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The growth index of matter fluctuations is computed for ten distinct accelerating cosmological models
and confronted by the latest growth-rate data via a two-step process. First, we implement a joint statistical
analysis in order to place constraints on the free parameters of all models using solely background data.
Second, using the observed growth rate of clustering from various galaxy surveys we test the performance
of the current cosmological models at the perturbation level while either marginalizing over σ8 or having it
as a free parameter. As a result, we find that at a statistical level, i.e., after considering the best-fit χ2 or the
value of the Akaike information criterion, most models are in very good agreement with the growth-rate
data and are practically indistinguishable from ΛCDM. However, when we also consider the internal
consistency of the models by comparing the theoretically predicted values of ðγ0; γ1Þ, i.e., the value of the
growth index γðzÞ and its derivative today, with the best-fit ones, we find that the predictions of three out of
ten dark energy models are in mild tension with the best-fit ones when σ8 is marginalized over. When σ8 is
free we find that most models are not only in mild tension, but also predict low values for σ8. This could be
attributed to either a systematic problem with the growth-rate data or the emergence of new physics at low
redshifts, with the latter possibly being related to the well-known issue of the lack of power at small scales.
Finally, by utilizing mock data based on an large synoptic survey telescope-like survey we show that with
future surveys and by using the growth index parametrization, it will be possible to resolve the issue of the
low σ8 but also the tension between the fitted and theoretically predicted values of ðγ0; γ1Þ.
DOI: 10.1103/PhysRevD.94.123525

I. INTRODUCTION

The majority of studies in observational cosmology
converge to the following general conclusion (see
Refs. [1,2] and references therein), that the Universe is
spatially flat and it contains ∼30% of matter (luminous and
dark), while the rest is the enigmatic dark energy (DE).
Despite the great progress made at theoretical level, up to
now the nature of the DE has yet to be discovered and
several unanswered questions remain; see Refs. [3,4] for an
overview and a discussion of some of the problems. As a
matter of fact, the discovery of the underlying physics of
dark energy, thought to be driving the accelerated expan-
sion of the Universe, is considered one of the most
fundamental problems on the interface uniting astronomy,
cosmology, and particle physics.
In the literature there is a large family of cosmological

scenarios that provide a mathematical explanation regard-
ing the accelerated expansion of the Universe. Generally
speaking, the cosmological models are mainly classified in
two large categories. The first group of DEmodels is nested
inside Einstein’s general relativity (GR) and it introduces

new fields in nature (for a review see [5] and references
therein). Alternatively, modified gravity models provide
a theoretical platform that assumes that the present
accelerating epoch is due to the possibility of gravity
becoming weak at extragalactic scales. Therefore, DE
has nothing to do with new fields and it appears as a
geometric effect [5].
In this framework, the corresponding effective equation-

of-state (EoS) parameter is allowed to take values in the
phantom regime, namely, w < −1 (for other possible
explanations see [6] and [7]). Notice that the cosmological
implications of modified gravity models have been
reviewed in the article by Clifton et al. [8]. Of course,
one may also choose to follow a model-independent
approach to reconstruct the expansion history of the
Universe, e.g., see Refs. [9] and [10].
On the other hand, the growth of matter perturbations is a

key test for studies of matter distribution in the Universe
[11], and, more importantly, it can readily be accessed from
observations. Specifically, the growth rate of clustering has
been measured based on galaxy surveys, like SDSS, BOSS,
WiggleZ, etc. (see our Table II and references therein). The
growth of matter perturbations can also be used for self-
consistency tests of general relativity; see Refs. [12] and
[13], even in a model-independent fashion.
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However, from the theoretical viewpoint, it has been
proposed that the so-called growth index γ, first introduced
by [14], can be used towards testing the nature of dark
energy. Indeed, in the literature one can find a large body of
studies in which the theoretical form of the growth index is
provided analytically for various cosmological models,
including scalar field DE [15–20], DGP [19,21–23],
fðRÞ [24,25], Finsler-Randers [26], time varying vacuum
models ΛðHÞ [27], clustered DE [28], holographic dark
energy (HDE) [29], and fðTÞ [30].
In this article, we attempt to check the performance of a

large family of flat DE models (ten models) at the
perturbation level. First, a joint likelihood analysis, involv-
ing the latest geometrical data [supernovae type Ia (SNeIa),
cosmic microwave background (CMB) shift parameter, and
baryon acoustic oscillation (BAO)] is performed in order to
determine the cosmological parameters of the DE models.
Second, we attempt to discriminate the different DE
cosmologies by estimating the growth index γ and the
corresponding redshift evolution. Then, by utilizing the
available growth-rate data we show that the evolution of
the growth index is a potential discriminator for a large
fraction of the explored DE models.
The structure of the manuscript is as follows: In Sec. II

we present the main ingredients of the linear growth of
matter fluctuations in the dark energy regime. In Secs. III
and IV with the aid of a joint statistical analysis (based on
SNeIa, CMB shift parameter, and BAO data) we constrain
the DE model parameters. In Sec. V, we test the DE
cosmologies by comparing the corresponding theoretical
predictions of the growth index evolution with observa-
tions. Finally, we summarize our conclusions in Sec. VI.

II. LINEAR GROWTH AND DARK ENERGY

In this section we provide the basic tools that are
necessary in order to study the linear matter fluctuations.
Since we are well inside in the matter dominated era we can
neglect the radiation term from the Hubble expansion.
Now, for different types of dark energy the differential
equation that governs the evolution of matter fluctuations at
subhorizon scales is [18,19,24,31–34]

δ̈m þ 2~νH _δm − 4πGμρmδm ¼ 0: ð1Þ

As is well known, δm ∝ DðtÞ, where DðtÞ is the linear
growth factor usually normalized to unity at the present
time. It is clear that the nature of dark energy is reflected in
the quantities ~ν and μ≡Geff=GN .

1 In the case of scalar
field dark energy models that adhere to Einstein’s gravity
we have ~ν ¼ μ ¼ 1, while if we allow interactions in the

dark sector, in general we get ~ν ≠ 1 and μ ≠ 1. For either
inhomogeneous dark energy models (inside GR) or modi-
fied gravity models one can show that ~ν ¼ 1 and μ ≠ 1.
Another important quantity in this kind of study is the

growth rate of clustering (first introduced by [14]),

fðaÞ ¼ d ln δm
d ln a

≃ Ωγ
mðaÞ: ð2Þ

Based on the above equation we can easily obtain the
growth factor

DðaÞ ¼ exp

�Z
a

1

ΩmðxÞγðxÞ
x

dx

�
; ð3Þ

with

ΩmðaÞ ¼
Ωm0a−3

E2ðaÞ ð4Þ

and from which we define

dΩm

da
¼ −3

ΩmðaÞ
a

�
1þ 2

3

d lnE
d ln a

�
: ð5Þ

Notice that EðaÞ ¼ HðaÞ=H0 is the dimensionless Hubble
parameter and γ is the so-called growth index. Therefore,
inserting Eq. (2) in Eq. (1) and with the aid of Eq. (5) we
arrive at

a
df
da

þ
�
2~νþ d lnE

d ln a

�
f þ f2 ¼ 3μΩm

2
ð6Þ

or

a lnðΩmÞ
dγ
da

þ Ωγ
m − 3γ þ 2~ν −

�
γ −

1

2

�
d lnE
d ln a

¼ 3

2
μΩ1−γ

m :

