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ESPRESSO is a high-resolution-ultrastable spectrograph for the Very Large Telescope, whose
commissioning will start in 2017. One of its key science goals is to test the stability of nature’s
fundamental couplings with unprecedented accuracy and control of possible systematics. A total of 27
nights of the ESPRESSO Consortium’s guaranteed time observations (GTO) will be spent in testing the
stability of the fine-structure constant and other fundamental couplings. A set of 14 priority optimal targets
have been selected for the GTO period. Here we briefly discuss the criteria underlying this selection and
describe the selected targets, and then we present detailed forecasts of the impact of these measurements
on fundamental physics and cosmology, focusing on dark energy constraints and using future supernova
Type Ia surveys as a comparison point. We show how canonical reconstructions of the dark energy equation
of state are improved by the extended redshift range enabled by these spectroscopic measurements, and also
quantify additional improvements foreseen for a future ELT-HIRES instrument.
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I. INTRODUCTION

Nature’s fundamental couplings are the most mysterious
part of physical theories. A fundamental constant can be
defined as a parameter whose value cannot be explained
within a given theory, but can only be found bymeasurement
[1]. Testing their constancy, both locally in the laboratory
and in the early universe (through astrophysical observa-
tions), is therefore a powerful test of the theories where they
are used: they allow us to test the domain of their validity,
and if their constancy is found not to hold true to expand our
knowledge by identifying clues for new physics.
ESPRESSO is the next generation high-resolution-

ultrastable spectrograph, combining the efficiency of a
modern Echelle spectrograph with extreme radial velocity
and spectroscopic precision, and including novel features
such as improved stability thanks to a vacuum vessel and
wavelength calibration done with a Laser Frequency Comb
[2]. ESPRESSO will be installed in the Combined Coudé
Laboratory of the Very Large Telescope (VLT) in early
2017, and linked to the four unit telescopes (UT) through
optical Coudé trains, allowing operations either with a
single UT or with up to four UTs for about a 1.5 magnitude

gain. The 1 UT mode will be used to achieve the highest
accuracy measurements by using the brightest suitable
sources while leaving the 4 UT mode to perform somewhat
less accurate measurements of fainter sources—which in a
cosmological context typically enables access to high
redshifts.
One of the key science and design drivers of ESPRESSO

is to carry out improved tests of the stability of nature’s
fundamental couplings, and in particular to confirm or rule
out the recent indications of dipolelike variations of the
fine-structure constant α from the work of [3]. Such tests
are of fundamental importance: a varying α unavoidably
implies a violation of the Einstein equivalence principle,
which in turn implies the breakdown of gravity as a purely
geometric phenomenon and the presence of a fifth force in
nature [1].
A minimum of 10% of the consortium’s guaranteed time

of observation (GTO) with the instrument will be dedicated
to this purpose, which corresponds to a minimum of 27
nights if used in 1 UT mode. In order to lead to improved
constraints on the stability of α, an ideal target should
present simple and strong but not saturated absorption
features for the transitions with high sensitivities to such
variations. In what follows we describe in more detail these
criteria and apply them, together with practical constraints
such as visibility from Paranal, to the full list of targets
known to yield αmeasurements. We therefore arrive at a list
of 14 priority targets for α measurements.
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In addition to their intrinsic importance for fundamental
physics, these tests also have a significant impact on
cosmology, shedding light on the enigma of dark energy
[4]. They optimally complement traditional observables
(such as Type Ia supernovas) used to map the dark energy
equation of state, in particular because they significantly
extend the redshift range that can be probed by the
traditional methods [5,6]. Here we extend previous work
of [7], and present detailed forecasts of the impact of
ESPRESSO measurements of α on these 14 targets. We
note that these forecasts can be reliably made, once one has
an accurate list of the redshift distribution of the targets,
because they mostly depend on the sensitivity of the
measurement rather than its central value—in other words,
on the error bar, rather than on whether one has a detection
or a null result. Obviously for other purposes the central
value is crucial [8].
In order to quantify the impact we use statistical tools

previously developed for dark energy equation of state
reconstructions from Type Ia supernovas by [9], and
previously adapted for this purpose by some of the present
authors in [5] as well as figures of merit recommended by
the Joint Dark Energy Mission Figure of Merit Science
Working Group [10]. In particular, we use a “canonical”
SuperNova Acceleration Probe (SNAP)-like future super-
nova Type Ia survey as a comparison point. Finally we also
discuss further improvements on the assumption that the
same targets are observed with the European Extremely
Large Telescope’s high-resolution spectrograph, ELT-
HIRES [11], which is currently in its Phase A.

