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We illustrate how it is possible to calculate the quantum gravitational effects on the spectra of
primordial scalar/tensor perturbations starting from the canonical, Wheeler-De Witt, approach to
quantum cosmology. The composite matter-gravity system is analyzed through a Born-Oppenheimer
approach in which gravitation is associated with the heavy degrees of freedom and matter (here
represented by a scalar field) with the light ones. Once the independent degrees of freedom are identified,
the system is canonically quantized and a semiclassical approximation is used for the scale factor. The
differential equation governing the dynamics of the primordial spectra with their quantum-gravitational
corrections is then obtained and is applied to diverse inflationary evolutions. Finally, the analytical
results are compared to observations through a Monte Carlo Markov chain technique and an estimate
of the free parameters of our approach is finally presented and the results obtained are compared with
previous ones.
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I. INTRODUCTION

The paradigm of inflation [1] has led to a beautiful
connection between microscopic and macroscopic scales.
This occurs since inflation acts as a “magnifying glass”
insofar as microscopic quantum fluctuations at the begin-
ning of time, when the Universe was very small, evolve into
inhomogeneous structures [2]. Thus the observed structure
of the present-day Universe is related to the very early time
quantum dynamics. As a consequence, the former can be
used to test the primordial dynamics and, in particular, the
possible effects of quantum gravity at early times corre-
sponding to a very small universe. The reason for this is that
because of the huge value of the Planck mass quantum
gravity effects are otherwise suppressed (of course one can
also hope to observe quantum gravitational effects in the
presence of very strong gravitational fields, for example in
the proximity of black holes).
Composite systems which involve two mass (or time)

scales such as molecules are amenable to treatment by a
Born-Oppenheimer (BO) approach [3]. For molecules this
is possible because of the different nuclear and electron
masses; this allows one to suitably factorize the wave
function of the composite system leading, in a first
approximation, to a separate description of the motion of
the nuclei and the electrons. In particular it is found that the
former are influenced by the mean Hamiltonian of the latter
and the latter (electrons) follow the former adiabatically (in
the quantum mechanical sense). Similarly, for the matter

gravity system as a consequence of the fact that gravity is
characterized by the Planck mass, which is much greater
than the usual matter mass, the heavy degrees of freedom
are associated with gravitation and the light ones with
matter [4]. As a consequence, to lowest order, gravitation
will be driven by the mean matter Hamiltonian and matter
will follow gravity adiabatically. As mentioned above, we
shall quantize the composite system; by this we mean that
we shall perform the canonical quantization of Einstein
gravity and matter leading to the Wheeler-DeWitt (WDW)
equation [5]. This is what we mean by quantum gravity; it
is quite distinct to the introduction of so-called trans-
Planckian effects (loosely referred to as quantum gravity)
through ad hoc modifications of the dispersion relation [6]
and/or the initial conditions [7]. Further, the equations we
shall obtain after the BO decomposition, will be exact, in
the sense that they also include nonadiabatic effects. The
above approach has been previously illustrated in a mini-
superspace model with the aim of studying the semi-
classical emergence of time [4], which is otherwise absent
in the quantum system. Conditions were found for the usual
(unitary) time evolution of quantum matter (Schwinger-
Tomonaga or Schrödinger) to emerge; essentially these
are that nonadiabatic transitions (fluctuations) be negligible
or that the Universe be sufficiently far from the Planck
scale. In a series of papers [8] we have generalized the
approach to nonhomogeneous cosmology in order to obtain
corrections to the usual power spectrum of cosmological
fluctuations produced during inflation. These corrections,
which essentially amount to the inclusion of the effect
of the nonadiabatic transitions, affect the infrared part
of the spectrum and lead to an amplification or a sup-
pression depending on the background evolution. More
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interestingly, they depend on the wave number k and scale
as k−3, in both the scalar and the tensor sectors, when
background evolution is close to de Sitter. That non-
adiabatic effects affect the infrared part of the spectrum,
which is associated with large scales, is not surprising,
since it is this part of the spectrum which exits the horizon
in the early stages of inflation and is exposed to high energy
and curvature effects for a longer time.
The latest Planck mission results [9] provide the most

accurate constraints available currently to inflationary
dynamics [1]. So far the slow roll (SR) mechanism has
been confirmed to be a paradigm capable of reproducing
the observed spectrum of cosmological fluctuations and the
correct tensor to scalar ratio [2]. Since the inflationary
period is the cosmological era describing the transition
from the quantum gravitational scale down to the hot big
bang scale, it may, somewhere, exhibit related peculiar
features which could be associated with quantum gravity
effects. Quite interestingly a loss of power, with respect to
the expected flatness for the spectrum of cosmological
perturbations, can be extrapolated from the data at large
scales [10]. Since, as mentioned above, it is for such scales
that quantum gravity effects due to nonadiabaticity may
appear, this has motivated us to estimate such effects.
Unfortunately, such a feature (evident already in the
WMAP results) exhibits large errors due to cosmic vari-
ance. Nonetheless we feel that it is worth comparing our
detailed analytical predictions for the quantum gravity
effects with Planck data through a Monte Carlo Markov
chain (MCMC) based method.
The paper is organized as follows. In Sec. II the basic

equations are reviewed, and the canonical quantization
method and the subsequent BO decomposition are illus-
trated. In the Sec. III we calculate the master equation
governing the dynamics of the two-point function of the
quantum fluctuations when the quantum gravitational
effects are taken into account and the vacuum prescription
for these fluctuations is briefly discussed. In Sec. IV we
review the basic relations for de Sitter, power-law and slow-
roll inflation and the quantum corrections to the primordial
spectra are explicitly calculated for these three distinct
cases. In Sec. V we illustrate how our analytical predictions
are compared to observations and we comment on our
results. Finally in Sec. VI we draw the conclusions.

II. BASIC EQUATIONS

The inflaton-gravity system is described by the following
action

S ¼
Z

dηd3x
ffiffiffiffiffiffi
−g

p �
−
MP

2

2
Rþ 1

2
∂μϕ∂μϕ − VðϕÞ

�
ð1Þ

where MP ¼ ð8πGÞ−1=2 is the reduced Planck mass. The
above action can be decomposed into a homogeneous part
plus fluctuations around it. The fluctuations of the metric
δgμνð~x; ηÞ are defined by

gμν ¼ gð0Þμν þ δgμν ð2Þ

where gð0Þμν ¼ diag½aðηÞ2ð1;−1;−1;−1Þ� and η is the con-
formal time. Only the scalar and the tensor fluctuations
“survive” the inflationary expansion: δg ¼ δgðSÞ þ δgðTÞ.
The scalar fluctuations of the metric can be defined as
follows

δgμν ¼ aðηÞ2
�

2Að~x; ηÞ −∂iBð~x; ηÞ
−∂iBð~x; ηÞ 2δijψð~x; ηÞ −DijEð~x; ηÞ

�

ð3Þ

with Dij ≡ ∂i∂j − 1
3
δij∇2. These four degrees of freedom

(d.o.f.) mix with the inflaton fluctuation δϕð~x; ηÞ, defined
by ϕð~x; ηÞ≡ ϕ0ðηÞ þ δϕð~x; ηÞ. The scalar perturbations,
defined in (3), are gauge dependent. One can either rewrite
them in terms of just two Bardeen’s potentials [11] or fix
the gauge and set two of them to zero. Finally, on using the
equations of motion, the scalar sector can be collectively
described by a single field vð~x; ηÞ which, in the uniform
curvature gauge, is given by vð~x; ηÞ ¼ aðηÞδϕð~x; ηÞ. Its
Fourier transform, vk, can then be decomposed into two
parts: v1;k ≡ ReðvkÞ and v2;k ≡ ImðvkÞ.
The tensor fluctuations are gauge invariant perturbations

of the metric and are defined by

ds2 ¼ aðηÞ2½dη2 − ðδij þ hijÞdxidxj� ð4Þ

with ∂ihij ¼ δijhij ¼ 0. For each direction of propagation
of the perturbation ki, the above conditions on hij, with the
requirement gμν ¼ gνμ, give seven independent constraint
equations for the components of the tensor perturbations,
leading to only two remaining polarization physical

degrees of freedom hðþÞ and hð×Þ. Then, on defining vðλÞ1;k ≡
aMPffiffi

2
p ReðhkÞ and vðλÞ2;k ≡ aMPffiffi

2
p ImðhkÞ, one can describe the

tensor perturbations in a manner similar to the scalar
perturbations.
In what follows we shall illustrate in detail a point which

is often glossed over: namely the fact that on working in a
flat 3-space and considering both homogeneous and inho-
mogeneous quantities one must introduce an unspecified
length L. Indeed the effective action of the homogeneous
inflaton-gravity system plus the inhomogeneous perturba-
tions finally is [12]
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S ¼
Z

dη

�
L3

�
−

~M2
P

2
a02 þ a2

2
ðϕ02

0 − 2Vðϕ0Þa2Þ
�

þ 1

2

X
i¼1;2

X∞
k≠0

�
v0i;kðηÞ2 þ

�
−k2 þ z00

z

�
vi;kðηÞ2

�

þ 1

2

X
i¼1;2

X
λ¼þ;×

X∞
k≠0

��
vðλÞi;k

dη

�2

þ
�
−k2 þ a00

a

�
ðvðλÞi;k Þ2

��

ð5Þ

where ~MP ¼
ffiffiffi
6

p
MP, z≡ ϕ0

0=H, H ¼ a0=a2 is the Hubble
parameter and L3 ≡ R

d3x. Let us note that the action for
the perturbations has been conveniently simplified by
means of the homogeneous dynamics.
The interval ds has dimension of a length l and one

generally may either take ½a� ¼ l and ½dx� ¼ ½dη� ¼ l0 or
½a� ¼ l0 and ½dx� ¼ ½dη� ¼ l. Correspondingly one then has
½L� ¼ l0 or ½L� ¼ l. One can eliminate the factor L3 by
replacing a → a=L, η → ηL, v →

ffiffiffiffi
L

p
v and k → k=L.

