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Moving from the consideration that matter fields must be treated in terms of their fundamental quantum
counterparts, we show straightforward arguments, within the framework of ordinary quantum mechanics
and quantum field theory, in order to convince readers that cosmological perturbations must be addressed in
term of the semiclassical limit of the expectation value of quantum fields. We first take into account
cosmological perturbations originated by a quantum scalar field, and then extend our treatment in order to
account for the expectation values of bilinears of Dirac fermion fields. The latter can indeed transform as
scalar quantities under diffeomorphisms, as well as all the other bilinear of the Dirac fields that belong to
the Clifford algebra. This is the first of a series of works that is intended to prove that cosmological
quantum perturbations can actually be accounted for in terms of Dirac fermion fields, which must be treated
as fundamental quantum objects, and their dynamics.
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I. INTRODUCTION

The theory of cosmological perturbations has been so far
successfully addressed in terms of quantum fluctuations of
scalar fields over their classical background [1,2]. Despite
the success of this treatment, a big question remains usually
unaddressed within the literature of cosmological pertur-
bations: how can our current understanding of matter in the
standard model of particle physics, and in particular the
way that we deal—in quantum field theory (QFT)—with
fermionic matter that is fundamentally quantum, can be
reconciled with this semiclassical framework? How can we
account for a semiclassical background of quantum fields
and consider perturbations as their quantum fluctuations?
We emphasize that this is not a mere academic question,
since a naive answer about this issue will clearly imply that
linear perturbations induced by spinorial fields are vanish-
ing. While the latter would be one of the most tangible
consequences, we can be confident that it would not be the
only one. Nonetheless, in order to show that linear
perturbations can also be originated by bilinear fermionic
operators, we must first clarify the quantum content of the
perturbations of scalar matter fields. We intend to show,
then, that what originates the cosmological perturbations,
as addressed so far within the literature, are matter fields
dealt with in the framework of quantum field theory. But,
differently from the previous literature, perturbations will
be originated by the expectation value of quantum matter
field operators on macroscopic condensate states that carry
a perturbed spectrum of particles. Background quantities
will correspond instead to the expectation value of the
matter operators on macroscopic states with an unperturbed

spectrum of particles. We will then extend the arguments
we will have recovered for scalar matter fields to cosmo-
logical perturbations induced by fermionic matter, and
show that the latter are actually nonvanishing at the linear
order as well.
We are aware of the novelty of this analysis, and that

conceptual difficulties might originate while shifting
away from the usual semiclassical considerations deployed
within the standard theory of cosmological perturbations.
Nevertheless, we are confident that our readers, only relying
on their knowledge of quantum mechanic and standard
quantum field theory, will appreciate the intrinsic conse-
quences of this approach, which we emphasize again are not
merely academic, but rather phenomenologically important.
We emphasize that we are able here to address questions
within the context of theories of fermions on the quantum-to-
classical transition of cosmological perturbations that were
raised so far only for theories of bosons (see, e.g., the seminal
paper in Ref. [3] by Polarski and Starobinsky, and the crucial
Ref. [4] byKiefer and Polarski). This is possible thanks to the
new perspectivewe developed, which allows us to overcome
issues and shortcomings already summarized in the literature
[5,6] and to tackle fundamental questions on the quantum-
ness of primordial cosmological perturbations and its
detectability [7].
The main reason of our interest in the quantum-to-

classical transition, which is crucial for objects like fermion
fields that are fundamentally quantum, relies on the
necessity of recovering a semiclassical limit of applicability
of these fields in cosmology. On the other hand, our interest
in cosmological applications of theories of fermions relies
on their contiguity with known physics from particle
accelerators, and on the richness that these theories can
provide at the phenomenological level. Fermion fields carry
indeed more degrees of freedom than scalar or vector fields.
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Once combined in bilinears of the Clifford algebra, they
form a set of independent elements that include not only the
scalar bilinear, but also parity-violating degrees of freedom
like the pseudoscalar and the axial bilinear. Therefore, the
latter are naturally available for new phenomenological
analysis of power spectra and cross-correlation functions.
Over the previous decades, a common understanding has

been reached on large-scale structure formation and the
origin of cosmic microwave background anisotropies, both
interpreted as due to quantum fluctuations of the gravita-
tional and matter (inflaton) fields. Nonetheless, astrono-
mers do not need to tackle the quantum formalism in order
to analyze experimental data. Rather, they resort to purely
classical techniques and refer to inflationary perturbations
only in terms of the classical “stochastic” processes these
latter lead to. We will not address these issues here, and will
rather refer to a very large literature devoted to investigating
possible observational signatures of the quantum nature of
the cosmological perturbations (see e.g. Refs. [8–23]).
We acknowledge that many concepts we developed in

this analysis, which are actually mutated from condensed
matter theory, first appeared in the literature of cosmology
in seminal papers by Brandenberger and Zhitnitsky [24]
and Alexander and Calcagni [25] (see also [26,27]).
Especially in the line of thought sought by Alexander
and Calcagni, the instantiation of the fundamental work of
Bardeen, Cooper, and Schrieffer (BCS) on superconduc-
tivity [28] enabled them to find BCS-like condensate even
within the cosmological framework. These results have
been achieved by deploying a gravitational version of the
Nambu–Jona-Lasinio mechanism, and the condensate
hence obtained has been shown to play a crucial role for
early or late cosmology.
Following this path, but developing these ideas more on

the Hamiltonian approach side than in the covariant path-
integral formulation, we will show that it is possible to find
macroscopic semiclassical states for both the bosonic and
fermionic matter sectors. What we then call condensates,
following the jargon of condensed matter, are actually
states of the Hilbert space of the theory, respectively
bosonic and fermionic, which are coherent in that they
minimize the uncertainty relations between conjugated
variables. In this study macroscopic states were merely
addressed at the kinematical level. Nonetheless, in a
forthcoming work [29] we will show which effects arise
from considering the dynamics, focusing on the phenom-
enological consequences and restrictions induced by the
latter.
We notice that such an interpretation is implicit is several

investigations recently deepened in the literature of infla-
tion [30,31] and dark energy [32–35]. The unquestionable
novelty of this analysis stands, however, in linking the
semiclassical limit of the quantum theory and the macro-
scopic state of matter to the development of a new setting
for addressing the cosmological perturbations. The latter

are then the by-product of the assumption of semiclassi-
cality, and arise from the perturbations of the distributions
in the momentum space that enter the macroscopic states.
The plan of the paper is the following. In Sec. II we

introduce macroscopic states of matter for bosonic matter
fields, we specify their generalization and discuss their
physical meaning. In Sec. III we switch to the discussion of
cosmological perturbations in the bosonic sector: we
introduce a general framework to derive cosmological
perturbations from the perturbation of the number density
in the macroscopic coherent states of matter, we construct a
quantum operator whose expectation value in the coherent
perturbed states corresponds to the curvature perturbation
variable, and we outline how to derive standard results. In
Sec. IV we introduce macroscopic coherent states for
fermionic matter, and specify the difference of our pro-
cedure with respect to bosonization. We then focus on the
well-known BCS states and their SU(2) coherent states
equivalents. In Sec. V we develop, on the same foot of
Sec. III, a theory of cosmological perturbations that account
for linear contributions from the fermionic sector. In
Sec. VI we show how number densities of macroscopic
states transform under diffeomorphisms, and prove that
coherent states are mapped into coherent states. In Sec. VII
we provide conclusions and remarks. Detailed appendixes
follow on coherent states in the bosonic and fermionic
sectors, on the relation between Bogoliubov transforma-
tions and the adjoint action of the displacement operators,
on the cosmological perturbations, and on the phenom-
enological observables that are sensitive to our analysis.

II. MACROSCOPIC STATES OF MATTER:
SCALAR FIELDS

Quantum mechanics (QM) is the fundamental frame-
work we rely on to understand nature [36–38]. No
disproval of this very fundamental framework has so far
been recovered, and experimental data do actually confirm
to us in our everyday life that quantum mechanics must not
yet be questioned. We then start taking into account the
states whose fluctuations of the number operator are
negligible for a large number of quanta within the system
that is considered. These are the coherent states [38], and
they represent a macroscopic wave function that takes a
special role in recovering the semiclassical limit [39] of
quantum mechanical operators in QFT.

