to assuming that the
slow-roll parameters ϵ and δ are small: ϵ ≪ 1 and jδj ≪ 1.
If one assumes those to be vanishing, one would recover the
de Sitter case analyzed in our previous paper [19]. Since the
pure de Sitter case is often too restrictive to make contact
with observations, we shall now consider the first-order
slow-roll approximation, which assumes ϵ and δ to be small
but nonvanishing, and drop quadratic terms in those.
In order to solve the equations presented in the previous

section in this approximation, we need to express the
frequencies (5) and (20), as well as the potential (16), in
terms of the conformal time η and the slow-roll parameters
ϵ and δ.
It is well known (see e.g. [21]) that, in this approxima-

tion,2 the frequencies of the modes can be written as

Sω2
kðηÞ ¼ k2 −

2þ 3γ

η2
þOð2Þ; ð37Þ

Tω2
kðηÞ ¼ k2 −

2þ 3ϵ

η2
þOð2Þ; ð38Þ

whereOð2Þ stands for terms quadratic in ϵ and δ and where
we have defined, for later convenience, the combination

γ ≔ 2ϵ − δ: ð39Þ

Note that setting δ ¼ ϵ, or equivalently γ ¼ ϵ, converts the
equation for scalar perturbations into the one for tensor
perturbations. Therefore, we will perform all calculations
only for the scalar perturbations and obtain the results for
the tensor perturbations using this relation at the end.
Making use of the Hamiltonian constraint as written in

(31), it is possible to write the rescaled potential (16) as

V ¼ a4H2

�
1 −

ϵ

3

�
: ð40Þ

In order to write this expression explicitly in terms of the
conformal time and the slow-roll parameters, we use the
definition of the Hubble factor in terms of the conformal
time to write

η ¼
Z

da
a2H

: ð41Þ

Integrating this relation by parts twice, we get

η ¼ −
ð1þ ϵÞ
aH

þOð2Þ: ð42Þ

1The different prefactor in this expression originates from our
definition (8) of the rescaled Planck mass mP.

2Note in this context that the quantity z used in (5) can also be
written as z ¼ a

ffiffiffi
ϵ

p
.
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Now we can express the Hubble parameter as H ¼ a0=a2
and integrate this equation, which leads to

a ¼ C
ð−ηÞ1þϵ þOð2Þ; ð43Þ

with an integration constant C. The Hubble parameter then
takes the form

H ¼ H0

�
η

η0

�
ϵ

þOð2Þ ¼ H0

�
1þ ϵ ln

�
η

η0

��
þOð2Þ;

ð44Þ
in which the constant C has been replaced by

C ¼ ð1þ ϵÞ ð−η0Þ
ϵ

H0

; ð45Þ

H0 being the value of the Hubble parameter at η ¼ η0.
Physically, H0 defines the de Sitter space-time we are
considering as our reference. Below we will have to choose
a value for H0 since the results will depend on it. The only
physically meaningful point that exists in the evolution of
different modes is when they cross the Hubble horizon.
Therefore, we will choose H0 as the value of the Hubble
factor at the Hubble-scale exit, that is, H0 ¼ Hk, with
Hk ¼ k=a. Following relation (42), this implies choosing
η0 ¼ −1=k on the right-hand side of (44). (Note that in this
equation, at the level of approximation chosen, η0 is only
meaningful at order ϵ0.) This choice makes both H0 and η0
become k dependent, but since the evolution of every k-
mode is independent, there is no problem in assuming that
they experience a different reference de Sitter space-time.
As a side remark, note that the present approximation is

valid during times η which obey

jη0je−1=ϵ ≪ jηj ≪ jη0je1=ϵ: ð46Þ

Due to the smallness of ϵ, this time range is very large.
Nonetheless, when considering the asymptotic value for
different physical objects as η → −∞, one should take into
account that in this limit the approximation breaks down.
Finally, making use of all above results, the potential V

can be written in the following way:

V ¼ ðaHÞ4
H2

�
1 −

ϵ

3

�

¼ 1

H2
kη

4ðkηÞ2ϵ
�
1þ 11ϵ

3

�
þOð2Þ; ð47Þ

where η0 has already been replaced by its value at horizon
crossing. This expression can then be used in (20) to obtain
the explicit form of the corrected frequencies at first order
in the slow-roll parameters. In this way, we can already
write our main equations, (18) and (21), at this level of
approximation.

V. UNCORRECTED POWER SPECTRA

In this section, we will obtain the solution to Eq. (18) in
order to construct the power spectra for scalar and tensor
perturbations at the level of approximation that corresponds
to the usual formalism of quantum field theory on classical
background space-times. In [23], one can find a detailed
computation in a formalism very similar to the present one.
Considering for now only scalar perturbations, the

solution to Eq. (18) with Sω2
k given by (37) can be written

as follows:

SΩð0Þ
k ðηÞ ¼ −i

Syð0Þ0k ðηÞ
Syð0Þk ðηÞ

; ð48Þ

where the mode functions Syð0Þk can be expressed in terms of
the Bessel functions Jν:

Syð0Þk ¼ ð−kηÞ1=2½ck;1J−ðγþ3=2Þð−kηÞ
þ ck;2Jγþ3=2ð−kηÞ�: ð49Þ

In order to obtain the Bunch-Davies vacuum for η → −∞,
and choosing the usual normalization of the Wronskian