ð7Þ

Another expression of the above equation is given by
Steigerwald et al. [34],

dω
d lna

�
γþω

dγ
dω

�
þeωγþ2~νþdlnE

d lna
¼3

2
μeωð1−γÞ; ð8Þ

where ω ¼ lnΩmðaÞ which means that at z ≫ 1 (a → 0)
we have ΩmðaÞ → 1 (or ω → 0). In this context,
Steigerwald et al. [34] found a useful formula that provides
the asymptotic value of the growth index [see Eq. (8) in
[34] and the relevant discussion in [27]],

γ∞ ¼ 3ðM0 þM1Þ − 2ðH1 þ N1Þ
2þ 2X1 þ 3M0

; ð9Þ

where the relevant quantities are

1However, in more complicated models, e.g., ones with
couplings between matter and geometry, one may have
μ≡ Geff=GN þ βða; kÞ, where βða; kÞ is a function that depends
on derivatives of the Lagrangian of the model [35].
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M0 ¼ μjω¼0; M1 ¼
dμ
dω

����
ω¼0

ð10Þ

and

N1 ¼
d~ν
dω

����
ω¼0

;

H1 ¼ −
X1

2
¼ dðd lnE=d ln aÞ

dω

����
ω¼0

: ð11Þ

Concerning the functional form of the growth index we
use a Taylor expansion around aðzÞ ¼ 1 (see [36–40]),

γðaÞ ¼ γ0 þ γ1ð1 − aÞ: ð12Þ

Therefore, the asymptotic value reduces to γ∞ ≃ γ0 þ γ1,
where we have set γ0 ¼ γð1Þ. Now, writing Eq. (7) at the
present epoch (a ¼ 1),

− γ0ð1Þ lnðΩm0Þ þΩγð1Þ
m0 − 3γð1Þ þ 2~ν0

− 2

�
γ0 −

1

2

�
d lnE
d ln a

����
a¼1

¼ 3

2
μ0Ω

1−γð1Þ
m0 ; ð13Þ

and using Eq. (12) we find

γ1 ¼
Ωγ0

m0 − 3γ0 þ 2~ν0 − 2ðγ0 − 1
2
Þd lnEd ln a ja¼1

− 3
2
μ0Ω

1−γ0
m0

lnΩm0

:

ð14Þ

Notice that a prime denotes a derivative with respect to the
scale factor, μ0 ¼ μð1Þ and ~ν0 ¼ ~νð1Þ.
To conclude this section it is important to realize that

the growth of matter perturbations is affected by the main
cosmological functions, namely, EðaÞ, ΩmðaÞ, μðaÞ, and
~νðaÞ. Therefore, for the benefit of the reader let us briefly
present the main steps that we follow in the rest of
the paper.

(i) Suppose that we have a dark energy model that
contains n-free cosmological parameters, given by
the cosmological vector θi ¼ ðθ1; θ2;…; θnÞ. First
we place constraints on θi by performing an overall
likelihood analysis, involving the latest geometrical
data (standard candles and standard rulers).

(ii) For this cosmological model we know its basic
cosmological quantities, which implies that we can
compute γ∞ from Eq. (9). Then solving the system
of γ∞ ¼ γ0 þ γ1 and Eq. (14) we can write γ0;1 in
terms of the cosmological parameters θi (Ωm0, etc.).

(iii) Once steps (i) and (ii) are accomplished, we finally
test the performance of the cosmological model
at the perturbation level utilizing the available
growth data.

III. LIKELIHOOD ANALYSIS

In this section we perform a joint statistical analysis
using the latest background data. Briefly, the total like-
lihood function is the product of the individual likelihoods,

LtotðθiÞ ¼ Lsn × Lbao × Lcmb; ð15Þ

thus the overall chi-square χ2tot is written as

χ2totðθiÞ ¼ χ2sn þ χ2bao þ χ2cmb: ð16Þ

In particular, we use the JLA SNIa data of Ref. [41], the
BAO from 6dFGS [42], SDDS [43], BOSS CMASS [44],
WiggleZ [45], MGS [46], and BOSS DR12 [47]. Finally,
we also use the CMB shift parameters based on the Planck
2015 release [2], as derived in Ref. [48].
As we have already mentioned in the previous section,

the cosmological vector θi includes the free parameters
of the particular cosmological model, which are related
with the cosmic expansion. In the present analysis, some of
the relevant parameters are θi ¼ ðα; β;Ωm0;Ωd0;Ωr0;Ωb0;
H0;…Þ, where Ωm0 and Ωb0 are the total matter (cold dark
matter and baryons) and baryon density parameters today,
while α, β are the parameters related to the stretch and color
of the SNIa data. Assuming a spatially flat universe we
have Ωd0 ¼ 1 −Ωm0 −Ωr0. Also, in the case of the CMB
shift parameter, the contribution of the radiation term Ωr0
and the baryon density Ωb0 needs to be considered (see
below). Here the radiation density at the present epoch is
fixed to Ωr0 ¼ Ωm0aeq, where the scale factor at equality
is aeq ¼ 1

1þ2.5104Ωm0h2ðTcmb=2.7KÞ−4.
We also marginalize over the parameters M and δM

of the JLA set as described in the appendix of Ref. [49].
These parameters implicitly contain H0 and thus χ2sn is
independent of H0 ¼ h100 km=s=Mpc, where according
to Planck h≃ 0.67 [2]. However, we keep the parameters
α, β free in our analysis. Therefore, using the aforemen-
tioned arguments the cosmological vector becomes θi ¼
ðα; β;Ωm0;Ωb0h2; h; θ

iþ1
d Þ, where θiþ1

d contains the free
parameters that are related with the nature of the dark
energy.
The next step is to apply the Akaike information criterion

(AIC) information criterion [50] in order to test the
statistical performance of the models themselves. Since,
N=k ≫ 1 the AIC formula is given by

AIC ¼ −2 lnLmax þ 2k;

where Lmax is the maximum likelihood, N is the number
of data points used in the fit, and k is the number of
free parameters. A smaller value of AIC indicates a better
model-data fit. In the case of Gaussian errors,
χ2min ¼ −2Lmax, one can show that the difference in AIC
between two models is written as ΔAIC ¼ Δχ2min þ 2Δk.
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IV. CONSTRAINTS ON DARK
ENERGY MODELS

Here we provide the basic properties of the most popular
DE models whose free parameters are constrained follow-
ing the methodology of the previous section. We mention
that in all cases we assume a spatially flat Friedmann-
Lemaître-Robertson-Walker geometry.
Notice that for the study of matter perturbations in Secs. II

and V the effect of radiation is not necessary. However, for
the fitting of the current DE models to the BAO and the
CMB shift parameter in Sec. III we need to include the
radiation component in the Hubble parameter. In order
to deal with this issue we replace the matter component
Ωm0a−3 in the normalized Hubble parameter EðaÞ with
Ωm0a−3 þ Ωr0a−4. Accordingly, the present value of
Ωd0 ¼ 1 −Ωm0 is replaced by Ωd0 ¼ 1 − Ωm0 −Ωr0.
In Table I, the reader may see a more compact presen-

tation of the best-fit values of cosmological parameters θi,
including also the various nuisance parameters α, β of the
JLA SnIa data, the separate contribution of the baryons
Ωb0h2 but also the best-fit χ2min and the corresponding value
of the AIC. In what follows we focus on Ωm0 and the
various DE model parameters, but for completeness in
Table I we give the best-fit values of the other parameters
(α; β;Ωb0h2; h) as well.