A. Coherent state for scalar fields

For the purpose of simplicity in what follows we will
treat the case of a free real scalar field on a flat (Minkowski)
background, whose density Lagrangian and Hamiltonian in
natural units read, respectively,

LðxÞ ¼ ∂μϕðxÞ∂μϕðxÞ;
HðxÞ ¼ π2ðxÞ þ∇ϕðxÞ · ∇ϕðxÞ; ð1Þ
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having introduced the conjugated momentum πðxÞ ¼ _ϕðxÞ
to ϕðxÞ, in which the dot denotes derivative with respect to
time. The field ϕðxÞ (and, similarly, its conjugated momen-
tum) is decomposed in the Fock basis of the harmonic
linear oscillators, as a superposition of creation and
annihilation operators for each mode,

ϕðxÞ ¼
Z
k
ðake−ikx þ a†ke

þikxÞ; ð2Þ

where the integration over the momentum space has to be
understood with the appropriate measure. We then naturally
extend the definitions of the quantum-mechanical harmonic
oscillator coherent state (see Appendix A for more details),
and consider the bosonic coherent state, labeled by the
function αðkÞ∶R3 → C,

jαi≡Y
k

jαðkÞi ¼
Y
k

eαðkÞa
†
k−α

�ðkÞak j0i

¼ e
R

d3kαðkÞa†k−α�ðkÞak j0i ¼ DðαÞj0i: ð3Þ

The displacement operator DðαÞ ¼ expðαa† − α�aÞ inher-
its all the property of the harmonic oscillator counterparts
(see, e.g., Appendix A); in particular, it is unitary and its
action on a creation operator is

DðαÞ†akDðαÞ ¼ ak þ αðkÞ; ð4Þ

DðαÞ†a†kDðαÞ ¼ a†k þ α�ðkÞ: ð5Þ

One trivially obtains that the classical real scalar field in
terms of the function α is expressed as

ϕαðxÞ≡ hαjϕðxÞjαi

¼
Z
k
ðαke−ikx þ α�keþikxÞ: ð6Þ

Then the action of the displacement operator on the scalar
field itself can be expressed in terms of the “classical”
field ϕα,

DðαÞ†ϕðxÞDðαÞ ¼ ϕðxÞ þ ϕαðxÞ: ð7Þ

It is useful to relate the expectation values of operators on a
coherent state with vacuum expectation values of the
transformed operator

hαjϕðx1Þ…ϕðxnÞjαi ð8Þ

¼ h0jD†ðαÞϕðx1Þ…ϕðxnÞDðαÞj0i ð9Þ

¼ h0jðϕðx1Þ þ ϕαðx1ÞÞ…ðϕðxnÞ þ ϕαðxnÞÞj0i; ð10Þ

or, more in general,

hαjOðϕðxÞÞjαi ¼ h0jOðϕðxÞ þ ϕαðxÞÞj0i: ð11Þ

Furthermore, the expectation value of a normal-ordered
operator on a coherent state is exactly its classical value,

hαj∶OðϕðxÞÞ∶jαi ¼ OðϕαðxÞÞ: ð12Þ

The energy density of the system on such a state immedi-

ately follows, once the dispersion relation Ek ¼
ffiffiffiffiffi
~k2

p
is

recovered from the classical equations of motion, namely,

1

V

Z
V
hαjHðxÞjαi ¼

Z
d3k
ð2πÞ3 Ekjαkj2; ð13Þ

in which the integral
R
V is over a fiducial volume V that is,

finally, sent to infinite.

B. Generalized coherent state and scalar fields

The coherent state construction we illustrated in the
previous section can be readily generalized to the simplest
compact group SUð2Þ by utilizing the Schwinger repre-
sentation of its Lie algebra. Let us consider first the Hilbert
space of two harmonic oscillators spanned by the creation
(annihilation) operators a†1, a

†
2 (a1, a2). On this Hilbert

space we can define the following operators:

Ja ≡ ðτaÞαβa†αaβ; ð14Þ

where τa are the SUð2Þ generators, a ¼ 1, 2, 3 and α,
β ¼ 1, 2. It is straightforward to verify that

½Ja; Jb� ¼ ½τa; τb�αβa†αaβ ¼ iϵabcJc ð15Þ

generates a SUð2Þ algebra. Following the construction
described in detail in Appendix B, it is immediate to
construct a SUð2Þ coherent states. Since a scalar field
contains infinitely many harmonic oscillators, it is suffi-
cient to choose how to couple the oscillators (e.g., we can

fix a momentum ~p, then for each momentum ~k we can pick
the couple a~k and a~kþ~p). For each couple of modes we can

finally define a SUð2Þ coherent state, and consider the
tensor product of all of them for our purposes.
Furthermore, the same prescription is generalizable to

any SUðNÞ [40,41].

C. Off-diagonal long-range order and zero mode

Let us now focus on the (Hadamard) one-particle density
matrix evaluated on the coherent state jαi, which is
expressed as the Fourier transform of the momentum
distribution Nk ¼ ha†kaki by
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ρ1-pðx − x0Þ ¼
Z
k;k0

e−{ðkx−k0x0Þha†kak0 i

¼
Z
k
e−{Ekðt−t0Þe{~k·ð~x−~x0Þha†kaki:

We are dealing with a coherent state that is picked around a
certain macroscopic value k0, whose occupation number is
a macroscopic number N0 ¼ jαk0 j2 such that all the other
jαkj are small. This coherent state will have a momentum
distribution

Nk ¼ N0δðk; k0Þ þ nðkÞ; ð16Þ

in which with nðkÞ we denote a smooth function of k.
The density matrix now reads

ρ1-pðt − t0; ~x − ~x0Þ ¼ N0

V
þ
Z
k
e−{~k·ð~x−~x0ÞnðkÞ:

The constant contributions to ρ1-pðt − t0; ~x − ~x0Þ represents
a condensate, labeled by n0 ≡ N0=V. There exist coherent
states endowed with a sufficiently smooth nðkÞ such that in
the limit of large jjx − x0jj (here the norm must be intended
as the distance in a Minkowski flat space-time)

lim
jjx−x0jj→∞

ρ1-pðt − t0; ~x − ~x0Þ ¼ hϕðxÞϕðx0Þi0 ≡ n0:

This is a natural extension of the concept of off-diagonal
long-ranged order [42,43]. For a superfluid the interpreta-
tion is rather straightforward, because of the quantum
coherence of the condensate, and has to do with the
quantum-mechanical amplitude of a process in which a
particle is annihilated at ~x, where it gets absorbed into the
condensate, and then another one is created at ~x0, where
it exits the condensate. Nonetheless, exactly as for a
superfluid one expects that at large space distances
quantum correlations must be suppressed, we expect for
the relativistic system under scrutiny that in the limit
jjx − x0jj → ∞ the expectation value of the product of
fields as space-time points far a part behave like the
expectation value of the product of the fields,

lim
jjx−x0jj→∞

ρ1-pðx − x0Þ≃ hϕðxÞi0hϕðx0Þi0 ≡ n0:

The order parameter, playing the role of a macroscopic
wave function in condensed matter systems, is exactly the
classical expectation value of the real scalar field,

hϕðxÞi0 ¼ ϕαðxÞ:

As a main consequence, the density matrix of the system
can be expressed as

lim
jjx−x0jj→∞

ρ1-pðx − x0Þ ¼ ϕαðxÞϕαðx0Þ;

and, thus, we can identify the order parameter with

ϕαðxÞ ¼
ffiffiffiffiffi
n0

p
e{θðxÞ:

For a condensed matter system, the phase θ of the order
parameter is usually a constant. Within the relativistic
framework we are exploring, while the condensate still
represents a coherent quantum state in which the k0 mode
has a macroscopic occupation, the phase turns out to be a
function of the space-time point in order to be consistent
with the Lorentz symmetry of space-time.
This treatment is independent of the presence of an

interaction term within the system, although its advantage
is more evident when an interaction is present. Again, the
comparison with the physics of very-well-understood con-
densed matter systems sheds light on this point. An ideal
Bose condensate can be studied both in the Fock basis, which
entails a fixed particle number representation, and in the
coherent state basis. However, for weakly interacting Bose
gases, which were studied by Bogoliubov in the 1940s, the
analysis in terms of coherent states becomes crucial in
solving the physical problem, for its many technical advan-
tages. This is the case of the 4He, for which interatomic
interactions cannot be disregarded.
In what follows, we will argue that a similar procedure is

worth extending to cosmological matter fields, for its
unambiguity in recovering a consistent physical picture
and its versatility in performing calculations of power
spectra with phenomenological interest.

III. COSMOLOGICAL PERTURBATIONS:
SCALAR FIELDS

How to define cosmological perturbation theory starting
from the theory of quantum matter fields? We pursue
results following a few natural steps: (i) associate the
expectation values of quantum matter fields on coherent
states to classical quantities in the standard framework,
(ii) identify those coherent states for bosonic and fermionic
quantum matter fields, using known results in condensed
matter and in representation theory, and (iii) recover
classical perturbed fields in the standard picture by per-
turbing the coherent state in the relevant expectation
values. Following this procedure, we will show that it is
possible to define perturbation theory for objects of any
statistics, not only for scalar fields (as commonly consid-
ered in the literature).
In this section we start focusing on the case of real scalar-

field matter theories. Scalar fields, which are often encoun-
tered in several models of high-energy physics, can easily
help us to achieve a preliminary understanding of cosmo-
logical perturbations from the quantum point of view, to be
deployed later to the case of physical matter fields.
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We then move to our considerations taking into account
canonical quantum scalar field ϕ̂, whose action is specified
by the assignment of the potential Vðϕ̂Þ. Such a scalar field
is governed by the action

S½ϕ̂� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
∂μϕ̂∂μϕ̂ − Vðϕ̂Þ

�
; ð17Þ

which corresponds the stress-energy tensor

T̂μ
ν ¼ ∂μϕ̂∂νϕ̂ − δμν

�
1

2
∂λϕ̂∂λϕ̂ − Vðϕ̂Þ

�
: ð18Þ

The symmetries of the Friedmann-Lemaître-Robertson-
Walker (FLRW) background, homogeneity and isotropy,
imply that the scalar field will depend only on time and,
hence, the resulting stress-energy tensor will be diagonal.
Therefore, the energy density ρ̂ and the pressure p̂
associated with the scalar field simplify to

ρ̂ ¼ 1

2
_̂ϕ
2 þ Vðϕ̂Þ; ð19Þ

p̂ ¼ 1

2
_̂ϕ
2
− Vðϕ̂Þ: ð20Þ

The equation of motion for the quantum field ϕ̂ easily
follows from the action (17), and within the assumption of
homogeneity and isotropy reads on the FLRW universe,