Syð0Þ0k
Syð0Þ�k − Syð0Þ0�k

Syð0Þk ¼ i; ð50Þ

it is necessary to set

ck;1 ¼ −ck;2e−iπðγþ3=2Þ;

ck;2 ¼ −
i
2

ffiffiffi
π

k

r
e−iπ=4þiπðγþ3=2Þ=2

sin½πðγ þ 3=2Þ� : ð51Þ

In the super-Hubble limit ð−kη → 0Þ, the real part of
SΩð0Þ

k ðηÞ is given by

ReSΩð0Þ
k ðηÞ ¼ kπ2−2ð1þγÞ

Γ2ðγ þ 3=2Þ ð−kηÞ
2ð1þγÞ: ð52Þ

Taking the inverse of this function and linearizing it in
terms of the slow-roll parameters, we get the standard
result for the power spectrum of the scalar perturbations
(see e.g. [21], p. 498):

Pð0Þ
S ðkÞ ¼ GH2

k

πϵ
½1 − 2ϵþ γð4 − 2γE − 2 lnð2ÞÞ�; ð53Þ

where γE ≃ 0.5772 is the Euler-Mascheroni constant
and the result should be evaluated at the horizon exit of
the mode.
Up to a global multiplicative factor, the power spectrum

for the tensor modes can be immediately obtained from the
last expression by setting γ ¼ ϵ for the terms inside the
square brackets, and it reads

Pð0Þ
T ðkÞ ¼ 16GH2

k

π
½1 − 2ϵþ ϵð4 − 2γE − 2 lnð2ÞÞ�: ð54Þ
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In the de Sitter case, expression (48) simplifies consid-
erably to

dSΩð0Þ
k ðηÞ ≔ k3η2

1þ k2η2
þ i
ηð1þ k2η2Þ : ð55Þ

[This corresponds to Eq. (129) in [19].]
Given the frequent appearance of the factor −kη, we now

define the quantity

ξ ≔ −kη; ð56Þ
which allows us to isolate the k-dependence of this
expression:

dSΩð0Þ
k ðξÞ ≔ k

�
ξ2

1þ ξ2
−

i
ξð1þ ξ2Þ

�
: ð57Þ

Note that the SΩð0Þ
k , whose real part is given in (52), only

depends on the combination γ of the slow-roll parameters.
For later convenience, we linearize it around its de Sitter
counterpart (57),

SΩð0Þ
k ¼ dSΩð0Þ

k þ γΩð0Þ
γ;k: ð58Þ

The term linear in the slow-roll parameters has the
following form:

Ωð0Þ
γ;kðξÞ ≔ k

�
2ξ3e2iξðπ − iEið−2iξÞÞ − ξ2 − 2iξ − 1

iξðξ − iÞ2
�
;

ð59Þ

Ei being the exponential integral function. In spite of the

appearance of this special function, this form of SΩð0Þ
k is

much more manageable than the definition above in terms
of derivatives of Bessel functions.
From this point on, we will skip the index k all along in

order to simplify the notation.

VI. CORRECTED POWER SPECTRA

A. The corrected frequencies

Inserting the form of the potential (47) into the definition
(20) and linearizing in the slow-roll parameters, we obtain
the following form for the corrected frequencies for the
scalar sector:

~ω2
S ¼ ω2

S þ
�
H2

k

m2
Pk

�
ð ~ω2

dS þ ϵ ~ω2
ϵ þ γ ~ω2

γ þOð2ÞÞ; ð60Þ

the classical frequencies ωS have been defined above in
(37), while the other terms stand for different quantum-
gravity corrections and are defined as follows:

~ω2
dS ≔

ξ4ðξ2 − 11Þ
2ðξ2 þ 1Þ3 ; ð61Þ

~ω2
ϵ ≔ −

ξ4

6ðξ2 þ 1Þ3 ½12ðξ
2 þ 1Þ þ ðξ2 − 11Þð11 − 6 ln ξÞ�;

ð62Þ

~ω2
γ ≔

ξ4

2ðξ2 þ 1Þ4 f2Cið2ξÞ½2ξð2ξ
6 − 9ξ4 þ 14ξ2 − 11Þ sinð2ξÞ − ð6ξ8 þ 10ξ6 þ 53ξ4 − 12ξ2 þ 11Þ cosð2ξÞ�

− 7ξ6 þ 21ξ4 − 89ξ2 þ 2ð2ξ6 − 9ξ4 þ 14ξ2 − 11Þξ cosð2ξÞðπ − 2Sið2ξÞÞ
þ ð6ξ8 þ 10ξ6 þ 53ξ4 − 12ξ2 þ 11Þ sinð2ξÞðπ − 2Sið2ξÞÞ þ 27g: ð63Þ

Since the difference between correction terms for the
frequencies of the tensorial and scalar modes is encoded in
the Ωð0Þ [see Eq. (20)], the corrected frequencies for the
tensor sector can be obtained directly from (60) by setting
γ ¼ ϵ. Note that, when written in terms of this dimension-
less time variable ξ, the only explicit dependence of the
corrected frequencies on k is encoded in the global factor
written in front of the quantum-gravity corrections in the
decomposition (60). Furthermore, Si and Ci are, respec-
tively, the sine and the cosine integral functions:

SiðxÞ ≔
Z

x

0

sin u
u

du; ð64Þ

CiðxÞ ≔ −
Z

∞

x

cos u
u

du: ð65Þ

Finally, the logarithmic term that appears in the definition
of ~ωϵ [see (62)] comes from the ϵ in the exponent in the
form of the potential (47). Note that the argument of this
logarithm should be ξ=ξ0, but since ξ0 is chosen as the
Hubble-scale exit time, it turns out that ξ0 ¼ −kη0 ¼ 1.
Let us comment now on the behavior of these corrected

frequencies in the limit of late and early times. At late times
η → 0−, or equivalently ξ → 0þ, it is possible to check by
direct computation that

~ω2
S ¼ k2 −

2þ 3γ

η2
þOðη4Þ: ð66Þ

As can be seen, all the quantum-gravity corrections dis-
appear in this limit. On the other hand, for the limit at early
times η → −∞ (ξ → ∞), one obtains that
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~ω2
S ¼ k2 þ H2

k

2km2
P

�
1þ 3

2
γ −

23

3
ϵþ 2ϵ ln ξ

�
þOð1=ξ2Þ:

ð67Þ

As commented in Sec. III, this last result will provide us
with the natural initial data for Ωð1Þ given in (22) as well
as for its linearized version ~Ωð1Þ, which is defined as
~Ωð1Þ ¼ k − ~ωS at ξ → ∞.

