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To study the effect of the anti–de Sitter/conformal field theory correspondence (AdS/CFT) on the
primordial inflationary era, we consider a universe filled with a tachyon field in a slow-roll regime. In this
context, the background and perturbative parameters characterizing the inflationary era are related to the
standard one by correction terms. We show a clear agreement between the theoretical prediction and the
observational data for the above-mentioned model. The main results of our work are illustrated for
an exponential potential. We show that, for a suitable conformal anomaly coefficient, AdS/CFT
correspondence might leave its imprints on the spectrum of the gravitational waves amplitude with a
tensor to scalar ratio, r, of the perturbations compatible with Planck data.
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I. INTRODUCTION

It is well known that our universe underwent an infla-
tionary phase at its early epochs (cf. Ref. [1] for example).
Based on the existence of a slowly rolling scalar field
regime, with the energy-momentum tensor dominated by
the contribution of the field potential energy, inflation is to
date the most compelling solution to many long-standing
problems of the big bang cosmology. It provides a causal
interpretation of the origin of the observed anisotropy of the
cosmic microwave background radiation [2], provides a
mechanism for the production of density perturbations
required to seed the formation of structures in the universe
[1], and also describes the generation of primordial gravi-
tational waves as vacuum fluctuations of space-time.
The measure of the spectral index given by the cosmo-

logical data, even with high precision, is not enough to
discriminate among the large number of inflationary models
that are in good agreement with this measure. Hence, further
analysis of a consistent behavior of the spectral index versus
the tensor to scalar ratio or versus the running of the spectral
index and/or that of the tensor to scalar ratio versus the
running of the spectral index might help to reduce the
number of these inflationary models. The recent Planck data
[3] quoted to 95% C.L. a value of the spectral index,
ns ¼ 0.968� 0.006, an upper limit of the tensor to scalar

ration r < 0.11, and a value of the running of the spectral
index, αs ¼ dns=d ln k ¼ −0.003� 0.007. One of the main
goals of this paper is to show the compatibility of AdS/CFT
correspondence with observations by investigating the
imprints it might leave in the clumpy universe where
inflation is driven by a tachyon field.
Tachyon fields play a significant role in realizing an early

inflation phase. Indeed, a universe dominated by a tachyon
field, rolling down its potential slowly, evolves smoothly
from a phase of accelerated expansion to a phase dominated
by pressureless matter [4]; i.e., inflation is realized in a
natural way. It has also been considered as a candidate for
dark matter and dark energy [5–16]. Tachyons fields are
inherent in brane world cosmology [17,18], in D-branes
inflation [19] multi tachyon fields [20], in k inflation
[21,22], in the warm inflationary model [23,24], and
recently in loop quantum cosmology (LQC) [25–28].
Linear perturbations of tachyon field were discussed in
[22,29–32]. The effective potentials for tachyon fields in
string theory were computed in Ref. [33]. Tachyon fields
were also considered in the Hamilton-Jacobi approach [34]
and in a logamediate inflationary model [35]. The authors
of Refs. [36,37] have considered an exponential potential
for the tachyonic field.
The AdS/CFT correspondence is a concrete illustration

of the holographic principle [38–41] that indicates a mutual
relation between theories with gravity on the bulk and
theories without gravity on its boundary. Precisely, the
AdS/CFT correspondence is a dual description between a
higher (dþ 1)-dimension anti–de Sitter (AdS) space
time and a conformal field theory (CFT) on a lower
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d-dimensional boundary of the AdS space time. Within the
framework of string theory, the AdS/CFT correspondence
was conjectured by Maldacena [42], and it is actually
known as a gauge/gravity duality. Therefore, it seems that
the AdS/CFT duality is a good framework for improving
the constraints on the inflationary parameters such as the
gravitational wave amplitude parameter, namely through
the tensor to scalar ratio. Using the fiduciary technique, the
authors of Ref. [43] constrained the conformal coefficient
anomaly characterizing this duality by studying the con-
sistency equation in the AdS/CFT correspondence in a
universe filled by a scalar field.
In this paper we study the inflationary parameters of the