̈ϕ̂þ 3H _̂ϕþ V 0ðϕ̂Þ ¼ 0: ð21Þ

In the ordinary theory of cosmological perturbation,
which we have summarized for completeness in
Appendix C, all the operatorial quantities are substituted
with their classical counterparts. The latter are then
decomposed into their classical background components,
which follow the dynamics of the FLRW background under
scrutiny, plus perturbations, which are finally addressed as
quantum fluctuations over the classical background. For
instance, in the case of inflation, quantum fluctuations act
as the primordial seeds for the cosmological inhomogene-
ities. Applied to a single (homogeneous and isotropic)
background scalar field, perturbation reads

ϕðx; tÞ ¼ ϕðtÞ þ δϕðx; tÞ: ð22Þ

Using the corresponding classical expression for the
Lagrangian density (17), and for its derived quantities
(18)–(21), we can easily compute the expansions in the
perturbation δϕ of the pressure p, i.e., the perturbed
pressure δp, and the perturbed energy density δρ, together
with the equation of motion for the perturbations variables
δϕ, namely,

δρ ¼ −
1

2
_ϕδ _ϕþ V 0ðϕÞδϕ; ð23Þ

δp ¼ −
1

2
_ϕδ _ϕ − V 0ðϕÞδϕ;

δϕ̈þ 3Hδ _ϕ −
1

a2
∇2δϕþ V 00ðϕÞδϕ ¼ 0: ð24Þ

Usually (24) are solved (classically) by expanding the
fluctuationδϕ in complexexponentialswith space-coordinate
dependence that multiply time-dependent functions, since
generically we are dealing with curved space-time,

δϕðx; tÞ ¼
Z

d3k
ð2πÞ3 ½δϕkðtÞckeikx þ δϕ�

kðtÞc†ke−ikx�; ð25Þ

δϕ̈k þ 3Hδ _ϕk þ
k2

a2
δϕk þ V 00ðϕÞδϕk ¼ 0: ð26Þ

Only at the end, within the standard procedure, one
performs the canonical quantization by promoting the
Fourier coefficients ck and c�k to quantum creation and
annihilation operators ĉk and ĉ†k that fulfill commutation
relations.
In our proposal, standard background fields ϕ are

instead substituted with the expectation values of the
quantum field ϕ̂ on coherent states jαi, namely
ϕα ≔ hαjϕ̂jαi, and so forth for their functional, that
reproduce all the possible observable quantities, including
the kinetic terms and the potential VðϕÞ.
To proceed with our analysis, we need to specify the

potential VðϕÞ, and then make some approximations in
order to extract physical predictions, namely, information
about the power spectrum of the cosmic microwave
background radiation. In what follows, we then focus on
standard slow-roll inflation (see, e.g., Appendix D), and
propose a prescription to associate quantum operators to
perturbations.

A. Coherent states in perturbation theory

There are several options of perturbed states that are
worth exploring when attempting to develop the theory of
quantum perturbations from our perspective. Probably the
naivest option would be to explore the perturbed state

jαi ¼ jα0i þ jα1i; ð27Þ

in which both jα0i and jα1i in the right-hand side of (27) are
coherent states, and an infinitesimal perturbation parameter
is meant to multiply the second term. Nonetheless, this
option must be disregarded, since we are mainly interested
in finding a coherent states that save the interpretation of
semiclassicality. Conversely, the state on the left-hand side
of (27) is not a coherent state.
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We consider instead a coherent state labeled by a
function αþ δα, where δα is infinitesimal with respect
to α,

jαþ δαi: ð28Þ
It is straightforward to notice that our definition of classical
field is linear in the function that labels it,

hαþ δαjϕðxÞjαþ δαi ¼ ϕαþδαðxÞ
¼ ϕαðxÞ þ ϕδαðxÞ
¼ hαjϕðxÞjαi þ hδαjϕðxÞjδαi:

ð29Þ
For the same reason exposed above, we immediately
understand that

jαþ δαi ≠ jαi þ jδαi: ð30Þ

Thus, we will not consider the superposition of two
coherent states (which is not a coherent state), but instead
a shifted coherent state.
Furthermore, given any analytic function of the scalar

field, we can trivially recover its classical limit,

hαþ δαj∶VðϕÞ∶jαþ δαi ¼ Vðϕα þ ϕδαÞ
≈ VðϕαÞ þ V 0ðϕαÞϕδα þ…:

ð31Þ
Notice that perturbations of the label of the coherent state
jαi represent a perturbation in the total number density of
the state, as defined in condensed matter, and summarized
in (16).
Now that we have specified how to recover perturbed

quantities in this framework, we can go back to the real
scalar-field action. The dynamics of the scalar field ϕ,
specified by the equation of motion (21) that is in turn
derived from the theory (17), is cast at the operatorial level.
We can, however extract the classical equation of motion
out of (21) by simply taking its expectation value on the
background state jαi, which represents the infrared matter
wave functions of the Universe. Thus, the statement about
slow-roll must be now intended as a “weak statement,”
which concerns the condensate matter state that drives
inflation but preserves background FLRW symmetries. As
a matter of fact, from the expectation value of the
operatorial equation it follows immediately that

hαj ̈ϕ̂þ 3H _̂ϕþ dV 0ðϕÞjαi ¼ 0: ð32Þ
The ordinary slow-roll condition follows, when disregard-

ing hαj ̈ϕ̂jαi with respect to the other terms,

3Hϕα ≃ −VðϕαÞ: ð33Þ

This represents an approximated equality that is deployed
in finding the perturbation variable, or, in other words, it
represents the background value of operatorial quantities to
be used while reshuffling the perturbed Einstein equations,
namely,

δGμν ¼
8πG
c4

hαþ δαj dTμνðϕÞjαþ δαijOðδαÞ; ð34Þ

in which only the first order in δα is chosen in the right-
hand side of (34).
Following the same steps of the standard derivation of

the curvature perturbation variable (see Appendix D), we
obtain

3ðζ þ ψÞhαjρ̂þ p̂jαi ¼ −hαþ δαjρ̂jαþ δαijOðδαÞ; ð35Þ

in which the right-hand side is taken at OðδαÞ, and
gravitational perturbation variables are assumed here to
be classical quantities.

B. New prescription for cosmological
perturbations

We provide at this point a straightforward and natural
prescription to recover scalar cosmological perturbations
theory starting from its quantum counterpart. The recipe
amounts to recovering the semiclassical limit using the
expectation value on the coherent states, identifying
the perturbation, and than requantizing the perturbation
using its newly derived equation of motion. If we
identify the perturbation ϕδα ≡ δϕ and the background
field with ϕ ¼ ϕα, we recover exactly the classical
expressions that are used in the standard theory of
cosmological perturbations, before quantizing δϕ.
Notice that we can select α in order to reproduce any
background configuration.
To be more specific, in order to derive the theory of

scalar cosmological perturbations in this framework, we
wish to find a suitable curvature perturbation variable
operator, such that its expectation value at OðδαÞ on states
jαþ δαi corresponds to the value of the curvature pertur-
bation variable ζðt; xiÞ. Mimicking well-known expres-
sions, we can then proceed to the definition of an operator

−Ξ̂ ¼ 1̂ψðt; xiÞ þ ρ̂

3hαjρ̂þ p̂jαi ð36Þ

which enjoys this property.
We can now apply the tools of our analysis to the relevant

case of chaotic inflation, in which the potential is quadratic
in the scalar field,

ρ̂≃ dVðϕÞ ¼ 1

2
m2cϕ2: ð37Þ
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Its expectation value on perturbed states jαþ δαi reads

hαþ δαjρ̂jαþ δαi

¼ lim
x→y

1

2
m2hαþ δαjϕ̂ðxÞϕ̂ðyÞjαþ δαi

¼ lim
x→y

1

2
m2h0jDðαþ δαÞ†ϕ̂ðxÞDðαþ δαÞ

×Dðαþ δαÞ†ϕ̂ðyÞDðαþ δαÞjαþ δαi

¼ 1

2
m2½ϕαþδαðxÞ�2; ð38Þ

in which the standard regularization of the product of fields
is intended, and which at OðδαÞ becomes

hαþ δαjρ̂jαþ δαi ¼ m2ϕαðtÞδϕðxÞ; ð39Þ

having identified δϕ ¼ δϕ
δα δα .

It is natural to identify the power spectrum of the scalar
perturbations with the order Oðδα2Þ of the expectation
value of Ξ, namely,

Pζ ¼ lim
x→y

hαþ δαjΞ̂ðxÞΞ̂ðyÞjαþ δαijOðδα2Þ; ð40Þ

The “background” expectation values of ρ̂ and p̂ on jαi
within (40) can be approximated in the standard way, under
slow-roll approximation (33), and, hence, contribute to
recreate the prefactor 1

m4
Pl
ðVV 0Þ2 in front of Pδϕ.

On the other hand, Pδϕ is still quadratic in δϕðxÞ, the
latter being now the solution for the operatorial equation of
motion (see Appendix D).