Such a redefinition is equivalent to setting L ¼ 1 in the
above action (5) (then implicitly assuming the convention
½aðηÞ� ¼ l and ½dx� ¼ ½dη� ¼ l0) and then proceeding with
its quantization. Such a choice, although limited to the
homogeneous part, has been previously illustrated [13].
Henceforth we shall use this latter simplifying choice. Only
at the end, in order to compare our results with observa-
tions, we shall restore all quantities to their original
definition and the dependence on L will become explicit.
Let us finally note that the fact that L is infinite does not
create a problem. As usual, the transition from the Fourier
integral with respect to the wave number to the Fourier
series eliminates the corresponding divergence.
In more detail the action (5) has been obtained from

the usual Einstein action with a minimally coupled scalar
field ϕð~x; ηÞ and a potential VðϕÞ. The Einstein action is
evaluated for a general metric, including the scalar metric
perturbations (3) and the tensor perturbations (4).
Concerning the scalar sector, the scalar field is expanded
as ϕð~x; ηÞ ¼ ϕ0ðηÞ þ δϕð~x; ηÞ and terms up to the second
order in the perturbations are kept in the total action [12].
The first order contributions can be eliminated by using the
equations of motion for the homogeneous parts. Variation
with respect to the remaining scalar metric perturbations
and δϕ lead to three equations which can be used to
eliminate the former in terms of the scalar field perturba-
tion. One then has the Friedmann equations with the
backreaction part coming from the scalar field and an
equation of motion just for δϕ. The fact that the equations
of motion are used in the derivation of the action implies
that, under quantization, off-shell fluctuations are ignored.
In addition, the fact that the perturbations have been
described by the field v after adopting the uniform
curvature gauge leaves open the issue of the quantum
fluctuations of the gauge degrees of freedom, which are

here neglected. Concerning the tensor sector the derivation
is straightforward as the tensor perturbations are gauge
invariant and, just as for the scalar sector, one is left with
the second order contributions in the action.
Once the total action for the matter-gravity system is cast

into the form (5), all the dynamical quantities (fields) are
expressed through an infinite “tower” of homogeneous
variables vi;k. Such an effective description has a simplify-
ing role in the quantization procedure, which we shall
illustrate in detail in the next section.

A. Canonical quantization

The dynamics of each d.o.f. describing the perturbations,
is formally analogous to that of a homogeneous scalar
field with a time dependent mass. In order to illustrate
the quantization procedure and the subsequent Born-
Oppenheimer decomposition in detail, without losing
generality, we single out the homogenous part and one
real scalar field for the perturbations in (5):

S ¼
Z

dη

��
−

~M2
P

2
a02 þ a2

2
ðϕ02

0 − 2Vðϕ0Þa2Þ
�

þ 1

2

X∞
k≠0

½v0kðηÞ2 − ω2
kvkðηÞ2�

�
≡

Z
dηLtot ð6Þ

where ω2
k ¼ k2 þm2ðηÞ is time dependent and L has been

set equal to 1. Let us note that m2ðηÞ depends on the
homogeneous quantities aðηÞ, ϕ0ðηÞ and their derivatives.
The action describing the evolution of the cosmological
perturbations is derived by substituting the homogenous,
leading order, solutions into the perturbed Lagrangian.
Such a derivation does not affect the perturbations but may
have consequences on the quantization. Let us remember
that in obtaining the reduced action (6) we have at most
kept terms to quadratic order in the field and metric
perturbations (vk). Therefore, since quantum fluctuations
around z00=z occur already multiplied by small field
perturbations, we choose just to retain for it its classical
homogeneous value. Thus our choice is to consider m2ðηÞ
as a generic function of time and consequently specify it at
the end of the quantization procedure.
One can rewrite the above action in terms of an arbitrary

time parameter τ with NðτÞdτ ¼ aðηÞdη, where NðτÞ is the
lapse function. The action (6) then becomes

S ¼
Z

dτ
N
a

��
−

~M2
P

2

a2 _a2

N2
þ a4

2

�
_ϕ2
0

N2
− 2Vðϕ0Þ

��

þ 1

2

X∞
k≠0

�
a2 _vkðηÞ2

N2
− ω2

kvkðηÞ2
��

≡
Z

dτ ~Ltot ð7Þ

where the dot indicates the derivative with respect to τ. The
lapse function plays the role of a Lagrange multiplier in the
action. The variation of the action with respect toN leads to
the following equation of motion:
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0 ¼ δ ~Ltot

δN
¼

~M2
P

2

a _a2

N2
−
a3 _ϕ2

0

2N2
− a3V −

X∞
k≠0

�
a _v2k
2N2

þ ω2
kv

2
k

2a

�

ð8Þ

having the form of a constraint equation. The system
Hamiltonian is

H ¼ −
Nπ2a
2a ~M2

P

þ Nπ2ϕ
2a3

þ a3NV þ
X∞
k≠0

�
Nπ2k
2a

þ Nω2
k

2a
v2k

�

ð9Þ

where

πN ¼0; πa¼−
~M2
Pa _a
N

; πϕ¼
a3 _ϕ0

N
; πk¼

a_vk
N

: ð10Þ

and is proportional to the above constraint (8):

0 ¼ δ ~Ltot

δN
¼ H

N
ð11Þ

which is then called the “Hamiltonian constraint.” It is a
very particular energy conservation constraint which equa-
tes the system’s total energy to zero. At the quantum level,
when the degrees of freedom are canonically quantized, it
plays the role of a time independent Schroedinger equation.
A convenient canonical quantization of the action (5)

(which in particular implies the choice of a Hamiltonian
for the field v) leads to the following Wheeler-De Witt
equation [5] for the wave function of the Universe (matter
plus gravity)

�
1

2 ~M2
P

∂2

∂a2 −
1

2a2
∂2

∂ϕ2
0

þ Va4

þ
X∞
k≠0

�
−
1

2

∂2

∂v2k þ
ω2
k

2
v2k

��
Ψða;ϕ0; fvkgÞ ¼ 0: ð12Þ

Let us note that the time dependent mass in ω2
k is

m2ðηÞ ¼ − z00
z for each mode of the scalar perturbation and

m2ðηÞ ¼ − a00
a for each mode of the tensor perturbation,

where zðηÞ, aðηÞ are classical expressions.

B. Born-Oppeneheimer decomposition

Equation (12) can be written in the compact form

�
1

2 ~M2
P

∂2

∂a2 þ ĤðMÞ
0 þ

X
k

ĤðMÞ
k

�
Ψða;ϕ0; fvkgÞ

≡
�

1

2 ~M2
P

∂2

∂a2 þ ĤðMÞ
�
Ψða;ϕ0; fvkgÞ ¼ 0 ð13Þ

where

ĤðMÞ
0 ¼ −

1

2a2
∂2

∂ϕ2
0

þ Va4; ð14Þ

ĤðMÞ
k ¼ −

1

2

∂2

∂v2k þ
ω2
k

2
v2k ð15Þ

and is formally similar to a time independent Schroedinger
equation, except for the sign in front of the kinetic term for
the scale factor. Finding the general solution of the WDW
equation, even when the perturbations are set to zero, is a
very complicated task due to the interaction between matter
and gravity.
A set of approximate solutions can be found within a BO

approach. The BO approximation was originally intro-
duced in order to simplify the Schroedinger equation of
complex atoms and molecules [3].
It consists in factorizing the wave function of the

Universe into a product

Ψða;ϕ0; fvkgÞ ¼ ψðaÞχða;ϕ0; fvkgÞ ð16Þ

where ψðaÞ is the wave function for the homogeneous
gravitational sector and χða;ϕ0; fvkgÞ is that for matter
(homogeneous plus perturbations). A similar decomposi-
tion for atoms consists in factorizing the atomic wave
function ΨAðr; RÞ into a nuclear wave function ψNðRÞ and
the electrons’ wave functions χeðr; RÞ, where r and R are
the d.o.f. of electrons and nuclei respectively. The matter
wave function in Eq. (16) can be further factorized as

χða;ϕ0; fvkgÞ ¼ χ0ða;ϕ0Þ
Y∞
k≠0

χkðη; vkÞ ¼
Y∞
k¼0

χk: ð17Þ

Let us note that the wave function of each mode vk
depends parametrically on the conformal time η and, in
the semiclassical limit, the evolution of the scale factor
a ¼ aðηÞ fixes η as a function of a. This time is in fact state
dependent, since it depends on the specific semiclassical
state ψ for the scale factor. Its introduction implies that one
neglects the quantum fluctuations of this state around its
semiclassical peak, as will be discussed later in this section.
The above factorization leads to the following set of partial
differential equations, which are equivalent to the WDW
equation:

�
1

2 ~M2
P

∂2

∂a2 þ hĤðMÞi
�
~ψ ¼ −

1

2 ~M2
P

	 ∂2

∂a2


~ψ ð18Þ

which is the equation for the gravitational wave function
and
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~ψ� ~ψ ½ĤðMÞ − hĤðMÞi�~χ þ 1

~M2
P

�
~ψ� ∂

∂a ~ψ

� ∂
∂a ~χ

¼ 1

2 ~M2
P

~ψ� ~ψ
�	 ∂2

∂a2


−

∂2

∂a2
�
~χ ð19Þ

which is the equation for matter, where

ψ ¼ e−i
R

a Ada0
~ψ ; χ ¼ ei

R
a Ada0

~χ; A ¼ −ihχj ∂∂a jχi
ð20Þ

with v0 ¼ ϕ0, hÔi ¼ h~χjÔj~χi and each mode is individu-
ally normalized by hχkjχki ¼

R
dvkχ�kχk ¼ 1.

