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We develop the model proposed by Cortês, Gomes and Smolin [1] to predict cosmological signatures of
time-asymmetric extensions of general relativity. Within this class of models the equation of motion of
chiral fermions is modified by a torsion term. This term leads to a dispersion law for neutrinos that
associates a new time-varying energy with each particle. We find a new neutrino contribution to the
Friedmann equation resulting from the torsion term in the Ashtekar connection. In this paper we explore the
phenomenology of this term and observational consequences for cosmological evolution. We show that
constraints on the critical energy density will ordinarily render this term unobservably small, a maximum of
order 10−25 of the neutrino energy density today. However, if the time-asymmetric dark energy is tuned to
cancel the cosmological constant, the torsion effect may be a dark matter candidate.
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I. INTRODUCTION

Two of us, along with Gomes, recently proposed a simple
extension of general relativity with explicit breaking of time-
reversal symmetry [1]. Such theories give an explicit direc-
tionality to time, while retaining local energy-momentum
conservation as time-translation invariance remains unbro-
ken. The extension is expressed in terms of the Hamiltonian
formulation of general relativity. The Hamiltonian constraint
is modified by the addition of a new termwhich is linear in π,
the trace of the field conjugate to the metric in a Hamiltonian
formalism. In the extension, π is multiplied by a new free
function fðVÞ of the volume V of slices in the constant mean
curvature (CMC) gauge. The extension is designed to
preserve the first-class nature of the constraints. Since
fðVÞ is a free function, we really have a class of extensions
to general relativity.
The restriction to CMC gauge signals that the consis-

tency of this proposal rests on the existence of shape
dynamics, which is a consistent reformulation of general
relativity in which refoliation invariance is replaced by a
local three-dimensional scale invariance [2–8]. This is
consistent with the reduction to Friedmann-Robertson-
Walker (FRW) cosmologies, where the homogeneous
spatial slices coincide with a CMC foliation.
In cosmology, the new term appears in the Friedmann

equation, and the freedom in selecting fðVÞ permits a wide
range of possible behaviors; Ref. [1] considered three
cases, which they called time-asymmetric dark energy,
dark curvature, and dark radiation. Current observations are
able to limit, but not exclude, such contributions to the
Friedmann equation. A more extensive analysis of back-
ground dynamics in this scenario was given in Ref. [9].

Reference [1] also showed that the new term would
modify the propagation equations for chiral fermions via a
new torsion term in the Weyl equation. The purpose of this
paper is to further explore the possible observational
consequences of this term for cosmological evolution. In
the following we focus on neutrinos, but our considerations
apply to any fermions that may be considered purely chiral
during the cosmological era in question.
The results obtained here show that the program of

research described in Refs. [10–14], based on the hypoth-
eses that time is fundamental and irreversible, can have
concrete implications for observational cosmology. Other
applications of torsion to cosmology are described
in Ref. [15].

II. COSMOLOGICAL EVOLUTION IN
TIME-ASYMMETRIC GENERAL RELATIVITY

Reference [1] showed that the introduction of the time-
asymmetric term to the Hamiltonian results in an addition
to the Friedmann equation of a term proportional to g2ðaÞ
where gðaÞ is related to the free function fðVÞ mentioned
above by g ¼ af=G, G being Newton’s constant and a
being the scale factor. That is, the Friedmann equation
becomes

�
_a
a

�
2

¼ Λ
3
−
K
a2

þ 8πG
3

ρþG2g2

a2
; ð1Þ

where Λ, K and ρ are the usual (bare) cosmological
constant, curvature, and energy density, and the last term
is new. Our ability to constrain this is rather limited since
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the arbitrariness of the function gðaÞ means that any
cosmological history aðtÞ could be obtained, but never-
theless we can propose possible behaviors through making
particular Ansätze for g. The most interesting of these is
time-asymmetric dark energy, where g ∝ a [1].
However, this is not the whole story, because the same

modification to the gravitational Hamiltonian affects the
propagation of chiral fermions in a nontrivial way. As
derived in Ref. [1], the new term gives rise to an Ashtekar
connection which differs from the usual self-dual connec-
tion of space-time by a torsion term. This implies that there
are two geometries: apart from the metric governing space-
time geometry and the propagation of photons, there is
another chiral connection which governs the propagation of
chiral fermions. The difference between this chiral con-
nection and the left-handed part of the metric connection
can be described as a torsion. The modified fermion
propagation alters the form of the fermionic energy density,
which is to appear in the Friedmann equation. Since this
“torsion” effect is determined by the same function gðaÞ, its
form is predicted once the modification to the Friedmann
equation is specified, raising the possibility of a directly
observable effect.
We work within the Hamiltonian framework, as that is

the language in which the time-asymmetric theories we
work with are expressed. We can derive the Weyl equation
of motion for a chiral spin-1