IV. MACROSCOPIC STATES OF MATTER:
FERMIONIC FIELDS

The same formalism developed for bosonic fields and
summarized in the previous sections can be extended to
fermionic fields, generalizing their semiclassical applica-
tions to superconductors, as studied in the literature. Such
an extension cannot be achieved by means of the trivial
definition of eigenstates of the annihilations operators for
fermion particles and antiparticles. The reason is simple,
and relies on the Pauli exclusion principle: single fermion
states have occupation number 0 or 1, thus, it is not possible
to have a macroscopic number of fermions in a single
plane-wave state. Mathematically, defining coherent states
in such a way would involve the use of Grassmannian
numbers, and the resulting state would not be part of the
physical Hilbert space. In this case, the expectation values
of the relevant fermionic bilinears, the observable operators
entering the energy-momentum tensor in the Einstein
equations, would not be real numbers, and thus physically
meaningless within the framework adopted to investigate
the geometrodynamics of space-time. There is indeed a

crucial ingredient that must be taken into account: coherent
macroscopic states must be developed in terms of pairs of
fermions, which means that the role of photons or bosonic
quanta is now played by pair of electrons or fermions.
Historically, Schrieffer (see, e.g., Ref. [28]) was the first

to write a coherent many-particle wave function for
fermions while describing mathematically the ground state
of superconducting atoms. He achieved this goal by
deploying the understanding that Bardeen and Cooper
realized about the binding of electrons in superconductor
(see Ref. [28]). Schrieffer, indeed, built a macroscopic
coherent state in which a very large number of pairs are all
in the same state. In a BCS state [28] electron pairs must not
be confused with bosons, as in the earlier theory by
Schafroth, Blatt, and Butler (see Refs. [44,45]) of super-
conductivity seen as a Bose condensate of electron pairs.
For a BCS state each electron takes part in the pairing; this,
is experimentally confirmed by data on superconductivity.
Nonetheless, at high critical temperatures, pairs do not have
a large overlap, and condensation à la Schafroth, Blatt, and
Butler may arise [44,45]. We shall not be concerned with
this peculiar situation, in which the pairs form a “pseudo-
molecule” whose size is much smaller than the average
distance between them. This system, despite having proper-
ties similar to those of a charged Bose-Einstein gas,
including the Meissner effect and critical temperature of
condensation [46], can be rather accounted for in the most
general framework of the BCS states. The former can be
indeed regraded as “bipolarons,” i.e., localized spatially
nonoverlapping Cooper pairs that form by strong electron-
phonon interaction [47].
In the cosmological framework we aim at developing,

semiclassical states that belong to the fermionic Fock space
fall naturally in the class of states of physical interest well
described by BCS states. In other words, the states to be
considered in the cosmological setup have closer analogies
with nonoverlapping Cooper pairs in the weak-interacting
regime than with the states that have been advocated while
implementing the concept of pseudomolecules. We shall
then proceed to develop BCS states for fermion matter
fields in cosmology.

A. BCS coherent state and bosonization

The technique of bosonization consists of the replace-
ment of a known system of fermions with a theory of
bosons which has a completely equivalent physical content,
including identical spectra and interactions. It provides an
extremely useful tool for analyzing such fermionic systems,
since it allows the application of powerful techniques that
have been developed for bosonic systems. A major limi-
tation of the bosonization technique, however, is that its
present utility is only in one spatial dimension [48].
It is possible to define a bosonization procedure in any

dimension, using a completely antisymmetric gauge field
of rank space-dimension-1, which is then dual to a scalar
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field. Although the bosonic theory we are led to in this way
is guaranteed to exist, it is not required to have many of the
usual properties that we tend to take for granted in the one-
space-dimension case, such as locality [49].
What we are trying to address here is different; we are

not requiring the mapping of the fermionic Hilbert space
into a bosonic equivalent, but we want rather to find a (set
of) state(s) with the correct macroscopic coherent behavior.

B. Exploring our quasiparticle options

In analogy to the bosonic case, we then consider free
fermionic fields on a flat (Minkowski) background, whose
density Lagrangian and Hamiltonian in natural units read,
respectively,

LðxÞ ¼ ψðxÞiγμ∂μψðxÞ;
HðxÞ ¼ ψðxÞð−iγi∂iÞψðxÞ: ð41Þ

The field ψðxÞ (and similarly its conjugated momentum) is
decomposed in the Fock basis of the harmonic linear
oscillators, as a superposition of creation and annihilation
operators for each mode,

ψðxÞ ¼
Z
k

X
s¼�

ðaskusðkÞe−ikx þ b†sk v
sðkÞeþikxÞ; ð42Þ

where u and v are the particle and antiparticle wave
functions, a and b are the annihilation operators of the
fermion and the antifermion, and the integral over the
momenta has the proper measure invariant under the action
of the space-time isometries.
We will introduce here some Cooper-pair-like creation

(annihilation) operators. These operators do not obey
normal Bose commutation laws, and so they cannot be
regarded as creating or destroying boson particles.
We will look for a uniform translationally invariant

solution, and so it is more convenient to work in k space.
Let us define the pair creation operator by

c†k ¼ a†k↑b
†
−k↓; ck ¼ b−k↓ak↑: ð43Þ

Note that this pair of operators has the following commu-
tation relations:

½ck; ck0 � ¼ 0; ½c†k; c†k0 � ¼ 0; ð44Þ

½ck; c†k0 � ¼ ð1 − b†−k↓b−k↓ − a†k↑ak↑Þδk;k0 : ð45Þ

Moreover, the pair creation operator is idempotent,

c†kc
†
k ¼ a†k↑b

†
−k↓a

†
k↑b

†
−k↓ ¼ 0; ð46Þ

since it contains two identical fermion creation operators.
In terms of this operator, following the usual construction

for BCS theory, we propose a coherent state labeled by the
function αðkÞ∶R3 → C,

jαi≡ e
R

d3kαðkÞc†k−α�ðkÞck j0i ¼ DðαÞj0i: ð47Þ

As for the bosonic case, the displacement operator D is
unitary D†ðαÞDðαÞ ¼ 1, and generates the coherent state
jαi from the vacuum.

C. BCS-like state and SUð2Þ coherent states
In analogy with the construction mentioned in Sec. II B,

wewill now explore the relation between the BCS-like state
introduced in the previous sections and the group coherent
states of SUð2Þ. Consider the Hilbert space generated by a
couple of fermionic creation and annihilation operators a
and b, such that

fa; a†g ¼ fb; b†g ¼ 1; fa; bg ¼ fa; ag ¼ fb; bg ¼ 0:

Using these operators we can define the generators of a
SUð2Þ algebra, which read explicitly

J1 ¼
1

2
ða†b† þ H:c:Þ; ð48Þ

J2 ¼ −
i
2
ða†b† − H:c:Þ; ð49Þ

J3 ¼
1

2
ða†aþ b†b − 1Þ: ð50Þ

These operators are clearly Hermitian and obey the
following commutation rules:

½Ji; Jj� ¼ iϵijkJk: ð51Þ

In terms of the creation and annihilation operators the
Casimir and the ladder operators of the algebra read

J2 ¼ −
3

4
ð2a†b†abþ b†bþ a†a − 1Þ;

Jþ ¼ J1 þ iJ2 ¼ a†b†; J− ¼ J1 − iJ2 ¼ ba:

Notice how the J� operators can be interpreted as the
Cooper-pair-like creation and annihilation operators (43).
We can then consider a generalized coherent state of

this SUð2Þ group (for more details see Appendix B) labeled
by a unitary vector n̂, or, equivalently, by a complex
number

ξ ¼ nx þ iny
1þ nz

ð52Þ

entering the reshuffled expression
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jn̂i ¼ Dðn̂Þjj;−ji
¼ jξi ¼ exp

�
− ξ

jξj arctanðjξjÞJþ þ ξ
jξj arctanðjξjÞJ−

�
× jj;−ji: ð53Þ

We can ask ourselves in which SUð2Þ irreducible
representation transforms the fermionic vacuum. The
answer is straightforward, if we consider that

J2j0i ¼ −
3

4
ð2a†b†abþ b†bþ a†a − 1Þj0i ¼ 3

4
j0i;

J3j0i ¼
1

2
ða†aþ b†b − 1Þj0i ¼ −

1

2
j0i:

Thus, the fermionic vacuum corresponds to the lowest-
weight state in the j ¼ 1=2 SUð2Þ irreducible representa-
tion. By comparing (47) and (53) the BCS-like coherent
state can be interpreted as the tensor product of SUð2Þ
coherent states (one for each Cooper pair). This correspon-
dence turns to be extremely useful while studying the
semiclassical properties of the fermionic bilinears. To
address this point, let us first consider the following
expression:

I ¼
Z
k
a†k↑b

†
−k↓Ak þ b−k↓ak↑A�

k þ a†k↑ak↑Bk − b−k↓b
†
−k↓Bk;

ð54Þ

where Ak and Bk are numbers, possibly k dependent. Notice
that the requirement of I to be Hermitian fixes Bk to be real.