II. MEASUREMENTS OF THE
FINE-STRUCTURE CONSTANT

Quasar (QSO) absorption spectra are powerful labora-
tories to test the variation of dimensionless fundamental
parameters such as fine structure constant α and the proton-
to-electron mass ratio μ, as well as to test the redshift
dependence of the temperature of the cosmic microwave
background, TCMB. Absorption lines produced by the
intervening clouds along the line of sight of the QSO give
access to physical information on the atoms/molecules
present in the cloud, and this means that they give access to
physics at different cosmological times and places.
The quasar spectra display metal absorption lines, which

can be due to clouds either associated with the material of
the galaxy that hosts the QSO or related with some other
different objects at other cosmological distances along the
same line of sight. These lines are sensitive to variation of
the fine structure constant, α, and each element presents a
different sensitivity to it. From the observational point of
view the variation in α is defined as

Δα
α

¼ αðzÞ − α0
α0

; ð1Þ

where αðzÞ is the measurement of α at some redshift z, and
α0 is the laboratory value.
The many multiplet method [12,13] makes use of all

transitions available in one system, each one of them with
different sensitivities, q, and therefore different effects in
the line position on the spectra. For a given transition we
can write

Δv ≈ −
2cqi
ω0

�
Δα
α

�
; ð2Þ

where Δv is the velocity shift, c is the speed of light, ω0 is
the laboratory wavelength, and qi is the q coefficient for a
given transition.
We note that it is not the actual value of the sensitivity

coefficient of a single transition q that constrains Δα=α,
since one needs to simultaneously determine the redshift of
the absorber. Thus one needs to identify various transitions,
with different sensitivities, all formed at the same distance
from the observer. Ideally, one requires at least one
transition whose wavelength decreases if α varies (hence-
forth referred to as a blueshifter), one whose wavelength
increases (a redshifter) and one whose wavelength is
comparatively little affected by any such variation (an
“anchor” typically from a comparatively light atom). From
this it follows that the important parameter is the difference,
Δq, between the largest and smallest values of the
sensitivity coefficients of all the transitions available to
be used in a given absorber.

III. TARGETS FOR ESPRESSO’S
FUNDAMENTAL PHYSICS GTO

A key limitation of ESPRESSO is its wavelength cover-
age range, which is narrower than the ones of its prede-
cessors (HARPS, UVES, and Keck-HIRES). The effect
of the shorter wavelength coverage of ESPRESSO versus
the larger one from UVES is illustrated in Fig. 1. The figure
depicts the redshift range in which the most common
transitions used to do α measurements are accessible to
both spectrographs. Each transition is colored by the
corresponding sensitivity, q, to the α variation.
To select the list of best possible targets for the GTO

of ESPRESSO we start by considering all existing mea-
surements from the VLT-UVES and Keck-HIRES spectro-
graphs [14–22], taking into account the effects of the
shorter wavelength coverage of the spectrograph. We chose
the targets that

(i) can be observed from the VLT site (Cerro Paranal in
Chile, implying declination < 30);

(ii) present transitions that allow a high sensitivity
(Δq > 2000);

(iii) have a reported uncertainty of σΔα=α < 5 ppm.
The last criterion comes from the fact that simple spectra

should have already produced measurements with sta-
tistically lower uncertainties. Strictly speaking there is also
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the possibility that new bright quasars are discovered, but
since the GTO targets should be fixed soon the probability
of such an occurrence is low. Additional criteria that are
relevant for prioritizing the targets are

(i) QSO brightness;
(ii) high number of transitions available in the system,

which leads to smaller overall uncertainties and also
allows for several independent measurements using
different sets of transitions (an important test of
possible systematics);

(iii) presence of at least one redshifter, one blueshifter,
and one anchor (as discussed in the previous
section); this is partially ensured by the requirement
of a large Δq;

(iv) simpler velocity structure systems (strong but not
saturated absorption features; narrow lines and large
number of components, provided these are resolved
or at least partially resolved);

(v) systems for which the dipole model of Webb et al.
[3] predicts a higher variation of α;

(vi) possibility to perform in the same system additional
measurements, such as μ or TCMB, enabling key tests
of many theoretical paradigms [4].

This analysis leads to the selection of the 14 targets
which are presented in Table I. We note that the order in
which they are presented should not be seen as any ranking

among them: they are simply ordered according to their
right ascension. A more detailed prioritization will require
the generation of simulated ESPRESSO-like spectra of
these targets, and it is currently ongoing.
Strictly speaking, the first listed measurement does not

fulfill all the criteria, but it is the only system accessible to
ESPRESSO where the proton-to-electron mass ratio and
the temperature-redshift relation can also be measured.
This fact makes it a theoretically interesting target for
testing theories where a relation between these three
parameters is predicted [23,24]. Indeed, this target has
also yielded a measurement of the deuterium abundance
[25], but unfortunately the required transitions (having
rest wavelengths around 915 Å) are not accessible to
ESPRESSO at this redshift.
Figure 2 presents, in a visually simpler way, the

information listed in Table I, considering the sky position
and the redshift of the targets. In particular, these plots
facilitate a rapid visualization of the target position to test
the dipole model of Webb et al., represented by the color
map in the background, and the target distribution in
redshift, which ranges from 1.35 to 3.02 (or 2.59 if not
considering the first target in the table). In either case, we
note that all these absorbers probe physics deep in the
matter era, an epoch which is quite difficult to probe with
more common probes such as Type Ia supernovas. This is

FIG. 1. Redshift coverage of ESPRESSO and UVES of common transitions used for measuring α. Thinner lines represent the
coverage of UVES, while the thicker part is representative of ESPRESSO’s. The color code is indicative of the q sensitivity parameter;
each transition has the color according to the blueshift or redshift on spectra and by how much. The dashed transitions at the bottom of
the diagram correspond to anchors, i.e., transitions that do not shift much.
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important because, as previously mentioned, even
improved null measurements of α can be used to constrain
dark energy, a point to which we now turn.