B. The linearized equation

In order to solve the linear equation (21) for ~Ωð1Þ, we
proceed in a similar way as in the decomposition (60) for
the corrected frequency. We split it into three different
functions, each of them corresponding to one kind of
correction:

~Ωð1Þ ≔
�
Hk

mPk

�
2

ð ~Ωð1Þ
dS þ ϵ ~Ωð1Þ

ϵ þ γ ~Ωð1Þ
γ Þ; ð68Þ

where the overall prefactor has been written for conven-
ience. Recalling that ~Ωð1Þ is defined as ~Ωð1Þ ¼ Ωð1Þ −Ωð0Þ

and that the natural initial data are given by Ωð1Þ ¼ ~ω, at
ξ → ∞, the initial data corresponding to different objects
defined above can be straightforwardly obtained by lin-
earizing the asymptotic behavior of the corrected frequency
[the square root of the right-hand side of (67)] on H2

k=m
2
P:

~Ωð1Þ
dS⟶ξ→∞

1

4
; ð69Þ

~Ωð1Þ
ϵ ⟶

ξ→∞
−

1

12
½23 − 6 ln ξ�; ð70Þ

~Ωð1Þ
γ ⟶

ξ→∞

3

8
: ð71Þ

In the case of ~Ωð1Þ
ϵ , due to the presence of the logarithmic

term, the limit turns out to be divergent. This is obviously
not a physical consequence of the quantum-gravity cor-
rections but an artifact of the slow-roll approximation
which, as mentioned in Sec. IV, is only valid for a large,
but finite, interval of time. Thus, in practice, the condition
(70) will have to be imposed for a large, but finite, value
of ξinitial ≫ 1.
In order to find the equations of motion for the different

~Ωð1Þ, it is enough to insert the form (68) into Eq. (21),
linearize everything in the slow-roll parameters, and collect
terms with the same slow-roll coefficient (either 1, ϵ, or γ).
Following this procedure, Eq. (21) is rewritten as three
different equations:

−i
d ~Ωð1Þ

dS

dξ
¼ 2

k
Ωð0Þ

dS
~Ωð1Þ
dS − ~ω2

dS; ð72Þ

−i
d ~Ωð1Þ

ϵ

dξ
¼ 2

k
Ωð0Þ

dS
~Ωð1Þ
ϵ − ~ω2

ϵ ; ð73Þ

−i
d ~Ωð1Þ

γ

dξ
¼ 2

k
Ωð0Þ

dS
~Ωð1Þ
γ þ 2

k
Ωð0Þ

γ ~Ωð1Þ
dS − ~ω2

γ ; ð74Þ

where Ωð0Þ
dS and Ωð0Þ

γ have been given above in Eqs. (57)

and (59). Equation (74) for ~Ωð1Þ
γ is coupled to ~Ωð1Þ

dS , whereas

Eq. (73) for ~Ωð1Þ
ϵ is independent of it. This is due to the

presence of the slow-roll parameter γ in SΩð0Þ in Eq. (58).
Note that, due to the definitions and decompositions we
have performed, in particular, (60) and (68), we have been
able to write our fundamental equation (21) as three
differential equations with initial data (69)–(71), which
do not depend on any parameter; they only depend on the
time variable ξ. Neither Hk nor mP appear in these
equations and also none of the slow-roll parameters.
Furthermore, we have written the equations in terms of
the time variable ξ, such that there is no explicit dependence
on k either. [Note that the explicit inverse of the k factor

that appears multiplying Ωð0Þ
dS and Ωð0Þ

γ in these equations
cancels exactly with their linear dependence on k; see
Eqs. (57)–(59)]. Therefore, the explicit dependence of the
result on the different parameters is analytically known. In
particular, one can already deduce that the correction for the
spectrum of the scalar perturbations ΔS defined in (24) will
have the following form:

ΔS ¼ H2
k

k3m2
P
½βdS þ ϵβϵ þ γβγ�; ð75Þ

with certain numerical factors βdS, βϵ, and βγ . These factors
are given by using the decompositions (58) and (68) in (75)
and linearizing in the slow-roll parameters,

βdS ¼ −k lim
ξ→0

�
Re ~Ωð1Þ

dS

ReΩð0Þ
dS

�
; ð76Þ

βϵ ¼ −k lim
ξ→0

�
Re ~Ωð1Þ

ϵ

ReΩð0Þ
dS

�
; ð77Þ

βγ ¼ k lim
ξ→0

�
ReΩð0Þ

γ Re ~Ωð1Þ
dS − ReΩð0Þ

dS Re ~Ω
ð1Þ
γ

ðReΩð0Þ
dS Þ2

�
: ð78Þ

Note again that all these are k-independent numbers. The
explicit k in front of the limit cancels out with the global k

factors in the expressions of ReΩð0Þ
dS and ReΩð0Þ

γ [see
Eqs. (57)–(59)].
The correction ΔT, corresponding to the tensorial sector,

can be obtained from the scalar one by imposing γ ¼ ϵ:
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ΔT ¼ H2
k

k3m2
P
½βdS þ ϵðβϵ þ βγÞ�: ð79Þ

Finally, the meaningful correction for the tensor-to-scalar
ratio r (27) will be given by the difference between
both:

ΔT − ΔS ¼
H2

k

k3m2
P
ðδ − ϵÞβγ; ð80Þ

where we have reintroduced the second slow-roll
parameter δ.
In this subsection we have already achieved the principal

goal of this paper: namely, obtaining the specific forms of
ΔS (75) and ΔT (79). The only issue left is to obtain the
values of the numerical coefficients (76)–(78). This will be
performed in the rest of the present section by solving the
three equations (72)–(74) above. For this purpose, except
for the de Sitter part, which is analytically solvable,
numerical simulations will have to be performed.