universe in which its dynamic is driven by a tachyonic field
in the context of AdS/CFT correspondence where the
tachyon field is considered to be rolling down an exponential
potential. This potential has been chosen for simplicity.
Hence our results are first compared to those obtained in the
case where a scalar inflaton field [43] is considered rather
than a tachyon field and second to those where a tachyon
field is considered but in standard cosmology without
considering AdS/CFT correspondence [44]. In this paper
we constrain the conformal anomaly coefficient character-
izing AdS/CFT correspondence by taking into account the
latest Planck data [3].
The outline of the paper is as follows: In Sec. II, we set

up the basic framework of our approach such as the
modified Friedmann equation by the AdS/CFT correspon-
dence and for a dynamical tachyon field. In Sec. III, we
calculate observable quantities such as the amplitude of the
scalar perturbation, the scalar spectral index, the amplitude
of the tensorial perturbations, the tensor spectral index, the
tensor-scalar ratio, the running of the spectral index, and the
slow roll parameters. In Sec. IV, we illustrate our results by
invoking an exponential potential. Finally, we present our
conclusions in Sec. V.

II. THE SETUP

As an example of AdS/CFT correspondence we start
reviewing briefly the formulation of the holographic dual of
the Randall Sundrum II (RSII) scenario [43] known as
AdS/CFT correspondence (for more details see [45,46]). In
this setup the Friedmann equation becomes [43,45]

H2 ¼ m̂2
p

4c

�
1þ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρ

ρmax

r �
; ð2:1Þ

where m̂2
p ¼ m2

p=8π is the reduced four-dimensional
Planck mass, ρ is the total energy density of the universe,
ρmax¼3m̂4

p=8c, and c¼ m̂6
p=8M6 is the conformal anomaly

coefficient that relates the reduced four-dimensional
Planck mass to the five-dimensional Planck mass M.
The standard form of the Friedmann equation can be

recovered at the low-energy limit ρ ≪ ρmax for the branch
ϵ ¼ −1. Henceforth, only this branch will be considered.
Furthermore, we assume that the cosmological dynamics

of the universe is driven by a tachyon field ϕ with a
potential VðϕÞ. The equation of motion of this tachyon
field can be obtained, for example, from the conservation of
the energy momentum tensor and reads [21,22]

ϕ̈

1 − _ϕ
þ 3H _ϕþ V 0

V
¼ 0; ð2:2Þ

where a dot corresponds to a derivative with respect to the
cosmic time and a prime means a derivative with respect to
the tachyon field ϕ. The energy density and the pressure of
this field are given, respectively, by [19]

ρ ¼ Vffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _ϕ2

q ð2:3Þ

and

P ¼ −V
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _ϕ2

q
: ð2:4Þ

During the inflationary epoch and assuming a slow-roll
expansion, _ϕ2 ≪ 1 and ϕ̈ ≪ 3H _ϕ, the energy density
associated with the tachyon field becomes dominated by
the potential, i.e., ρ≃ V. Hence the Friedmann equa-
tion (2.1) reduces to

H2 ¼ m̂2
p

4c
½1 −

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
�; ð2:5Þ

where x ¼ V=Vmax is a dimensionless parameter and
Vmax ¼ 3m̂4

p=8c. The equation of motion (2.2) reduces
then to

3H _ϕ≃ −
V 0

V
¼ −

x0

x
: ð2:6Þ

III. PERTURBATIONS

To study the cosmological perturbations in the slow roll
regime, we consider Eqs. (2.1) and (2.2) as the effective
four-dimensional equations describing the cosmology of a
tachyon field. Scalar perturbations of a Friedmann-
Lemaître-Robertson-Walker background in the longi-
tudinal gauge are given by

ds2 ¼ −ð1þ 2ΦÞdt2 þ a2ðtÞð1 − 2ΨÞδijdxidxj; ð3:1Þ
where aðtÞ is the scale factor, and Φðt; xÞ and Ψðt; xÞ are
the scalar perturbations. The spatial curvature perturbation
on uniform density hypersurfaces is given by ζ ¼ −Hδϕ= _ϕ
[47]. Within the slow-roll regime, the amplitude of the
perturbation mode crosses the Hubble radius during infla-
tion, and the field fluctuations are given by [4]
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hδϕ2i ¼ H2