IV. FORECASTS ON DARK ENERGY

Our principal component analysis (PCA) based formal-
ism to obtain the forecasts is described in [5]. For
completeness, a short review of the method is presented
in the Appendix. We consider models for which the
variation of α is linearly proportional to the displacement
of a scalar field, and we further assume that this field is a
quintessence-type field, i.e., responsible for the current
acceleration of the Universe.
We take the coupling between the scalar field and

electromagnetism to be

LϕF ¼ −
1

4
BFðϕÞFμνFμν; ð3Þ

where the gauge kinetic function is BFðϕÞ¼1−ζκðϕ−ϕ0Þ,
κ2 ¼ 8πG, and ζ is a dimensionless parameter to be
marginalized over. This can be seen as the first term of
a Taylor expansion and should be a good approximation
if the field is slowly varying at low redshift—a good
approximation given that it is assumed to be a quintes-
sence-type field and that observationally only small relative
variations of α are allowed [26–28]. Then, the evolution
of α is given by

Δα
α

≡ α − α0
α0

¼ ζκðϕ − ϕ0Þ: ð4Þ

For a flat Friedmann-Lemaïtre-Robertson-Walker universe
with a canonical scalar field we can write its speed as
_ϕ2 ¼ ð1þ wðzÞÞρϕ, from which it follows that for a given
dependence of the equation of state parameter wðzÞ with
redshift the scalar field evolves as

ϕðzÞ − ϕ0 ¼
ffiffiffi
3

p

κ

Z
z

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ wðzÞ

p �
1þ ρm

ρϕ

�
−1=2 dz

1þ z
;

ð5Þ

where we have chosen the positive root of the solution
since we expect the scalar field to be rolling down the
potential.
From this one can calculate the Fisher matrix to infer the

precision on the measurement of w using standard tech-
niques [5] obtaining, from a set of observables and its
uncertainties, the eigenvalues λi of the diagonalized Fisher
matrix (ordered from the best determined modes to the
worst ones) and the variance of the new parameters,
σ2i ¼ 1=λi. To reconstruct the fiducial equation only the
best determined modes are used, chosen according to
statistical and physical criteria detailed in [5].
In this work we will consider three fiducial models for

the equation of state. First, we will assume a constant
equation of state, with a value close to a cosmological
constant, wcðzÞ ¼ −0.9. This has already been used in
previous works, and therefore using it facilitates compar-
isons of our results with those of previous works.
Second, we consider a Chevallier-Polarski-Linder [29,30]

parametrization of the dark energy equation of state,

TABLE I. The best currently available measurements of α, among the targets accessible to ESPRESSO. Column 1 gives the quasar
name; the redshifts of the absorption system are given in column 2; columns 3 and 4 give the value of the measurement and the
correspondent uncertainty. Column 5 gives the ranges of sensitivity coefficients associated with the transitions of the absorption systems.
Column 6 gives the number of transitions in each absorption system and column 7 the elements that can be detected. The last column
gives the references for each measurement. Measurements flagged with a * identify targets for which some of the transitions used in the
current measurement are outside the wavelength range of ESPRESSO.

Name zabs Δα
α ð10−6Þ σΔα

α
ð10−6Þ Max(Δq)

Number of
transitions Transitions References

J0350-3811 3.02 −27.9 34.2 1350 2 SiII, FeII [15]
J0407-4410 2.59 5.7 3.4* 2984 13 AlII, AlIII, SiII, CrII, FeII, FeII, NiII, ZnII [14]
J0431-4855 1.35 −4.0 2.3* 2990 17 MgI, AlII, SiII, CrII, MnII, FeII, NiII [14]
J0530-2503 2.14 6.7 3.5* 2990 7 AlII, CrII, FeII, FeII, NiII [14]
J1103-2645 1.84 5.6 2.6 2890 4 SiII, FeII, FeII [20]
J1159þ 0112 1.94 5.1 4.4* 2990 12 SiII, CrII, MnII, FeII, FeII, NiII [14]
J1334þ 1649 1.77 8.4 4.4 2990 15 MgII, AlII, SiII, CrII, MnII, FeII, FeII, NiII, ZnII [14]
HE1347-2457 1.43 −21.3 3.6 2790 3 FeII, FeII [20]
J2209-1944 1.92 8.5 3.8 3879 16 AlII, SiII, CrII, MnII, FeII, FeII, NiII, ZnII [14]
HE2217-2818 1.69 1.3 2.4 2890 6 AlIII, FeII, FeII [21]
Q2230þ 0232 1.86 −9.9 4.9 3879 14 SiII, CrII, FeII, FeII, NiII, ZnII [15]
J2335-0908 2.15 5.2 4.3* 3879 16 AlIII, CrII, FeII, FeII, NiII, ZnII [14]
J2335-0908 2.28 7.5 3.7* 2610 7 SiIV, CrII, FeII, FeII, NiII [14]
Q2343þ 1232 2.43 −12.2 3.8* 3879 11 AlII, SiII, CrII, FeII, NiII, ZnII [15]
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wCPLðzÞ ¼ w0 þ wa
z