Notice that it is possible to rewrite I in terms of ~Jk, the
SUð2Þ generators corresponding to the fermionic creation
and annihilation operators ak↑ and b−k↓, i.e.,

I ¼
Z
k
2AkJ

þ
k þ 2A�

kJ
−
k þ 2BkJ3k ¼

Z
k

~ζk · ~Jk; ð55Þ

where we have defined for convenience ~ζk ¼ ð2ReðAkÞ;
2ImðAkÞ; 2BkÞ. The expectation value of such an expres-
sion on a coherent state is easily computed, using the
properties of the coherent state,

hn̂jIjn̂i ¼
Z
k

~ζk · hn̂j~Jkjn̂i ¼
Z
k

~ζk · n̂k: ð56Þ

Now, the expectation value of the fermionic bilinear on a
coherent state is equivalent to the expectation value of the
operator I,

hn̂jψðxÞψðxÞjn̂i ¼ hn̂jIjn̂i ¼
Z
k

~ζk · n̂k: ð57Þ

We can look explicitly at the Fourier expansion of the
bilinear

ψðxÞψðxÞ ¼
X
st¼�

Z
k1;k2

a†sk1b
†t
k2
usðk1Þvtðk2Þeþiðk1þk2Þx

þ bsk1a
t
k2
vsðk1Þutðk2Þe−iðk1þk2Þx

þ a†sk1a
t
k2
usðk1Þutðk2Þeþiðk1−k2Þx

þ bs†k1b
t
k2
vsðk1Þvtðk2Þe−iðk1−k2Þx

and recognize that the expectation value on a coherent
state gets a nonvanishing contribution only if k2 ¼ −k1
and spins are opposite by construction. If we identify

Ak ¼ uþðkÞv−ð−kÞ

and

Bk ¼ uþðkÞuþðkÞ ¼ −v−ð−kÞv−ð−kÞ;

we recover exactly the expression (54). Notice that other
kind of bilinear has exactly the same SUð2Þ structure of
the scalar bilinear considered above, the main difference

residing in the explicit form of ~ζk. The latter is indeed a
vector in the internal indices space that can also acquire
space-time indices, and can eventually transform as an axial
(internal) vector under parity transformations, in order to
reproduce the Fourier transform of a generic element of the
fermionic bilinears’ Clifford algebra.
In analogy with the bilinear, the quadrilinear expectation

values can also be expressed in terms of SUð2Þ generators,
namely,

hn̂jψðxÞψðxÞψðxÞψðxÞjn̂i

¼ hn̂j
Z
k;k0

~Jk0 ·Mkk0 · ~Jkjn̂i

¼
Z
k;k0

n̂k0 ·Mkk0 · n̂k:

It will be useful for the study of cosmological perturba-
tions that follows in the next section to explore the behavior
of the generalized coherent state under infinitesimal varia-
tion of the label. We define the perturbed coherent state
labeled by a vector n̂ and the perturbation δn̂ as the one
obtained by the subsequent action of the appropriate
displacement operators,

jn̂; δn̂i≡Dðδn̂ÞDðn̂Þj0i ¼ jRðẑ; δn̂Þn̂i; ð58Þ

where Rðẑ; δn̂Þ is the rotation matrix that transforms ẑ (the
north pole direction) into δn̂, and the last equality is valid
up to an irrelevant phase. If δn̂ is then infinitesimal, the
rotation matrix Rðẑ; δn̂Þ is almost the identity,

jn̂; δn̂i ≈ jn̂þ δn̂ × n̂i: ð59Þ
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Notice also that jjn̂þ δn̂ × n̂jj ¼ 1þOðδn̂Þ, so identifying
a good coherent state. The expectation value of the bilinear
on the perturbed state is then easily found to be

hn̂; δn̂jψðxÞψðxÞjn̂; δn̂i ¼
Z
k

~ζk · n̂þ
Z
k

~ζk · δn̂k × n̂k

¼ hn̂jψðxÞψðxÞjn̂i

þ hδn̂j
Z
k
n̂k × ~ζk · ~Jkjδn̂i; ð60Þ

which is linear in the perturbation parameter. For its clear
physical implications, this result is certainly the most
important that we have derived in this section. We will
dwell more on it in what follows.

V. COSMOLOGICAL PERTURBATIONS:
FERMIONIC FIELDS

The usual “no-go argument” against linear cosmological
perturbations obtained in terms of fermionic Dirac fields is
the following,
(1) If one takes into account linear perturbations of

bilinear (in the Dirac fields) operators, treating
fermionic fields as classical, these will read

δðψΓℵψÞ ¼ δψΓℵψ þ ψΓℵδψ ; ð61Þ
with ℵ ¼ 1;…16 an index that labels the elements
of the Clifford algebra. For simplicity, let us fix
Γ ¼ 1 in the internal space of the Dirac fields, and
deal with the quantity we have denoted with I in the
previous section.

(2) On a FLRW space-time background, we treat δψðxÞ
as perturbed fields, with a dependence on the space-
time point, and ψðtÞ as background fields, which
only depend on some cosmological time t.

(3) We quantize both fields, resorting eventually to two
different Hilbert spaces. For the background part
ψðtÞ we imagine using an Hilbert space whose
vacuum shares the same symmetries of the back-
ground FLRWmetric (in particular, if we are dealing
with a de Sitter background, the vacuum state will
turn out to be the Bunch-Davies vacuum [50],
enjoying de Sitter symmetries).

(4) We recognize that on any state jγi compatible with
the symmetries of the background, the expectation
values of ψðtÞ would be zero. Indeed, rotating the ψ
about the Cartesian axis z of an angle 2π, by means
of a SUð2Þ group element Rðẑ; ẑÞ≡ R, and using the
invariance under rotation of the state jγi, we easily
find that

hγjψ jγi ¼ hγjR†ψRjγi ¼ −hγjψ jγi; ð62Þ

from which it follows ψðtÞ ¼ hγjψ jγi ¼ 0. Notice,
however, that one could consider instead of jγi a

state with nondefinite spin, which does not trans-
form trivially under spin rotation. This is the state
considered in [51], which invalidates the argument
above. Nonetheless, we notice that such a state is not
suitable to define a semiclassical limit, and thus a
background field ψðtÞ.

This argument is commonly advocated to show that
linear perturbations of fermionic bilinear are not possible.
We argue that this argument is incorrect, for several
reasons. First, Dirac fields are operators that are subjected
to anticommutative relations, and thus cannot be simply
treated as classical fields. Second, we cannot consider the
expectation value of a fermion field, because this would
not be a proper observable: it does not fulfill the require-
ment of microcausality, and is not “gauge invariant” in the
particle physics sense, namely, is not invariant under
SLð2;CÞ transformations (for the same reasons, a single
fermion field cannot transform covariantly under space-
time transformations). Third, the procedure of quantizing
a background field and separately a perturbed field poses
some ambiguities at the level of the definition of the
Hilbert space of the fermionic theory. Are the two Hilbert
spaces different? If they are not different, in which sense
the field operator is a perturbed quantity? Indeed, the
expectation value of the product of two operators is not
equal to the product of two expectation values, unless
the Hilbert spaces on which the two operators act are
different.
Below we propose a simple way to overcome all these

unnecessary complications, and to avoid the inconsisten-
cies related to the approach criticized above. The choice is
actually natural: we just need to extend the treatment
already outlined in Sec. III, which was tailored for a theory
of fields subjected to bosonic quantization, in order to
account as well for fermion field perturbations. The way to
achieve this result is also straightforward. Microcausality
and covariance under space-time transformations force us
to write the main physical equations as function of
observable bilinears Oℵ, or eventually their (regularized)
products.
Thus, following the same line of thought reported in the

previous sections, the perturbed Einstein equations read

δGμν ¼
8πG
c4

hαþ δαj dTμνðOℵÞjαþ δαijOðδαÞ; ð63Þ

in which now jαi and jαþ δαi are the BCS-like states
defined in (47), in the fermionic Fock space. Perturbations
analysis then follows the same steps as in (35) and (36),
provided that we recognize that

ρ ¼ ρðOℵÞ; p ¼ pðOℵÞ; ð64Þ

and that perturbations of the fermion bilinears Oℵ are
achieved as in (55)–(57) and (60).
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VI. COHERENT STATES AND GAUGE
TRANSFORMATIONS

Before spelling out the conclusions, it is necessary to
derive the transformation rules for the coherent states jαi
introduced so far. To this purpose, we first derive the
transformation properties of the ladder operators. For the
sake of clarity, we start the analysis with a straightforward
case: space-time translations acting on a scalar field on
Minkowski space-time.
A real scalar field ϕ̂ðxÞ on flat space-time is expanded as

in (2). Invariance under space-time translations x → x0 ¼
xþ δ implies

ϕ̂0ðx0Þ ¼ e−iP̂μδ
μ
ϕ̂ðxÞeiP̂μδ

μ ¼ ϕ̂ðxþ δÞ

¼
Z
k
ðe−ikδâke−ikx þ eþikδâ†ke

þikxÞ; ð65Þ

in which we have introduced the generators P̂μ of the
Abelian algebra T 4 of space-time translations on
Minkowski space-time, and which corresponds to a trans-
formation on the ladder operators

âk → eþikδâk; â†k → eþikδâ†k: ð66Þ

Since this property holds at the operatorial level, it must
hold also as a weak property on the expectation values hϕiα.
This implies that jαi must be invariant under space-time
translations, if we are working in the Heisenberg picture in
which the ladder operators must fulfill (66) in order for ϕ̂ to
be invariant under space-time translations. Thanks to the
invariance of the integration measure on the Fourier modes
[52], a similar argument applies also to Lorentz trans-
formations, provided that for those latter x → x0 ¼ Λx, and

âk → âΛ−1k; â†k → â†
Λ−1k

: ð67Þ

While it is convenient to implement the same strategy
when accounting for diffeomorphisms, we must resort to a
different analysis of the transformations, focusing on the
Fourier parameters space in order to avoid referring to finite
space-time transformations. As is well known, this cannot
be implemented using the ordinary tools of Lie groups, as
happens instead for the case of Poincaré transformations.
For simplicity, let us still consider to be on flat

