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In this paper, we investigate the possibility of setting a model of a nonsingular universe in the context of
the extended Chaplygin gas model with the equation of state p ¼ Aρ − B

ρα through the framework of four-
dimensional Friedmann-Robertson-Walker background. We find the following solutions of the singularity-
free cosmological model: a cyclic universe with the minimal and maximal values of the scale factor that
remains the same in every cycle, for an open universe with k ¼ −1 and a negative cosmological constant; a
nonsingular oscillating universe as a single bouncing solution for the cases of k ¼ 0 and k ¼ 1 curvature;
and an oscillating universe with the minimal and maximal values of the scale factor that periodically rises
up and down in the presence of a self-interacting scalar field model for all cases of the curved universe (with
k ¼ −1, k ¼ 0 and k ¼ 1). We also study whether a nonsingular bounce requires violation of the null
energy condition.
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I. INTRODUCTION

The idea of an oscillating universe was initially intro-
duced in the 1930s by Richard Tolman [1] as an alternative
to standard big bang cosmology [2–4] to avoid the big bang
singularity and replace it with a cyclical evolution. One of
the primary motivations for such a study was to circumvent
the need for initial conditions in cosmology. This was,
however, shown to be extremely difficult to achieve within
the context of general relativity (GR) without encountering
singularities [5–9]. As shown by Hawking and Penrose
[10,11] using their singularity theorem, GR predicts a
spacetime singularity if a certain condition is satisfied.
Once a singularity is formed, general relativity is no longer
valid and it should be replaced by a more fundamental
gravity theory [4,12].
Even in the framework of an inflationary scenario [13],

which resolves several problems of standard big bang
cosmology in the early Universe [14,15], the initial
singularity cannot be avoided [16]. Since the inflation is
realized by the dynamics of the scalar matter fields coupled
to Einstein gravity [17], a new gravitational theory may be
required to describe the beginning of the Universe [6].
Many researchers have attempted to resolve this singularity
problem through the generalized/modified general relativ-
ity theory [18].
Superstring theory—which is one of the most prom-

ising candidates for a unified theory of fundamental
interactions—may solve this problem; however, it is
not yet complete and is not able to describe any realistic
strong gravitational phenomena. Loop quantum gravity
theory may resolve the problem of the big bang singu-
larity via loop quantum cosmology (LQC) [5], which at
present is the main background-independent and

nonperturbative candidate for a quantum theory of gravity
(for example see Refs. [19,20]).
Oscillating universes have been explored in several

contexts in an attempt to solve some problems of the
standard cosmological model (SCM). There have been
many discussions on this topic, and a number of models
have been proposed in the literature, including nonsingular
models of universes in teleparallel theories [21], cyclic
models in a braneworld scenario [22–24], a closed oscillat-
ing universe [25,26], a cyclic braneworld in LQC [27–29],
and cyclic cosmologies with spinor matter [30] (see
Refs. [31–39] for recent developments). Even though the
bouncing models can solve many of the shortcomings of the
SCM—since in principle the problems come from a “short-
age of time” for things to happen early after the big bang
[17,18,40]—obtaining a bouncing solution is very depen-
dent on the choice of scenario and background. However,
eachmodel can be useful for extracting the characteristics of
more general behavior [17,41]. Herewe do not discuss all of
the bouncing scenarios; for a more complete survey of older
models see Refs. [18,42] for a recent review.
This paper is organized as follows. In Sec. II, we briefly

introduce the bouncing framework by the action of the
extended Chaplygin gas model. In Sec. III, we study the
structure of the dynamical systemvia phase plane analysis to
obtain a spectrum of cosmological perturbations. In Sec. IV,
we discuss an oscillating universe in the presence of a scalar
field and some realizations of cosmological bounces. In this
situation, physics which goes beyond general relativity and/
or standard matter theory (i.e., models of matter which obey
the null energy condition) is required [17]. This is argued in
general in Sec. V, where we discuss the possibility of
conditions to obtain a bounce and their direct connection
with the null energy condition (NEC) for all curved uni-
verses. Also, the signatures of this bouncing cosmology
scenario are illustrated in the field plots of the pertinent*salehi.a@lu.ac.ir
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systems, so that they show in some detail the bouncing
trajectories and also oscillating universes near the critical
points.We conclude in Sec.VIwith a discussion of somekey
results for a bouncing universe in the presence of the
extended Chaplygin gas model.