C. The de Sitter part βdS
By construction, the equation for the de Sitter part ~Ωð1Þ

dS is
the same as we found in our previous paper [19] [see
Eq. (144) there], and it can be analytically solved. We will
not repeat the whole computation here, but note that the
behavior of the solution at ξ → ∞ is given by

~Ωð1Þ
dS ¼ 1

4
þ Ce2iξ þOðlnðξ−2ÞÞ: ð81Þ

In order to impose the initial condition as given by (69)
and, in fact, to pick up the only nonoscillating solution, the
integration constant C must be chosen to be vanishing.
After analyzing the behavior of the solution at the super-
horizon limit, one can show that the quantum-gravity
correction term corresponding to the de Sitter part takes
the following specific value:

βdS ¼ 1

4e2
½3e4Eið−2Þ þ 9Eið2Þ − e2� ≈ 0.988; ð82Þ

cf. Eq. (147) in [19].

D. The ϵ part

The difficulty in solving this part lies in the presence of
the logarithmic term both in the source (62) and the
asymptotic limit (70). In fact, if one removes this term,
it is possible to solve Eq. (73) and obtain the value of βϵ
analytically. This analysis is presented in the Appendix, in
order to show that the presence of the logarithmic term,
even if it is divergent in both early-time (ξ → ∞) and late-
time (ξ → 0) limits, does not change the result drastically.
The complete Eq. (73) must be solved by numerical

methods. In order to impose the initial condition (70), one

needs to choose an initial large value of ξ ¼ ξinitial and
insert that value into the function

~Ωð1Þ
ϵ ðξinitialÞ ¼ −

1

12
½23 − 6 ln ξinitial�: ð83Þ

Note that it is very convenient to pick up different values for
ξinitial to check that the final result does not depend on it. In
particular, we have chosen ξinitial ¼ 106, 107, and 108. The

absolute difference between the various Ωð1Þ
ϵ ðξÞ, as com-

puted for those different values, is less than 10−6 during the
whole evolution (for any of the considered values of ξ),
which translates to a negligible difference of around 10−5 in

the value of βϵ. In fact, in Fig. 1 it is possible to see thatΩ
ð1Þ
ϵ

tends very quickly to its asymptotic value, which explains
the very weak dependence of the numerical solution on the
chosen value of ξinitial.
Finally, in order to numerically compute βϵ, we have

evaluated the expression that appears in its definition (77)
for a very small value of ξ ¼ 10−3, which leads to

βϵ ≈ −1.98: ð84Þ

Note that all the different Ω tend to vanish as ξ → 0; thus
one cannot numerically compute the limit (77) by evalu-
ating it at ξ ¼ 0. Nonetheless, in Fig. 2 the evolution of the
right-hand side of (77) (without the limit taken) has been
plotted, in order to show that the limit behaves smoothly
and is well defined.

E. The γ part

Equation (74) for ~Ωð1Þ
γ is the most intricate one. It is,

in particular, coupled to the equation for ~Ωð1Þ
dS . As in the

previous subsection, for the computation of βϵ, there seems
to be no way to write the solution analytically in terms of
special functions, and thus it is necessary to resort to a
numerical resolution. Nevertheless, the presence of the sine

FIG. 1. The evolution of Re ~Ωð1Þ
ϵ (continuous black line) and its

asymptotic value (red dashed line).
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and cosine integral functions in the source term (63) makes
it computationally highly demanding to deal with this
equation numerically for large values of their argument.
Thus, at early times (ξ ≫ 1), it will be very convenient to
consider instead their series expansion.
Therefore, we have applied the following procedure.

First, these two functions are replaced by their series
expansion in inverse powers of ξ up to 20th order in the
source term (63). Then, Eq. (74) is solved with this
approximated source term and by imposing the initial data
~Ωð1Þ
γ ¼ 3=8 for a very large initial time ξ ¼ ξinitial ≫ 1.

Next, the obtained numerical solution is used as initial data
at a still large, but smaller value, of ξ ¼ ξintermediate < ξinitial,
for Eq. (74) with the full form of its source term (63).
Finally, this latter equation is solved, and with this
numerical solution at hand, one can compute the expression
on the left-hand side of Eq. (78), whose limit as ξ → 0 will
define our quantity of interest βγ . As in the previous
subsection, this limit is numerically computed by evaluat-
ing the corresponding expression for a small value of ξ.
In order to check the robustness of this method, different

values for ξinitial and ξintermediate have been used. In par-
ticular, we have chosen ξinitial as 108, 109, and 1010, while
for ξintermediate the values 100, 400, and 800 have been
picked up. We find that the largest absolute difference
among values of Re ~Ωð1Þ

γ , as computed with the solution
corresponding to these different values, during the whole
evolution turns out to be smaller than 10−4. This is
translated to an absolute difference of a similar order for
βγ . In fact, a value of βγ ≈ 2.56 is found, and thus the error
due to assuming an approximate equation for early times is
very small.
The evolution of the real part of ~Ωð1Þ

γ is shown in Fig. 3,
in combination with its asymptotic value 3=8. Note that
~Ωð1Þ
γ ðξÞ is a nonoscillating solution and approaches its

asymptote from below very quickly. In Fig. 4, the evolution
of the relation that defines βγ [the right-hand side of relation
(78) without taking the limit] is shown in terms of ξ. As can

be seen clearly in the figure, its late-time limit behaves
smoothly and leads to the value

βγ ≈ 2.56: ð85Þ

VII. RESULTS AND OBSERVABILITY

In this section we will summarize our results and obtain
the explicit form of the different parameters of the power
spectrum, in particular, the spectral indices and their
running. We will also comment on the magnitude of the
obtained corrections and the possibility of observing them.
Finally, we will give the form of the correction for the Cl
coefficients used in the CMB data analysis.