The right-hand side of Eqs. (18) and (19) are associated
with nonadiabatic quantum effects. They are generally
neglected in the leading order to the BO approximation.
On multiplying both sides by P̂k ¼

Q
j≠kh~χjj Eq. (19)

can be split into a set of equations, each governing the
dynamics of a single mode k of the matter field. One is then
led to

~ψ� ~ψ ½ĤðMÞ
k − h~χkjĤðMÞ

k j~χki�~χk þ
1

~M2
P

�
~ψ� ∂ ~ψ

∂a
�

×
∂ ~χk
∂a ¼ 1

2 ~M2
P

~ψ� ~ψ
�
h~χkj

∂2

∂a2 j~χki −
∂2

∂a2
�
~χk: ð21Þ

We may now perform the semiclassical limit for the
gravitational wave function ψðaÞ by setting

~ψðaÞ ∼ ð ~M2
Pa0Þ−1=2 exp

�
−i

Z
a
~M2
Pa0da

�
ð22Þ

obtaining the Friedmann equation

−
~M2
P

2
a02 þ

X∞
k¼0

hĤðMÞ
k i ¼ 0 ð23Þ

for Eq. (18), to the leading order. In such a way the BO
decomposition of the wave function of the Universe is
uniquely determined and a and η are related.
Of course we have assumed that a classical limit exists

which implies that j ~ψ j2 is strongly peaked on the classical
trajectory aðηÞ. For a molecule this will correspond to
considering the motion of the nuclei to be quasiclassical
while that of the electrons is quantum mechanical. Clearly,
the semiclassical limit is an addition to the Born-
Oppenheimer factorization and is necessary for time to
emerge. In the semiclassical limit, in a path integral
representation for the wave function, neighboring paths
will tend to yield cancelling contributions on account of the
rapid variation of the phase associated with the exponential
of the (effective) action. An exception to this rule occurs at
stationary points of the exponent and the associated paths

are related to classical trajectories. It is clear that for this limit
to exist the fluctuations about the solutions to the classical
equations of motions must be small and the integral over
them finite. In general this leads to a constraint on the
effective potential associated with the fluctuations; should
this not be satisfied one could have, for example, fluctuations
which increase exponentially in time which, of course,
signal an instability. Obviously, adopting this semiclassical
approximation involves ignoring all such quantum fluctua-
tions, which will be eliminated from the subsequent analysis.

Now, on defining jχkis ≡ e−i
R

ηh~χkjĤðMÞ
k j~χkidη0 j~χki, Eq. (21)

becomes

i∂ηjχkis − ĤðMÞ
k jχkis

¼ exp½−i R ηh~χkjĤðMÞ
k j~χkidη0�

2 ~M2
P

×

�
∂2
a −

a00

ða0Þ2 ∂a − h~χkj
�
∂2
a −

a00

ða0Þ2 ∂a

�
j~χki

�
j~χki

≡ ϵ½Ω̂k − hΩ̂kis�jχkis ð24Þ

where hÔis ≡ shχkjÔjχkis and ϵ≡ 1
2 ~M2

P
.

In the derivation of Eq. (24), we have treated the
expectation value of the Hamiltonian of the perturbations
as a c-number. Also, we have included contributions to
Oð ~M−2

P Þ (different expansions have been previously exam-
ined and compared for the homogeneous case [14]). The
operator Ω̂k has the following form:

Ω̂k ¼
1

a02
d2

dη2
þ
�
2i
hĤðMÞ

k is
a02

− 2
a00

a03

�
d
dη

: ð25Þ

The operator on the right-hand side of Eq. (24) has a
nonlinear structure, since it depends on χs and χ�s through
multiplicative factors of the form hÔis. We immediately
note that, in the absence of the right-hand side, Eq. (24)
becomes the usual matter evolution equation (Schrödinger
or Schwinger-Tomonaga). The terms on the right-hand side
describe the nonadiabatic effects of quantum-gravitational
origin.

III. TWO-POINT FUNCTION

We are interested in the observable features of the
spectrum of the scalar/tensor fluctuations generated during
inflation. Such features can be extracted from the two-point
function

pðηÞ≡ sh0jv̂2j0is ¼ hv̂2i0 ð26Þ

at late times (for the modes well outside the horizon). In
(26) the vacuum state j0is satisfies the full equation (24)
and, according to standard prescriptions, reduces to the
Bunch-Davies (BD) vacuum [15] in the short wavelength
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regime (more general assumptions may be considered as
well). Let us note that pðηÞ also depends on k but, in order
to keep notation compact, we decided to omit any explicit
reference to it.

A. Unperturbed dynamics

Before tackling the problem of evaluating the evolution
of pðηÞ by taking into account the full dynamics given by
(24), in this section we shall briefly review the basic
formalism for the unperturbed dynamics.
For each k mode, on neglecting the quantum gravita-

tional effects, Eq. (24) takes the form of a time dependent
Schrödinger equation for a harmonic oscillator with time
dependent frequency

ĤðMÞ
k ¼ π̂2k

2
þ ω2

k

2
v̂2k ð27Þ

where ωk ¼ ωkðηÞ. The subscript k and the label (M) will
henceforth be omitted. The following consideration will be
valid for both scalar and tensor perturbations.
At the classical level, v and π satisfy the Hamiltonian

equations leading to the homogeneous classical Klein-
Gordon equation (equation of a harmonic oscillator with a
time dependent frequency):

v00 þ ω2v ¼ 0: ð28Þ

At the quantum level, the solutions of the time dependent
Schroedinger equation can be found by introducing a linear
invariant operator Î, satisfying the differential equation

i
d
dη

Î þ ½Î; Ĥ� ¼ 0 ð29Þ

and building up a complete set of states from the invariant
vacuum state jvaci, defined by Îjvaci ¼ 0, and then
iteratively applying Î† to the vacuum. A linear invariant
satisfying (29) is given by

I ¼ i½φ�π̂ − ðφ�Þ0v̂� ð30Þ

where φ� satisfies the classical equation of motion (28).
The commutator satisfies ½Î; Î†� ¼ 1, provided the
Wronskian condition

i½φ�φ0 − ðφ�Þ0φ� ¼ 1 ð31Þ

holds. Then, in the coordinate representation, the properly
normalized invariant vacuum is

hvjvaci ¼
�

1

2πðφ�φÞ
�
1=4

exp

�
i
2

ðφ�Þ0
φ� v2

�
ð32Þ

and a suitable phase is needed in order for jvaci to satisfy
the Schroedinger equation. One easily finds

j0is ¼ exp

�
−
i
4

Z
η dη0

φ�φ

�
jvaci: ð33Þ

Let us note that the Wronskian condition, (31), does not
fix the invariant vacuum in a unique way. In general,
different linearly independent combinations of solutions of
Eq. (28), satisfying the Wronskian condition, are allowed.
The BD prescription is only one of the possible choices.
Consequently the expression (32) is a more general vacuum
state satisfying the unperturbed quantum dynamics.
The linear invariants may be alternatively defined in

terms of the so-called Pinney variable. In particular Î can be
written as

Î ¼ eiΘffiffiffi
2

p
��

1

ρ
− iρ0

�
v̂þ iρπ̂

�
ð34Þ

where ρ is the Pinney variable, a real function satisfying
the following nonlinear differential equation (the so-called
Ermakov–Pinney equation [16])

ρ00 þ ω2ρ ¼ 1

ρ3
ð35Þ

with Θ ¼ R
η dη0
ρ2
. In terms of ρ the commutator ½Î; Î†� ¼ 1 is

now trivially satisfied. The Pinney variable is related to the
solution φ of the classical field equation (28) by

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2φ�φ

p
: ð36Þ

Hence, it is proportional to its modulus. In the coordinate
representation, the properly normalized vacuum, expressed
in terms of the Pinney variable, is

hvj0is¼
1

ðπρ2Þ1=4 exp
�
−
i
2

Z
ηdη0

ρ2
−
v2

2

�
1

ρ2
− i

ρ0

ρ

��
: ð37Þ

Let us finally note that the two-point function is given by

pðηÞ ¼ φ�φ ¼ ρ2

2
: ð38Þ

B. Perturbed evolution

When quantum gravitational effects are taken into
account, one must solve the integrodifferential equa-
tion (24), which is an extremely difficult task.
Instead of trying to solve (24) and then calculating the

power spectrum, one can find the differential equation for
the spectrum p, by iteratively differentiating the two-point
function and using the canonical commutation relations.
On taking jχkis ¼ j0is in Eq. (24) (we are omitting the
subscript k) one obtains the evolution equation for the
vacuum
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0 ¼ i
d
dη

j0is − Ĥj0is −
�
ð2ihĤi0gðηÞ þ g0ðηÞÞ

×

�
d
dη

−
	
d
dη



0

�
þ gðηÞ

�
d2

dη2
−
	
d2

dη2



0

��
j0is

ð39Þ

with hÔi0 ≡ sh0jÔj0is and gðηÞ ¼ 1

2 ~M2
Pa

02. The evolution of

the two-point function can be now calculated by differ-
entiating (26) with regard to η and using (39). The first
derivative of p with regard to the conformal time is

i
dp
dη

¼ h½v̂2; Ĥ�i0 − hv̂2i0FðηÞ þGv̂2ðηÞ ð40Þ

where

FðηÞ¼ ð2ighĤi0þg0Þh∂ηi0þgh∂2
ηi0− c:c:; ð41Þ

Gv̂2ðηÞ ¼ ð2ighĤi0 þ g0Þhv̂2∂ηi0 þ ghv̂2∂2
ηi0 − c:c ð42Þ

Let us note that g is a real function and F and Gv̂2 are then
purely imaginary functions of η by construction. The
subscript v̂2 in (42) indicates that the function G depends
on η and on the operator v̂2. The commutator in the
expression (40) is ½v̂2; Ĥ� ¼ ifv̂; π̂g where the curly brack-
ets denote an anticommutator. In a more compact form
Eq. (40) can then be written as

dhv̂2i0
dη

¼ hfv̂; π̂gi0 − iRðv̂2Þ ð43Þ

where R contains the quantum gravitational effects and
is defined as RðÔÞ ¼ −hÔi0FðηÞ þ GÔðηÞ. The above
expression can be differentiated once more with regard
to η and takes the following form

d2hv̂2i0
dη2

¼ dhfv̂; π̂gi0
dη

− i
dRðv̂2Þ
dη

: ð44Þ

and, in analogy with (40)

dhfv̂; π̂gi0
dη

¼ −ih½fv̂; π̂g; Ĥ�i0 − iRðfv̂; π̂gÞ: ð45Þ

The commutator in the expression above becomes
½fv̂; π̂g; Ĥ� ¼ 2iðπ̂2 − ω2v̂2Þ and (44) can be then
rewritten as

d2hv̂2i0
dη2

¼ 2ðhπ̂2i0 − ω2hv̂2i0Þ − iRðfv̂; π̂gÞ − i
dRðv̂2Þ
dη

:

ð46Þ

On then calculating the derivative of Eq. (46) we finally
obtain

d3hv̂2i0
dη3

¼ 2
dhπ̂2i0
dη

− 4ωω0hv̂2i0 − 2ω2
dhv̂2i0
dη

− i
dRðfv̂; π̂gÞ

dη
− i

d2Rðv̂2Þ
dη2

; ð47Þ

where

dhπ̂2i0
dη

þ iRðπ̂2Þ ¼ −ih½π̂2; Ĥ�i0 ¼ iω2h½v̂2; Ĥ�i0 ð48Þ

and

h½v̂2; Ĥ�i0 ¼ i
dhv̂2i0
dη

− Rðv̂2Þ: ð49Þ

Equation (47) finally becomes

0 ¼ d3hv̂2i0
dη3

þ 4ω2
dhv̂2i0
dη

þ 2ðω2Þ0hv̂2i0 þ 2iRðπ̂2Þ

þ 2iω2Rðv̂2Þ þ i
dRðfv̂; π̂gÞ

dη
þ i

d2Rðv̂2Þ
dη2

: ð50Þ

Let us note that Eq. (50) is exact [no simplifications have
been done to obtain Eq. (50) starting from (39)]. Further
Eq. (50) has been obtained without using any peculiar
property of the vacuum state and is also valid for any state
satisfying the modified Schroedinger equation (24).
A perturbative approach is needed in order to solve

Eq. (50). To the first order in ~M−2
P , one can then evaluate

the quantum gravitational corrections on the unperturbed
vacuum (37) and then identify ρ →

ffiffiffiffiffiffi
2p

p
. The differential

master equation governing the evolution of the two-point
function is finally

d3p
dη3

þ 4ω2
dp
dη

þ 2
dω2

dη
pþ Δp ¼ 0 ð51Þ

with

Δp¼−
1

~M2
P

�
d3

dη3
h

4a02
−

d2

dη2
p0ðhþ2Þ
4pa02

−
d
dη

h2þ4p02

8a02p2
þωω0h

a02

�

ð52Þ

where
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h≡ p02 þ 4ω2p2 − 1: ð53Þ

The above equation is valid to the first order in ~M−2
P and,

in the ~MP → ∞ limit, it must reproduce the standard
evolution of the two-point function, which is known to
satisfy the second order differential equation

d2p
dη2

−
1

2p

�
dp
dη

�
2

þ 2ω2p −
1

2p
¼ 0 ð54Þ

as can be easily derived from (35), given the relation (38).
Differentiation of Eq. (54) leads to the third order equa-
tion (51), without quantum gravitational effects.
The above master equation can be used for the evolution

of the vacuum (and not of a generic quantum state). Let us
observe that (51) is a third order differential equation for p
and also contains unphysical solutions, which do not satisfy
the unperturbed Eq. (54) in the ~MP → ∞ limit.

C. The vacuum prescription

In the short wavelength limit −kη ≫ 1, the classical
equation (28) admits plane wave solutions of the form
v� ¼ 1ffiffiffiffi

2k
p expð�ikηÞ and an arbitrary linear combination

provides a suitable initial state of the system. In particular, if
one retains only positive frequency waves, correspondingly

one has p ¼ 1
2k. The initial condition p ¼ 1

2k corresponds to
the so-called BD vacuum prescription. The BD vacuum state
is the quantum state which coincides with the Hamiltonian
vacuum, as initial condition. Let us note that, in the short
wavelength limit, h is zero for p ¼ 1=2k and consequently,
to the leading order, the quantum gravitational corrections
calculated in our approach are Δp ¼ 0.
The general combination of plane wave solutions is

v ¼ 1ffiffiffiffiffi
2k

p ðα expðikηÞ þ β expð−ikηÞÞ; ð55Þ

corresponding to

p ¼ 1

2k
½jαj2 þ jβj2 þ 2Reðαβ� expð2ikηÞÞ�: ð56Þ

The integration constants α and β are complex numbers,
constrained by theWronskian condition (31) which leads to

jαj2 − jβj2 ¼ 1; ð57Þ

the BD vacuum simply corresponds to jβj ¼ 0. One may
rewrite the expression for p, given the condition (57),
and find

p ¼ 1

2k

h
1þ 2jβj2 þ 2jβj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jβj2

q
ðcos δ cos 2kη − sin δ sin 2kηÞ

i
; ð58Þ

where δ is the difference between the phases of α and β
respectively. Let us note that 2 real parameters (δ and jβj)
enter the final expression (58), playing the role of the 2
integration constants of the second order differential
equation (54). Let us note that, only for jβj ¼ 0, h ¼ 0
and the quantum gravitational corrections are negligible in
the short wavelength limit.
If one solves the third order differential equation (51),

even on neglecting the quantum corrections, 3 integration
constants are necessary for the general solution. However,
only a subset of these solutions is physical, i.e. satisfy
Eq. (54), and one then expects some relation holds among
the three integration constants. On solving Eq. (51), in the
short wavelength limit (−kη ≫ 1) and ~MP → ∞, one finds

p≃ 1

2k2
½cþ − c− cosð2kηÞ þ c0 sinð2kηÞ�: ð59Þ

Then on comparing with (58) we have

cþ
k

¼ 1þ 2jβj2; c−
k

¼ −2jβj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jβj2

q
cos δ;

c0
k
¼ −2jβj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jβj2

q
sin δ ð60Þ

or equivalently

c2þ − c2− − c20 ¼ k2; cþ > 0: ð61Þ

The BD vacuum corresponds to c− ¼ c0 ¼ 0.

IV. APPLICATIONS

In this section we apply our formalism to diverse
inflationary backgrounds and calculate the quantum
gravitational corrections to primordial spectra. In particular,
we study a pure de Sitter evolution, power-law inflation and
finally SR inflation. Our starting point is the equation

d2p
dη2

−
1

2p

�
dp
dη

�
2

þ 2ω2p −
1

2p
¼ −

1

p

Z
η

−∞
dη0pΔp;

ð62Þ

which is obtained by integrating (51) and imposing the
BD initial conditions on p, i.e. pð−∞Þ ¼ 1=ð2kÞ,
p0ð−∞Þ ¼ p00ð−∞Þ ¼ 0.
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A. De Sitter evolution

In order to illustrate the main effects of quantum gravity
on the spectrum, starting from unperturbed exact expres-
sions, the de Sitter case is first discussed. Such a case can be
obtained from realistic inflationary models in the limit
_H → 0, at least for Δp ¼ 0.

When H ¼ const, one has ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 2

η2

q
for both scalar

and tensor perturbations (the equation for the scalar sector
must be obtained by starting from a general background
evolution and then taking the _H → 0 limit).
The BD solution of Eq. (54) is

p ¼ 1þ k2η2

2k3η2
; ð63Þ

leading to the following expression for Δp:

Δp ¼ 4H2

~M2
Pk4η3

¼ −
4H2

k ~M2
P

p0 ð64Þ

to the first order in ~MP. Then Eq. (62) can be rewritten as

d2p
dη2

−
1

2p

�
dp
dη

�
2

þ2ω2p−
1

2p
¼ 2H2

k ~M2
Pp

ðp2−p2
∞Þ ð65Þ

with p∞ ¼ 1=ð2kÞ. The latter equation can be recast in the
form of the original, unperturbed equation (54), by defining

~p ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4H2

~M2
Pk
p2
∞

q ð66Þ

and

~ω2 ¼ ω2 −
H2

~M2
Pk

≡ ~k2 −
z00

z
ð67Þ

with

~k ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

H2

~M2
Pk3

s
≡ Nkk: ð68Þ

The general solution of

d2 ~p
dη2

−
1

2 ~p

�
d ~p
dη

�
2

þ 2 ~ω2 ~p −
1

2 ~p
¼ 0 ð69Þ

is known and is given by

~p ¼ 1

2~k4η2

n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þ c20 þ c2−

q
ð1þ ~k2η2Þ þ cosð2~kηÞ½2c0 ~kη

− c−ð~k2η2 − 1Þ� þ sinð2~kηÞ½c0ð~k2η2 − 1Þ þ 2c− ~kη�
o
:

ð70Þ

On setting the oscillatory contribution to zero
(c− ¼ c0 ¼ 0), one finally finds the perturbed BD vacuum

p ¼ 1þ N2
kk

2η2

2N2
kk

3η2
: ð71Þ

In the long wavelength limit, one finds the observable
features of the primordial spectra

p ⟶
−kη→0 1

2k3η2ð1 − H2

~M2
Pk

3Þ
ð72Þ

and, for H2

~M2
Pk

3 ≪ 1, such spectra behave as

p ⟶
−kη→0 1

2k3η2

�
1þ H2

~M2
Pk3

�
¼ p0

�
1þ H2

~M2
Pk3

�
; ð73Þ

i.e. quantum gravitational effects lead to a power enhance-
ment with respect to the standard results in the spectrum for
large scales.
In our previous paper [8] we obtained the solution (73)

through a different approach. In such an approach the
expression was obtained by simply taking the long wave-
length limit of the exact solution of Eq. (51) with Δp
evaluated using the zeroth order Bunch-Davies solution
and on suitably choosing the initial conditions for the
perturbed evolution. In that approach the quantum gravi-
tational corrections appear as an additive contribution to the
standard spectrum and in the long wavelength regime the
modified spectrum has the form of expression (73). In this
sense the result is quite robust; nonetheless it relies on the
validity of the perturbative expansion employed to evaluate
the quantum gravitational corrections to the first order in
M−2

P . We further note that, given the perturbative expansion
used, the denominator of (72) is small. One may ask
whether the long wavelength limit and the asymptotic M−2

P
expansion limit commute. However we cannot say any-
thing since we do not know the exact solution which is
necessary to check this.
Let us note that the length scale L, defined in Sec. II, is

hidden in the expression for the quantum gravitational
corrections. On returning to the original physical quantities
one has p → p=L, a → La, η → η=L and k → Lk. The
scale L≡ k̄−1 would then appear in the result, as an effect
of the initial volume integration of the homogeneous
dynamics.