2
fermion ΨB by noting that a

chiral fermion is added to the system by adding a term to
each of the Hamiltonian, diffeomorphism, and gauge
constraints [1]. These are1

CΨ ¼ ΠAeai σ
i B
A DaΨB; ð2Þ

DΨ
a ¼ ΠADaΨA; ð3Þ

J AB ¼ ΠðABBÞ: ð4Þ

HereΠB is the momentum conjugate toΨB, and σi BA are the
usual Pauli matrices. DaΨA is the left-handed space-time
connection which, very importantly, depends on πab (the
momentum conjugate to the metric gab on the spatial
slices),

DaΨA ¼ ∂aΨA þ A B
aAΨB; ð5Þ

where A B
aA ¼ A i

aσ
i B
A is the Ashtekar connection. It is

defined by [16]

Aa
i ¼ Γi

a þ
{Gffiffiffi
g

p ðπia − eiaπÞ; ð6Þ

where Γi
a is the Christoffel three-connection and the tildes

indicate densities.2

The Weyl equation of motion for a chiral spin-1
2
fermion

is obtained from Eq. (2),

_ΨA ¼ fΨA;HΨðNÞg ¼ Neai σ
i B
A DaΨB: ð7Þ

The time derivative is uncorrected because we are in
A0 ¼ 0 gauge. We then have the Weyl equation,

DB
AΨB ¼ ∂ΨA

∂t − eai σ
i B
A DaΨB ¼ 0: ð8Þ

To work out the implications of this for cosmology, it is
enough to start with the phase-space action which defines
the reduction to FRW cosmologies.

S ¼ v0

Z
dtðπ _a − NlapseCÞ: ð9Þ

To get this we have reduced the canonical variables via

gab ¼ a2ðtÞq0ab; ð10Þ

where q0ab is a nondynamical metric which is flat or
constantly curved, and

~πab ¼ 1

3a

ffiffiffiffiffi
q0

q
qab0 πðtÞ: ð11Þ

The fiducial volume of the universe is

v0 ¼
Z
Σ

ffiffiffiffiffi
q0

q
: ð12Þ

The Hamiltonian constraint, with the homogeneous lapse
Nlapse ¼ 1, generates time reparametrizations,

C ¼ G
2a

π2 þ GgðaÞπ − a3VðaÞ; ð13Þ

where gðaÞ ¼ afðaÞ=G is a function of a. The potential
V is

V ¼ Λ
6G

−
k

2Ga2
þ 4πρ0

3a3
: ð14Þ

We assume that the effect of the fermion term, Eq. (2), has
been absorbed into the potential, as we describe below.1Here μ; ν;… ¼ 0, 1, 2, 3 are manifold space-time indices,

while α; β;… ¼ 1, 2, 3 are manifold indices on the spatial slice.
Note that a, b ¼ 0, 1, 2, 3 are internal space-time indices that
label the tetrads, while i, j ¼ 1, 2, 3 are spatial internal indices or
triad labels. In addition, A, B ¼ 0, 1 are left-handed two-
component spinor indices.

2We remain in the extended phase space [16], whose canonical
coordinates are eia and ~πbj , which have the canonical commutation
relations feiaðxÞ; ~πbj ðyÞg ¼ δ3ðx; yÞδbaδij.
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We vary first by π to find

_a
Nlapse

¼ G

�
π

a
þ g

�
: ð15Þ

This gives us

π ¼ a2

NlapseG
H − ag ð16Þ

in terms of the usual Hubble parameter,H ¼ _a=a. If we vary
the action by the Lagrange multiplier, Nlapse, we find the
modified Friedmann equation from setting the Hamiltonian
H ¼ 0, yielding