1þ z
; ð6Þ

where w0 is its present value and wa is the coefficient of the
time-dependent term. We have chosen the fiducial param-
eters w0 ¼ −0.9 and wa ¼ 0.3.
Third, we consider an early dark energy (EDE) class of

models [31] for which the dark energy density fraction is

ΩEDEðzÞ ¼
1 −Ωm −Ωe½1 − ð1þ zÞ3w0 �
1 − Ωm þ Ωmð1þ zÞ−3w0

þ Ωe½1 − ð1þ zÞ3w0 � ð7Þ

and the dark energy equation of state is defined as

wEDEðzÞ ¼ −
1

3½1 −ΩEDE�
d lnΩEDE

d ln a
þ aeq
3ðaþ aeqÞ

; ð8Þ

here aeq is the scale factor. The energy densityΩEDEðzÞ has
a scaling behavior evolving with time and approaching a
finite constant Ωe in the past, rather than approaching zero.
Here we used w0 ¼ −0.9, Ωe ¼ 0.02, and zeq ¼ 3371.
Therefore the second and third parametrizations are exten-
sions of the first one, each of them having one additional
parameter.
For each fiducial model we choose a prior for the

coupling parameter ζ ¼ 5 × 10−6 such that it leads to a
few parts-per-million variation of α at redshift z ∼ 4,
consistent with [3] and with other current data.
We applied this PCA formalism to the data set of 14

ESPRESSO α targets discussed above, on its own and also
in combination with representative future Sna Ia surveys.
For the α measurements we assumed two different scenar-
ios for the ESPRESSO GTO target list:

(i) Baseline: we assumed that each of the targets on
the list can be measured by ESPRESSO with an
uncertainty of σΔα=α ¼ 0.6 ppm; this represents
what we can currently expect to achieve (though
this expectation needs to be confirmed at the time of
commissioning);

(ii) Ideal: in this case we assumed a factor of 3
improvement in the uncertainty, σΔα=α ¼ 0.2 ppm;
this represents somewhat optimistic uncertainties,
but is also useful as a comparison point.

We will also provide forecasts for a longer-term data set,
on the assumption that the same targets are observed with
the ELT-HIRES spectrograph; in this case we assume an
improvement in sensitivity by a factor of 6 in both the
baseline and the ideal scenarios, coming from the larger
collecting area of the telescope and additional improve-
ments at the level of the spectrograph.
As for the Type Ia supernovas, we consider the following

data sets:
(i) A low-redshift sample, henceforth denoted LOW,

of 3000 supernovas uniformly distributed in the

redshift range 0 < z < 1.7, with an uncertainty on
the magnitude of σm ¼ 0.11. These numbers are
typical of a SNAP-like future supernova survey
and were also used in [9] and many other sub-
sequent works, thus providing a useful point of
comparison;

(ii) An intermediate redshift sample, henceforth denoted
MID, of 1700 supernovas uniformly distributed in
the redshift range 0.75 < z < 1.5 and the same σm as
before. This is representative of recent proposals
such as DESIRE [32]
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FIG. 2. The top panel shows the sky distribution of the
ESPRESSO targets in Table I. The circles represent the α
measurements, their size being proportional to the uncertainty
of the current measurement, and the color gives the value for Δq
according to the color bar in the lower panel. The dark blue
crosses represent known μ measurements, and the cyan possible
targets of μ (for which no measurement currently exists). The
yellow triangles represent targets for TCMB measurements. The
plot’s color map represents the expected value of α in each
direction according to the best-fit dipole prediction for the value
of α [3], with the purple representing a positive shift and the light
pink a negative shift. The bottom panel shows the redshift and
uncertainty of the current α measurements, the color correspond-
ing to the value for Δq according to the values of the color bar.
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To reconstruct the dark energy equation of state, we
assumed 20 redshift bins between 0 < z < 3.02, though
note that the ESPRESSO GTO αmeasurements only occupy
the range 1.35 < z < 3.02, and similarly the Type Ia
supernova data only cover comparatively low redshifts.
Increasing the redshift coverage is indeed one of the key
advantages of these α measurements, as discussed in [5]. In
order to compare the reconstructions with the different data
sets, and thus to quantify the gains in sensitivity from the
combination of several of them, we compared the uncer-
tainty of the five best-determined PCA modes of the various
reconstructions. We take the reconstruction with the LOW
supernova data as the baseline, and compare the others with
this one by taking the ratios