4π2
: ð3:2Þ

The power spectrum of the curvature perturbations is
related to the curvature perturbation by

hA2
si ¼

hζ2i
V

; ð3:3Þ

or equivalently by using the above equations

A2
s ¼

1

4π2
H4

_ϕ2

1

V
: ð3:4Þ

Using the slow roll condition, Eq. (3.4) becomes

A2
s ¼

9H6

4π2
V
V 02 ¼ ½A2

S�stdGc;r; ð3:5Þ

where

½A2
s �std ¼

1

12m̂6
pπ

2

�
V4

V 02

�
ð3:6Þ

and

Gc;r ¼
27m̂6

pH6

V3
ð3:7Þ

are the amplitude of the scalar perturbation of a tachyonic
field in standard cosmology (cf. Ref. [44]) and the correction
term characterizing the effect of AdS/CFT correspondence,
respectively. We can notice from Eq. (2.5) that at the low
energy limit, ðV ≪ VmaxÞ, the correction term reduces to one
and the standard expression of the amplitude of the scalar
perturbation is recovered. The correction term can be
rewritten as a function of the x parameter as

Gc;r ¼
�

2

1þ ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
�

3

: ð3:8Þ

Furthermore, the scalar spectral index ns is given in terms

of the scalar perturbation amplitude as ns − 1 ¼ d lnA2
s

d ln k ,
where the wave number k at the Hubble crossing is related
to the number of e-folds by the relation d ln k ¼ dN. To first
order in the slow-roll parameters and by using Eq. (3.5), the
scalar spectral index can be written as [44]

ns ≈ 1 − 6εþ 2η; ð3:9Þ
where the slow-roll parameters ε and η are defined as

ε ¼ −
_H
H2

≃ ½ε�stdCc;r ð3:10Þ

and

η ¼ 1

3H2

�
V 00

V
−
1

2

V 02

V2

�
≃ ½η�std

G
1
3
c;r

; ð3:11Þ

where we have denoted the standard slow-roll parameters as
½ε�std and ½η�std (cf. Ref. [44]), of the tachyonic field,
respectively, as

½ε�std ¼
m̂2

p

2

V 02

V3
ð3:12Þ

and

½η�std ¼ m̂2
p

�
V 00

V2
−
1

2

V 02

V3

�
: ð3:13Þ

The correction term Cc;r is related to Gc;r by

Cc;r ¼
1

G
2
3
c;r

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p ¼ ð1þ ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p Þ2
4

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p : ð3:14Þ

Using Eqs. (3.9), (3.10), and (3.11), the scalar spectral
index can be rewritten as a function of the correction term
Gc;r and the standard slow roll parameters as

ns ¼ 1 −
2

G
1
3
c;r

�
3

G
1
3
c;r

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p ½ε�std − ½η�std
�
; ð3:15Þ

or equivalently in term of the dimensionless parameter x as

ns ¼ 1 −
8c
3m̂2

p
ð1þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
Þ
��

3þ 5
ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p

4
ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
�
x02

x3
−
x00

x2

�
:

ð3:16Þ
We can notice from Eq. (2.5) that at the low energy limit
(x ≪ 1) the correction terms reduce to one. Also the
standard expressions of the scalar spectral index
[Eqs. (3.9) and (3.15)] as well as those of the slow roll
parameters [Eqs. (3.10) and (3.11)] are recovered.
On the other hand, the generation of the tensor pertur-

bations during inflation would produce a spectrum of the
gravitational waves with an amplitude given by [44]