II. THE MODEL

In this section we consider the Friedmann-Robertson-
Walker (FRW) cosmological model in the presence of an
extended Chaplygin gas and cosmological constant, by
assuming the equation of state

pch ¼Aρch−
B
ραch

; where A;B≥ 0 and 0≤ α≤ 1 ð1Þ

from the Friedmann equations

3

�
H2 þ k

a2

�
¼ ρch þ Λ; ð2Þ

�
2 _H þ 3H2 þ k

a2

�
¼ −pch þ Λ ð3Þ

and the conservation equation

_ρch þ 3Hðρch þ pchÞ ¼ 0 ð4Þ

By inserting Eq. (1) into Eq. (4), one can obtain

ρch ¼
�

B
1þ A

þ C

a3ð1þAÞð1þαÞ

� 1
1þα

; ð5Þ

where C is an arbitrary integration constant, and

ωch ¼
Pch

ρch
¼ A −

B

ραþ1
ch

: ð6Þ

III. PERTURBATION AND STABILITY ANALYSIS

The Jacobian stability of a dynamical system can be
regarded as the robustness of the system to small perturba-
tions of thewhole trajectory. This is a very convenientwayof
regarding the resistance of limit cycles to small perturbation
of trajectories. It is especially important in cosmologywhere
there is the problem of initial conditions, as it gives us the
possibility of studying all of the evolution paths admissible
for all initial conditions [43–45]. Furthermore, phase planes
are useful in visualizing the behavior of the system,
particularly in oscillatory systems where the phase paths
can “spiral in” towards zero, “spiral out” towards infinity, or
reach neutrally stable situations called centers.
In this section, therefore, we study the structure of the

dynamical system via phase plane analysis, by introducing
the following new variables:

χ ¼ H; ζ ¼ a; η2 ¼ ρch: ð7Þ
From Eqs. (2) and (3), the evolution equations of these
variables become

_χ ¼ k
ζ2

−
ð1þ AÞη2

2
þ B
2η2α

; ð8Þ
_ζ ¼ ζχ; ð9Þ

2η_η ¼ −3χ
�ð1þ AÞη2

2
−

B
2η2α

�
; ð10Þ

where a dot denotes a derivative with respect to the cosmic
time. The Friedmann equation (2) in terms of the new
variables would be

η2 ¼ 3χ2 þ 3k
ζ2

− Λ: ð11Þ

Therefore, Eqs. (8)–(10) reduce to the following
relations:

_χ ¼ k
ζ2

ð−1 − 3AÞ
2

− 3
ð1þ AÞχ2

2
þ ΛðAþ 1Þ

2

þ B

ð3χ2 þ 3k
ζ2
− ΛÞα ; ð12Þ

_ζ ¼ ζχ: ð13Þ

By solving them, one can obtain the critical points
ðχc; ζcÞ:

χc ¼ 0; ð14Þ

and ζc is the root of

ð3kζ−2c −ΛÞαðζ2cΛðAþ1Þþkð1þ3AÞÞ−2Bζ2c ¼ 0: ð15Þ

It can be seen that the number of critical points in the model
depends on the value of α. It is more convenient to
investigate the properties of the dynamical system (12)–
(13) than Eqs. (8)–(10). Now, we can obtain the critical
points (or fixed points) and study their stability. The critical
points are always exact constant solutions in the context of
the autonomous dynamical systems, and are often the
extreme points of the orbits and therefore describe the
asymptotic behavior of the systems. In the following, we
find the fixed points by simultaneously solving χ0 ¼ 0
and ζ0 ¼ 0.
By means of the Jacobian, one can linearly approximate

the nonlinear systems near the hyperbolic fixed points, such
that a linear stability analysis holds (see the Appendix).
In the modified Chaplygin gas model the Jacobian is

(note that χc ¼ 0)
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Jacobian ¼

0
B@−3ð1þ AÞχc −

3βχc
ð3χ2c þ 3 k

ζ2c
− ΛÞ2 ;

kð1þ 3AÞ
ζ3c

þ 3βk

ð3χ2c þ 3 k
ζ2c
− ΛÞ2ζ3c

ζc χc

1
CA:

Hence, there are two eigenvalues for any critical point:

λ1 ¼
1

ζc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

�
ð1þ 3AÞ þ 3B

ð−Λþ 3k
ζ2c
Þ2
�s
;

λ2 ¼ −
1

ζc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

�
ð1þ 3AÞ þ 3B

ð−Λþ 3k
ζ2c
Þ2
�s
: ð16Þ

For k ¼ −1 and positive values ofA andB, they are complex
with zero real part, and the critical points are centers,

λ1 ¼
i
ζc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ð1þ 3AÞ þ 3B

ð−Λþ 3k
ζ2c
Þ2
�s
;

λ2 ¼
−i
ζc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ð1þ 3AÞ þ 3B

ð−Λþ 3k
ζ2c
Þ2
�s
:

In the case of centers (nonhyperbolic critical points),
curves are closed trajectories around the center in the phase
space and eigenvalues are purely imaginary and conju-
gated. The real parts of the eigenvalues are zero for
oscillating solutions, as the corresponding critical points
are centers and marginally stable. In our model, depending
on α, k, and Λ, the number of critical points and their
properties may change. In the following, we focus on
models that represent the oscillating evolutions, in the two
special cases of α ¼ 1 and α ¼ 1=2.