Ri;j ¼
σ−2i;j

σ−2LOW;j
ð9Þ

in which i is the data set (or combination thereof) under
consideration and j, which ranges from 1 to 5, denotes the
PCA mode being considered. The mode uncertainties used
should be normalized in each reconstruction. One expects
that the more accurate reconstructions will result in larger
values of this ratio. This procedure is detailed in [10], which
also suggests the graphs of the principal components as a
function of redshift as means to provide information on the
redshift coverage and sensitivity of the reconstruction.
To facilitate comparisons with previous works, we will

also consider two other indicators to characterize the
reconstructions: the number of modes with uncertainty
lower that 0.3 and the optimal number of modes to use in
the PCA reconstruction of the equation of state, as chosen
using the so-called risk minimization method (as explained
in the Appendix). The latter number is larger than the
former, but the two are correlated, as can be seen in Fig. 3.

Tables II, III, and IV present the values of these ratios
given by Eq. (9) for the five best determined modes and
the various combinations of data sets, as well as the two
other diagnostics described in the previous paragraph, for
each of the fiducial models. One finds that on its own, the
reconstruction with the ESPRESSO target list for the GTO
is not competitive with the one from a large supernova data
set. This is expected given the earlier analysis in [7].
Nevertheless, the addition of α measurements to the

supernova data does improve the reconstruction, since the
extended redshift lever arm enabled by the α measure-
ments improves the determination of the higher modes.
This is manifest in the tables from the fact that the ratiosR
are larger for the higher-order modes. Obviously, a post-
GTO program extending the data set can further improve
this. Typically the first two PCA modes are not dramati-
cally affected (since these are reasonably well character-
ized by the low-redshift supernova data), but the higher
ones are.
We emphasize that the tables list the gains relative to a

supernova-only reconstruction. Since the truncation of the
higher modes inherent to the PCA technique will typically
produce a biased reconstruction at the highest redshifts
probed (e.g., at the highest redshifts the reconstructed
equation will approach 0, as was already pointed out in
the original work of [9]), and since this bias will be larger
the closer the fiducial equation of state is to a cosmological
constant, our w ¼ −0.9 case is the one for which the gains
are higher. In the CPL and EDE cases, where wðzÞ
increases with redshift, the gains are therefore smaller.
The difference between the baseline and the ideal

scenarios (which corresponds to a factor of 3 in sensitivity)
is noticeable, and this is even more so for the case of
ELT-HIRES for which we assumed a gain in sensitivity of a
factor of 6. This factor is possibly conservative, though
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TABLE III. Same as Table II for the CPL fiducial equation of state parametrization; w0 ¼ −0.9, wa ¼ 0.3.

1 2 3 4 5 < 0.3 M

GTO baseline 0.0021 0.0048 0.0329 0.0885 0.2662 0 1
GTO ideal 0.0091 0.0137 0.0548 0.1166 0.3182 0 3
GTO baselineþ LOW 1.0000 1.0000 1.0000 1.0004 1.0042 4 6
GTO idealþ LOW 1.0000 1.0000 1.0003 1.0055 1.9969 4 8
LOWþMID 2.1320 2.1292 2.0991 2.0370 1.8390 4 7
GTO baselineþ LOWþMID 2.1320 2.1292 2.0991 2.0335 1.8428 4 7
GTO idealþ LOWþMID 2.1320 2.1292 2.0994 2.0411 2.0749 4 9
HIRES GTO baseline 0.0327 0.0439 0.1286 0.2113 0.4935 2 5
HIRES GTO ideal 0.3517 0.4508 1.1239 1.4889 2.8578 4 7
HIRES GTO baselineþ LOW 1.0000 1.0000 1.0029 2.3508 3.3813 5 10
HIRES GTO idealþ LOW 1.0000 0.9994 8.9818 10.5674 9.7010 8 13
HIRES GTO baselineþ LOWþMID 2.1320 2.1292 2.1006 2.3783 6.2142 6 11
HIRES GTO idealþ LOWþMID 2.1320 2.1297 8.9749 10.5291 18.0015 9 13

TABLE IV. Same as Table II for the EDE fiducial equation of state parametrization; w0 ¼ −0.9, ΩEDE ¼ 0.02.

1 2 3 4 5 < 0.3 M

GTO baseline 0.0028 0.0056 0.0381 0.0976 0.2929 0 1
GTO ideal 0.0149 0.0216 0.0731 0.1515 0.3846 1 3
GTO baselineþ LOW 1.0000 1.0000 1.0000 1.0007 1.0083 3 7
GTO idealþ LOW 1.0000 1.0000 1.0006 1.0553 3.0416 4 9
LOWþMID 2.1318 2.1292 2.0952 2.0303 1.8144 4 6
GTO baselineþ LOWþMID 2.1318 2.1292 2.0952 2.0310 1.8213 4 7
GTO idealþ LOWþMID 2.1318 2.1292 2.0956 2.0381 3.2039 5 9
HIRES GTO baseline 0.0557 0.0757 0.1915 0.3333 0.6940 2 6
HIRES GTO ideal 0.6051 0.8039 1.7870 2.7848 4.8660 6 8
HIRES GTO baselineþ LOW 1.0000 1.0000 1.4234 2.7059 5.9279 5 11
HIRES GTO idealþ LOW 1.0000 1.6629 9.3019 20.1404 14.9466 9 14
HIRES GTO baselineþ LOWþMID 2.1318 2.1293 2.0982 3.8437 6.6324 6 12
HIRES GTO idealþ LOWþMID 2.1319 2.1302 15.4443 20.1964 17.5422 10 13