A2
T ¼ 4

25πm̂2
p
H2; ð3:17Þ

which can be written in term of the standard tachyonic
inflationary scenario as

A2
T ¼ 4V

75m̂4
pπ

G
1
3
c;r ¼ ½A2

T �stdG
1
3
c;r; ð3:18Þ

where ½A2
T �std is the amplitude of the tensor perturbation of

the tachyonic field in standard cosmology [44] and Gc;r is
given by Eqs. (3.7) and (3.8). We can show that at the low
energy limit the standard expression of the amplitude of the
tensor perturbation is recovered.
The spectral index related to the tensor perturbation is

given by nT ¼ d lnA2
T

d ln k , and using Eq. (3.17), we obtain
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nT ¼ −2ε; ð3:19Þ
which can be written in terms of the standard slow
roll parameter and the correction to standard general
relativity as

nT ¼ −2½ε�stdCc;r: ð3:20Þ
The tensor-scalar ratio, r, is defined as

r ¼ A2
T

A2
s
; ð3:21Þ

which becomes using Eqs. (3.4) and (3.17)

r ¼ ½r�std
�

V
3m̂2

pH2

�
2 ≃ ½r�stdG−2=3

c;r ; ð3:22Þ

where ½r�std ¼ 16m̂2
p

25π
V 02
V3 is the standard tensor-scalar ratio

produced by a tachyonic field [44].
The appearance of the correction terms in the above

equations [Eqs. (3.5), (3.10), (3.11), (3.15), (3.18), (3.20),
and (3.22)] implies that AdS/CFT correspondence might
modify considerably the predicted value of the inflationary
parameters, as we will be showing in the figures below.
To constrain the range of the conformal anomaly

coefficient c and the tensor-scalar ratio r, we deduce from
Eqs. (2.5), (3.17), and (3.21) a relationship between them
and the parameter x as

x ¼ ~crð2 − ~crÞ; ð3:23Þ
where

~c ¼ 25πcA2
s : ð3:24Þ

To recover the standard cosmology, the conformal anomaly
coefficient is bounded by a maximal value, cmax, obtained
at the singular point where x ¼ 1 (Vhc ¼ Vmax) in which
the Hubble parameter, Eq. (2.5), is finite while its first
derivative is infinite (ä → −∞); i.e., a sudden singularity is
met. Indeed, the condition x ≪ 1 requires an upper bound
on the conformal anomaly coefficient c such that

c ≪ cmax ¼ 7.24 × 107: ð3:25Þ
This maximal value is obtained by using the most recent
Planck data [3] where A2

s ¼ 2.20 × 10−9, for a tensor-
scalar ratio r equal to 0.08 and by equating x to unity
in Eq. (3.23).
Figure 1 shows the variation of the dimensionless

parameter x versus the conformal anomaly coefficient c
for different values of the tensor-scalar ratio. We notice that
for c < 106, the condition x ≪ 1 is always fulfilled. In this
range, the AdS/CFT correspondence has no effect on the
standard cosmology dynamic. This justifies the choice of
the values of the c parameter in Fig. 2 in which we plot the

tensor-scalar ratio versus the dimensionless parameter x.
We notice that the tensor-scalar ratio of the curves with the
value c < 107 is ruled out by Planck data [3] for an
appropriate x parameter. We conclude, from these figures,
that AdS/CFT correspondence can leave its imprints on the
spectrum of the gravitational waves for c > 107.
Figure 3 shows the variation of the correction term Gc;r

appearing in the amplitude of the scalar perturbation
Eq. (3.5) and in the tensor perturbation Eq. (3.18) versus
the conformal anomaly coefficient c for different values of
the tensor-scalar ratio. We notice again that for c < 107, the

FIG. 1. Evolution of the dimensionless parameter x versus the
conformal anomaly coefficient c for different values of the tensor-
scalar ratio r and for A2

s ¼ 2.20 × 10−9.