A. Case 1: k= − 1, α= 1=2

In this case, we have two critical points in the phase
space: both are centers and can be written as

χþc ¼ 0; ζþc ¼ 1

3

�
−84Λ2þ6D

1
3

4Λ3þB2
þ24ΛðΛ3−12B2Þ

ð4Λ3þB2ÞD1
3

�1
2

;

χ−c ¼ 0; ζ−c ¼−
1

3

�
−84Λ2þ6D

1
3

4Λ3þB2
þ24ΛðΛ3−12B2Þ

ð4Λ3þB2ÞD1
3

�1
2

;

where

D ¼ −8Λ6 þ 360Λ3B2 − 81B4

þ ð12Λ3
ffiffiffi
3

p
Bþ 3

ffiffiffi
3

p
B3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
243B2 − 8Λ3

p
:

In Fig. 1, the region III is not accepted because the scale
factor becomes negative. In Fig. 2, we have magnified
region I of Fig. 1 which shows the oscillating scale factor in
the configuration space. In Fig. 3, the Hubble parameter H
and energy density of the Chaplygin gas ρch are shown for

this region. The forbidden region (a region is forbidden
because it implies a negative energy) which is when a2 <

3
3H2−Λ is performed—shown in Figs. 1 and/or 2 implies that
the system does not have any real critical point.
From Figs. 1 and/or 2, we observe the trajectories that

have a closed orbit in the phase space and give an
oscillating solution. One can see that none of the trajecto-
ries in the phase space wind around the center critical
points. More specifically, the red trajectory hits the for-
bidden region and does not give an oscillating solution.

B. Case 2: k= − 1, α= 1

In this case we have four critical points in the phase space
as follows:

ζ1c ¼
�
2Λþ 3AΛ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þ 3Bþ 9AB

p

Λ2 þ AΛ2 − B

�1
2

;

ζ3c ¼ −
�
2Λþ 3AΛ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þ 3Bþ 9AB

p

Λ2 þ AΛ2 − B

�1
2

;

ζ2c ¼
�
−2Λ − 3AΛ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þ 3Bþ 9AB

p

Λ2 þ AΛ2 − B

�1
2

;

ζ4c ¼ −
�
−2Λ − 3AΛ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þ 3Bþ 9AB

p

Λ2 þ AΛ2 − B

�1
2

;

FIG. 1. Phase plane of the system around the critical points
ðχþc ; ζþc Þ and ðχ−c ; ζ−c Þ for k ¼ −1, α ¼ 1=2, A ¼ 1, B ¼ 0.5,
and Λ ¼ −1.
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which, again, are all centers. In Fig. 4, regions III and IVare
not accepted since the scale factor becomes negative.
Region I of Fig. 4 has been magnified in Fig. 5, and we
have also shown the oscillating scale factor in configuration
space. The Hubble parameter H and energy density of the
Chaplygin gas ρchap are shown for this region in Fig. 6.
Figures 7 and 8 illustrate the phase space and scale factor a,
Hubble parameter H, and energy density of the Chaplygin
gas ρ for region II, as ρchap < 0 may not be favored for this
region.

C. Case 3: k= 0, k = 1

In both the k ¼ 0 and k ¼ 1 cases the eigenvalues
are real,

λ1 ¼
k
ζc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ð1þ 3AÞ þ 3B

ð−Λþ 3
ζ2c
Þ2
�s
;

λ2 ¼ −
k
ζc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ð1þ 3AÞ þ 3B

ð−Λþ 3
ζ2c
Þ2
�s
; ð17Þ

and thus the universe does not oscillate. However, a single
bounce without oscillation can occur under the appropriate
conditions. Considering that the minimal conditions require
a bounce with _ab ¼ 0, äb ≥ 0 (where the subindex b
denotes the quantities that are evaluated at the bounce),
it can also follow equivalently at the bounce, as χb ¼ 0 and
dχb
dt > 0 in terms of new variables. Applying this condition
to the right-hand side of Eq. (12) yields

FIG. 3. Time evolution of the Hubble parameter H and energy density of the Chaplygin gas ρchap, corresponding to the trajectories of
the phase space in region I of Fig. 1.

FIG. 2. (Left) Dynamical behavior of the system around the critical point ðχþc ; ζþc Þ. (Right) Time evolution of the scale factor a
corresponding to the trajectories in phase space for the case of k ¼ −1, α ¼ 1=2, A ¼ 1, B ¼ 0.5, and Λ ¼ −1.

A. SALEHI PHYSICAL REVIEW D 94, 123519 (2016)

123519-4



B >
1

a2b

�
ðk − Λa2b þ 3Ak − AΛa2bÞ

�
3k
a2b

− Λ

�
α
�
: ð18Þ

Accordingly, by an appropriate choice of operation param-
eters based on the condition (18), it is possible to obtain a
bounce solution. Also, by assuming 8πG ¼ 1, from Eq. (2)
we can obtain the energy density at the bounce as

ρb ¼
�
3k
a2b

− Λ
�
: ð19Þ

In order to avoid a negative energy density at bounce, the
condition (ρb ¼ ð3ka2b − ΛÞ > 0) must be satisfied. This

implies that the bounce in a flat universe requires a negative
cosmological constant. Considering the bounce condition
(18), we have plotted the phase plane diagram for the k ¼ 0
and k ¼ 1 cases in Fig. 9. It is interesting to note that it
gives us the opportunity to study all of the evolution paths
admissible for all initial conditions, which is an appealing
feature of phase plane analysis. Since each line in the phase
plane corresponds to a certain initial condition (here,H ¼ 0
and a ¼ ab), it is possible to obtain different bounce
solutions by taking different initial conditions.