TABLE II. The values of the ratios defined in Eq. (9) for the first five modes, plus the two additional diagnostics, considering
reconstructions for the constant fiducial equation of state parametrization. We present different combinations of data sets for baseline
and ideal scenarios for measurements of α expected for ESPRESSO GTO and the LOWand MID Type Ia supernova samples, using the
LOW supernova sample as the benchmark. The bottom half of the table shows analogous forecasts on the assumption that the same α
targets are observed with the ELT-HIRES.

1 2 3 4 5 < 0.3 M

GTO baseline 0.0062 0.0095 0.0511 0.1144 0.3294 0 2
GTO ideal 0.0444 0.0564 0.1758 0.2773 0.6193 2 6
GTO baselineþ LOW 1.0000 1.0000 1.0001 1.0019 1.3173 3 8
GTO idealþ LOW 1.0000 1.0000 1.1421 2.6443 4.6373 5 11
LOWþMID 2.1318 2.1292 2.0930 2.0268 1.8011 4 6
GTO baselineþ LOWþMID 2.1318 2.1292 2.0932 2.0284 1.8271 4 8
GTO idealþ LOWþMID 2.1318 2.1292 2.0945 3.0226 6.3953 6 11
HIRES GTO baseline 0.1735 0.2149 0.5966 0.8272 1.5976 3 7
HIRES GTO ideal 1.9136 2.3506 6.2696 8.2402 14.7864 7 8
HIRES GTO baselineþ LOW 1.0000 1.0001 4.4515 5.5921 8.2380 6 12
HIRES GTO idealþ LOW 1.9137 2.6166 23.0562 25.9220 51.7019 10 14
HIRES GTO baselineþ LOWþMID 2.1318 2.1293 4.4538 5.7596 16.8022 7 13
HIRES GTO idealþ LOWþMID 2.1319 5.0064 23.1224 55.0540 51.7173 11 14
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it is difficult to accurately estimate it at this time, given
uncertainties such as the E-ELT’s transmission in the
blue and the wavelength coverage of ELT-HIRES. Still
our analysis confirms earlier expectations [6,7] that

ELT-HIRES measurements of α can constrain dark energy
more strongly than standard supernova surveys.
As a further comparison, Fig. 4 depicts the four best

determined eigenmodes for the constant equation of state
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FIG. 4. Comparing the four best determined eigenmodes for the constant equation of state parametrization, for the following cases:
supernovas only (LOW sample, top left), αmeasurements only (ESPRESSO GTO ideal sample, top right), LOW plus ESPRESSO GTO
baseline (middle left), LOW plus ESPRESSO GTO ideal (middle right), LOW plus MID plus ESPRESSO GTO baseline (bottom left),
and LOW plus MID plus ESPRESSO GTO ideal (bottom right). Note that the redshift coverage in the top panels differs from that in the
remaining ones. All eigenvectors are similarly normalized; how much they differ from zero (in absolute value) indicates their sensitivity
to different redshifts.

LEITE, MARTINS, MOLARO, CORRE, and CRISTIANI PHYSICAL REVIEW D 94, 123512 (2016)

123512-8



parametrization, for six of our scenarios, detailed in the
figure’s caption. All eigenvectors are similarly normalized;
howmuch they differ from zero, in absolute value, indicates
their sensitivity to different redshifts (so the change in the
overall sign of some modes has no physical significance).

The information gains at high redshift, afforded by the α
measurements for the higher modes, are visually clear,
corroborating the information in the previously discussed
tables. This analysis confirms the well-known result that
supernova surveys provide good determinations of two
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FIG. 5. Comparing the reconstructed dark energy equation of state wðzÞ (blue data points) for the EDE equation of state
parametrization (red line), for the following cases: LOW supernovas only (top left), LOW plus MID supernovas (top right), ESPRESSO
GTO baseline measurements only (middle left), ESPRESSO GTO ideal data (middle right), LOW supernovas plus ESPRESSO GTO
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PCA modes (which physically correspond to the present-
day dark energy equation of state and its rate of change) but
they are ineffective for constraining higher modes. The
comparison between the baseline and ideal ESPRESSO
data sets (compare the left and right panels in the middle
and bottom sets) is also instructive and confirms that a post-
GTO program extending its data set and improving its
sensitivity can have a stronger impact in the field.
Finally, Fig. 5 presents examples of the reconstructed

dark energy equation of state wðzÞ (shown by data points
with the corresponding error bars) for the EDE equation of
state parametrization (always represented by the continu-
ous line), for six of our combinations of simulated data sets
detailed in the figure’s caption. Note that as discussed in
[9], the truncation inherent to this reconstruction process is
such that the higher redshift bins for which one has data
will always lead to an equation of state w ¼ 0—so the
reconstruction may be biased if the high-redshift behavior
of the dark energy equation of state is different. However,
as Fig. 5 itself makes clear, any such bias can be alleviated
by having better data and in particular by extending the
redshift coverage.
By comparing the middle and bottom sets of panels in