QUANTUM COSMOLOGY AND THE EVOLUTION OF … PHYSICAL REVIEW D 94, 123524 (2016)

123524-9



B. Power law

Power-law inflation corresponds to the simplified case in
which the Hubble parameter depends on time; yet still the
equations of motions, for both the homogeneous part and
the perturbations, can be solved exactly. In this case the
evolution of the scale factor is given by

aðηÞ ¼ a0

�
η0
η

� q
q−1
; ð74Þ

where q is a constant parameter, which is related to the
variation of H by q≡ ð− _H=H2Þ−1 and the de Sitter limit is
recovered for q → ∞. The dynamics of the scalar and the
tensor perturbations are governed by the same equation,

which is given by (62) with ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 2

η2
1−ϵ

2

ð1−ϵÞ2
q

and

ϵ≡ − _H=H2. The BD vacuum can be now expressed in
term of the Hankel functions:

p ¼ −
πη

4
½Hð1Þ

ν ð−kηÞHð2Þ
ν ð−kηÞ� ð75Þ

with ν ¼ 3
2
þ 1

q−1. The observable features of the primordial
spectra can be calculated by taking the long wavelength
limit of (75), finding

p→−
η

4π
ΓðνÞ2

�
−
kη
2

�
−2ν

¼
�
2
qþ1
q−1

ΓðνÞ2
π

�
η
− 2q
q−1

0 k−2ν
�
a
a0

�
2

:

ð76Þ

Alternatively one may solve (54) in the long wavelength
regime. In this case one simply observes that ω2 → −a00=a,
p → C0a2 and the normalization, C0, can be fixed by
matching the long wavelength solution with the short wave-
length prescription for the BD vacuum [p → 1=ð2kÞ] at the
horizon crossing (k ¼ akHk), namely:

C0

k2

H2
k

¼ 1

2k
⇒ C0 ¼

1

2ka2k
: ð77Þ

One then obtains

p →
1

2k

�
a
ak

�
2

¼ 1

2

�
q

ðq − 1Þ
� 2q

q−1
η
− 2q
q−1

0 k−2ν
�
a
a0

�
2

: ð78Þ

On comparing the results (76) and (78), we observe that
the normalization constant C0, obtained by the matching
procedure, is very close to the exact normalization when q
is large (and they coincide in the q → ∞ limit, i.e. for the de
Sitter case).
One can also adopt the matching procedure to solve the

perturbed equation (51). We already observed that the
quantum gravitational corrections are negligible to leading
order, in the short wavelength limit. Conversely they can be

evaluated perturbatively and then the long wavelength limit
taken. In such a limit we find that

pΔp → A0ðp2Þ0 ð79Þ

with

A0 ¼ −
2C0k2

~M2
P

ðq − 1Þð2qþ 1Þ
qðqþ 1Þ ð80Þ

where C0 is the normalization of p.
On neglecting Δp in the interval � −∞; ηk�, one is then

led to the following perturbed equation, valid in the long
wavelength regime

d2p
dη2

−
1

2p

�
dp
dη

�
2

þ 2ω2p −
1

2p
¼ −

1

p

Z
η

ηk

dη0pΔp ð81Þ

where ηk is the conformal time at the horizon crossing
akHk ¼ k. Let us note that (81) is now obtained by
integrating (51) and, on imposing the conditions
pðηkÞ ¼ 1=ð2kÞ, p0ðηkÞ ¼ p00ðηkÞ ¼ 0.
The integral on the right-hand side of Eq. (81) can be

easily performed, in the long wavelength regime given (79),
and takes the form:

d2p
dη2

−
1

2p

�
dp
dη

�
2

þ 2ω2p −
1

2p
þ A0

2
p −

A0

4k2p
¼ 0:

ð82Þ

On defining ~k ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A0

2k2

q
and ~p ¼ p=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A0

2k2

q
Þ, this

latter equation can be cast in the form of the unperturbed
equation, having the following solution:

~p ¼ ~C0a2: ð83Þ

The normalization factor ~C0 can here be fixed, by
matching the short and the long wavelength solutions at
the horizon crossing, i.e. when a~kH ~k ¼ ~k. One then finds

1

2k
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ A0

2k2

q � ¼ ~C0a2~k ð84Þ

and

~C0 ¼
1

2k
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ A0

2k2

q ��
2ν − 1

−2η0

�
2ν−1 ~k−2νþ1

a20
: ð85Þ

The perturbed solution in then given by
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p→
1

2

�
q

q−1

� 2q
q−1ðη0Þ−

2q
q−1k−2ν

�
a
a0

�
2
�
1þ A0

2k2

�
− q
q−1 ð86Þ

and the quantum gravitational corrections, which are

encoded in the factor ð1þ A0

2k2Þ−
q

q−1, are negligible for large
k. Let us note that this behavior is simply dictated by the
dependence of A0 on k, that is, it is related to the
dependence on k of the unperturbed solution (in the de
Sitter limit one correctly reproduces the k3 dependence).
We further note that, apart from the de Sitter case, the

matching procedure leads to errors in the correct normali-
zation of the long wavelength solution. However we expect
that the peculiar dependence on k of the quantum correction
to the long wavelength solution is unaffected by such an
approximation. Indeed expression (86) correctly reprodu-
ces the quantum corrections for the de Sitter case where
the calculation can be performed “exactly” (without any
matching). We used the matching through the corrected
wavelength since it seemed more appropriate to us and the
results obtained coincide with those presented in one of our
previous papers (see [8]) using a different approximation
scheme.

C. Slow-roll inflation

The de Sitter and the power-law evolutions are fairly
good approximations to the inflationary dynamics.
Furthermore these models permit an almost exact treatment
of the primordial fluctuations and are thus of pedagogical
interest. Awider class of more realistic inflationary models
is that associated with the slow-roll dynamics. In such a
case the evolution of cosmological perturbations occurs
during a generic inflationary phase having a slowly varying
Hubble parameter and a scalar field. The diverse infla-
tionary models are then treated within the slow-roll
approximation and the features of the spectra of perturba-
tions, generated during inflation, are accurately estimated
in such a framework, with an accuracy comparable with the
magnitude of the so-called SR parameters. It is then worth
generalizing our procedure to such a case.
In the general relativity framework it is quite common to

introduce the SR parameters

ϵSR ≡ −
_H
H2

and ηSR ≡ −
ϕ̈0

H _ϕ0

ð87Þ

and calculate the spectra just in terms of these two. The
SR approximation consists of neglecting their derivatives
(that is treating them as constants) or, equivalently, to only
keeping first order contributions in the SR variables.
To first order in the SR approximations, the scale factor

evolution satisfies the equation

aH ≃ −
1þ ϵSR

η
ð88Þ

and its solution is then given by

a ¼ a0

�
η0
η

�
1þϵSR

: ð89Þ

In terms of the above quantities one finds

ω2 ¼ k2 −
z00

z
¼ k2 −

2ð1þ 3ϵSR − 3
2
ηSRÞ

η2
ð90Þ

for the scalar perturbation and

ω2 ¼ k2 −
a00

a
¼ k2 −

2ð1þ 3
2
ϵSRÞ

η2
ð91Þ

for the tensor perturbations. In contrast with the de Sitter
and power-law cases, the equations for the scalar and the
tensor perturbations are now different. However, because
of the forms of (90) and (91), it is possible to recover the
equation/solution for the tensor perturbations starting from
the equation/solution for the scalar perturbations and taking
the limit ηSR → ϵSR. We shall then focus on the scalar case
and finally extract the tensor case results in the above limit.
We proceed in a fashion analogous to the power-law

case. In the short wavelength regime, the quantum gravi-
tational corrections evaluated perturbatively are absent at
the leading and next to leading order. We thus neglect their
contribution in such a limit. Conversely, in the long
wavelength regime, the quantum gravitational correction
should be taken into account and can be evaluated
perturbatively. Finally the matching at the horizon crossing
is performed.
In the long wavelength regime, the quantum corrections

may be rewritten as

Δp ¼ a5H7

k6 ~M2
P

�
7ðϵSR − ηSRÞ − 4

k2

a2H2

�
≡ Δ1 þ Δ2; ð92Þ

where the first term

Δ1 ≡ 7a5H7

k6 ~M2
P

ðϵSR − ηSRÞ; ð93Þ

is peculiar for the scalar sector in the SR case and the
second term

Δ2 ≡ −
4a3H5

k4 ~M2
P

ð94Þ

is common for de Sitter and power-law cases. To the
leading order, p ¼ C0a2ϵSR with C0 ¼ H2

k=ð2k3ϵSRÞ,
p0=p ¼ 2aH and p00=p ¼ 6a2H2. The perturbed second
order equation for p is (81), where the integration on the
right-hand side is taken from ηk ¼ −1=k to η.
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On integrating by parts one then finds

1

p

Z
η

−1=k
dη0pΔ1 ¼

A0

p

Z
η

−1=k
dη0a4H6p0

¼ A0

p

�
a4H6p

3
−
k3H2

k

6

�
ð95Þ

with A0 ¼ 7ðϵSR−ηSRÞ
2k6 ~M2

P
and

1

p

Z
η

−1=k
dη0pΔ2 ¼ −

B0

p

Z
η

−1=k
dη0a2H4p0

¼ −
B0

p

�
a2H4p

2
−
kH2

k

4

�
ð96Þ

with B0 ¼ 2

k4 ~M2
P
.