IV. AN OSCILLATING UNIVERSE IN THE
PRESENCE OF A SCALAR FIELD

It is possible to generate bouncing models in a wide
choice of scenarios, essentially by any of the mechanisms
presented in Ref. [18]. Obviously, the outcome is strongly
dependent on the choice, but specific models can some-
times be useful for extracting characteristics of a more
general behavior. In this sense, scalar, vector, and tensor
perturbations have been studied in many exact backgrounds
displaying a bounce [46–50]. The role of scalar fields in
cosmology has been examined in Ref. [51]. Nonsingular
solutions for a scalar field in the presence of a potential
were also studied in Ref. [52]. Here, we consider a model of
the universe filled with an extended Chaplygin gas in the
presence of a scalar field ϕ and a self-interacting potential
VðϕÞ with the effective Lagrangian Lϕ ¼ 1

2
_ϕ2 − V. In this

case, the Friedmann equations are

3H2 þ 3k
a2

¼ ρch þ
1

2
_ϕ2 þ V; ð20Þ

2 _H þ 3H2 þ k
a2

¼ −pch −
1

2
_ϕ2 þ V: ð21Þ

FIG. 5. Dynamical behavior of the system around the critical point ðχ1; ζ1Þ for k ¼ −1, α ¼ 1, and Λ ¼ −1.

FIG. 4. Dynamical behavior of the system around the critical
points ðχ1; ζ1Þ, ðχ2; ζ2Þ, ðχ3; ζ3Þ, and ðχ4; ζ4Þ for k ¼ −1, α ¼ 1,
A ¼ 0.8, B ¼ 0.3, and Λ ¼ −1.
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The conservation equation is

_ρch þ 3Hðρch þ pchÞ ¼ 0: ð22Þ

The field equation for scalar field is

ϕ̈þ 3H _ϕþ dV
dϕ

¼ 0: ð23Þ

For simplicity, we use the following new variables:

x ¼ H; y ¼ ρch; _ϕ ¼ gðtÞ; z ¼ V: ð24Þ

Now, from the equations of motion (20)–(23), we obtain

dx
dt

¼ −
fðyÞ
2

−
1

2
gðtÞ2 þ k

a2
; ð25Þ

dy
dt

¼ −3xfðyÞ; ð26Þ
da
dt

¼ ax; ð27Þ
dz
dt

¼ _g
−3xgðtÞ − gðtÞ ; ð28Þ

where fðyÞ¼ðρchþpchÞ is given by fðyÞ¼ð1þAÞy− B
yα.

FIG. 7. Dynamical behavior of the system around the critical point ðχ2; ζ2Þ for k ¼ −1, α ¼ 1, and Λ ¼ −1.

FIG. 6. Time evolution of the Hubble parameter H and energy density of the Chaplygin gas ρchap, corresponding to the trajectories of
the phase space in Fig. 5 for k ¼ −1, α ¼ 1, and Λ ¼ −1.
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FIG. 8. Time evolution of the Hubble parameter H and energy density of the Chaplygin gas ρchap, corresponding to the trajectories of
the phase space in Fig. 7 for k ¼ −1, α ¼ 1, and Λ ¼ −1.

FIG. 9. Phase plane analysis for the (left) k ¼ 0 and (right) k ¼ 1 cases. For k ¼ 0, we have chosen the parameters A ¼ 1, α ¼ 1
2
,

B ¼ 4, and Λ ¼ −1; however, for k ¼ 1 we have choosen A ¼ .1, α ¼ 1
2
, B ¼ .8, and Λ ¼ 1. The plots show that there is a single

bouncing trajectory which cannot undergo repeated expansions and contractions.

FIG. 10. Dynamical behavior of the scale factor and Hubble parameter for k ¼ 0, gðtÞ ¼ 0, A ¼ 0, B ¼ 0.8, and α ¼ 0.8.
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For gðtÞ ¼ 0, the scale factor has a single bounce: the
universe does not undergo repeated cycles (see Fig. 10).
Note that this case represents the universe with a cosmo-
logical constant in the absence of scalar field.

Assuming gðtÞ ¼ e−λt (where λ is a constant which can
be called the damping coefficient), Eqs. (25)–(27) give an
oscillating universe with minimal and maximal values of
the scale factor increasing cycle by cycle. By recalling that

FIG. 11. Dynamical behavior of the scale factor and Hubble parameter for k ¼ 0, gðtÞ ¼ e−λt, λ ¼ .03, A ¼ 0, B ¼ 0.8, α ¼ 0.8.

FIG. 12. Dynamical behavior of the scale factor and Hubble parameter for k ¼ 0, gðtÞ ¼ e−λt, λ ¼ .015, A ¼ 0, B ¼ 0.8, and α ¼ 0.8.