H ¼ a3
�

1

2N2
lapseG

H2 −
Gg2

2a2
− V

�
¼ 0; ð17Þ

while varying by a gives an equation for _π,

1

N
_π ¼ Gπ2

2a2
þ 3a2V − a3V 0 −Gg0π; ð18Þ

where primes are derivatives with respect to a.
To find the Ashtekar connection for FRW spacetimes, we

choose a gauge where

e0μ ¼ δ0μ; eiμ ¼
1

a
δiμ: ð19Þ

Using Eqs. (6) and (16), the Ashtekar connection is

Ai
α ¼ Γi

α −
2{G
3

δiα

�
aH

NlapseG
− gðaÞ

�
: ð20Þ

For flat FRW, the Christoffel term would vanish, with the
first term in brackets being the usual GR Ashtekar con-
nection and the final term being the new contribution from
the time asymmetry. This results in an equation of motion

DB
AΨB ¼ 0 → D0B

A ΨB − {μΨA ¼ 0; ð21Þ

where D0B
A ΨB ¼ 0 is the standard Weyl equation (8) and μ

is a frequency coming from the gðaÞ dependence in the
canonical momentum, which works out to be

μðaÞ ¼ 2G
gðaÞ
a

: ð22Þ

This results in a shift in the frequency–wave-vector relation

ω ¼ kþ μðaÞ; ð23Þ
where k is the modulus of the wave vector k. Note that this
is different from the effect of a rest-mass term, which would
lead to ω2 ¼ k2 þm2.

Consider a set of particle species in thermal equilibrium
with present temperature T0, which for neutrinos is
approximately 2 Kelvin. The energy per particle in thermal
equilibrium is E≡ ℏω≃ 3kBT, and the Fermi-Dirac dis-
tribution indicates a number density for each species of
n≃ 0.1T3 (where here and henceforth we adopt naturalized
units ℏ ¼ c ¼ kB ¼ 1, while retaining G≡m−2

Pl in order to
facilitate dimensional analysis). If there are Nf degrees of
freedom (e.g. two spin states for each of three neutrino
flavors), and the present average wave number is k0 so that
the physical wave number at a general epoch is k0=a, the
result is that the total energy density, as a function of scale
factor a, is

ρ ¼ n0Nf

a3
× mean energy per particle

¼ n0Nf

a3

�
k0
a
þ 2G

gðaÞ
a

�
: ð24Þ

We have to add the new torsion-dependent term to the
potential energy. Hence the whole potential is

V ¼ Λ
6G

−
K

2Ga2
þ 4πρm0

3a3
þ 4πργ0

3a4

þ 4πn0Nf

3a3

�
k0
a
þ 2G

gðaÞ
a

�
; ð25Þ

where ρm0 and ργ0 are the present densities of nonrelativ-
istic matter and of photons. We note that the CMC gauge
condition is satisfied in this case since the momenta are
constant densities. This means that a and π are invariant
under volume-preserving conformal transformations.
Combining everything, and fixing Nlapse ¼ 1, we find

the modified Friedmann equation

�
_a
a

�
2

¼ 2GV þ G2g2

a2

¼ Λ
3
−
K
a2

þ 8πGρm0

3a3
þ 8πGργ0

3a4
þG2g2

a2

þ 8πGn0Nfk0
3a4

þ 16πG2n0NfgðaÞ
3a4

: ð26Þ

III. COSMOLOGICAL CONSTRAINTS ON
TIME-ASYMMETRIC TORSION

A. Massless neutrinos

We normalize the scale factor to be unity at present. To
simplify the argument we assume a simple power-law form
gðaÞ ¼ Ca−p, though this is not essential for what follows.3

We find that the potential is

3We assume gðaÞ takes positive values. From the equation of
motion for the momentum, Eq. (18), we see that positive-valued
gðaÞ represents a friction term, whereas if gðaÞ is negative it will
be a driving term and we would expect it to cause instabilities.
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V ¼ Λ
6G

−
K

2Ga2
þ 4πρm0

3a3
þ 4πργ0

3a4
þ 4παk0

3a4
þ 8πGαC

3a4þp ;