The equation for p then takes the following form:

�
1þ 7

18
ðϵSR − ηSRÞ

H4

H2
kk

3 ~M2
P

�
p00 −

ðp0Þ2
2p

þ 2

�
k2 −

H4

kH2
k
~M2
P

−
z00

z

�
p

¼ 1

2p

�
1 −

H2
k

k3 ~M2
P

�
ð97Þ

and can be rewritten as

�
1þ δk

~M2
P

�
~p00 −

ð ~p0Þ2
2 ~p

þ 2

�
~k2 −

z00

z

�
~p ¼ 1

2 ~p
ð98Þ

with

δk ≡ 7

18
ðϵSR − ηSRÞ

H2
k

k3
; ð99Þ

~k≡ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

H2
k

k3 ~M2
P

s
; ð100Þ

~p≡
�
1 −

H2
k

k3 ~M2
P

�−1=2
p ð101Þ

where, on replacing H → Hk, we neglected, to the
leading order in SR, the time dependence of H. The
fact that p00 ¼ ½3ðp0Þ2�=ð2pÞ implies an ambiguity in
the final form adopted by Eq. (97), since this identity
can be used to rewrite contributions proportional to the
second derivative of p as terms proportional to the square
of p0. This ambiguity will be resolved by demanding that
the result coincide with the one obtained by a different
approach in Ref. [8]. The equation for ~p is very similar to
(69), except for the contribution proportional to δk= ~M2

P.
If δk= ~M2

P ≪ 1, which is consistent with our perturbative

approach, one finds the following long wavelength
solution for ~p

~p≃ ~C0z
2ð1− δk

~M2
P
Þ ð102Þ

and consequently one has

p ¼ ~C0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

H2
k

k3 ~M2
P

s
z
2ð1− δk

~M2
P

Þ
: ð103Þ

The integration constant ~C0 is fixed by connecting the
long wavelength solution to p ¼ 1=2k, when each mode ~k
crosses the horizon (~k ¼ a~kH ~k). Finally one has

p ¼ 1

2k

"
a2H2

k

k2ð1 − H2
k

k3 ~M2
P
Þ

#
1− 7

18
ðϵSR−ηSRÞ

H2
k

k3 ~M2
P ð104Þ

in the long wavelength regime and, given the smallness of
the quantum gravitational corrections (Hk=MP ≪ 1), one
finally finds the expression

p≃ C0a2ϵSR

�
1þ H2

k3 ~M2
P

�
1 −

7

18
ðϵSR − ηSRÞ ln

a2H2

k2

��

ð105Þ

valid for the scalar sector. In the tensor sector one easily
obtains the corrections in the limit ηSR → ϵSR. For such a
case

p ¼ a2H2

2k3ð1 − H2

k3 ~M2
P
Þ ð106Þ

and

p≃ C0a2ϵSR

�
1þ H2

k3 ~M2
P

�
: ð107Þ

V. QUANTUM GRAVITATIONAL CORRECTIONS

The effect of Δp on the evolution of the two-point
function p is that of adding to the standard, unperturbed,
BD solution pBD a contribution of order ~M−2

P . When
realistic inflationary models are considered, these modified
spectra are derived from (105) and (107) by replacing
k3 → ðk=k̄Þ3, where k̄ is an unspecified reference wave
number. The appearance of k̄ ¼ L−1 in the quantum
corrections can be traced back to the three volume integral
in the original action for the homogeneous inflaton-gravity
system plus perturbations [see the action (5)]. Such a
volume, on a spatially flat homogeneous space-time, is
formally infinite and consequently the value of k̄ remains
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undetermined. Naively one may argue that k̄ is related to an
infrared problem (divergence) and indeed, in the literature,
its value is taken to be the infrared cutoff for the
perturbations, namely the largest observable scale in the
CMB. Alternatively one may consider it to be the scale at
which new effects or physics set in. We shall briefly return
to this in the conclusions.
In the previous section we calculated the form of the

quantum gravitational modifications to the primordial
scalar spectrum, in the case of SR inflation

Qk ¼ 1þ H2k̄3

~M2
Pk3

�
1 −

7

18
ðϵSR − ηSRÞ ln

a2H2

k2

�
: ð108Þ

In such an expression, the wave number k necessarily
refers to the scales, around the pivot scale k�, which are
probed by the CMB and exited from the horizon N� ∼ 60
e-folds before inflation ends. Its contribution to (108) is

�
k
aH

�
−2ðϵSR−ηSRÞ ≃

�
k�

a�eN�Hk�

�
−2ðϵSR−ηSRÞ ≃ e2N�ðϵSR−ηSRÞ

ð109Þ

and may well lead to a contribution of Oð1Þ for reasonable
values of the SR parameters of the order of 1 percent. Let
us note that the first equality, in (109), is strictly valid for
the modes very close to the pivot scale k ∼ k� ¼ a�Hk� .
Away from the pivot scale, small deviations proportional
to the SR parameters, −2ðϵSR − ηSRÞ lnð kk�Þ, are neglected.
Depending on the SR parameters and on N�, the quantum
correctionsQk may lead to a power loss or a power increase
for large scales which can be generically parametrized in
the following form:

pðLÞ ≃ pðLÞ
0

�
1� q

�
k�
k

�
3
�
; ð110Þ

where pðLÞ
0 is p without quantum corrections and evaluated

in the long wavelength regime. The quantity inside the
square brackets is Qk. An analogous parametrization holds
for the tensor sector with a different q.

A. Extrapolation beyond NLO

The parametrization of the primordial spectra by (110) is
still not suitable for comparison with observations. In the
k ≪ k� limit the quantum gravitational corrections are
either negative or very large (infinite in the k → 0 limit).
Such an apparently pathological behavior is simply a
consequence of the perturbative technique employed to
evaluate the corrections. One may hope that resummation
to all orders leads to a finite result. In any case we are not
allowed to extend the validity of the perturbative correc-
tions up to Oð1Þ.

Thus, instead of introducing a sharp cutoff on the NLO
expressions for the modified spectra by multiplying q
by an ad hoc step function which keeps the correction
small but leads to a discontinuous spectrum, we interpolate
our expression through a well-defined function, with a
finite and reasonable behavior in the k → 0 limit. Such a
function, which must reproduce (110) when qðk�=kÞ3 ≪ 1,
may be regarded as a resummation of the perturbative
series.
In order to restrict the number of parameters which will

be fitted by the comparison with the data and still allow for
different limits when k → 0, we consider the following
parametrization:

pðLÞ ≃ pðLÞ
0

1þ ~q1ðk�k Þ3
1þ ~q2ðk�k Þ3

∼ pðLÞ
0

�
1þ ð ~q1 − ~q2Þ

�
k�
k

�
3
�
;

ð111Þ

where one more parameter with respect to (110) has been
added, in order to obtain a regular expression for k small.
We have also examined diverse parametrizations and have
chosen the one that led to the best possible fits. Let us note
that the above modifications are substantially different from
considering a running spectral index αs, such as

pðLÞ ≃ pðLÞ
0

�
k�
k

�
−αs

2
lnð k

k�Þ
: ð112Þ

Indeed, for the latter case, the standard power-law
dependence is affected at both large and small scales
and, in particular, a negative running would lead to a zero
amplitude in the k → 0 limit and a smaller amplitude
with respect to a simple power law when k ≫ k�. On the
other hand, the modified spectrum (111) reduces to the
power-law case when k ≫ k� and may lead to a nonzero
amplitude when k → 0, depending on the choice of the
parameters ~q1;2.