FIG. 13. Dynamical behavior of the scale factor and Hubble parameter for k ¼ 0, gðtÞ ¼ e−λt, λ → 0, A ¼ 1, B ¼ 0.8, and α ¼ 0.8.
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the minimal conditions require a bounce with (xb ¼ 0,
ðdxdt jtb ¼ äb

ab
−H2

bÞ > 0) and applying it in Eq. (25), we can
obtain a bounce condition in terms of the parameters and
initial conditions of the model as

B >

�
−2k
a2b

þ g2b þ ðAþ 1Þyb
�
ðybÞα; ð29Þ

where gb ¼ e−λtb . Figures 11 and 12 show the oscillating
behavior of the scale factor for different initial conditions
and different constant parameters. It is also interesting that
the Hubble parameterH oscillates and its amplitude decays
exponentially with time and then holds a steady-state value
at late times (as in a damped harmonic oscillator). It is
worth mentioning that a larger value for λ leads to a faster

decay of oscillations. In the limit λ → ∞, the system does
not oscillate at all. Also, for λ → 0 the system will continue
oscillating forever (see Figs. 13 and 14). The cyclic
behavior of the universe can also be obtained for the cases
of k ¼ 1 and k ¼ −1; see Figs. 15 and 16, where we
illustrate the dynamical behavior of the scale factor and
phase plane of (a −H).
It is interesting to note that gðtÞ ¼ e−λt with a positive

value of λ gives an oscillating universe with minimal and
maximal values of the scale factor increasing cycle by
cycle, while gðtÞ ¼ e−λt with a negative value of λ [identical
to gðtÞ ¼ eλt with a positive value of λ] gives an oscillating
universe with minimal and maximal values of the scale
factor decreasing cycle by cycle (as observed in Fig. 17).

V. ENERGY CONDITIONS

Up to here, the possibility of conditions that lead to
bouncing solutions surrounding the critical points was
discussed regardless of whether we had considered all of
the energy conditions or restrictions on the matter energy-
momentum tensor Tμν, which play an important role in
general relativity. In this section we are going to demon-
strate a direct connection between a bounce and the NEC in
the presence of an extended Chaplygin gas model.
In this discussion, some quantities of interest are

ρch þ pch ¼
1

4πG

�
−
ä
a
þ _a2

a2
þ k
a2

�
; ð30Þ

ρch − pch ¼
1

4πG

�
ä
a
þ 2

_a2

a2
þ 2

k
a2

− Λ

�
; ð31Þ

ρch þ 3pch ¼ −
3

4πG

�
ä
a
−
Λ
3

�
: ð32Þ

By the strict inequalities discussed above, there will be
open temporal regions surrounding the bounce for which

FIG. 14. Phase plane of (a −H) for gðtÞ ¼ e−λt, k ¼ 0, λ → 0,
A ¼ 1, B ¼ 0.8, and α ¼ 0.8.

FIG. 15. Dynamical behavior of the scale factor and phase plane of (a −H) for k ¼ 1, gðtÞ ¼ e−λt, λ.02, A ¼ .1, B ¼ 0.1, and α ¼ 0.5.
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ρb þ pb <
1

4πG

�
k
a2

�
; ð33Þ

ρb − pb >
1

4πG

�
2k
a2

− Λ

�
; ð34Þ

ρb þ 3pb <
Λ

4πG
: ð35Þ

The standard pointwise energy conditions are the NEC,
weak energy condition (WEC), strong energy condition
(SEC), and dominant energy condition (DEC). Their
specializations to a FRW universe have previously been
discussed in Refs. [53,54] and their basic definitions are
given in Ref. [55]:

NEC ⇔ ðρch þ pch ≥ 0Þ; ð36Þ

WEC ⇔ ðρch ≥ 0Þ and ðρch þ pch ≥ 0Þ; ð37Þ

SEC ⇔ ðρch þ 3pch ≥ 0Þ and ðρch þ pch ≥ 0Þ: ð38Þ

DEC ⇔ ðρch ≥ 0Þ and ðρch � pch ≥ 0Þ: ð39Þ
Note that if the NEC is violated, then all of the other

pointwise energy conditions are violated as well [19].

A. NEC in a spatially flat (k= 0) and hyperbolic
(k= − 1) universe

With the above discussion points and using Eq. (33), it
follows that the presence of the bounce in an open and flat
universe implies the violation of the NEC. If the NEC is
satisfied, a very general property of an expanding universe
is that it always evolves from a state with a high energy
density towards a state with a lower one. Here, we are
interested in studying the relations imposed by the Einstein
equations between extrema of the scale factor, the energy
density, and the energy conditions in the extended
Chaplygin gas fluid. We start from the conservation
equation

_ρb ¼ −3Hbðρb þ pbÞ: ð40Þ

FIG. 16. Dynamical behavior of the scale factor and phase plane of (a −H) for k ¼ −1, gðtÞ ¼ e−λt, λ ¼ .1, A ¼ .1, B ¼ 6, and
α ¼ 0.5.