A. Constant equation of state (wCDM model)

In this simple model the EoS parameter w ¼ pd=ρd is
constant [51], where pd is the pressure and ρd is the density
of the dark energy fluid, respectively. Although the
quintessence scenario (−1 ≤ w < −1=3), driven by a real
scalar field, suffers from the extreme fine-tuning it has been
widely used in the literature due to its simplicity. On the
other hand, we remind the reader that the DE models that
obey w < −1 are endowed with exotic physics, namely, a
scalar field with a negative kinetic term, usually called
phantom dark energy [52].

The wCDM model adheres to GR and it does not allow
interactions in the dark sector, namely, μðaÞ ¼ ~νðaÞ ¼ 1.
Also, the dimensionless Hubble parameter is given by

E2ðaÞ ¼ Ωm0a−3 þ Ωd0a−3ð1þwÞ; ð17Þ

where Ωd0 ¼ 1 −Ωm0. Therefore, from Eq. (17) we arrive
at

d lnE
d ln a

¼ −
3

2
−
3

2
w½1 −ΩmðaÞ� ð18Þ

and

fM0;M1; H1; X1g ¼
�
1; 0;

3w
2
;−3w

�
:

If we substitute the above coefficients into Eq. (9) then we
find (see also [15–20,40])

γ∞ ¼ 3ðw − 1Þ
6w − 5

:

Note, however, that the above expression neglects the
effects of DE perturbations, as discussed in Ref. [53]. Of
course for w ¼ −1 we fully recover the ΛCDM model in

which γðΛÞ∞ ¼ 6=11.
From a statistical point of view, the cosmological vector

reduces to θi ¼ ðΩm0; wÞ. In this case the total likelihood
function peaks atΩm0 ¼ 0.320� 0.004 and w ¼ −0.983�
0.012 with χ2minðΩm; wÞ≃ 708.438 (AIC ¼ 720.438). The
final step is to estimate the pair ðγ0; γ1Þ. Based on the
procedure described at the end of Sec. III and utilizing the
best-fit values of the cosmological parameters (see Table I)
we obtain ðγ0; γ1Þ≃ ð0.557;−0.011Þ. Lastly, considering
the concordance Λ cosmology and minimizing with respect
to Ωm0 we find Ωm0 ¼ 0.317� 0.003 with χ2minðΩm0Þ≃
708.592 (AIC ¼ 718.592) and ðγ0; γ1Þ≃ ð0.556;−0.011Þ.

TABLE I. A summary of the best-fit background parameters for the various cosmological models used in the analysis. The fifth and
sixth columns show the specific DE model parameters.

Model α β Ωm0 Ωb0h2 h DE Params χ2min AIC

ΛCDM 0.141� 0.004 3.097� 0.011 0.317� 0.003 0.0222� 0.0001 0.672� 0.003 w0 ¼ −1, wa ¼ 0 708.592 718.592
wCDM 0.141� 0.006 3.097� 0.010 0.320� 0.004 0.0222� 0.0001 0.668� 0.004 w0 ¼ −0.983� 0.012 708.438 720.438

wa ¼ 0
CPL 0.141� 0.004 3.083� 0.012 0.320� 0.005 0.0223� 0.0002 0.667� 0.004 w0 ¼ −1.008� 0.009 708.283 722.283

wa ¼ 0.111� 0.066
HDE 0.142� 0.004 3.122� 0.010 0.311� 0.003 0.0224� 0.0001 0.673� 0.003 s ¼ 0.654� 0.006 713.218 725.218
ΛtCDM 0.141� 0.005 3.113� 0.004 0.320� 0.002 0.0222� 0.0001 0.672� 0.004 ν ¼ ð−1.4� 2.9Þ

×10−4
708.550 720.550

DGP-FRDE 0.136� 0.004 3.079� 0.010 0.392� 0.008 0.0229� 0.0015 0.587� 0.004 798.654 808.654
fðTÞ 0.141� 0.006 3.095� 0.015 0.320� 0.004 0.0222� 0.0001 0.667� 0.003 b ¼ 0.038� 0.008 708.363 720.363
fðRÞ 0.141� 0.009 3.099� 0.020 0.319� 0.007 0.0222� 0.0002 0.670� 0.005 b ¼ 0.091� 0.009 708.526 720.526
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We should note that the ΛCDM value for Ωm0 is
in excellent agreement with the one obtained from the
Planck 2015 TT, TE, EE, and low P CMB data ΩPlanck

m0 ¼
0.3156� 0.0091 [2], which confirms that our analysis with
the CMB shift parameters correctly captures the expansion
history of the Universe as measured by Planck.2

B. Parametric dark energy (CPL model)

This kind of phenomenological model was first intro-
duced by Chevalier, Polarski, and Linder (CPL) [54,55]. In
particular, the dark energy EoS parameter is parametrized
as a first order Taylor expansion around the present epoch,

wðaÞ ¼ w0 þ w1ð1 − aÞ;

where w0 and w1 are constants, while for an interesting
extension of this model see Ref. [56]. The normalized
Hubble parameter now becomes

E2ðaÞ ¼ Ωm0a−3 þΩd0a−3ð1þw0þw1Þe3w1ða−1Þ:

Since the CPL model is inside GR and due to the absence of
dark matter/energy interactions we get μðaÞ ¼ ~νðaÞ ¼ 1.
Also the logarithmic derivative d lnE=d ln a is given
by Eq. (18) but here we have w ¼ wðaÞ. Using the
above functions we can derive the growth coefficients
(see also [34])

fM0;M1; H1; X1g ¼
�
1; 0;

3ðw0 þ w1Þ
2

;−3ðw0 þ w1Þ
�
;

which provide

γ∞ ¼ 3ðw0 þ w1 − 1Þ
6ðw0 þ w1Þ − 5

:

In this case the cosmological vector contains three free
parameters θi ¼ ðΩm0; w0; w1Þ and the overall likelihood
function peaks at Ωm0 ¼ 0.320� 0.005, w0 ¼ −1.007�
0.0001, and w1 ¼ 0.111� 0.009. The corresponding
χ2minðΩm0; w0; w1Þ is 708.283 (AIC ¼ 722.283) and
ðγ0; γ1Þ≃ ð0.556;−0.008Þ.