Fig. 5 one may naively get the impression that in going
from the baseline to the ideal data set one gets a worst
reconstruction. However, this is not the case. The improved
sensitivity of the data set will imply that the optimal
number of modes to be used in the dark energy equation
of state reconstruction will increase, and while the uncer-
tainties of these PCA higher modes are larger than those of
the lower ones (which will correspond to somewhat larger
error bars on the reconstructed equation of state), this will
also imply that the reconstructed equation of state is much
less biased (i.e., much closer to the fiducial one). Therefore
in a statistically quantitative sense the reconstruction is
indeed a better one.

V. CONCLUSION

A first list of targets for the ESPRESSO fundamental
physics GTO has been put together on the basis of the current
knowledge of these targets, including the current measure-
ments of α which they lead to. An important complementary
task is to assess which among ESPRESSO’s modes of
operation is optimal for each target. Such a study necessarily
requires detailed simulations of ESPRESSO-like spectra and
is currently under way.
The classical way to characterize the redshift dependence

of the dark energy equation of state is to use the Hubble
diagram from Type Ia supernovas, which at present are
limited in redshift: the current maximum is z ∼ 1.7, and
measurements at z > 1 (that is, in the matter era) are
currently very scarce. Spectroscopic measurements of α
allow us to map dark energy deep in the matter era where, if
dark energy is due to a dynamical scalar field, its dynamics
is expected to be fastest (and therefore may be easier to

detect). Despite ESPRESSO’s somewhat limited wave-
length coverage as compared to other ESO spectrographs
like UVES, it will enable us to characterize dark energy up
to a redshift z ∼ 3.
Previous work using PCA-based forecast techniques

[5–7] had generically shown that the reconstruction of
the dark energy equation of state is significantly improved
when combining the Type Ia supernovas with measure-
ments on the stability of the fine-structure constant. Here
we have shown that 14 measurements expected from the
ESPRESSO fundamental physics GTO will not be able to
reconstruct the equation of state and distinguish models
in a convincing manner by themselves. However, they will
provide important improvements when combined with
Type Ia supernova data. On the other hand, further
improvements in sensitivity expected in the extremely
large telescopes era will make these measurements a
competitive dark energy probe, even on their own. Thus
precision astrophysical spectroscopy will soon be a key
component of fundamental physics research.
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APPENDIX: PRINCIPAL
COMPONENT ANALYSIS

PCA is a nonparametric method that is used in this work
in order to constrain the dark energy equation of state wðzÞ.
Its performance should not be compared with parametric
methods, since the two are addressing different questions.
Instead one should compare it with another nonparametric
reconstruction, and this is the approach we follow here.
This is useful, for example, in order to compare the impact
of the different data sets for a certain parametrization.
An advantage of PCA techniques is that they allow

one to infer which and how many parameters can be most
accurately determined with a given experiment. Instead
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of assuming a parametrization for the relevant observable
(variable) with a set of parameters born of our theoretical
prejudices, the PCA method leaves the issue of finding the
best parametrization to be decided by the data itself.
In [9] and [33] the PCA approach was applied to the use

of supernova data to constrain the dark energy equation of
state, wðzÞ. Further work, in [5], used this same technique
in combination with fine structure constant measurements.
With the goal of making the present article self-contained,
here we summarize PCA formalism applied to the use of
observables, at different redshifts (z), to constrain the dark
energy equation of state, wðzÞ.
One can divide the relevant redshift range into N bins

such that in bin i the equation of state parameter takes the
value wi,

wðzÞ ¼
XN
i¼1

wiθiðzÞ: ðA1Þ

Another way of saying this is that wðzÞ is expanded in
the basis θi, with θ1 ¼ ð1; 0; 0;…Þ, θ2 ¼ ð0; 1; 0;…Þ, etc.
In order to find the uncertainty of the parameters wi, we

have to build a Fisher information matrix. For that the first
step is to construct the likelihood function for a generic
observable mðzi; wi; cÞ ¼ μðzi; wiÞ þ c. For the purposes
of this work this can be the apparent magnitude of a
supernova, in which case

μ ¼ 5 logðH0dLÞ; c ¼ M þ 25 − 5 logH0; ðA2Þ

or it can be the relative variation of α obtained with quasar
absorption spectra, for which

μ ¼ ln½κðϕ − ϕ0Þ�; c ¼ ln ζ: ðA3Þ

Then we find

Lðwi;MÞ ∝ exp

�
−
1

2

XN
i;j¼1

ðm −mFÞiC−1
ij ðm −mFÞj

�
;