FIG. 2. Evolution of the tensor-scalar ratio r versus the
dimensionless parameter x for different values of the conformal
anomaly coefficient c.
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correction term is of the order of unity, which means that
the results are not affected by AdS/CFT correspondence.
This justifies the choice of the values of the c parameter in
Fig. 4 for the correction term, Gc;r, versus the tensor-scalar
ratio for different values of the conformal anomaly coef-
ficient c. We notice that the value c ¼ 107 (the blue curve)
confirms the fact that the correction term is equal to one for
all values of the tensor to scalar ratio. While the value c >
107 gives an appreciable correction term for a tensor-scalar
ratio in the range of the observed data, we conclude from
these figures that again AdS/CFT correspondence can leave

some fingerprints on the amplitude of the cosmological
perturbations for c > 107. The maximum in Fig. 3 shows
the maximal value of the conformal anomaly coefficient
corresponding to x ¼ 1 and to a correction term equal to 8
(e.g., for r ¼ 0.08 Fig. 3 shows cmax ≈ 6 × 107).
Figure 5 shows the variation of the correction term Cc;r

appearing in the slow roll parameter Eq. (3.10) versus the
conformal anomaly coefficient c for different values of the
tensor-scalar ratio. We notice that for c < 107, the correc-
tion term is of the order of unity, which means that the
results are not affected by AdS/CFT correspondence. This
again justifies the choice of the values of the c parameter in
Fig. 6 for the correction term, Cc;r, versus the tensor-scalar
ratio. We notice that the value c ¼ 107 (the blue curve)
gives a correction term equal to one while it begins to be
different from one for c > 107 and r > 0.02. We conclude
from these figures that AdS/CFT correspondence can once
more imprint some net feature on the amplitude of the
gravitational waves for values of the c parameter bigger
than 107. The maximum in Fig. 5 corresponds to the
maximal value of the conformal anomaly coefficient
corresponding to x ¼ 1 where the expression of the
correction term Eq. (3.14) is not defined. We can notice
also that these maximums shift in the sense of the
increasing values of the conformal anomaly coefficient
and of decreasing values of the tensor to scalar ratio as
shown in Fig. 6.
We summarize this section by concluding that the effect

of AdS/CFT correspondence on the background and
perturbative parameters characterizing the inflationary
era can be observed for the allowed conformal anomaly
coefficient in the range 107 < c < 108.

FIG. 3. Evolution of the correction term Gr;c versus the
conformal anomaly coefficient c for different values of the
tensor-scalar ratio r.

FIG. 4. Evolution of the correction term Gr;c versus the tensor-
scalar ratio r for different values of the conformal anomaly
coefficient c.

FIG. 5. Evolution of the correction term Cr;c versus the
conformal anomaly coefficient c for different values of the
tensor-scalar ratio r.
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IV. EXPONENTIAL POTENTIAL

The exponential potential within the inflationary sce-
nario is motivated by supergravity and string theory [48–
50]. Such a potential has a maximum value at the tachyon
field ϕ ¼ 0 corresponding in some bosonic string to a
tension of an unstable D-brane while its local minimum,
V ¼ 0 at ϕ → ∞, corresponds to a closed bosonic string. In
this section, we consider such an exponential potential
satisfying these properties and given by [4,23,27,28,51]

V ¼ V0 expð−αϕÞ; ð4:1Þ

where α is a parameter related to the mass of the tachyon
field [4] and V0 corresponds to the maximum value of the
potential.
In Fig. 7, we show the variation of the potential at the

horizon crossing Vhc obtained from Eq. (3.23) and the
variation of the potential Vmax equal to 3m̂4

p=8c versus
the conformal anomaly coefficient c for r¼ 0.08. We notice
that the maximum value of the conformal anomaly coef-
ficient characterizing the bound of the AdS/CFT duality
appears around the numerical value obtained in Eq. (3.25).
Furthermore, the amount of inflation is measured by the

e-folding number N defined by [44]

N ¼
Z

tf

thc

Hdt

≃ −
Z

Vf

Vhc

3H2
V
V 02 dV; ð4:2Þ

where the subscript “hc” denotes the value of a given
quantity at the horizon crossing during inflation and “f” is

its value when the universe exits the inflationary phase. By
integrating Eq. (4.2), we obtain