Minkowski space-time. We may think at space-time diffeo-
morphisms to be generated by infinitesimal vectors ξμðxÞ
through

xμ → x0μ ¼ xμ þ ξμðxÞ; ð68Þ

to be formally implemented by the action of an element
ημðP̂Þ ∈ UðT 4Þ, belonging to the enveloping algebra of
T 4, and of infinitesimal order. The vector ημ acts on the
Fourier basis as

ημðP̂Þe−ikx ¼ ημðkÞe−ikx; ð69Þ

and by definition generates space-time diffeomorphisms,
by acting on the Fourier space as

kμ → k0μ ¼ kμ þ ημðkÞ: ð70Þ

Relation (70) will, finally, induce a transformation on the
ladder operators

âk → âηðkÞ; â†k → â†ηðkÞ; ð71Þ

which is required in order to ensure the invariance of ϕ̂ðxÞ
under diffeomorphisms.
We can now go back to our initial question: how does

a coherent state transform under a generic change of
coordinate x → yðxÞ? Clearly, we can Fourier expand the
field in terms of plane wave in the new coordinates yðxÞ,
namely,

ϕ̂ðyÞ ¼ ϕ̂ðyðxÞÞ ¼
Z
k
ðâke−ikyðxÞ þ â†ke

þikyðxÞÞ;

but also in terms of plane waves of the old coordinates x,
using different ladder operators, i.e.,

ϕ̂ðyðxÞÞ ¼ dϕ ∘ yðxÞ ¼
Z
k
ð ~̂ake−ikx þ ~̂a†ke

þikxÞ:

It is possible to show that the new ladder operators can
be written as a linear combination of the old one [53]
(they are different bases of operators that generate the
same Hilbert space),

~̂ak ¼
Z
k0
ðAðk; k0Þâk0 þ Bðk; k0Þâ†k0 Þ; ð72Þ

where A s and B s are complex coefficients that can
be determined in terms of the Fourier transform of
e−ikyðxÞ using the normalization condition jAðk; k0Þj2 −
jBðk; k0Þj2 ¼ δk;k0 (the latter property is obtained requiring
that ~̂ak and ~̂a†k satisfies the canonical commutation
relation). Then, a general coherent state can be written
in terms of both the bases

jαi ¼ DðαÞj0i ¼ e
R

d3kαðkÞ ~a†k−α�ðkÞ ~ak j0i ð73Þ

¼ e
R

d3kγðkÞa†k−γ�ðkÞak j0i; ð74Þ

where γðkÞ ¼ R
k0 ½B�ðk; k0Þαðk0Þ − Aðk; k0Þα�ðk0Þ�. We can

then conclude that, under a general coordinate trans-
formation, a coherent state is mapped into another
coherent state with a label that is the Bogoliubov trans-
form of the old label.
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VII. CONCLUSIONS

We have shown that semiclassicality in cosmological
frameworks allow us to tackle issues and severe restrictions
that otherwise might arise in the theory of cosmological
perturbations. Among many phenomenological conse-
quences that we expect our analysis can offer, we focused
in particular on the possibility of studying cosmological
perturbations induced by fermionic fields at the linear
order. We actually showed that, following our procedure,
cosmological perturbations that might arise due to fer-
mionic fields cannot be claimed to be vanishing a priori.
Phenomenological consequences of the existence of

such a macroscopic condensate state of matter follow,
including the possibility of generating cross-correlation
spectra directly from fermion perturbations. Several studies
are in preparation to show the instantiation of this proposal
within both the inflation and matter-bounce scenarios [54],
adapting to this procedure previous preliminary investiga-
tions on the phenomenological applications of the Dirac
theory in cosmology [55–58].
Fermion matter fields are ubiquitous in our current

understanding of physics, in the branches of both particle
physics and condensed matter. Especially in the field of
condensed matter, the semiclassical limit of fermion matter
fields has reached amazing theoretical and experimental
results, and has faced that which in the field of particle
physics there was no need to address: the semiclassical
limit.
We acknowledge that our main inspiration, as research-

ers trained in the field of high-energy physics, actually
came from constructions developed in a different field as
ours. We now believe that this cross-fertilization will be at
the origin of novel conquests not only in theoretical
physics, but in its very phenomenological related applica-
tions. Forthcoming studies [29] will make clear what we
expect to derive by following this line of thought.
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APPENDIX A: HARMONIC OSCILLATOR
COHERENT STATE

We review below basic facts concerning coherent states
for the harmonic oscillator, which is at the base of the
definition of coherent states for quantum systems enjoying

Bose-Einstein statistics. An harmonic oscillator coherent
state jαi is defined as the eigenstate of the annihilation
operator a, with eigenvalues α ∈ C,

ajαi ¼ αjαi: ðA1Þ

Since a is a non-Hermitian operator, the eigenvalue α is a
complex number. Coherent states are characterized by the
following properties.

(i) The vacuum is a coherent state with α ¼ 0,
(ii) The mean energy is hαjHjαi ¼ ℏωhαja†aþ 1

2
jαi ¼

ℏωðjαj2 þ 1
2
Þ.

(iii) The displacement operator can be defined,

DðαÞ ¼ eαa
†−α�a; ðA2Þ

where α ∈ C and a, a† are the annihilation and
creation operators. It is unitary D†D ¼ 1 and gen-
erates the coherent state jαi from the vacuum j0i,

jαi ¼ DðαÞj0i: ðA3Þ

(iv) The action of the displacement operator on the
creation or annihilation operator displaces them,

DðαÞ†aDðαÞ ¼ aþ α;

DðαÞ†a†DðαÞ ¼ a† þ α�: ðA4Þ

(v) The coherent state can be expanded on the Fock
basis,

jαi ¼ e−
jαj2
2

X∞
n¼0

αnffiffiffiffiffi
n!

p jni ¼ e−
jαj2
2

X∞
n¼0

ðαa†Þn
n!

j0i:

ðA5Þ
(vi) The scalar product of two coherent states reads

hβjαi ¼ e−
jαj2
2 e−

jβj2
2 eαβ

�
and jhβjαij2 ¼ e−jα−βj2 .

(vii) Although the coherent states are not orthogonal, they
form an overcomplete set of states

1

π

Z
d2αjαihαj ¼ 1: ðA6Þ

An essential feature of these states is that their number
uncertainty is proportional to the square root of the
expectation value of the number operator N ¼ a†a on
these states, since

hNi≡ hαjNjαi ¼ jαj2; ΔN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hN2i − hNi2

q
¼ jαj;

from which it follows that on a coherent state

ΔN
hNi ∼

1ffiffiffiffiffiffiffiffihNip : ðA7Þ
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Approximation of many operator expectation values by
mean-field values then follows through the replacement
N ≃ hNi. Although hNi is not a definite quantum number
for the coherent states, being ΔN ¼ ffiffiffiffiffiffiffiffihNip

, nonetheless
they posses a definite phase θ. Since coherent states are
defined for any α ∈ C by means of α ¼ jαje{θ, the operator
θ can be introduced such that

1

{
∂
∂θ jαi ¼ hNijαi: ðA8Þ

This entails recasting coherent states in terms of the
conjugated operators N and θ, for which the uncertainty
principle can be recast as

ΔNΔθ ≥
1

2
: ðA9Þ

While the energy eigenstates have a well-defined N but an
arbitrary phase, coherent states do not carry definite values
of number operator N, but rather are endowed with a
fixed phase.

APPENDIX B: SUð2Þ COHERENT STATES

In this section we will briefly summarize definitions and
properties of the SUð2Þ generalized coherent state as
defined in [40].
Given an generic SUð2Þ element in some representation

we can express it using the exponential map in terms of the
generators of the corresponding SUð2Þ algebra,

½Ji; Jj� ¼ iϵijkJk; ðB1Þ

and we can define a generalized coherent state labeling it
with a unitary vector n̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ,

jn̂i ¼ exp ðiθm̂ · ~JÞjj;−ji ¼ Dðn̂Þjj;−ji ðB2Þ

where m̂ ¼ ðsinϕ;− cosϕ; 0Þ. Another possible represen-
tation uses the stereographic projection map S2 → C to
label the coherent state with a complex number. In detail, if
we define n̂ → ξ ¼ tanðθ

2
Þeiϕ and we call ~ξ ¼ ξ

jξj arctanðξÞ,

jn̂i ¼ jξi ¼ exp ð~ξJþ − ~ξJ−Þjj;−ji ¼ DðξÞjj;−ji: ðB3Þ

These SUð2Þ coherent states are characterized by the
following properties.

(i) The lowest spin state in the j irreducible represen-
tation is a coherent state with n̂ ¼ ẑ (ξ ¼ 0).

(ii) They belong to the spin j irrep.

J2jn̂i ¼ Dðn̂ÞJ2jj;−ji ¼ jðjþ 1Þjn̂i: ðB4Þ

(iii) The displacement operator Dðn̂Þ is unitary.

(iv) The action of the displacement operator on the
generators rotates them,

D†ðn̂Þ~JDðn̂Þ ¼ Rðẑ; n̂Þ~J; ðB5Þ

where Rðẑ; n̂Þ is the rotation matrix that transforms ẑ
into n̂.