FIG. 17. Dynamical behavior of the scale factor and Hubble parameter for positive and negative values of λ.
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SinceHb ¼ 0 and hence _ρb ¼ 0, the energy density reaches
its extremum at the bounce point. To complete our under-
standing of the behavior of the energy density at the
bounce, we need to find the second derivative of the energy
density at the bounce. From Eq. (40), we find that

ρ̈b ¼ −3 _Hbðρb þ pbÞ − 3Hbð _ρb þ _pbÞ ¼ −3 _Hbðρb þ pbÞ:
ð41Þ

Using Eqs. (41) and (33), the discussion can be classified as

äb > 0 ⇒

8>><
>>:

_Hb > 0;

⇒ NEC violated and ρ̈b > 0 ⇒ ρb ¼ ρmin ¼ − 3k
a2b
− Λ:

ðρb þ pbÞ < 0;

The first and second derivatives of the Chaplygin gas
pressure at the bounce are, respectively,

_pb ¼ _ρb

�
Aþ αB

ραþ1
b

�
; ð42Þ

p̈b ¼ ρ̈b

�
Aþ αB

ραþ1
b

�
: ð43Þ

We can say that in the extended Chaplygin gas model, the
minimum ρb leads to the minimum (ρb þ pb). (It is obvious
that, for a positive value of ρb, the quantities p̈b and ρ̈b have
the same sign.) The equation of state (1) implies the
violation of the NEC in an extended Chaplygin gas only if

A −
B

ραþ1
ch

< −1: ð44Þ

It follows from Eqs. (44) and (19) that the presence
of a bounce in an open and flat universe requires a
negative cosmological constant in the specific range of
Λ < −ð B

Aþ1
Þ 1
1þα. It is worth mentioning that although recent

observations point toward a positive cosmological constant,
it is still possible that in the very early universe the
cosmological constant was negative. Several important

theoretical results and predictions in quantum cosmology
have been obtained with a negative cosmological constant.
In Ref. [56], the oscillating behavior of the scale factor

for different curvatures with Λ ¼ −0.1 was shown. Also,
the authors of Ref. [57] explained that a bounce in loop
quantum gravity requires a negative potential or negative
cosmological constant. Also, a unique way of realizing
inflation with a negative cosmological constant in a cyclic
universe was presented in Ref. [58].

B. NEC in a hyperspherical (k= þ 1) universe

As discussed in the previous section, the presence of a
bounce in both flat and open universes (with k ¼ 0 or
k ¼ −1) automatically implies the violation of the NEC.
However, in a closed universe (k ¼ 1), by making the
bounce sufficiently gentle äb ≤ 1

ab
, the NEC will be

satisfied. Rewriting Eq. (30) at the bounce as

ρb þ pb ¼
−1
4πG

�
äb
ab

−
1

a2b

�
; ð45Þ

it follows that the NEC would be violated if äb ≥ 1
ab
. Thus,

depending on the magnitude of äb, the different possibil-
ities can be classified as

8>>>>>>>>>>>><
>>>>>>>>>>>>:

äb >
1
ab
⇒

8>><
>>:

_Hb > 0;

⇒ NEC violated and ρ̈b > 0 ⇒ ρb ¼ ρmin ¼ 3
a2b
− Λ;

ðρb þ pbÞ > 0;

äb <
1
ab
⇒

8>><
>>:

_Hb > 0;

⇒ NEC satisfied and ρ̈b < 0 ⇒ ρb ¼ ρmax ¼ 3
a2b
− Λ:

ðρb þ pbÞ > 0;

The argument shows that the presence of a nonsingular
universe does not necessarily imply the violation of the
NEC and it is possible to obtain a bounce solution without
violating the NEC (see Fig. 18). It also indicates that, if the

NEC is violated, the energy density reaches its minimum at
bounce points as (ρb ¼ ρmin ¼ 3

a2b
− Λ). By taking this and

Eq. (44), the NEC would be violated in the presence of an
extended Chaplygin gas if
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B > ðAþ 1Þ
�
3

a2b
− Λ

�
αþ1

: ð46Þ

In a closed universe (k ¼ 1), however, the following
biconditional is established:

B > ðAþ 1Þ
�
3

a2b
− Λ

�
αþ1

⇔ äb >
1

ab
: ð47Þ

For the parameters A ¼ 0.1, α ¼ 1
2
, Λ ¼ 0.1, and ab ¼ 1 in

the case of k ¼ 1, for instance, theNECwould be violated in
an extended Chaplygin gas if B > 5.656854250. Figure 18
depicts the behavior of the scale factor, the quantity
ρch þ pch, and the energy density ρch for different values
of B and the same value of ab. One can see that in the plots
where B < 5.656854250 is satisfied, the NEC is violated.
It is interesting to note that the scale factor for a k ¼ 1

universe will approach infinity in the future. From Eq. (5),

therefore, the Chaplygin gas energy density will approach
the constant value ρch → ð B

1þAÞ
1

1þα in the future. From
Eq. (2), consequently, the Hubble parameter approaches
a constant value as

H → �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πG
3

�
B

1þ A

� 1
1þα þ Λ

3

s
; ð48Þ

in which the minus and plus signs represent contracting and
expanding universes, respectively. Also, Eq. (1) shows that
when t→∞, pch→−ð B