C. HDE model

Applying the holographic [57] principle within the
framework of GR ~νðaÞ ¼ 1 one can show that

wðaÞ ¼ −
1

3
−
2

ffiffiffiffiffiffiffiffiffiffiffiffi
ΩdðaÞ

p
3s

and

d lnΩd

d ln a
¼ −

wðaÞ
3

½1 −ΩdðaÞ�;

where ΩdðaÞ ¼ 1 − ΩmðaÞ and s is a constant. It is easy to
check that at high redshifts z ≫ 1 (a → 0 and Ωd → 0) the
asymptotic value of the EoS parameter w∞ tends to −1=3.
Also the dimensionless Hubble parameter EðaÞ ¼
HðaÞ=H0 is given by

E2ðzÞ ¼ Ωm0a−3

1 − ΩdðaÞ
:

Again, the functional form of d lnE=d ln a is given by
Eq. (17). Obviously, the above three equations produce a
system whose solution gives the evolution of the main
cosmological parameters, namely EðaÞ, wðaÞ, and ΩdðaÞ,
where θi ¼ ðΩm0; sÞ.
The quantity μðaÞ that describes the intrinsic features of

the HDE is written as [29]

μðaÞ ¼
(
1 homogeneousHDE

1þ ΩdðaÞ
ΩmðaÞΔdðaÞð1þ 3c2effÞ clusteredHDE;

ð19Þ

where Δd ¼ 1þwðaÞ
1−3wðaÞ [29,58] and c2eff is the effective sound

speed of the dark energy.
Here we consider the following two cases.
(i) Homogeneous HDE in which μðaÞ ¼ 1. Therefore,

in this case we find (see [29])

fM0;M1; H1; X1g ¼
�
1; 0;

3w∞

2
;−3w∞

�
;

where w∞ ≃ −1=3 and the asymptotic value of the
growth index is

γ∞ ¼ 4

7
:

Our joint statistical analysis yields that the like-
lihood function peaks at Ωm0 ¼ 0.311� 0.003 and
s ¼ 0.654� 0.006 with χ2minðΩm0; sÞ≃ 713.218
(AIC ¼ 725.218). Using the latter cosmological
parameters we estimate ðγ0; γ1Þ≃ ð0.558; 0.013Þ.

(ii) Clustered HDE: here μðaÞ is given by the second
branch of Eq. (19). In this framework, we obtain

fM0;M1;H1;X1g¼
�
1;−

ð1þ3c2effÞ
3

;
3w∞

2
;−3w∞

�

2Note that the frequently quoted value of ΩPlanck
m0 ¼

0.308� 0.012, e.g., see the abstract of the Planck paper [2],
besides the TT, TE, EE, and low P CMB data also includes the
lensing trispectrum data, a piece of information that is not
captured by the CMB shift parameters. By solely comparing
the CMB data, however, we can see that our result is in excellent
agreement as described in the text.
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and for w∞ ¼ −1=3 we get via Eq. (9)

γ∞ ¼ 3ð1 − c2effÞ
7

:

We restrict our analysis to c2eff ¼ 0, which implies
that the sound horizon is small with respect to the
Hubble radius and thus DE perturbations grow in a
similar fashion to matter perturbations [59]. Utiliz-
ing the aforementioned cosmological parameters
we compute ðγ0; γ1Þ≃ ð0.541;−0.112Þ. For more
details concerning the analytical derivation of the
growth index we refer the reader to [29].

D. Time varying vacuum (ΛtCDM model)

Let us now consider the possibility of a decaying Λ-
cosmology, that is, Λ ¼ ΛðaÞ. The decaying vacuum
equation of state does not depend on whether Λ is strictly
constant or variable. Therefore, the EoS takes the nominal
form, pΛðtÞ ¼ −ρΛðtÞ ¼ −ΛðtÞ=8πG. In the current article
we study a specific dynamical vacuum model that is based
on the renormalization group in quantum field theory. It has
been proposed that the evolution of the vacuum is given by

ΛðHÞ ¼ Λ0 þ 3νðH2 −H2
0Þ;

where Λ0 ≡ ΛðH0Þ ¼ 3ΩΛ0H2
0 and ν is provided in the

renormalization group context as a β-function that deter-
mines the running of the cosmological “constant” within
QFT in curved spacetime [60]. The Friedmann equations
are the same as those of the concordance ΛCDM model,
while the current vacuum scenario matter is obliged to
exchange energy with vacuum in order to fulfil the Bianchi
identity, which implies

_ρm þ 3Hρm ¼ −_ρΛ:

Combining the Friedmann equations and the latter gener-
alized conservation law one can write the evolution of the
normalized Hubble parameter,3

E2ðaÞ ¼ ~ΩΛ0 þ ~Ωm0a−3ð1−νÞ; ð20Þ

with

d lnE
d ln a

¼ −
3

2
ð1 − νÞ ~ΩmðaÞ; ð21Þ

where we have set ~ΩmðaÞ ¼ ~Ωm0a−3ð1−νÞ

E2ðaÞ , ~Ωm0 ≡ Ωm0

1−ν, and

~ΩΛ0≡ 1−Ωm0−ν
1−ν . Obviously, the cosmological vector includes

the following free parameters θi ¼ ðα; β; ~Ωm0;Ωb0h2; h; νÞ.
For more details concerning the global dynamics of the
present time varying vacuum model we refer the reader to
the following Refs. [61–66].
On the other hand, the growth index of matter perturba-

tions has been investigated by Basilakos and Sola [27].
Specifically, the quantities ~ν and μ are given by

~ν ¼ 1þ 3

2
ν ð22Þ

and

μðaÞ ¼ 1 − ν −
4ν

~ΩmðaÞ
þ 3νð1 − νÞ: ð23Þ

To this end, the growth coefficients are found to be [27]

fM0;M1;H1;X1g¼
�
1−2ν−3ν2;−

3ð1−νÞ
2

;3ð1−νÞ
�
;

which provide

γ∞ ¼ 6þ 3ν

11 − 12ν
:

Finally, using the cosmological data and the joint likelihood
analysis we find ðΩm;νÞ¼ð0.320�0.002;−1.41×10−4�
2.91×10−4Þ for a best-fit χ2minðΩm0; νÞ≃ 708.55
(AIC ¼ 720.550). Based on the aforementioned cosmo-
logical parameters we obtain ðγ0; γ1Þ ¼ ð0.572;−0.023Þ.