A. Parameters of the power spectra

The main results of this paper are the corrected forms
of the power spectra for gauge-invariant scalar and tensor
modes:

Pð1Þ
S ðkÞ ¼ Pð0Þ

S ðkÞf1þ ΔSg; ð86Þ

FIG. 2. The evolution of the expression that defines βϵ [the
right-hand side of Eq. (77) without taking the limit] as a function
of ξ. FIG. 3. The evolution of Re ~Ωð1Þ

γ (black continuous line) and its
asymptotic value 3=8 (red dashed line).

FIG. 4. The evolution of the expression that defines βγ [the
right-hand side of Eq. (78) without taking the limit] as a function
of ξ.
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Pð1Þ
T ðkÞ ¼ Pð0Þ

T ðkÞf1þ ΔTg; ð87Þ

where Pð0Þ
S ðkÞ and Pð0Þ

T ðkÞ are the usual power spectra,
which can be obtained in the approximation of quantum
fields propagating on fixed cosmological backgrounds and
which are explicitly given in (53) and (54), respectively.
These correspond to the standard result usually derived by
other means (see e.g. [21]). The quantum-gravity correc-
tions are thus encoded in the ΔS (75) and ΔT (79) terms,
with the βdS, βϵ, and βγ computed, respectively, in (82),
(84), and (85). Explicitly inserting these numerical values
and replacing the auxiliary parameter γ defined in (39) by ϵ
and δ, the corrections to the power spectra read as follows:

ΔS ¼
H2

k

m2
P

�
k
k

�
3

ð0.988þ 3.14ϵ − 2.56δÞ; ð88Þ

ΔT ¼ H2
k

m2
P

�
k
k

�
3

ð0.988þ 0.58ϵÞ: ð89Þ

Here, we have reverted the rescaling applied in (6), and a
reference wave number k ¼ 1=L has been defined as the
inverse of the length scale introduced to regularize the
spatial integral.
Since the dependence of the quantum-gravity corrections

on the kwave numbers have been analytically obtained, it is
possible to derive the spectral indices and their runnings by
direct computation. We will use the usual parametrization
of the power spectra given by the following power-law
relation,

Pð1Þ
S ðkÞ ¼ AS

�
k
k�

�
nS−1þαS lnðk=k�Þ

; ð90Þ

Pð1Þ
T ðkÞ ¼ AT

�
k
k�

�
nTþαT lnðk=k�Þ

; ð91Þ

where higher-order terms in lnðk=k�Þ have been neglected
in the exponent, and the pivot scale k� has been introduced.
In this way, at a linear level in the slow-roll parameters, we
obtain for the scalar sector

nS − 1 ≔
d lnPð1Þ

S ðkÞ
d ln k

				
k¼k�

¼ 2δ − 4ϵ −
H2

k

m2
P

�
k
k�

�
3

× ½3βdS þ ϵð2βdS þ 3βϵ þ 6βγÞ − 3δβγ�

≈ 2δ − 4ϵ −
H2

k

m2
P

�
k
k�

�
3

ð2.96þ 11.40ϵ − 7.68δÞ;

ð92Þ

with the first two terms taken together being the usual first-
order approximation of the spectral index. In order to obtain
this result, the relation

d lnHk

d ln k
¼ −ϵ ð93Þ

has been used. Similarly, for the tensor sector, one
obtains

nT ≔
d lnPð1Þ

T ðkÞ
d ln k

				
k¼k�

¼ −2ϵ −
H2

k

m2
P

�
k
k�

�
3

½3βdS þ ϵð3βϵ þ 3βγ þ 2βdSÞ�

≈ −2ϵ −
H2

k

m2
P

�
k
k�

�
3

ð2.96þ 3.72ϵÞ: ð94Þ

Finally, one can also obtain the running of the spectral
indices,

αS ≔
dnS
d ln k

				
k¼k�

; ð95Þ

αT ≔
dnT
d ln k

				
k¼k�

; ð96Þ

by taking into account the dependence of the slow-roll
parameters on the wave number. In particular, up to second-
order terms we have

dϵ
d ln k

¼ 2ϵðϵ − δÞ; ð97Þ

dδ
d ln k

¼ 2ϵðϵ − δÞ − θ; ð98Þ

where the second-order slow-roll parameter θ is
defined as

θ ≔
_ϵ − _δ

H
: ð99Þ

In this way, one gets by direct computation the results

αS ¼ 4ϵðδ − ϵÞ − 2θ

þ 3H2
k

m2
P

�
k
k�

�
3

½3βdS þ ϵð4βdS þ 3βϵ þ 6βγÞ − 3δβγ�

≈ 4ϵðδ − ϵÞ − 2θ

þH2
k

m2
P

�
k
k�

�
3

ð8.89þ 40.12ϵ − 23.04δÞ; ð100Þ
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αT ¼ 4ϵðδ − ϵÞ

þ 3H2
k

m2
P

�
k
k�

�
3

½3βdS þ ϵð4βdS þ 3ðβϵ þ βγÞÞ�

≈ 4ϵðδ − ϵÞ þH2
k

m2
P

�
k
k�

�
3

ð8.89þ 17.08ϵÞ; ð101Þ

where only the first-order slow-roll terms have been kept in
the correction term. Note that the prefactors in the correc-
tion term for the runnings get larger than for the spectral
indices due to the fact that the usual parametrization (90)
and (91) is not a good fit to the obtained quantum-gravity
correction.
Let us finally also give the quantum-gravitational cor-

rection to the r-parameter (27). Since this correction is
given by (80), we obtain

rð1Þ ≈ 16ϵ

�
1þ 2.56

H2
k

m2
P

�
k
k

�
3

ðδ − ϵÞ
�
: ð102Þ

In most models δ − ϵ ¼ −_ϵ=2Hϵ < 0; thus, the correction
gives a small negative contribution to the scalar-to-tensor
ratio. Note that in the pure de Sitter case there is no
correction for this quantity, so it arises entirely from the
slow-roll part.