1þAÞ
1

1þα, ωch→−1, and ðρchþpchÞ→0

are established, so that the conservation equation (40) tells
us dρ

dt → 0. Therefore, the energy density at two situations
(bounce point and infinity) approximates its extremum
(dρdt ¼ 0) limit. Depending on the violation or satisfaction of
the NEC, one can determine the maximum or minimum of
the energy density at these points, such that

8>>><
>>>:

NEC violated ⇒ ρb ¼ ρmin ¼ 3
a2b
− Λ; ρ∞ ¼ ρmax ¼

�
B

1þ A

� 1
1þα

;

NEC satisfied ⇒ ρb ¼ ρmax ¼ 3
a2b
− Λ; ρ∞ ¼ ρmin ¼

�
B

1þ A

� 1
1þα

;

where ρ∞ denotes the energy density evaluated at infinity.

C. NEC in the presence of a scalar field
(for k= − 1, k= 0, and k= þ 1)

Violations of some of the energy conditions are produced
by some scalar field theories. A universe filled with
radiation and pressureless matter coupled to a classical
conformal massless scalar field was studied in Ref. [59].

Another nonsingular universe based on a scalar field was
presented in Ref. [60]. Here, we want to study the NEC in
the extended Chaplygin gas model in the presence of a
scalar field. The field equations for this case have been
obtained in Sec. IV, so that the total energy density and
pressure are written as

ρT þ pT ¼ ðρch þ pchÞ þ ðρϕ þ pϕÞ; ð49Þ

FIG. 18. Dynamical behavior of the scale factor a, the sum of the energy density and pressure (ρch þ pch), and energy density ρch
during the bounce phase for k ¼ 1, A ¼ .1, α ¼ 1

2
, Λ ¼ .1, and ab ¼ 1 for different values of B. The plots show that although for all

values of B from 3–8 a bounce can occur, for B ¼ 6, 7, and 8 the NEC is violated.
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where

ρϕ ¼ 1

2
_ϕ2 þ VðϕÞ; pϕ ¼ 1

2
_ϕ2 − VðϕÞ: ð50Þ

From Eqs. (20) and (21), we can obtain the sum of the total
energy density and pressure at the bounce point as

ðρT þ pTÞjtb ¼
−1
4πG

�
−
äb
ab

þ k
a2b

�
: ð51Þ

This equation immediately implies the violation of the NEC
for the k ¼ 0 and k ¼ −1 cases. These conditions are
exactly the same as those we obtained for an extended
Chaplygin gas in the absence of a self-interacting scalar
field. However, the violation of the NEC implies the
condition äb > 1

a for the k ¼ 1 case, as we can find specific
ranges of the parameters and initial conditions of the model
which satisfy this condition. In this respect, by substituting
ðρch þ pchÞ ¼ ð1þ AÞy − B

yα and ðρϕ þ pϕÞ ¼ _ϕ2 into
Eq. (49), we can obtain

ðρT þ pTÞjtb ¼ ðAþ 1Þyb −
B
yαb

þ g2b: ð52Þ

Therefore, the equation indicates that the violation of the
NEC needs the right-hand side of Eq. (52) to be negative,
which yields

B > ½ðAþ 1Þyb þ g2b�ðybÞα: ð53Þ

VI. CONCLUSION

In this paper we have studied the possibility of obtaining
singularity-free cosmological solutions in the context of an
extended Chaplygin gas, with curvature and in some cases
in the presence of a self-interacting scalar field. We found
nonsingular solutions that can be periodic or bouncing by
employing dynamical system techniques. Using the phase
plane analysis, the full classification of the solutions was
expressed based on the different curvatures. The phase
plane diagram together with the phase plane trajectories
were plotted in order to understand some general features of
the system. One of the advantages of using this method in
the oscillating models is that, using the properties of
eigenvalues (with no need to find the exact solution of
the differential equations), it is possible to determine
whether the universe is cyclic or not. Also, the oscillating
behavior can be observed in the phase space landscape as
closed or spiral trajectories. For instance, it was shown that
the eigenvalues are purely imaginary and hence the
trajectories in the (a −H) phase space are circles in an
extended Chaplygin gas for an open universe (k ¼ −1)
with a negative cosmological constant. This type of picture
is sometimes called a center and it represents a cyclic
universe where the minimal and maximal values of the
scale factor remain the same in every cycle.
It was also demonstrated that the eigenvalue of the

corresponding critical points for the cases of k ¼ 0 and
k ¼ 1 are not complex. Thus, the phase trajectories cannot

spiral in towards the critical points and/or spiral out
towards infinity and there is no oscillating behavior for
a and H, while a single bounce (a bouncing evolution
without regular repetition) can occur under some appro-
priate conditions.
A combination of field equations gives the equation _H ¼

−4πGðρT þ pTÞ þ k
a2 which determines how the Hubble

parameter changes with time. This equation implies that the
presence of a bounce ð _Hb > 0Þ leads to the violation of the
NEC [ðρT þ pTÞ < 0] in the k ¼ 0 and k ¼ −1 cases.
However, it does not necessarily imply the violation of the
NEC in the k ¼ 1 case, where there is the possibility of
having a bounce while the NEC is satisfied. It can be
achieved by taking proper values for the parameters and
initial conditions of the model.
We distinguished three main types of evolution of the

universe in the extended Chaplygin gas model:
(i) A cyclic universe where the minimal and maximal

values of the scale factor remain the same in every
cycle, for an open universe with k ¼ −1 and a
negative cosmological constant.