VI. DATA ANALYSIS

In this section we report the comparison between the
theoretical predictions given by (111) and the Planck 2015
[17] data set. The analysis is performed using the Markov
chain Monte Carlo code COSMOMC [18], which has been
properly modified to take into account the estimated
quantum gravitational effects.
Let us note that BD vacuum in the tensor sector gives a

power increase for large scales in the tensor spectrum. Such
an increase would be counterbalanced by a loss of power in
the scalar sector, as far as temperature correlations are
concerned. One may parametrize such a power increase in a
suitable way, just as we did for the scalar sector, in order to
eliminate the divergence for small k and fit the correspond-
ing parameter with the data at our disposal. Since our main
source of data comes from temperature correlations, which
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do not discriminate between scalar and tensor fluctuations,
we neglect a priori quantum gravitational corrections in the
tensor spectrum. Such a choice is a simplifying assumption
done in order not to have to disentangle possible degenerate
parameters. Let us note, however, that such a choice can be
realized physically either by an appropriate vacuum choice,
differing from a pure BD, or by a very long cutoff scale
associated with tensor dynamics. Thus we limit our
analysis to a subset of the more general case, for which
the quantum gravitational corrections affect the tensor
sector in a non-negligible way, thus minimizing the power
loss in the scalar sector. The tensor spectrum is then given
by the unperturbed power-law expression

pt ¼ At

�
k
k�

�
nt ð113Þ

and we assume that the LO spectra are generated by the
conventional SR mechanism and single field inflation. The
consistency condition, relating scalar and tensor spectral
indices and the tensor to scalar ratio, is valid when quantum
gravitational corrections are neglected. Indeed throughout
the analysis we assume that the consistency relation
(already implemented in COSMOMC) between the spectral
indices and the tensor to scalar ratio

nt ¼ −
r
8

�
2 − ns −

r
8

�
ð114Þ

holds to the second order in the SR approximation and the
amplitude of the spectrum of tensor perturbations is given
by At ¼ rAs, to the leading order in MP

−1, i.e. on neglecting
the quantum gravitational corrections. We then consider a
primordial scalar spectrum pðLÞ parametrized by

ps ≃ pðLÞ
0

1þ ð1 − 2q2Þð k�
eq1kÞ3

1þ ð k�
eq1kÞ3

ð115Þ

where k�=eq1 is the scale at which the loss in power begins to
be relevant and 1 − 2q2 simply fixes the limit of ps when
k → 0. In the limit q1 → ∞ the quantum gravitational
corrections are suppressed. Let us note that q2 ¼ 0, or
q1 → ∞, correspond to the standard power-law case with

no loss of power (ps ¼ pðLÞ
0 ) and q2 ¼ 0.5 corresponds to

zero power at k ¼ 0. The expression (115) is a parametriza-
tion equivalent to (111), with ~q1 ¼ expð−3q1Þð1 − 2q2Þ
and ~q2 ¼ expð−3q1Þ, which we have found to be more
convenient to be used in COSMOMC.
Our analysis is based on the Planck data sets released

in 2015 and includes the Planck TT data with polarization
at low l (PL), and the data of the BICEP2/Keck Array-
Planck joint analysis (BK) [19]. In particular we use
plik_dx11dr2_HM_v18_TT, lowTEB and BKPlanck pub-
licly available Planck likelihoods. We find the best fit for
our model with and without BK data and compare it with

standard power-law predictions, and with those assuming a
non-negligible running of the spectral index (112).
For simplicity we obtained the best fits for the param-

eters of the primordial spectra shown in Table I and the
parameters are taken to vary with uniform priors in the
intervals indicated in the same table. The priors for τ, As,
ns, r and αs are those used by the Planck 2015 analysis.
The remaining cosmological parameters are fixed to the
Planck best fit and in particular we chose

100θMC ¼ 1.040; Ωbh2 ¼ 0.0222; Ωch2 ¼ 0.119:

ð116Þ

Let us note that the pivot scale k� is 0.05 Mpc−1 and is
the same for both the scalar and the tensor sectors. The
additional parameters q1 and q2 are chosen to vary in the
largest possible interval leading to a power loss for large
scales (compared with the pivot scale), with the para-
metrization chosen. At present our theoretical predictions
are not able to constrain the value of such parameters, or
estimate possible allowed intervals where to let them vary
(see [20] for an attempt to estimate priors from quantum
gravity), thus the choice of broad enough priors seems
reasonable.
In particular the prior for q2 is chosen to let it vary

between q2 ¼ 0, where the quantum gravitational correc-
tions cancel out independently of q1, and q2 ¼ 1=2. The
values for q2 with q2 > 1=2, lead to an increase of power;
those with q2 < 0, lead to a physically unacceptable
negative spectrum and are thus excluded from the analysis.
On expanding (115) to the first order in the quantum

gravitational corrections and comparing the result with the
theoretical predictions (108), one finds, after some algebra,
the following relation among the parameters of our model

expð3q1Þ ¼
24q2

π2r · As ·Qðns; r; N�Þ
�
k�
k̄

�
3

ð117Þ

with

Qðns; r; N�Þ≡ 7

18

�
1 − ns −

r
8

�
N� − 1; ð118Þ

where we have used the following standard SR relations for
single field inflation:

H2�
MP

2
≃ π2

2
As · r ð119Þ

TABLE I. Range of parameters varied.

τ lnð1010AsÞ ns r αs q1 q2

[0.01,0.8] [2.7,4.0] [0.9,1.1] [0,0.8] [−0.1,0.1] [0,21] [0,0.5]
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and

r ¼ 16ϵSR; ns ¼ 1þ 2ηSR − 4ϵSR: ð120Þ

The parameter q1 is related to the scale k̄, i.e. that at
which the quantum gravitational modifications of the
spectrum become important, through the above relation
(117). Let us first note that, with the priors considered
for the quantities on the right-hand side of (117), such
expression may vary from −∞ to þ∞. The case of power
loss, which we are investigating, is only reproduced by
positive values of Q and, correspondingly, the right-hand
side of (117) then varies in the interval ½0;þ∞� [let us note
that the relation (117) is otherwise undefined]. Such a
positivity requirement can be fulfilled only by particular
inflationary models, as Fig. (1) shows, with larger values
of N� generically favored compared to smaller ones. For
example consider the case of chaotic inflation, driven by a
power-law potential V ∝ ϕn. For such a case

ðns; rÞ ¼
�
1−

2ðnþ 2Þ
4N� þ n

;
16n

4N� þ n

�
⟶
N�≫n

�
1−

nþ 2

2N�
;
4n
N�

�
;

ð121Þ

Q ∼ −
11

18
ð122Þ

and (117) is undefined.
Conversely for the hilltop inflationary models, one has

ðns; rÞ ¼
�
1 −

2ðn − 1Þ
N�ðn − 2Þ ;

1

ðN�Þ2n−1n−2

�
; ð123Þ

where n is defined by the shape of the potential

Vhilltop ¼ V0

�
1 −

�
ϕ

μ

�
n
�

ð124Þ

and

Q ∼ −
11 − 2n
18 − 9n

; ð125Þ

leading to a loss in power for 2 < n < 11=2.
Let us note that, with the form obtained for the quantum

gravitational corrections, our model leads to severe con-
straints on the shape of the inflationary potential. As shown
in Fig. 1, only a small subset of the inflationary models,
satisfying the observed values of ns and r, lead to a loss of
power for large scales. The remaining models would give
a power increase, which may be a distinguishing feature,
unless k̄ is too small to be observed in the CMB. More
generally, on referring to the classification in [21], power
loss is associated only with a subset of class I models, with
ns ≃ 1þ 2 ln b=N�, r ∝ 1=N−2 ln b� and 0 < b < 0.277 for
50 < N� < 70.

FIG. 1. The figure plots the region (yellow area) compatible with a loss of power in the ðns; rÞ plane for N� ¼ 60. The dotted lines are
the contours of the N� ¼ 50 (small dots) and N� ¼ 70 (large dots) areas. These contours are superimposed on the Planck 2015 analysis
of various inflationary models. hilltop quartic models and natural inflation models lead to a loss in power; conversely chaotic inflation is
not compatible with such a loss.

TABLE II. List of models.

Model
number Primordial spectra Data sets Parameters

1 Power law PL As, ns, r
2 and tensors PLþ BK
3 Running spectral index PL As, ns, r, αs
4 and tensors PLþ BK
5 Quantum gravitational PL As, ns, r, q1, q2
6 corrections and tensors PLþ BK
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Without specifying further assumptions on k�=k̄, which
will be evaluated by inverting (117) once the parametriza-
tion of the primordial spectra is fixed by the data, the prior
for q1 is taken to be [0, 21]. The value q1 ¼ 0 corresponds
to the assumption that the loss in power starts to be relevant
below the pivot scale k� (which is known to be the case
given the outcome of previous independent analysis [10]).
Conversely, the value q1 ¼ 21 corresponds to a scale ∼109
smaller than the pivot scale. Such a choice is very
conservative as it includes the entire CMB spectrum below
the pivot scale.
The different combinations of primordial spectra and

data sets considered are listed in Table II with an index
specifying the model number. The best fits found, for the
parameters we varied, are presented in Table III and the
corresponding effective χ2, defined as −2 lnL where L is
the likelihood, are listed in Tables IVand V. The differences
between the total χ2 for the different cases are reported,
using our model as reference. In particular the cases 1 and 3
are compared with 5 and the cases 2 and 4 are compared
with 6.

A. Results

The MCMC results (see Tables IV and V, and Fig. 2)
show that the quantum gravitational modification of the
standard power-law form for the primordial scalar spectrum
improves the fit to the data. Such improvements are much

more significant with respect to the standard modifications
of the primordial spectra obtained on considering a running
spectral index. Let us note that the 2015 Planck data give
constraints on the running, which are quite different from
those coming from the 2013 data. In particular the fit to the
2015 data does not improve much if one considers a
running spectral index in the scalar sector.
The comparison of the marginalized 1D likelihoods for

the parameters q1 and q2 in Fig. (3) show that the two data
sets lead to close predictions. In particular their margin-
alized maxima are

q1 ≃ 3.4; 2q2 ≃ 0.23; ð126Þ

when Planck data alone are considered and

q1 ≃ 3.8; 2q2 ≃ 0.20; ð127Þ

when BK data are added to the analysis. Correspondingly
ns and As also take very similar values for the best fit.
The value of q2 indicates a ∼20%–25% loss in power

when k approaches zero. Let us note that the tensor to scalar
ratio r is weakly constrained.
From Tables IV and V we observe that cases 3 and 4,

with a running spectral index, are disfavored with respect to
cases 1 and 2 respectively, since they have almost the same,
effective, χ2, but with one more independent d.o.f. to fit the

TABLE III. Monte Carlo best fits.