B. Estimation of the magnitude of the correction

In order to give an estimation of the magnitude of the
corrections for different quantities, one necessarily needs to
assume a specific value for the scale k ¼ 1=L. It seems
reasonable to understand this scale as an infrared cutoff and
relate it to the largest scale that could influence the CMB
(k ≈ 10−4 Mpc−1). Nonetheless, in the literature there are
some analyses that try to fix its value by other means. In
particular, in Ref. [11], which is based on a similar
semiclassical approach to the geometrodynamical quanti-
zation of the present problem, arbitrary parameters are
considered in front of the correction factor H2

kk
3=ðm2

Pk
3Þ,

and they are fitted with the observational data from the
Planck mission [26]. In particular, the best fit obtained
relates k to the size of galaxies or galaxy clusters
(k ≈ 1 Mpc−1). The meaning of such a scale is, however,
not clear. All the above being said, in order to give an
estimate of the magnitude of the correction we have
obtained, here we will assume k to be equal to the pivot
scale chosen by the Planck mission, that is, k ¼ k� ¼
0.05 Mpc−1. At the end of this subsection, we will com-
ment on the maximum possible value of k not to contradict
the experimental data.
As we have shown in our previous work [19], taking into

account the energy scale of inflation in combination with
the upper bound given by the Planck mission [26] for the
scalar-to-tensor ratio r≲ 0.11, it is possible to derive the
following condition,

Hinf

mP
≲ 1.3 × 10−5; ð103Þ

Hinf being the average Hubble parameter during inflation.
In the following, in order to give estimates for the
correction to the quantities derived in the previous section,
we will assume that Hk ¼ Hinf .
In addition, the experimental constraint for the spectral

index, nS ≈ 0.968� 0.006 (see [26]), implies that ϵ≲
0.007 and δ ≈ −0.002. With these values at hand, we
can give an estimate for the upper limits of the quan-
tum-gravity correction for scalar and tensor perturbations
as follows:

jΔSj≲ 2 × 10−10; jΔTj≲ 2 × 10−10: ð104Þ

Since the value of the slow-roll parameters is so small and
the dominant de Sitter contribution βdS has a value close
to 1, the approximated upper bounds for the corrections
coincide with the approximated maximal value of the ratio
H2

k=m
2
P. Using the estimated values for the slow-roll

parameters, we can, however, deduce that the corrections
for both kinds of perturbations differ by about 2%:

ΔS

ΔT
≈ 1.02: ð105Þ

Inserting the estimated numbers for ϵ and δ, we can
immediately see that the correction to the spectral index
is significantly smaller than the statistical uncertainty in the
Planck data:

h
nð1ÞS − nð0ÞS

i
k¼k

≈ −3.1
H2

inf

m2
P
≈ −5 × 10−10: ð106Þ

In this case, the quantum-gravitational correction to the
spectral index is also tiny,

h
nð1ÞT − nð0ÞT

i
k¼k

≈ −3.0
H2

0;inf

m2
P

≈ −5 × 10−10: ð107Þ

Estimating the magnitude of the quantum-gravity correc-
tion for the running gives

h
αð1ÞS − αð0ÞS

i
k¼k

≈ 9.2
H2

inf

m2
P
≈ 2 × 10−9; ð108Þ

h
αð1ÞT − αð0ÞT

i
k¼k

≈ 9.0
H2

inf

m2
P
≈ 2 × 10−9: ð109Þ

Finally, the upper bound for the correction of the scalar-to-
tensor ratio can be estimated as
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�
rð1Þ − rð0Þ

rð0Þ

�
k¼k

≈ −0.023
H2

inf

m2
P
≈ −4 × 10−12: ð110Þ

As can be seen, all corrections are very small, and they are
inside the current experimental error bars.
Let us finally comment on the maximally allowed value

for k by the experimental data. The fact that the exper-
imental errors are larger than the corrections (88) and (89)
we have obtained leads to the following relation,

kmax ¼
�
m2

PΔexp

H2
inf

�
1=3

k�; ð111Þ

Δexp being the relative experimental error in the power
spectrum. In order to give a rough estimate, we assume that
this error is of order one, which, as can be seen in [27], is a
very high bound. Using the maximum value for the ratio
Hinf=mP found in (103), we get

kmax ≈ 100 Mpc−1: ð112Þ

This implies a minimum value for the length scale
Lmin ≈ 10−2 Mpc. Note, however, that a lower value of
Hinf=mP would increase kmax.