ð27Þ

where α ¼ n0Nf , so the Friedmann equation is

�
_a
a

�
2

¼ Λ
3
−
K
a2

þ 8πGρm0

3a3
þ 8πGργ0

3a4
þ G2C2

a2þ2p

þ 8πGαk0
3a4

þ 16πG2αC
3a4þp : ð28Þ

The modification gives a contribution to the energy
density,

ρnew ¼
�
3

8π

��
GC2

a2þ2p þ
16πGαC
a4þp

�
: ð29Þ

Let us name the first term in Eq. (29) the asymmetric term,
since it comes directly from the time-asymmetric modifi-
cation to the Hamiltonian, and the second term the torsion
term, since it comes from the torsion contribution to the
connection. We want to compare this to the usual neutrino
energy density (presently assuming massless neutrinos):

ρν ¼
2αk0
a4

: ð30Þ

The magnitude of the asymmetric term is fixed once the
other terms are specified. We start by comparing the various
terms at present, a ¼ 1. A conservative constraint on the
asymmetric term is that it can be no more than the critical
density, which in Planck units is of order 10−120m4

Pl.
4 In

order to estimate the magnitude of the torsion effect, αC,
we need to know the neutrino number density today. The
neutrino energy density in the standard cosmology, assum-
ing for now that neutrinos are massless, is ρν ≃ 10−5ρcrit.
We saw above that k0 ≃ α1=3, up to a constant of order unity
when using natural units. Hence C < 10−60m3

Pl and
α≃ ð10−30mPlÞ3. Together these ensure that GαC<
10−150m4

Pl≃10−30ρcrit≃10−25ρν, ensuring the torsion term
in Eq. (29) is completely negligible at present.
Given that critical density considerations render the new

torsion term unobservable today, we can instead consider
the scale dependence of gðaÞ and investigate possible
signatures into the past. Given the scalings, the torsion
term is the one that grows fastest into the past for p in the
range 0 < p < 2. To illustrate the types of scenarios that
can arise within this range, we consider three cases.

1. p = 0: dark curvature and torsion radiation

This case has the asymmetric term mimicking curvature
with scaling 1=a2; such fluids are not useful for matching
current observations but are permitted at a subdominant
level as their influence becomes less important into the past.
Here the torsion term scales the same way as the neutrino
kinetic energy and also the photon energy density, so our
constraint that it is utterly negligible at the present epoch
implies it has been negligible throughout cosmological
history.

2. p = 1: early torsion domination

The torsion term grows the most rapidly compared to the
other terms if we choose p ¼ 1, whereupon the asymmetric
term becomes a contribution to the radiation, as discussed
in Ref. [1], and the new neutrino torsion term grows into the
past as a5. Given that the powerful constraints we just
derived on its magnitude apply today, in order to become
significant, it needs to grow into the past from GαC≃
10−30ρcrit to unity. At big bang nucleosynthesis, at redshift
z≃ 1010, it will still be negligible compared to standard
radiation, GαC≃ 10−20ρcrit. If we continue into the past, at
around redshift z≃ 1030, typical of postinflation reheating
epochs, the torsion term becomes comparable to the critical
density and could play a role in the reheating mechanism.
However, since there are no distinct signatures of reheating
models, we still do not gain insight on the form of gðaÞ. We
thus conclude that under these assumptions the new torsion
term leads to no currently observable cosmological effects.
However, this scenario is the most promising for a future
search for signatures, should the physics of postinflationary
reheating be placed on a firm footing.

3. p = 2: stiff fluids

In this case both the asymmetric term and the torsion
term scale as 1=a6, which is the characteristic scaling of a
stiff fluid with equation of state p ¼ ρ. In this case both
terms grow rapidly compared to the matter and radiation
terms as we track into the past, yet they must have been
small at nucleosynthesis to avoid spoiling it, thus guaran-
teeing that they are suppressed to at least 20 orders of
magnitude below the critical density at present. The
stronger constraint on C means that the torsion term is
even more negligible compared to the usual neutrino terms
at the present epoch.