E. Dvali, Gabadadze, and Porrati (DGP) gravity

The first modified gravity model that we present is that
of Dvali, Gabadadze, and Porrati [67]. In this scenario,
one can obtain an accelerating expansion of the Universe
based on the fact that gravity itself becomes weak at
cosmological scales (close to Hubble radius) because our
four-dimensional spacetime survives into an extradimen-
sional manifold (see [67] and references therein). It has
been shown that the normalized Hubble parameter is
written as

EðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0a−3 þΩrc

q
þ

ffiffiffiffiffiffiffi
Ωrc

p
; ð24Þ

where Ωrc ¼ ð1 −Ωm0Þ2=4 for a matter only universe.4

From Eq. (24), we easily find

d lnE
d ln a

¼ −
3ΩmðaÞ

1þΩmðaÞ
: ð25Þ

3For the fitting the radiation term is included in the
ΛtCDM model as follows: we replace ~Ωm0a−3ð1−νÞ in Eq. (20)
with ~Ωm0a−3ð1−νÞþ ~Ωr0a−4ð1−νÞ, where ~Ωm0 ≡ Ωm0

1−ν,
~Ωr0 ≡ Ωr0

1−ν, and
~ΩΛ0 ≡ 1−Ωm0−Ωr0−ν

1−ν [61].

4When we also include radiation, this changes to Ωrc ¼
ð1 −Ωm0 − Ωr0Þ2=4.
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For the DGP model the function μðaÞ takes the form

μðaÞ ¼ 2þ 4Ω2
mðaÞ

3þ 3Ω2
mðaÞ

and ~νðaÞ ¼ 1. Inserting the above equations in Eqs. (10)
and (11) we have

fM0;M1; H1; X1g ¼
�
1;
1

3
;−

3

4
;
3

2

�

and from Eq. (9) the asymptotic value of the growth index
becomes (see also [19,21–23])

γ∞ ¼ 11

16
:

As in the concordance ΛCDM model, the cosmological
vector contains the following free parameters θi ¼ ðα; β;
Ωm0;Ωb0h2; hÞ. The overall statistical analysis provides
a best-fit value of Ωm ¼ 0.392� 0.008, but the fit is
much worse, χ2minðΩmÞ≃ 798.654 (AIC ¼ 808.654), with
respect to that of ΛCDM cosmology. To this end, using the
above and the calculations of Sec. III we obtain
ðγ0; γ1Þ≃ ð0.669; 0.019Þ.

F. Finsler-Randers dark energy model (FRDE)

In the last decade there have been quite interesting
applications of Finsler geometry in its Finsler-Randers
version, in the topics of cosmology, astrophysics, and
general relativity [68] (and references therein). Recently,
it has been found [26] that the Finsler-Randers field
equations provide a Hubble parameter that is identical
with that of DGP gravity. This means that Eqs. (24) and
(25) are also valid here. As expected, the joint analysis
provides exactly the same statistical results.
However, the two models (FRDE and DGP) deviate at

the perturbation level since in the case of the FRDE model
we have μðaÞ ¼ ~νðaÞ ¼ 1 [68]. Therefore, it is easy to
show that

fM0;M1; H1; X1g ¼
�
1; 0;−

3

4
;
3

2

�

γ∞ ¼ 9

16
:

Again, solving the system γ∞ ¼ γ0 þ γ1 and Eq. (14) for
Ωm ¼ 0.392� 0.008we derive ðγ0; γ1Þ≃ ð0.566;−0.003Þ.

G. Power-law f ðTÞ gravity model

Among the large family of modified gravity models, the
fðTÞ gravity extends the old definition of the so-called
teleparallel equivalent of general relativity [69–71], where

T is the torsion scalar. In the current article we use the
power-law model of Bengochea and Ferraro [72], with

fðTÞ ¼ αð−TÞb;

where

α ¼ ð6H2
0Þ1−b

ΩF0

2b − 1
:

In this framework, the Hubble parameter normalized to
unity at the present time takes the form

E2ða; bÞ ¼ Ωm0a−3 þ Ωd0E2bða; bÞ; ð26Þ

where Ωd0 ¼ 1 −Ωm0. Obviously, for b ¼ 0 the power
law fðTÞ model reduces to ΛCDM cosmology,5 namely,
T þ fðTÞ ¼ T − 2Λ (where Λ ¼ 3Ωd0H2

0, Ωd0 ¼ ΩΛ0). It
has been shown that in order to have an accelerated
expansion of the Universe which is consistent with the
cosmological data one needs b ≪ 1 [73,74]. Therefore,
following the notations of Nesseris et al. [74] we perform a
first order Taylor expansion of E2ða; bÞ around b ¼ 0 and
thus we obtain an approximate normalized Hubble param-
eter, namely,

E2ða; bÞ≃ E2
ΛðaÞ þΩd0 ln ½E2

ΛðaÞ�bþ � � � : ð27Þ

Recently, Basilakos [30] investigated the growth index
for the power-law fðTÞ gravity model. In brief, differ-
entiating Eq. (26) and using Eq. (4) we arrive at

d lnE
d ln a

¼ −
3

2

ΩmðaÞ
½1 − bE2ðb−1ÞΩd0�

ð28Þ

and for b ≪ 1 we find

d lnE
d ln a

≃ −
3

2
ΩmðaÞ

�
1þ Ωd0b

E2
ΛðaÞ

þ � � �
�
: ð29Þ

Notice that here we have ~ν ¼ 0 and the quantity μ takes the
following form (see [30] and references therein),

μðaÞ ¼ 1

1þ bΩd0

ð1−2bÞE2ð1−bÞ
ð30Þ

or

μðaÞ≃ 1 −
Ωd0

E2
ΛðaÞ

bþ � � � : ð31Þ

5Notice that for b ¼ 1=2 it reduces to the DGP ones [67].
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Now, based on the above equations the growth index
coefficients of (10) and (11) become (for more details
see [30])

fM0;M1; H1; X1g ¼
�
1; b;−

3ð1 − bÞ
2

; 3ð1 − bÞ
�

and thus the asymptotic value of the growth index is

γ∞ ¼ 6

11 − 6b
:

As expected, for b ¼ 0 we recover the ΛCDM value 6=11.
In this context, we find that the likelihood function peaks
at Ωm0 ¼ 0.320� 0.004, b ¼ 0.038� 0.008 with
χ2minðΩm0; bÞ≃ 708.363 (AIC ¼ 720.363). Therefore, if
we use the latter best-fit solution then we esti-
mate ðγ0; γ1Þ≃ ð0.564;−0.007Þ.

H. f ðRÞ gravity (fCDM model)

Another modified gravity that we include in our analysis
is the popular fðRÞ model of Hu and Sawicki. However,
here we make use of the implementation with the b
parameter as in Ref. [75]. This has two advantages: first,
the deviation from ΛCDM is easily seen and second, by
doing a series expansion around b ¼ 0 we can find
extremely accurate (better than 0.1% for b≲ 1 and better
than 10−5% for b≲ 0.1) analytical approximations. In this
formalism, the Lagrangian for the Hu and Sawicki model
can be equivalently written as [75]

fðRÞ ¼ R −
2Λ

1þ ðbΛR Þn
ð32Þ

where n is a parameter of the model, henceforth chosen as
n ¼ 1 without loss of generality.
As mentioned we can perform a series expansion of the

solution of the equations on motion around b ¼ 0, i.e.,
ΛCDM, as

H2ðaÞ ¼ H2
ΛðaÞ þ

XM
i¼1

biδH2
i ðaÞ; ð33Þ

where

H2
ΛðaÞ
H2

0

¼ Ωm0a−3 þ Ωr0a−4 þ ð1 −Ωm0 − Ωr0Þ ð34Þ

andM is the number of terms we keep before truncating the
series, but usually only the two first nonzero terms are more
than enough for excellent agreement with the numerical
solution. Finally, δH2

i ðaÞ is a set of algebraic functions that
can be determined from the equations of motion; see
Ref. [75] for the exact and quite long expressions.