ðA4Þ

where mF means m evaluated at the fiducial values of the
parameters, mF ¼ mFðzi; wF

i ; c
FÞ and C−1 is the inverse of

the correlation matrix of the data.
Defining β ¼ c − cF, and integrating the likelihood in β,

we obtain the marginalized likelihood

LðωiÞ≡
Z

∞

−∞
Lðωi; βÞdβ

¼
ffiffiffiffiffiffi
2π

A

r
exp

�
−
1

2

XN
i;j¼1

ðμ − μFÞiD−1
ij ðμ − μFÞj

�
;

ðA5Þ

where A ¼ P
i;jC

−1
i;j and

D−1
ij ¼ C−1

ij −
1

A

XN
k;l¼1

C−1
kj C

−1
li : ðA6Þ

The Fisher matrix can be obtained by approximating LðwiÞ
as a Gaussian in the theoretical parameters wi (the equation
of state in each bin) centered around the fiducial model, and
taking the inverse of the resulting correlation function. The
Fisher matrix turns out to be

Fkl ≡ −
∂2 lnL
∂wk∂wl

����
wF

¼
XN
i;j¼1

∂μðziÞ
∂wk

����
wF
D−1

ij

∂μðzjÞ
∂wl

����
wF
;

where the derivatives are evaluated at the fiducial values of
the parameters.
The uncertainties on the measurement of wi can be

inferred from the Fisher matrix of the parameters wi,
specifically from

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þii

p
, and they typically increase

for larger redshift. One can, however, find a basis in which
all the parameters are uncorrelated. This can be done by
diagonalizing the Fisher matrix such that F ¼ WTΛW
where Λ is diagonal and the rows ofW are the eigenvectors
eiðzÞ or the principal components. These define the new
basis in which the new coefficients αi are uncorrelated, and
now we can write

wðzÞ ¼
XN
i¼1

αieiðzÞ: ðA7Þ

The diagonal elements of Λ are the eigenvalues λi
(ordered from largest to smallest), and they define the
variance of the new parameters, σ2ðαiÞ ¼ 1=λi.
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FIG. 6. The principal components of wðzÞ for a reconstruction
of the fiducial model wðzÞ ¼ −1, with supernova Type Ia and
variation of α measurements. The three best determined and two
worst determined eigenvectors are shown and labeled for clarity.
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In Fig. 6, we show the three best-determined and two
of the worst-determined eigenvectors for wðzÞ for a
reconstruction of the fiducial model wðzÞ ¼ −1, with
supernova Type Ia and variation of α measurements. The
best-determined modes peak at relatively low redshifts,
while the higher modes (worst-determined) have high
frequencies and more information at higher redshifts. A
way to interpret this parametrization is to realize that the
Mth best-determined eigenvector has precisely M − 1
nodes, leading to the interpretation that the first eigenvector
corresponds to the “average of wðzÞ,” the second one to
the “first derivative of w,” the third one to the “second
derivative of w,” etc.
Following [9] and [33] one can now attempt a

reconstruction wðzÞ by keeping only the most accurately
determined modes (the ones with the largest eigenvalues),
and discarding the rest. To do this, we need to decide how
many components to keep. We must point out that the weak
point of this procedure consists in neglecting the high
frequency modes, and typically this will translate into a
poorer reconstruction at the highest redshifts. This is one
of the reasons why extending the range of the available
measurements into the deep matter era is important.
One may argue that the optimal value of modes M to be

kept corresponds to the value that minimizes the risk,
defined as [9]

risk ¼ bias2 þ variance; ðA8Þ

with

bias2ðMÞ ¼
XN
i¼1

ð ~wðziÞ − wFðziÞÞ2; ðA9Þ

where the notation ~w means that the sum in (A7) runs from
1 to M, and

variance ¼
XN
i¼1

XM
j¼1

σ2ðαjÞejðziÞ: ðA10Þ

The bias measures how much the reconstructed equation of
state, wrecðzÞ, differs from the true one by neglecting the
high and noisy modes, and therefore typically decreases
as we increase M. The variance of wðzÞ, however, will
increase as we increase M, since we will be including
modes that are less accurately determined.
An alternative way to decide on the number of optimal

modes is to choose the largest value for which the error is
below unity, or equivalently, the Root-Mean Square fluc-
tuations of the equation of state parameter in such a mode
are

hð1þ wðzÞÞ2i ¼ σ2i ≲ 1: ðA11Þ

Having thus determined the optimal number of modes, we
proceed with the normalization of the error following [33]
such that σ2 ¼ 1 for the worst-determined mode and
normalize the error on the remaining modes by taking

σ2ðαiÞ → σ2nðαiÞ ¼
σ2ðαiÞ

1þ σ2ðαiÞ
: ðA12Þ

A comparison of the impact of the two truncation
methods (risk method vs normalization of the error) is
presented in [5]. The main difference is the effect on the
size of the error bars of the reconstruction: the normaliza-
tion of the error method appears to give more accurate
(closer to the fiducial value) but less precise (more
conservative errors) reconstructions when compared with
the risk minimization procedure.
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