B. Including neutrino mass

If we include the effect of neutrino mass m, the
dispersion relation becomes

ω2 ¼ ðkþ μÞ2 þm2: ð31Þ

The neutrino velocity is
4More precisely it is 2 × 10−123m4

Pl, but the rounded order of
magnitude is sufficient for our purposes.
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v≡ dω
dk

¼ kþ μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ μÞ2 þm2

p : ð32Þ

This has the interesting feature that the neutrinos will be
kept relativistic, v≃ c, provided only that μ2 ≫ m2,
regardless of the kinetic energy k; i.e. the neutrinos would
continue to travel at the speed of light even once their
kinetic energy fell below the rest mass. However, the above
constraint from the Friedmann equation is sufficient to
show that μ is in fact orders of magnitudes below k and
hence this regime is not accessed in our Universe.
Inclusion of a small neutrino mass, as motivated by

neutrino oscillation experiments, does not alter the argu-
ment made above in the massless case, which relied only on
the neutrino kinetic energy. Hence, we can conclude that
the torsion term is still completely negligible in the
presence of (observationally permitted) neutrino masses.

C. A speculative scenario

There is one possible, albeit contrived, exception to this.
We presume that the asymmetric dark energy term exactly
cancels a (negative) bare cosmological constant; i.e. in the
case p ¼ −1 we take G2C2 ¼ −Λ=3. Presumably some
new fundamental symmetry of nature will have been
invoked to justify an exact cancellation.5

In such a scenario both the cosmological constant and
the asymmetric dark energy can be orders of magnitude
larger than the other terms in the Friedmann and accel-
eration equations, but if so the constant C is no longer
constrained by the critical density as we found above.
Taking C≃ k0=G≃ 10−25m3

Pl (i.e. over 30 orders of
magnitude larger than allowed in the absence of the precise
cancellation with Λ) would allow us to consider the torsion
term to be of order of the critical density at the present
epoch. In this case, and given that for p ¼ −1 the torsion
term scales likes matter, 1=a3, we can propose the torsion
term as a dark matter candidate. These background evo-
lution considerations provide both the correct redshift
scaling and the correct density today for a dark matter
candidate. For this proposal to hold we would next have to
derive the first-order perturbation equations and assess the
possibility that the new torsion term can clump and match
the detailed predictions for the power spectrum of large-
scale structure and the cosmic microwave background.
However, we do not assess this effect here, and it is left for
future work.
To examine the implications of this, we consider the

fermion contributions to the energy density Eq. (2) brought
about by the torsion term. This is

ΔHΨ ¼ −{ΠAejiσ
i B
A ΔAC

jBΨC; ð33Þ

where

ΔAC
jB ¼ 2{G

3
σCjBgðaÞ: ð34Þ

This gives us

ΔHΨ ¼ 2Gg
a

ΠAΨA ¼ μðaÞΠAΨA: ð35Þ

This appears to give a new contribution to the energy,
which is dependent on the global time, in a way that can be
read as giving a time-dependent scaling of Newton’s
constant as experienced by the chiral fermions

GðaÞ ¼ G
g
a
: ð36Þ

As nonchiral particles continue to experience the usual
Newton’s constant, this signals a violation of the equiv-
alence principle. Interestingly, the new term given by
Eq. (35) is proportional to the number density of the chiral
fermions. This is important because while the baryons
dominate the energy density, the neutrinos completely
dominate the number density and so would contribute
the predominant torsion effect.

IV. CONCLUSIONS

In this article we continued our search for possible
observational effects of a class of time-asymmetric mod-
ifications of general relativity. Here we studied the effect of
torsion in the equations of motion of neutrinos on the
expansion of the Universe. We concluded that in typical
cases, and taking into account the number density of
cosmic neutrinos and critical-density bounds on the asym-
metric term contribution to the Friedmann equation, the
additional torsion terms are constrained to be far too small
to give rise to observable effects today, and at any recent
cosmic epoch. However, we found one case with p ¼ 1
where the torsion term could potentially be significant
during postinflationary reheating.
More speculatively, we uncovered an interesting case in

which p ¼ −1 and where the asymmetric dark energy is
assumed to be cancelled by the bare cosmological constant
(including contributions from the vacuum energy of quan-
tum fields). This torsion term can then be quite large,
leading to possible observable effects. In that case the
torsion term scales as a nonrelativistic matter contribution.
It turns out to be roughly an enhancement of the energy
density proportional to the neutrino number density, medi-
ated by a time-dependent constant. Given that the neutrino
number density dominates over the baryon number density,
this yields an intriguing, if speculative, possibility for dark
matter.
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