C. CMB temperature anisotropies

In this subsection we will obtain the correction for
the CMB temperature anisotropies, which are usually
expressed by the quantities Cl as defined below. In order
to obtain these coefficients, it is necessary to evolve the
scalar power spectrum through subsequent phases of the
Universe from the end of inflation until today. In addition,
one finally needs to project it on the celestial sphere. This
whole procedure can be reduced to computing the follow-
ing integral, which is usually done numerically,

CðiÞ
l ¼

Z
∞

0

dk
k
PðiÞ

S ðkÞΘ2
lðkÞ; ð113Þ

with i ¼ 0, 1 denoting the uncorrected and corrected
coefficients, respectively, and ΘlðkÞ being the transfer
function. For large scales (small l), however, it is possible
to solve this integral analytically. In this regime, the
fluctuations were well outside the horizon at the end of
recombination, and thus they were not affected by sub-
horizon physics. Therefore, it is only necessary to take into
account the primordial spectrum and perform the projection
on the celestial sphere. In particular, the transfer function
can in this case be given in terms of the spherical Bessel
functions jl as follows [28],

ΘlðkÞ ¼
1

3
jlðk½ηhor − ηrec�Þ; ð114Þ

where ηhor is the conformal time at horizon crossing and
ηrec the conformal time at recombination.
Let us define the quantum-gravitational correction to the

temperature anisotropies in the following way,

ΔCl ≔ Cð1Þ
l − Cð0Þ

l : ð115Þ

Applying the results for the corrected scalar power spec-
trum, we get that, for large scales, this correction has the
following form,

ΔCl ≈
1

4π2

Z
∞

0

dk
kϵ

�
Hk

mP

�
4
�
k
k

�
3

j2lðk½ηhor − ηrec�Þ: ð116Þ

There are two reasons for the approximate symbol in this
equation. On the one hand, we are assuming an approxi-
mated transfer function. On the other hand, the overall
factor that appears in the correction term (88), which
depends on the slow-roll parameters but is of order one,
has been dropped. At this point, as explained in [29], we
use the fact that the Bessel function is strongly peaked
around kjηhor − ηrecj ≈ l and effectively acts as a Dirac
delta mapping between k and l. Therefore, one can
integrate the explicit k-dependences in the last integral,
which leads to

ΔCl ≈
3

4πϵ

�
Hk

mP

�
4

×
jkðηhor − ηrecÞj3

ð2l − 3Þð2l − 1Þð2lþ 1Þð2lþ 3Þð2lþ 5Þ ;

ð117Þ

while the implicit k dependences on Hk and ϵ should be
evaluated at kjηhor − ηrecj ≈ l. Applying exactly the same
approximations, it is straightforward to also obtain the well-
known result for the uncorrected temperature anisotropies
at large scales:

Cð0Þ
l ≈

1

8π2ϵ

�
Hk

mP

�
2 1

lðlþ 1Þ ; ð118Þ

which does not have any explicit dependence on ðη0 − ηrecÞ
and, for a scale-invariant spectrum (constant Hk and ϵ), is
just proportional to the inverse of lðlþ 1Þ.
Thus, due to a correction proportional to k−3 in the power

spectrum, the temperature anisotropies get a correction that
goes as the inverse of a fifth-order polynomial in l for large

scales. However, since the uncorrectedCð0Þ
l gowith l−2, the

relative correction ΔCl=C
ð0Þ
l is of order l−3. As com-

mented in the previous section, especially due to the
presence of k is this correction, it is difficult to be certain
about its absolute value. We have thus plotted the behavior
of the relative correction with respect to l without the
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physical prefactors in Fig. 5. We can also check the relative
values and see that the correction drops very quickly with
l, for instance, comparing it for the first multipoles:

ΔCl¼3

ΔCl¼2

≈ 0.09;

ΔCl¼4

ΔCl¼2

≈ 0.02;

ΔCl¼5

ΔCl¼2

≈ 0.007:

It is important to note that the qualitative behavior derived
in this section for correction of the temperature anisotropies
essentially comes from the explicit k−3 dependence of the
correction of the power spectrum, which has been obtained
in several approaches (see, for instance, [11]).
We can also give an estimate of how large the Hubble

parameter, i.e. the energy scale, during inflation would have
to be such that one could see a correction of our type. Given
that cosmic variance behaves like

ΔCCV

l

Cð0Þ
l

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

2lþ 1

r
; ð119Þ

one can conclude that for l ¼ 2, where cosmic variance

is about ΔCCV

2 =Cð0Þ
2 ≈ 0.63 and our quantum-gravitational

correction is given by

ΔC2

Cð0Þ
2

≈ 0.12

�
Hk

mP

�
2

jkðηhor − ηrecÞj3; ð120Þ

the remaining factors in the above expression would have to
be larger than 5 in order to clearly see an effect in the CMB
data. Using k ¼ 0.05 Mpc−1, and given that jηhor − ηrecj
can be estimated to be about 700 Mpc (see e.g. Table I in
[16]), the factor jkðηhor − ηrecÞj3 turns out to be of order

5 × 104. Therefore, in order to see an effect, ðHk=mPÞ ≳
10−2 would be required, which is by far outside the range
(103) allowed by the measured tensor-to-scalar ratio.
Moreover, if we use the maximum allowed value by the
latter limit for the Hubble factor, it would be necessary for k
to be around k ≈ 5 Mpc−1 to get an observable effect. This
value is significantly smaller than the maximum value kmax
derived in (112).