Studying the growth index in this class of models is more
complicated, as the modified Newton’s constant depends
on both the time via the scale factor a and the scale k, i.e.,
Geff ¼ Geffða; kÞ [76]. More specifically we have

Geffða; kÞ
GN

¼ 1

F

1þ 4 k2

a2 F;R=F

1þ 3 k2

a2 F;R=F
; ð35Þ

where F ¼ f0ðRÞ, F;R ¼ f00ðRÞ, GN is the bare Newton’s
constant and we have normalized Eq. (35) so that for b ¼ 0,

i.e., for the ΛCDMwe get Geffða;kÞ
GN

¼ 1 as expected. We also

follow Ref. [75] and set k ¼ 0.1h Mpc−1 ≃ 300H0. In the
notation of the other sections we have

μða; kÞ ¼ Geffða; kÞ
GN

; ~νðaÞ ¼ 1: ð36Þ

In Ref. [77] it was shown that these kinds of model
predict rather low and rather high values for the parameters
γ0 and γ1, respectively, or more specifically ðγ0; γ1Þ≃
ð0.4;−0.2Þ. Because of the k-dependence of the effective
Newton’s constant in order to get the exact values for these
parameters we need to solve Eq. (6) numerically to estimate

γ0 ≃ lnðfð1ÞÞ
lnðΩm0Þ, where fð1Þ is the growth rate at a ¼ 1, and

then use Eq. (14) to get γ1.
In this case the cosmological vector contains two

free parameters θi ¼ ðΩm0; bÞ and the overall likelihood
function peaks at Ωm0 ¼ 0.319� 0.007 and b ¼ 0.091�
0.009. The corresponding χ2minðΩm0; bÞ is 708.526
(AIC ¼ 720.526) and ðγ0; γ1Þ≃ ð0.395;−0.294Þ.

V. TESTING DARK ENERGY MODELS
WITH GROWTH DATA

A. Analysis with the real data

In this section we present the details of the statistical
method and on the observational sample that we adopt in
order to test the performance of the dark energy models at
the perturbation level. Specifically, we utilize the recent
growth-rate data, namely, A≡ fðzÞσ8ðzÞ, where σ8ðzÞ is
the redshift-dependent rms fluctuations of the linear density
field at R ¼ 8h−1 Mpc. Notice that the sample contains
Ngr ¼ 18 entries (see Table II and the corresponding
references). Following the standard analysis we use the
χ2-minimization procedure, which in our case is defined as
follows:

χ2grðϕμÞ ¼
XNgr

i¼1

�
ADðziÞ − AMðzi;ϕμÞ

σi

�
2

; ð37Þ

where ϕμ ¼ ðσ8 ≡ ϕ1; γ0; γ1Þ is the statistical vector at the
background level (not to be confused with θi); ADðziÞ and
σ2i are the growth data and the corresponding uncertainties
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at the observed redshift zi.
6 Also, D and M indicate data

and model, respectively. The theoretical growth rate is
given by

AMðz;ϕμÞ ¼ fσ8ðz;ϕμÞ ¼ σ8DðzÞΩmðzÞγðzÞ; ð38Þ

where for the latter equality we have set σ8ðzÞ ¼ σ8DðzÞ,
ΩmðzÞ ¼ Ωm0ð1þ zÞ3=E2ðzÞ; DðzÞ is the growth factor
normalized to unity at the present time and γðzÞ is the
growth index.
Now, we provide the basic steps towards marginalizing

χ2gr over σ8 (see also [90]). Substituting the second equality
Eq. (38) into Eq. (37), we simply obtain

χ2gr ¼ Γ − 2Bσ8 þ Cσ28; ð39Þ

where

Γ ¼
XNgr

i¼1

A2
DðziÞ
σ2i

; B ¼
XNgr

i¼1

ADðziÞDðziÞΩmðziÞγ
σ2i

;

C ¼
XNgr

i¼1

D2ðziÞΩmðziÞ2γ
σ2i

:

The corresponding likelihood Lgr ¼ e−χ
2
gr=2 is then given by

LgrðDjϕμ;MÞ ¼ e−
1
2
½Γ−B2

CþCðBC−σ8Þ2�; ð40Þ

where we have completed the square. Applying Bayes’s
theorem and marginalizing over σ8 we find

pðϕμjD;MÞ ¼ 1

pðDjMÞ e
−1
2
½Γ−B2

C �

×
Z

dσ8pðσ8;ϕμjMÞe−C
2
ðBC−σ8Þ2 : ð41Þ

Considering flat priors, namely, pðσ8;ϕμjMÞ ¼ 1 and
σ8 is within a range σ8 ∈ ð0;∞Þ, we arrive at

pðϕμjD;MÞ ¼ 1

pðDjMÞ e
−1
2
½Γ−B2

C �
Z

∞

0

dσ8e−
C
2
ðBC−σ8Þ2 :

ð42Þ

Introducing the variable y ¼ σ8 − B
C we find

pðϕμjD;MÞ ¼ 1

pðDjMÞ e
−1
2
½Γ−B2

C �
ffiffiffiffiffiffi
π

2C

r �
1þ erf

�
Bffiffiffiffiffiffi
2C

p
��

;

ð43Þ

where erfðxÞ ¼ R
x
0 dye

−y2 , to which corresponds the mar-
ginalized ~χ2gr function

~χ2gr ¼ Γ −
B2

C
þ lnC − 2 ln

�
1þ erf

�
Bffiffiffiffiffiffi
2C

p
��

: ð44Þ

Notice that we have ignored the constant − ln π
2
. The first

two terms in ~χ2gr, i.e., Γ − B2

C , correspond to the case where
σ8 is fixed in such a way that the original χ2gr [see Eq. (37)]
is minimized.
In what follows we consider two approaches: first, we

use the marginalized ~χ2gr function that is independent of σ8
and thus contains only two free parameters ðγ0; γ1Þ and,
second, for the sake of comparison we also minimize χ2gr,
given by Eq. (37), with respect to σ8.
Lastly, in order to compare the DE models we utilize the

Akaike information criterion for small sample size, which
is defined for the case of Gaussian errors as

AIC ¼ ~χ2gr;min þ 2kgr þ
2kgrðkgr − 1Þ
Ngr − kgr − 1

;

where kgr is the number of free parameters.
Below and in Table III, we provide our statistical results

for the case when σ8 is marginalized over.
(i) For the wCDM model, ~χ2gr;min ¼ 13.454

(AIC¼ 17.221), γ0¼ 0.561�0.173, and γ1 ¼
−0.453� 1.426. Regarding the ΛCDM cosmologi-
cal model our best-fit solution is γ0 ¼ 0.556� 0.170
and γ1 ¼ −0.438� 1.415 with ~χ2gr;min ¼ 13.456