(ii) A nonsingular oscillating universe as a single
bouncing solution for k ¼ 0 and k ¼ 1, where
for k ¼ 0 a negative cosmological constant is
required and the NEC is violated. However, both
positive and negative cosmological constants are
allowed for the k ¼ 1 case, while the NEC is
violated if (äb > 1

ab
) or equivalently when the con-

dition B > ðAþ 1Þ½ 3a2b − Λ�αþ1 is satisfied.

(iii) An oscillating universe where the minimal and
maximal values of the scale factor periodically
increase and decrease in the presence of a self-
interacting scalar field model for all curvatures
(k ¼ −1, k ¼ 0, and k ¼ 1). The NEC is automati-
cally violated for k ¼ −1 and k ¼ 0, and under the
condition B > ½ðAþ 1Þyb þ g2b�ðybÞα for k ¼ 1.

Thus, it can be concluded that although a bouncing
solution can occur for different curvatures, it can
occur without violating the null energy condition
only for k ¼ 1, as is usual in the context of general relativity.
As discussed in Sec. V, the relations imposed by the

Einstein equations between extrema of the scale factor, the
energy density, and the energy conditions in an extended
Chaplygin gas fluid imply that if the NEC is violated, the
energy density reaches its minimum value at the bounce
point and never reaches high densities where quantum
gravity is important. An appealing feature of this study is
that, we have obtained two different types of singularity-
free cosmological solutions in the context of the extended
Chaplygin gas with negative curvature. In one solution the
NEC is violated and the energy density reaches its mini-
mum value at the bounce, whereas in another the NEC is
satisfied and the energy density reaches its maximum value
at the bounce.
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APPENDIX: JACOBIAN STABILITY ANALYSIS
FOR TWO DIMENSIONAL DYNAMICAL

SYSTEMS
Consider the autonomous system8>><

>>:
dχ
dt

¼ fðχ; ζÞ;
dζ
dt

¼ gðχ; ζÞ;

FIG. 19. Classification of phase plane portraits for two dimensional systems around the fixed points.
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Then the nonlinear system may be approximated by the
system8>>><
>>>:
fðχ;ζÞ≈fðχc;ζcÞþ

∂f
∂χ

				
ðχc;ζcÞ

ðχ−χcÞþ
∂f
∂ζ

				
ðχc;ζcÞ

ðζ−ζcÞ;

gðχ;ζÞ≈gðχc;ζcÞþ
∂g
∂χ

				
ðχc;ζcÞ

ðχ−χcÞþ
∂g
∂ζ

				
ðχc;ζcÞ

ðζ−ζcÞ:

But since ðχc; ζcÞ is an equilibrium point, we have
fðχc; ζcÞ ¼ gðχc; ζcÞ ¼ 0. Hence we have8>>><

>>>:

dχ
dt

¼ ∂f
∂χ

				
ðχc;ζcÞ

ðχ − χcÞ þ
∂f
∂ζ

				
ðχc;ζcÞ

ðζ − ζcÞ;

dζ
dt

¼ ∂g
∂χ

				
ðχc;ζcÞ

ðχ − χcÞ þ
∂g
∂ζ

				
ðχc;ζcÞ

ðζ − ζcÞ:

This is a linear system. Its coefficient matrix (Jacobian) is

Jacobian ¼

0
BBB@

∂f
∂χ

				
ðχc;ζcÞ

∂f
∂ζ

				
ðχc;ζcÞ

∂g
∂χ

				
ðχc;ζcÞ

∂g
∂ζ

				
ðχc;ζcÞ

:

1
CCCA

We wish to find the eigenvalues of the Jacobian matrix.
The following classification of the fixed point p is standard.

(1) λ1, λ2 are real and distinct
1.1. λ1 · λ2 > 0 (the eigenvalues have the same sign):

p is called a node or type I singularity; that is, every
orbit tends to the origin in a definite direction
as t → ∞.

1.1.1. λ1, λ2 > 0: p is an unstable node.

1.1.2. λ1, λ2 < 0: p is a stable node.
1.2. λ1 · λ2 < 0 (the eigenvalues have different signs): p

is an unstable fixed point, or a saddle point singu-
larity.

(2) λ1, λ2 are complex, i.e., λ1;2 ¼ α� iβ, β ≠ 0
2.1. α ≠ 0: p is a spiral, or a focus; that is, the solutions

approach the origin as t → ∞, but not from a definite
direction.

2.1.1. α < 0: p is a stable focus.

2.1.2. α > 0: p is an unstable focus.
2.2 α ¼ 0: p is a center, which means it is not stable

in the usual sense, and we have to look at higher-
order derivatives. The phase portraits for different
types of the fixed points have been shown in
Fig. 19.
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