(v) The coherent state jn̂i is eigenvector of the operator
n̂ · ~J,

n̂ · ~Jjn̂i ¼ −jjn̂i: ðB6Þ

(vi) The scalar product of two coherent state reads

hn̂jm̂i ¼ eijΦðn̂;m̂Þ
�
1þ n̂ · m̂

2

�
j
; ðB7Þ

where Φ is the area of the spherical triangle
identified by ẑ, n̂, m̂, or

hξjηi ¼
� ð1þ ξηÞ2
ð1þ jξj2Þð1þ jηj2Þ

�
j

: ðB8Þ

(vii) Although the coherent states are not orthogonal, they
form an overcomplete set of states,

2jþ 1

4π

Z
S2
d cos θdϕjn̂ihn̂j ¼ 1; ðB9Þ

or

2jþ 1

2π

Z
dξ∧dξ

ð1þ jξj2Þ2 jξihξj ¼ 1: ðB10Þ

(viii) They minimize the Heisenberg uncertainty inequal-
ity. Let us consider three orthogonal unitary vector
l̂, m̂, n̂; then, on the coherent state n̂

hΔl̂ · ~JihΔm̂ · ~Ji ¼ 1

4
hn̂ · ~Ji2 ¼ j2

4
: ðB11Þ

APPENDIX C: BOGOLIUBOV
TRANSFORMATIONS

It is remarkable to notice the way ladder operators of the
fermionic Hilbert space rotate under the adjoint action of
the displacement operator DðξÞ. To fully appreciate it, we
shall first go back to the bosonic case, discussed in (4) and
(A4). Internal transformation on the ladder operators, hence
on the Hilbert space, were implemented in the bosonic
Hilbert space by the adjoint action of the displacement
operator DðαÞ, and amounted to a mere shift of the ladders
operators, as specified in (A4). This construction has been
shown in Sec. II B to naturally emerge while recovering the
Schwinger representations of the Lie group Uð1Þ [59].
For a detailed analysis we refer the reader to [29], while

for the purpose of this study it is enough to notice that the
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same procedure can be applied to the fermionic Hilbert
space, with different results. Indeed, taking the BCS states,
which are Schwinger representations of the SUð2Þ group,
transformations induced by the displacement operatorDðξÞ
turn out to now be Bogoliubov transformations,

~a ¼ cosðjξjÞaþ ξ

jξj sinðjξjÞb
† ðC1Þ

and

~b† ¼ cosðjξjÞb† − ξ

jξj sinðjξjÞa: ðC2Þ

The importance of this transformation, and its relevant
physical consequences, will be clarified in [29]. For the
meantime, we notice that this is crucial to show invariance of
the microscopic condensate state under diffeomorphisms.

APPENDIX D: CURVATURE PERTURBATIONS

In this appendix we summarize how the theory of
cosmological perturbations works within the standard
setup. We retrace the same footsteps that led to the
definition of the “curvature perturbation” variable ζ (see,
e.g., Refs. [2,60,61]), in order to clarify the origin of the
prescription we proposed in Sec. III.
We start reminding that metric perturbations can be cast

in the Arnowitt-Deser-Misner (ADM) decomposition [62]
of a generic line element

ds2 ¼ N2dt2 − γijðdxi þ NidtÞðdxj þ NjdtÞ; ðD1Þ

in which N denotes the lapse function and Ni the shift
vector. A unit timelike vector nμ can be defined, which is
normal to the hypersurfaces of constant coordinate time t
and whose components read

nμ ¼ ðN; 0Þ; nμ ¼
�
−
1

N
;
Ni

N

�
: ðD2Þ

The extrinsic curvature tensor, which measures how much
the hypersurface is curved in the way it sits in the spacetime
manifold, or, in other words, it measures the failure of a
vector tangent to the hypersurface to remain tangent after
parallel transporting it with respect to the Levi-Civita
connection on the space-time manifold, reads

Kij ¼ −∇ðjniÞ

¼ 1

2N
ð−∂tγij þ ð3Þ∇ðiNjÞ þ ð3Þ∇ðjNiÞÞ; ðD3Þ

in which ð3Þ∇i refers to the covariant derivatives with
respect to the Levi-Civita connection on the spatial hyper-
surface. Extrinsic curvature can be decomposed in terms of
a symmetric traceless tensor Aij, namely, Aijγ

ij ¼ 0, plus

the three-metric tensor itself times a scale quantity θ,
namely,

Kij ¼ −
θ

3
γij þ Aij: ðD4Þ

The quantity θ appearing in (D4) represents the volume
expansion rate of the spatial hypersurfaces along the integral
curves γðτÞ (the proper time τ is obtained by the definition
dτ ¼ Ndt) of nμ, and is given by θ ¼ ∇μnμ. The number
of e-folds of the expansion is therefore expressed, in terms
of its dependence on two fixed-time coordinates of the
initial and final hypersurfaces and on the comoving space
coordinates xi, as

Nðt1; t2; xjÞ ¼
1

3

Z
γðτÞ

θdτ ¼ 1

3

Zt2
t1

θNdt: ðD5Þ

The spatial metric γij can be then decomposed, introducing a
local scale factor aðt; xiÞ, and a unimodular metric ~γij,
namely,

γij ¼ aðt; xiÞ~γij: ðD6Þ

The unimodular metric ~γij can be finally expressed in terms
of a primordial perturbations tensor, which is a traceless
matrix hij such that

γij ¼ ðehÞij: ðD7Þ

The local scale factor aðt; xiÞ can be also decomposed into a
global scale factor, which is independent on the position on
the space hypersurfaces, and a local deviation ψðt; xiÞ,
namely,

aðt; xiÞ ¼ aðtÞeψðt;xiÞ; ðD8Þ

in which such a deviation is assumed to be for our purposes a
local (“scalar”) perturbation. In otherwords,aðtÞ is chosen in
such away thatψðt; xiÞ vanishes somewhere in theUniverse.
The gradient expansion method [63–65] can be applied in
order to expand inhomogeneities into their spatial gradients,
and formally multiply them by a fictitious parameter ϵ
regulating the expansion. Following [61], we may identify
the infinitesimal expansion parameter with the ratio between
the Hubble radius and a comoving scales of physical size,
thus ϵ ¼ k=ðaHÞ. Then, on superhorizon scales,Aij ¼ OðϵÞ,
which allows us to disregard it with respect to quantities
referring to a homogenous and isotropic FLRW universe.
Since the local expansion recasts as

θ ¼ 3

N

�
_aðtÞ
aðtÞ þ _ψ

�
≡ 3 ~H; ðD9Þ
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having introduced the local Hubble parameter ~H ≡ θ=3, we
find the leading expression for the extrinsic curvature

Ki
j ¼ −

1

N

�
_aðtÞ
aðtÞ þ _ψ

�
δij þOðϵÞ; ðD10Þ

and, finally, for a conformally flat three-geometry, charac-
terized by ~γij ¼ δij, the intrinsic curvature on the spatial
three-dimensional hypersurfaces is found, which further
clarifies the meaning of ψ and its gradients,

ð3ÞR ¼ −
2

a2ðtÞe2ψ δ
ijðψ ;iψ ;j þ 2ψ ;ijÞ: ðD11Þ

Using the Gauss-Codazzi equations, the Einstein equations
can be recast in terms of ð3ÞR, Ki

j and Aij (see, e.g.,
Ref. [61]), and expanded at linear order in ϵ.
Within the separate universe assumption, we can then

write the conservation of the energy-momentum tensor at
each point, namely ∇μTμν ¼ 0, as

dρðt; xiÞ
dt

¼ −3 ~Hðt; xiÞ½ρðt; xiÞ þ pðt; xiÞ�; ðD12Þ

which reads the same as in a FLRW universe. Nonetheless,
choosing a slicing where ρðt; xiÞ ¼ ρðtÞ—namely, the
energy density is uniform—and assuming pressure to be
adiabatic, i.e., to be a unique function of the energy
density—namely p ¼ pðρÞ—entails the relation

dρðtÞ
dt

þ 3
_aðtÞ
aðtÞ ½ρðtÞ þ pðtÞ� ¼ _ψðtÞ; ðD13Þ

in which ψ must be independent on the space position.
Conservation of the energy-momentum tensor on the
FLRW background finally implies conservation of ψ ,
which we denote here as ζ, if the “adiabatic pressure
condition” is satisfied. Indeed, ζ, which determines the
intrinsic curvature of constant time spatial hypersurfaces,
can be shown to be constant whenever pressure can be
expressed as a unique function of the energy density.
In particular, this is true in the matter- and radiation-
dominated eras during the expansion of the Universe.
Conservation of curvature perturbation then arises when
the uniform density slicing coincides at the first order in ϵ
with the comoving and uniform-Hubble slicing, namely,
the slicing orthogonal to the comoving worldlines.
Choosing the comoving worldlines as the threading then
fixes the gauge completely to be the so-called comoving
gauge. This choice of the comoving slice further sets
vorticity of the cosmological fluid to zero, consistent with
the fact that this latter is not generated during inflation.
The curvature perturbation variable ζ can be evaluated in

this framework by linking it to the perturbation of the
energy density. Choosing a class of threading in which

Ni ¼ OðϵÞ, we may select an initial slice where the energy
density is uniform, and then follow the evolution of the
system towards a hypersurface where its energy density is
not uniform. Concretely, we first estimate the number of e-
foldings of expansion along the comoving worldline to
which nμ is tangent, i.e.,

Nðt2; t1; xiÞ ¼
1

3

Z
t2

t1

θNdt ¼ −
1

3

Z
t2

t1

dt
_ρ

ρþ p

				
xi
; ðD14Þ

and then compare two different choices of time slicing,
which entail different space dependence of the energy
density on the hypersurfaces. Thus, first we combine (D9)
with (D14), so to obtain