TABLE II. The fσ8ðzÞ growth data and the corresponding
references.

z fσ8ðzÞ Reference

0.02 0.360� 0.040 [78]
0.067 0.423� 0.055 [79]
0.10 0.37� 0.13 [80]
0.17 0.510� 0.060 [81]
0.35 0.440� 0.050 [82,83]
0.77 0.490� 0.180 [82,84]
0.25 0.351� 0.058 [85]
0.37 0.460� 0.038 [85]
0.22 0.420� 0.070 [86]
0.41 0.450� 0.040 [86]
0.60 0.430� 0.040 [86]
0.60 0.433� 0.067 [87]
0.78 0.380� 0.040 [86]
0.57 0.427� 0.066 [88]
0.30 0.407� 0.055 [87]
0.40 0.419� 0.041 [87]
0.50 0.427� 0.043 [87]
0.80 0.47� 0.08 [89]

6In the case of the ΛtCDMmodel we remind the reader that we
need to replace ΩmðzÞ with ~ΩmðzÞ ¼ ~Ωm0ð1þ zÞ3=E2ðzÞ.
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(AIC ¼ 17.723), which is in agreement with that
of [74,91].

(ii) For the CPL model, ~χ2gr;min¼13.445 (AIC¼17.712),
γ0 ¼ 0.564� 0.176, and γ1 ¼ −0.430� 1.454.

(iii) For the HDEmodel, ~χ2gr;min¼13.412 (AIC¼17.679),
γ0 ¼ 0.565� 0.177, and γ1 ¼ −0.235� 1.592.

(iv) For the ΛtCDM model, ~χ2gr;min ¼ 13.455 (AIC ¼
17.722), γ0¼ 0.567�0.066, and γ1 ¼ 0.116�0.191.

(v) For the DGP-FRDE gravity, ~χ2gr;min ¼ 13.409
(AIC ¼ 17.676), γ0 ¼ 0.714� 0.341, and γ1 ¼
−0.714� 1.931.

(vi) For the fðTÞmodel, ~χ2gr;min¼13.451 (AIC¼17.718),
γ0 ¼ 0.562� 0.175, and γ1 ¼ −0.448� 1.436.

(vii) For the fCDM model, ~χ2gr;min ¼ 13.450
(AIC¼17.717), γ0¼0.567�0.176, and γ1 ¼
−0.453� 1.447.

Below and in Table IV, we also provide our statistical
results for the case when σ8 is a free parameter.

(i) For the wCDM model, χ2gr;min ¼ 6.998 (AIC ¼
13.855), γ0¼0.550�0.122, γ1¼−0.576�0.532,
and σ8 ¼ 0.687� 0.097. Regarding the ΛCDM
cosmological model our best-fit solution is γ0 ¼
0.545� 0.122, γ1 ¼ −0.558� 0.532, and σ8 ¼
0.687� 0.095 with χ2gr;min¼6.999 (AIC¼13.856),
which is in agreement with that of [74,91].

(ii) For the CPL model, χ2gr;min¼6.995 (AIC ¼ 13.852),
γ0 ¼ 0.552� 0.122, γ1 ¼ −0.558� 0.533, and
σ8 ¼ 0.689� 0.099.

(iii) For the HDE model, χ2gr;min¼6.992 (AIC¼13.849),
γ0 ¼ 0.553� 0.122, γ1 ¼ −0.382� 0.543, and
σ8 ¼ 0.699� 0.104.

(iv) For the ΛtCDM model, χ2gr;min ¼ 6.999 (AIC¼
13.856), γ0¼0.549�0.123, γ1¼−0.559 �0.537,
and σ8 ¼ 0.689� 0.095.

(v) For the DGP-FRDE gravity, χ2gr;min ¼ 6.985 (AIC ¼
13.842), γ0 ¼ 0.670� 0.143, γ1 ¼ −0.992� 0.555,
and σ8 ¼ 0.687� 0.154.

(vi) For the fðTÞmodel, χ2gr;min¼6.998 (AIC ¼ 13.855),
γ0 ¼ 0.551� 0.122, γ1 ¼ −0.573� 0.532, and
σ8 ¼ 0.688� 0.098.

(vii) For the fCDM model, χ2gr;min ¼ 6.997 (AIC ¼
13.854), γ0¼0.555�0.123, γ1 ¼ −0.580� 0.535,
and σ8 ¼ 0.688� 0.098.

In Figs. 1 and 2 we present the results of our statistical
analysis for the current DE cosmologies in the ðγ0; γ1Þ
plane, with σ8 marginalized over and free, respectively, in
which the corresponding contours are plotted for the 1σ,
2σ, and 3σ confidence levels. On top of that we also plot the
theoretical ðγ0; γ1Þ values (see Sec. IV) of all DE models as
indicated by the colored black and green dots.
Overall, we find that in the case of a marginalized σ8, the

wCDM, CPL, ΛCDM, ΛtCDM, HDE, and fðTÞ ðγ0; γ1Þ
models are well within the 1σ borders [Δχ21σ ≃ 2.30; see the
light blue (inner) sectors in Fig. 1]. The rest of theDEmodels
(DGP, FRDE, and fCDM with n ¼ 1) seem to be in mild
tension with the theoretical predictions for ðγ0; γ1Þ. One the
other hand, as seen in Fig. 2 in the case of a free σ8, we find
that most models, except HDE, are in mild or in the case of
the DGP in strong tension with their theoretically predicted
ðγ0; γ1Þ values. Testing further the performance of our results
with respect to σ8 we find that there is a correlation between
σ8 and γ1; i.e., as γ1 becomes more negative σ8 becomes
smaller, in agreement with the results of Refs. [74,75].
Finally, we also checked that a global fit of all

the free parameters, e.g., in the case of ΛCDM

TABLE III. A summary of the best-fit parameters ðγ0; γ1Þ for
the various cosmological models used in the analysis, with σ8
marginalized over and the χ2 given by Eq. (44).

Model γ0 γ1 χ2min AIC

ΛCDM 0.556� 0.170 −0.438� 1.415 13.456 17.723
wCDM 0.561� 0.173 −0.453� 1.426 13.454 17.721
CPL 0.564� 0.176 −0.430� 1.454 13.445 17.712
HDE 0.565� 0.177 −0.235� 1.592 13.412 17.679
ΛtCDM 0.560� 0.171 −0.438� 1.426 13.455 17.722
DGP-FRDE 0.714� 0.341 −0.714� 1.931 13.409 17.676
fðTÞ 0.562� 0.175 −0.448� 1.436 13.451 17.718
fðRÞ 0.567� 0.176 −0.453� 1.447 13.450 17.717

TABLE IV. A summary of the best-fit parameters ðγ0; γ1; σ8Þ for the various cosmological models used in the
analysis and the χ2 given by Eq. (37).