Number τ lnð1010AsÞ ns r αs q1 q2

1 7.7 × 10−2 3.09 0.965 1.05 × 10−2 � � � � � � � � �
2 8.3 × 10−2 3.10 0.967 1.65 × 10−2 � � � � � � � � �
3 7.8 × 10−2 3.09 0.964 1.85 × 10−2 −1.02 × 10−2 � � � � � �
4 8.9 × 10−2 3.11 0.967 3.13 × 10−2 −6.65 × 10−3 � � � � � �
5 8.0 × 10−2 3.09 0.965 1.63 × 10−2 � � � 3.48 1.3 × 10−1

6 8.9 × 10−2 3.12 0.966 4.7 × 10−2 � � � 2.64 5.6 × 10−2

TABLE IV. Monte Carlo comparison (PL).

Number χ2Tot Δχ2 ≡ χ2# − χ27

1 11265.3 3.3
3 11265.1 3.1
5 11262.0 0

TABLE V. Monte Carlo comparison (PLþ BK).

Number χ2Tot Δχ2 ≡ χ2# − χ28

2 11307.4 4.1
4 11307.3 4.0
6 11303.3 0

TABLE VII. Marginalized confidence intervals, case 6.

68% 95% 99%

r ½0.0; 4.8 × 10−2� ½0.0; 8.4 × 10−2� ½0.0; 1.2 × 10−1�
q1 ½2.1; 1.6 × 101� ½2.7; 2.1 × 101� ½2.2; 2.1 × 101�
q2 ½0.0; 5.0 × 10−1� ½0.0; 5.0 × 10−1� ½0.0; 5.0 × 10−1�

TABLE VI. Marginalized confidence intervals, case 5.

68% 95% 99%

r ½0.0; 6.2 × 10−2� ½0.0; 1.8 × 10−1� ½0.0; 3.2 × 10−1�
q1 ½1.7; 2.0 × 101� ½2.5; 2.1 × 101� ½2.1:2.1 × 101�
q2 ½0.0; 2.8 × 10−1� ½0.0; 5.0 × 10−1� ½0.0; 5.0 × 10−1�
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data. Conversely the cases 5 and 6 (Δχ2 > 2) are favored
with regard to the cases 1–4, as an improvement greater
than 2 for the effective χ2 is obtained, through the addition
of 2 independent parameters.
In Fig. 3 we finally plot the marginalized likelihoods for

r, q1 and q2. The corresponding marginalized 68%, 95%
and 99% confidence intervals are listed in Tables VI
and VII. The marginalized likelihoods for q1 and q2 show
a 1σ deviation from standard power law for both cases 5
and 6. Let us note that, on comparing the results with those
obtained from the Planck 2013 data, the constraints on q1
and q2 are now weaker [8].
Finally let us discuss the constraint on k̄. On assuming,

for example, Hilltop inflation (123), one can invert the
relation (117) obtaining

k̄
k�

≃ expð−q1Þ
�
24q2N

2n−1n−2�
π2As

9n − 18

11 − 2n

�1=3

: ð128Þ

Given that the amplitude As is quite constrained by
observations and, on using 50 < N� < 70, n ¼ 4, we

obtain the corresponding values for k̄, which are
very large compared to the wave number associated
with the largest observable scale in the CMB namely
kmin ≃ 1.4 × 10−4 Mpc−1. These values are illustrated
in Fig. 4 for cases 5 and 6 as functions of n [defined
by (124)]. Let us note that the existence of such a
(relatively) small fundamental length may have relevant
consequences on astrophysical observations. Indeed,
it is associated with distances which are comparable
with the diameter of a large galaxy or a galaxy cluster.
We further observe that a 3 order of magnitude variation
of the value of k̄ can be obtained on “retuning” the
parameters used for its estimate. Such a variation is
illustrated in the Fig. 4 where ln10 k̄ is plotted for the case
of hilltop inflation on allowing n in (125) and N� to vary.
Let us note that the estimate for k̄, although illustrated
for a specific inflationary model, is quite general and can
also be found for other diverse power loss compatible
models.

VII. CONCLUSIONS

As we mentioned in the Introduction the matter-gravity
system is amenable to a Born-Oppenheimer treatment,
wherein gravitation is associated with the heavy (slow)
degrees of freedom and matter with the light (fast) degrees

FIG. 2. The figure shows the 68% and 95% confidence level
constraints on r and ns.

FIG. 3. Marginalized 1D likelihoods for r, q1 and q2 without (black line) and with (red line) BK data.
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FIG. 4. Constraints on k̄ for hilltop inflation as a function of n
without (blue region) and with (red region) BK data. The region
spans different N� ∈ ½50; 70�.
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of freedom. Once the system is canonically quantized and
the associated wave function suitably decomposed, one
obtains that, on neglecting terms due to fluctuations (non-
adiabatic effects), in the semiclassical limit gravitation is
driven by the mean matter Hamiltonian and matter follows
gravitation adiabatically, while evolving according to the
usual Schwinger-Tomonaga (or Schrödinger) equation. Our
scope in this paper has been to study perturbatively the
effect of the nonadiabatic contributions, for different infla-
tionary backgrounds. In particular we wished to see such
effects on the observable features of the scalar/tensor
fluctuations generated during inflation. In order to do this
we obtained a master equation for the two-point function
for such fluctuations, which includes the lowest order
quantum gravitational corrections in an asymptotic expan-
sion in inverse powers of the Planck mass. These correc-
tions manifest themselves on the largest scales, since the
associated perturbations are more affected by quantum
gravitational effects, as they exit the horizon at the early
stages of inflation and are exposed to high energy and
curvature effects for a longer period of time. Interestingly,
the very short wavelength part of the spectrum remains
unaffected and one may consistently assume the BD
vacuum as an initial condition for the evolution of the
quantum fluctuations. Computationally this feature is
relevant as it allows one to find the long wavelength part
of the spectrum of the fluctuation through a matching
procedure (similar to the standard case without quantum
gravitational corrections).
In particular, one finds, for a de Sitter evolution, a power

enhancement with respect to the standard results for the
spectrum at large scales, with corrections behaving as k−3.
Such a k−3 was also found with similar approaches [22] and
may appear to be a peculiarity of such quantum gravity
models. However, the case of power-law inflation is
different: while power enhancement is also true for
power-law inflation, of interest for this case is that one
finds that the k dependence of the quantum gravitational
corrections differs from k−3 and is, perhaps not surpris-
ingly, directly related to the k dependence of the unper-
turbed spectra.
Finally it is the slow roll case that is more realistic and of

greatest interest. The quantum gravitational corrections for
the SR case have peculiar features and are very different
from the de Sitter case. In particular, for the case of the scalar
fluctuations, their form is not simply a deformation of the de
Sitter result proportional to the SR parameters. New con-
tributions arise due to SR and their effect is comparablewith
the de Sitter-like contributions for very large wavelengths.
The new contributions are proportional to ϵSR − ηSR and are
zero for the de Sitter and power-law cases. They can lead to a
power-loss term for low k in the spectrum of the scalar
curvature perturbations at the end of inflation, providing the
difference ϵSR − ηSR > 0. The evolution of the primordial
gravitational waves has also been addressed. The quantum

gravitational corrections also affect the dynamics of tensor
perturbations and determine a deviation from the standard
results in the low multipole region, which always leads to a
power enhancement. In performing the analysis, for sim-
plicity, we restricted ourselves to the particular case of
negligible quantum gravitational contributions to the spec-
trum of primordial gravitational waves. Further, since our
corrections are perturbative,in order to keep them so for all
values of k, we have suitably extrapolated our predictions for
the scalar sector beyond the leading order, describing this
in terms of two parameters, and examined them down to
k → 0. Other parametrizations have also been considered;
however, the one we presented is the simplest and leads to
the best results.
It is found that, given the form obtained for the quantum

gravitational corrections, our model imposes severe con-
straints on the shape of the inflationary potential, as a loss
in power at large scales is compatible with observations,
whereas a power enhancement must be zero or extremely
small to fit the data. Only a small subset of the inflationary
models, satisfying the observed values for ns and r, lead to
a loss of power at large scales. The remaining models give a
power increase which may be a distinguishable feature,
unless k̄ is too small to be observed in the CMB.
Finally the analysis performed was based on Planck data

sets released in 2015 and include the Planck TT data with
polarization at low l (PL) and the data of the BICEP2/Keck
Array-Planck joint analysis (BK) [19]. In our preceding
paper [8] our model predictions were tested through Planck
2013 and BICEP2 earlier data and the results were differ-
ent. The MCMC results (see Tables IV, V) show that the
quantum gravitational modification of the standard power-
law form for the primordial scalar spectrum improves the fit
to the data. Such improvements are much more significant
with respect to the standard modifications of the primordial
spectra, obtained by considering a running spectral index.
Let us note that the 2015 Planck data give constraints on the
running, which are quite different from those coming from
2013 data. In particular the fit to the 2015 data does not
improve much if one considers a running spectral index in
the scalar sector. On including the BK data in our analysis,
we find that the results take very similar values for the best
fit. Furthermore, comparison with the data predicts, for our
model, a loss in power of about 20%–25% with respect to
the standard power law as k approaches zero. and fixes the
scale k̄, which necessarily appears in the theoretical model.
One finds values for k̄ which are very large, compared to
the wave number associated with the largest observable
scale in the CMB (namely kmin ≃ 1.4 × 10−4 Mpc). Let us
note that the existence of such a small fundamental length
may have relevant consequences on astrophysical obser-
vation. Indeed it is associated with distances which are
comparable with the diameter of a large galaxy or a galaxy
cluster. We further observe that a 3 order of magnitude
variation of the value of k̄ can be obtained on “retuning” the
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parameters used for its estimate. Further we observe that the
value of k̄, although illustrated for a specific inflationary
model, is quite general and is found for diverse power loss
compatible models. This is rather surprising and of course,
assuming our proposed mechanism is correct, indicates the
possible presence of new physics at such scales. Actually
such a result is not new. Indications for this have been seen

both from a study of the stability of clusters of galaxies or is
associated with the running of Newton’s constant [23].
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