ψðt2; xiÞ − ψðt1; xiÞ ¼ Nðt2; t1; xiÞ − ln

�
aðt2Þ
aðt1Þ

�
; ðD15Þ

then we deploy the strategy outlined above, and consider
two different time slicings, which coincide at t ¼ t1, and
evolve differently up to the hypersurface at constant time
t ¼ t2, where at generic space positions xi the perturbation
variables differ by

ψAðt2; xiÞ − ψBðt2; xiÞ ¼ NAðt2; t1; xiÞ − NBðt2; t1; xiÞ
≡ ΔNABðt2; xiÞ: ðD16Þ

If we choose the A threading to start at a flat slice t ¼ t1 and
to end at t ¼ t2 at a uniform density slice, and select the B
slicing to be flat at initial time and final time, applying
(D16) we find that ψAðt2; xiÞ ¼ NAðt2; t1; xiÞ − N0ðt2; t1Þ.
Applying (D15) to the adiabatic case p ¼ pðρÞ, we, finally,
find

ψðt2; xiÞ − ψðt1; xiÞ ¼ − ln

�
aðt2Þ
aðt1Þ

�
−
1

3

Z
ρðt2;xiÞ

ρðt1;xiÞ

dρ
ρþ p

:

The latter relation implies the existence of a conserved
quantity

−ζðxiÞ ¼ ψðt; xiÞ þ 1

3

Z
ρðt;xiÞ

ρðtÞ

dp
ρþ p

; ðD17Þ

which, in the limit of a linear theory, reduces to the
expression for the conserved curvature perturbation in
the uniform-density, uniform-Hubble, or the comoving
slicing, namely,

−ζðxiÞ ¼ ψðt; xiÞ þ δρ

3ðρþ pÞ : ðD18Þ

Notice finally that choosing an arbitrary threading such that
xi ¼ xiðt0; xiÞ introduces a generic time dependence in ζ,
and in general relaxes the imposition Ni ¼ OðϵÞ.
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Inhomogeneities of the energy densities can be linked to
ζ also by deploying slightly different arguments, closely
related to the δN formalism. For the purpose of this paper
we will also expose the latter, since it adapts to our
arguments on the generalization of cosmological perturba-
tions to the quantum realm. Again we consider a change
from a uniform-density slicing to any other generic one,
and again we emphasize that on superhorizon scales the
threading is uniquely defined, and a change of slicing only
amounts to a shift in the coordinate time. Thus, at any given
position this change entails a time change δðt; xiÞ such that
t0 ¼ tþ δtðt; xiÞ. Correspondingly, if we keep fixed points
in the background manifold and investigate the change in
the mapping to the perturbed manifold, we find for the
expression of the local scale factor

aðt0; xiÞ ¼ aðt; xÞ − _aðtÞδt: ðD19Þ

We then separate the local scale factors into a background
part and a perturbative part, using aðt; xiÞ ¼ aðtÞeψðt;xiÞ,
and recover for small perturbations that

ψ ¼ ζ −Hδt: ðD20Þ

In a similar way, we may recover for the perturbations on
the energy density the relation

δρψðt; xiÞ ¼ −_ρðtÞδðt; xiÞ; ðD21Þ

which has been evaluated on a uniform-density slicing,
characterized by δρ ¼ 0, and on an arbitrary slicing δψ .
Combining (D20) with (D21) finally gives us

ζ ¼ ψ −
δρψðt; xiÞ
ρþ p

: ðD22Þ

APPENDIX E: SCALE-INVARIANT POWER
SPECTRUM

In this appendix we summarize how scale-invariant
power spectra can be originated by curvature perturbations
in the scenario of cosmological inflation, and focus on the
paradigmatic case represented by the so-called slow-roll
approximation.
The main inspiring idea is that the field is slowly rolling

toward the bottom of its potential well VðϕÞ, so slowly that
its kinetic energy Kϕ ¼ _ϕ2=2 is negligible with respect to
its potential energy. Therefore, the value of ϕ is almost
constant, which localizes it at a certain ϕ0 on the potential
well. We then have

ρ≃ VðϕÞ and 3H _ϕ≃ V 0: ðE1Þ

On the other side, this can happen only if the potential is flat
“enough” to allow for this approximation, which is a

requirement on its derivatives in ϕ. One is finally led to
introduce the slow-roll parameters in cosmological infla-
tion, which we denote here as ϵs:r: and ηs:r: and which read

ϵs:r: ≡m2
Pl

2

�
V 0

V

�
2

and ηs:r: ≡m2
Pl
V 00

V
: ðE2Þ

To be fully specific, we can limit our focus to the relevant
case of quadratic potentials, namely, to stochastic inflation
[66]. After the suitable redefinition χ ¼ aðηÞϕ, the equation
of motion for the background field χ can be cast in
conformal coordinates fη; xig, which are such that ds2 ¼
aðηÞ2ðdη2 − d~x2Þ, as

χ00 −∇2χ þ
�
a2m2 −

a00

a

�
χ ¼ 0: ðE3Þ

Exactly the same expression as in (E3) holds for the
variation δχ ¼ aðηÞδϕ. This is the well-celebrated equation
for the cosmological perturbations, which have a tachyonic
mass. Quantization of δχ perturbations now proceed in a
similar way as for the δϕ, showing exactly the same
expansion as in (25), and again involving commutation
relations. We may focus now on the perturbation δχ, whose
equation of motion for the Fourier space modes reads

δχ~kðηÞ00 þ ðaHÞ2
��

m
H

�
2

þ
�

k
aH

�
2

−
H0

H
− 2

�
δχ~kðηÞ ¼ 0;

in which we have also used a00=a3 ¼ H0 þ 2H2. A solution
to the latter equation, which is found for the de Sitter
background and fulfills plane-wave initial conditions, is
matched to the Bunch-Davies vacuum [50], involves
Hankel functions and reads

δχ~kðηÞ ¼
ffiffiffiffiffiffiffiffiffi
−ηπ
2

r
e{

π
4
ð2νþ1ÞHð1Þ

ν ð−kηÞ: ðE4Þ

The specific details of the model are now contained in

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
−
�
m
H

�
2

s
: ðE5Þ

Recalling that in de Sitter η ¼ −ðaHÞ−1, well after crossing
the Hubble horizon; i.e., for superhorizon modes fulfilling
jkηj ≪ 1 the solution approaches

δχ~kðηÞ ¼
e{

π
4
ð2ν−1Þffiffiffiffiffi
2k

p ΓðνÞffiffiffi
π

p
�
−kη
2

�1
2
−ν
: ðE6Þ

The power spectrum can be computed from the correlation
function of the perturbation variables δχ using the formula
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h0jδ̂χðη; ~xÞδ̂χðη; ~yÞj0i

¼ 1

2π2

Z
∞

0

k3jδχ~kðηÞj2
sin kL
kL

dk
k

≡
Z

∞

0

k3Pδχ
sin kL
kL

dk
k
; ðE7Þ

in which we have introduced the coordinate space distance
L ¼ j~x − ~yj and defined the power spectrum Pδχ ¼
ðk3=2π2Þjδχ~kj2. Experimentally L individuates a pivotal
scale, which we will call later k0.
Notice that scale invariance is attained whenever

ν ¼ 3=2. The power spectrum can be then recast in terms
of Pδϕ by considering that δϕ ¼ δχ=a. The change of
variables allows usto find for ν ¼ 3=2

Pδϕ ¼
�
H
2π

�
2

: ðE8Þ

It is straightforward to check that scale invariance of the
power spectrum implies δχ~k ≃ k−

3
2. Furthermore, for

inflation H ≃Hk, and the Hubble parameter can finally
be evaluated at the horizon exit, looking for modes
aHk ¼ k, to be H ≃ 10−5 in Planckian units. This
estimate may already give a realistic value for the
power spectrum of scalar perturbations. Slight deviations
from scale invariance are then parametrized for light
field m ≤ 3H=2 by

ν≃ 3

2
−

m2

3H2
; ðE9Þ

which entails

Pδϕ ¼
�
H
2π

�
2
�

k
2aH

�2
3
ðmHÞ2

: ðE10Þ

Whenever a generic dependence in k is present, we can
define a corresponding spectral index for the power
spectrum by

n − 1≡ d lnP
d ln k

: ðE11Þ

The power spectrum of scalar perturbations is finally
recovered by noting that for slow-roll inflation ρ≃ VðϕÞ
and 3H _ϕ≃ −V 0ðϕÞ hold, and thus

ζ ¼ 1

3

V 0

_ϕ2
δϕ ¼ 1

m2
Pl

V
V 0 δϕ: ðE12Þ

For almost scale-invariant massive fields, i.e., for ν ¼ 3=2,
one then finds

Pζ ¼
�

1

m2
Pl

V
V 0

�
2
�
Hk

2π

�
2 ≃ 1

24m4
Plπ

2

V
ϵs:r:

; ðE13Þ

which involves the slow-roll parameter ϵs:r: introduced
above, and must be evaluated at the horizon exit. The
experimental value of the scalar power spectrum to be
used in constraining parameters in Pζ is expressed [67,68]
by Pζðk0Þ ¼ ð2.445� 0.096Þ × 10−9, in which the pivotal
scale chosen corresponds to k0 ¼ 0.002 Mpc−1. The
power spectrum is, finally, expressed as

PζðkÞ ¼ Pζðk0Þ
�
k
k0

�
n
; ðE14Þ

if, assuming independence on k, the spectral index is fitted
with experimental data to be

n ¼ 0.960� 0.013: ðE15Þ
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