VIII. CONCLUSIONS

In this paper quantum-gravitational corrections for the
power spectra of the gauge-invariant scalar and tensor
perturbations have been obtained in the slow-roll regime. In
particular, the corrected form for the scalar and tensor
power spectrum is given, respectively, by (23) and (25),
where ΔS is given in (75) and ΔT in (79) in terms of the
numerical coefficients βdS, βϵ, and βγ. These coefficients
have been computed by solving the linearized evolution
equation for the Gaussian width Ωð1Þ with natural initial
data (in the sense that the initial state, which is constructed
as a small deformation of the usual Bunch-Davies vacuum,
best describes in this context the expected properties of a
freely evolving mode). Their values are given in (82), (84),
and (85), respectively.
The above results generalize the results for the de Sitter

case obtained earlier in [19] to a more realistic scenario of
slow-roll inflation. In particular, and as one would naively
expect, the main part of the correction is due to the de Sitter
contribution (which introduces an enhancement of the
spectrum), whereas the slow-roll part slightly modifies it.
Let us at this point briefly comment on the results of [11],
obtained from an alternative expansion of the Wheeler-
DeWitt equation. As in our treatment, the authors find
quantum-gravitational correction terms proportional to
H2

inf=ðm2
Pk

3Þ. Nonetheless, their result for the slow-roll
approximation is not just a small perturbation of the de
Sitter case, but it can give a comparable contribution for
large scales, which can even lead to a power loss instead of
an enhancement of the power spectra.
Moreover, let us stress that the kind of correction that has

been obtained in this analysis, being proportional to the
factor H2

infk
3=ðm2

Pk
3Þ, has appeared in several different

approaches in the context of quantum geometrodynamics
[8–11]. The form of this correction is not completely
unexpected. In fact, it is possible to argue, already on
dimensional grounds, that ðHinf=mPÞ2 is the only non-
dimensional parameter that one could use to include
perturbatively (as a power series expansion) quantum-
gravity corrections. Furthermore, since, due to the back-
ground homogeneity, one needs to explicitly introduce a
volume (L3 ¼ 1=k3) in order to regularize the spatial
integral in the action, another dimensionless quantity
ðk=kÞ3 enters the game. Nevertheless, in principle, the
power of this latter quantity might have been different; thus,

FIG. 5. The ratio of the correction ΔCl to the uncorrected Cð0Þ
l

without the non-numerical prefactors, such that we have pl ≔
3πlðlþ 1Þ½ð2l − 3Þð2l − 1Þð2lþ 1Þð2lþ 3Þð2lþ 5Þ�−1.
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it is very interesting to see how the same correction is
explicitly realized in different specific models.
In the last section we have also analyzed the magnitude

of the obtained corrections and the possibility of observing
them experimentally. The most difficult issue in giving a
precise estimation is that, due to the regularization of the
spatial integral in the action, a length scale needs to be
considered. The power spectrum then depends on that
length scale, and there seems to be nothing physical to fix
it. As we have commented in the main part of the paper, the
most reasonable choice is to take it as an infrared cutoff,
relating it to the largest observable scale in the CMB. In our
case, just to give an approximated estimate, we have chosen
it as the length scale of a typical mode that affects the CMB.
In particular, we have chosen the pivot scale selected by
the Planck mission. In this way, we have obtained that the
corrections for all different parameters of the power spectra
(spectral indices and runnings) are well inside the current
experimental error bars.
Finally, we have also obtained the qualitative form of the

correction induced in the CMB temperature anisotropies by
this quantum-gravity effect. The analysis we have performed
is valid for large scales (small l), for which quantum-gravity
effects are expected to be more relevant. In particular, it
shows that a correction of the form k−3, which, as com-
mented above, seems very generic in this context, leads to a
relative correction of the order l−3 for the anisotropies,
which thus quickly declines with increasing l.
With this paper we conclude our investigations on

quantum-gravitational corrections arising from a canonical
quantization of a perturbed universe model using the
Wheeler-DeWitt equation. The effects on large scales we
have obtained are, for a reasonable choice of k, not observable
in the CMB data, and since we have used a generic slow-roll
model that encompasses a wide range of inflationary models,
using more refined models that obey the slow-roll approxi-
mation would not enhance the corrections. Nonetheless, it is
still an open question whether such corrections can be
observed in situations where cosmic variance is not present;
for example, in galaxy-galaxy correlation functions.
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APPENDIX: COMPUTATION OF βϵ REMOVING
THE DIVERGENT LOGARITHMIC TERM

In this appendix, Eq. (73), with the logarithmic term
dropped, will be solved in order to show that, even if this
term is divergent in both late and early time limits, the value
that is obtained for βϵ does not change dramatically. Note
that, if one removes the logarithmic term from the source
term (62), one should also remove it from the initial
condition (70).
Interestingly, in this case Eq. (73) can be analytically

solved, and the solution takes the following form:

~Ωð1Þ
ϵ ¼ 1

12
e2ξ2ðξ2 þ 1Þ2½3e2iξðξþ iÞ2ð−4e2C

þ 33Γð0; 2iξ − 2Þ þ 11e4Γð0; 2iξþ 2ÞÞ
− e2ð12ðξ2 þ 1Þ þ 11ð1þ ξðξ − 6iÞÞÞ�; ðA1Þ

where C is an integration constant. If we analyze the
behavior of this solution at ξ → ∞, we find that

FIG. 6. The evolution of the real part of ~Ωð1Þ
ϵ is shown, for

different ranges of values of ξ, as given by its full equation (black
continuous line) and as obtained by dropping the logarithmic
term (black dashed-dotted line). Their corresponding asymptotes
are shown as a red-dashed line and as a red-dotted line,
respectively.
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~Ωð1Þ
ϵ ≈ −

23

12
− Ce2iξ: ðA2Þ

Therefore, in order to have a nonoscillating solution, we
choose C ¼ 0.
Finally, we compute the limit defined in Eq. (77) and find

the following value of βϵ:

βϵ ¼ 1þ 11

12e2
ðe2 − 3e4Eið−2Þ − 9Eið2ÞÞ ≈ −2.62:

ðA3Þ

As commented above, this proves that the logarithmic term
is indeed important to compute the precise value for βϵ, but
it is not critical in the sense that qualitatively the same result
is obtained if one drops it.
In Fig. 6, the evolution of the real part of ~Ωð1Þ

ϵ is shown
for both the solution with and without the logarithmic term,
in combination with their corresponding asymptotes. It can
be seen that the tendency at late times is quite similar for
both, which explains the weak dependence of βϵ on the
commented term.
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