Model γ0 γ1 σ8 χ2min AIC

ΛCDM 0.545� 0.122 −0.558� 0.532 0.687� 0.095 6.999 13.856
wCDM 0.550� 0.122 −0.576� 0.532 0.687� 0.097 6.998 13.855
CPL 0.552� 0.122 −0.558� 0.533 0.689� 0.099 6.995 13.852
HDE 0.553� 0.122 −0.382� 0.543 0.699� 0.104 6.992 13.849
ΛtCDM 0.549� 0.123 −0.559� 0.537 0.687� 0.095 6.999 13.856
DGP 0.670� 0.143 −0.992� 0.555 0.687� 0.154 6.985 13.842
FRDE
fðTÞ 0.551� 0.122 −0.573� 0.532 0.688� 0.098 6.998 13.855
fðRÞ 0.555� 0.123 −0.580� 0.535 0.688� 0.098 6.997 13.854
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FIG. 1. The plots of the 1σ, 2σ, and 3σ confidence levels in the ðγ0; γ1Þ plane with σ8 marginalized over, for the ΛCDM, wCDM, CPL,
and ΛtCDM models (top row) and the HDE, DGP/FRDE, fðTÞ, and fðRÞ models (bottom row). The red dots denote the best fit in each
case, given in Table III, while the black dots denote the theoretical predictions as given in the text. In addition, the green dots correspond
to the clustered HDE model with c2eff ¼ 0 and the DGP models.
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θi¼ðα;β;Ωm0;Ωb0h2;h;γ0;γ1;σ8Þ, gives exactly the same fit
as our two-step process. This confirms our assumption that
the background parameters ðα; β;Ωm0;Ωb0h2; hÞ and per-
turbation order parameters ðγ0; γ1; σ8Þ are uniquely fixed by
their corresponding data.

B. Analysis with mock data

In this section we briefly discuss forecasts of our
methodology with mock fσ8 data based on a ΛCDM
cosmology with ðΩm0; σ8Þ ¼ ð0.3; 0.8Þ. The mocks
were created following the methodology of Ref. [13]
having in mind a setup similar to Euclid-like and large
synoptic survey telescope (LSST)-like surveys. To actually
create the data, we evaluated the fσ8ðzÞ for the ΛCDM
cosmology, uniformly distributed in the range z ∈ ½0; 2�
divided into 20 equally spaced bins of step dz ¼ 0.1.
The fσ8ðziÞ at each point was estimated by adding its
theoretical value to a Gaussian error and assigning an error
of 1% of its value, which is in agreement with the expected
LSST accuracy as described in Refs. [92,93].
Following the same analysis as before, we consider the

same two strategies for dealing with σ8, i.e., first by
marginalizing over it and second by fitting it along with
the other two parameters. In the first case we find γ0 ¼
0.547� 0.019 and γ1 ¼ −0.026� 0.111, while in the
second one we have γ0 ¼ 0.547� 0.018, γ1 ¼ −0.026�
0.111, and σ8 ¼ 0.802� 0.004. In Fig. 3 we present the
results of our statistical analysis for the mock fσ8 data in
the ðγ0; γ1Þ plane, with σ8 marginalized over (left panel)
and free (right panel), respectively, in which the corre-
sponding contours are plotted for the 1σ, 2σ, and 3σ
confidence levels.
As can be seen, the constraints on ðγ0; γ1Þ are much more

in line with the theoretical predictions (black dots in Fig. 3),

thus making it possible to discriminate between DE models
and proving that our methodology will be extremely useful
with the upcoming data in the near future.

VI. CONCLUSIONS

We studied the growth index beyond the concordance
ΛCDM model by utilizing several forms for the dark
energy. In the first part of our article, we implemented
an overall likelihood analysis using the most recent high
quality cosmological data (SNIa, CMB shift parameter, and
BAOs), thereby putting tight constraints on the main
cosmological free parameters. At the level of the resulting
Hubble function, we showed that the majority of dark
energy models (apart from HDE, DGP, and Finsler-Randers
cosmologies) are statistically indistinguishable (within 1σ)
from a flat ΛCDM model, as long as they are confronted
with the above background geometrical data. Of course,
the DGP can readily be ruled out as it has a δχ2 ∼ 90
from ΛCDM.
At the perturbation level, not only do the aforementioned

DE models reproduce the ΛCDM Hubble expansion, but
we also found that by using their χ2min and AIC values, all
models fit equally well the growth-rate data and are
statistically indistinguishable from the ΛCDM model on
the basis of their growth index evolution.
However, it should be noted that in the case of a free σ8

parameter the best-fit values of ðγ0; γ1Þ for most models,
except HDE, are in mild to strong tension with their
corresponding theoretically predicted values; see Fig. 2.
On the contrary, this is not so apparent in the case of a
marginalized σ8, as the contours are now larger due to the
marginalization. In this case, after inspection of the con-
tours of Fig. 1 our results can be summarized in the
following statements (for more details see Sec. V).
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FIG. 3. The plots of the 1σ, 2σ, and 3σ confidence levels in the ðγ0; γ1Þ plane with σ8 either marginalized over (left) or fixed to its best-
fit value (right) for the ΛCDMmodel and the mock LSST-like data. The red dots denote the best fit in each case, given in the text, while
the black dots denote the theoretical predictions as given in the text.
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(i) Three models, i.e., DGP, FRDE, and fCDM can be
distinguished since they are in tension with the
growth data and they show strong and significant
variations with respect to the concordance Λ model.

(ii) Four DE models, namely, wCDM, CPL, ΛtCDM,
HDE, and fðTÞ are in agreement with the growth
data and they cannot be distinguished from the
ΛCDM model at any significant level.

The reason we considered both approaches, i.e., mar-
ginalizing over and fitting σ8, is that as this is a derived
parameter, the uncertainty in its measurement is still
rather high, thus affecting the interpretation of our
analysis. Furthermore, we found that the growth-rate data
consistently and for all models prefer a rather low value for
σ8 of approximately σ8 ≃ 0.687� 0.095, which is in
significant tension with the Planck result of σPlanck8 ¼
0.831� 0.013; see [2]. This difference corresponds to a
1.5σ discrepancy from the growth-rate data point of view
or 9.5σ from the Planck data point of view. It should be
noted that the observed suppression of power of the
late universe observables, e.g., low σ8 and the chronic
tension between the CMB and low-redshift observables,
has already been discussed in the literature; see, e.g.,
Ref. [94].
To conclude, the main benefit of our analysis is that

even though at a first glance all of the models seem

indistinguishable at the statistical level given their χ2min
and AIC values, see Tables III and IV, when compared with
their theoretically predicted ðγ0; γ1Þ ones, we can see there
is a significant inconsistency. Since the models are known
to be internally consistent this means either that there is a
problem with the growth-rate data or that there is new
physics emerging at low redshifts. Also, by using mock
growth-rate data we demonstrated that this is made more
clear with future dynamical data (based mainly on LSST),
which are expected to improve significantly the relevant
constraints (especially on γ1 and σ8) and thus possibly
resolve the issue with the lack of power at low redshifts
discussed in Ref. [94], but also shedding light on the nature
of dark energy on cosmological scales.
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