N ¼ 3m̂2
p

2cα2

�
ln

�
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − xhc
p

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xf

p
�
þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − xf
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xhc

p �
;

ð4:3Þ
where x is defined in Eq. (2.5).
From Eq. (3.10) the slow roll parameter ε becomes

equal to

ε ¼ cα2

3m̂2
p

xffiffiffiffiffiffiffiffiffiffiffi
1 − x

p ð1 − ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p Þ2 ; ð4:4Þ

from which we can obtain the value of the quantity xf at the
end of inflation, i.e., at ε ¼ 1. We can show that at the low
energy limit we obtain xf ¼ 4cα2=3m̂2

p, which is exactly
the standard expression of the potential obtained in
Ref. [52], namely Vf ¼ α2m̂2

p=2.
The main parameters of our model are shown in Table I

for r ¼ 0.08. For the α-parameter value and for the e-folds
N (50 or 60), we obtain the conformal anomaly coefficient
from Fig. 8 from which we can deduce Vmax. Also from
Eqs. (3.23) and (4.4), we deduce Vhc and Vf, respectively.

FIG. 6. Evolution of the correction term Cr;c versus the tensor-
scalar ratio r for different values of the conformal anomaly
coefficient c.

FIG. 7. Evolution of the potentials Vhc (blue curve) and Vmax
(black curve) versus the conformal anomaly coefficient c
for r ¼ 0.08.

TABLE I. The main parameters of the model for r¼0.08.

α=m̂p N c=107 Vmax=m̂4
p Vhc=m̂4

p Vf=m̂4
p

1.23×10−5 50 5.57 6.732×10−9 6.374×10−9 7.564×10−11

60 2.9 1.293×10−8 8.286×10−9 7.564×10−11

1.3×10−5 50 4.1 9.14×10−9 7.42×10−9 8.45×10−11

60 0.35 1.07×10−7 1.01×10−8 8.44×10−11

ZAHRA BOUABDALLAOUI et al. PHYSICAL REVIEW D 94, 123508 (2016)

123508-6



As we can notice from Fig. 8, the e-folds N never reach 70
for an appropriate conformal anomaly coefficient and for a
tensor to scalar ratio bounded by observational data [3].
Figures 8 and 9 show suitable values of the conformal
anomaly coefficient, namely around 107, for which the
e-folding number 50 < N < 70 for different values of the α
parameter for the tensor to scalar ratio r ¼ 0.08 (Fig. 8) and
for different values of the tensor-scalar ratio for the α
parameter equal to 1.5 × 10−5m̂p (Fig. 9).

To study the behavior of the tensor-scalar ratio versus the
scalar spectral index, we calculate the scalar perturbation
from Eq. (3.4) at the crossing horizon,

A2
s ¼

3m̂2
p

32π2α2c2
ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − xhc
p Þ3
xhc

; ð4:5Þ

the tensor-scalar ratio from Eq. (3.22), i.e.,

r ¼ 32πcα2

75m̂2
p

xhc
ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − xhc
p Þ2 ; ð4:6Þ

and the scalar spectral index from Eq. (3.16),

ns ¼ 1 −
2cα2

3m̂2
p

�
3þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − xhc
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xhc

p ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xhc

p Þ
�
: ð4:7Þ

Figure 10 shows the variation of the scalar spectral index
ns versus the number of e-folds for different values of the
conformal anomaly coefficient for α ¼ 0.6 × 10−5m̂p and
for r ¼ 0.08. We notice that for the e-folding number
50 < N < 70, the spectral index reaches the observed value
for the conformal anomaly coefficient used in the plot.
Also in order to take into account the variation of the

scalar spectral index ns, we consider its running given by
αs ¼ dns

d ln k. From Eqs. (4.3) and (4.7), we obtain the running
spectral index as

αs¼
4c2α4

9m̂4
p

�
3ðxhc−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−xhc

p Þ− ð1−xhcÞð4þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−xhc

p Þ
ð2xhcþð1−xhcÞ32Þð2−xhcÞ−2

�
:

ð4:8Þ

In Table II, we compare the observed and the predicted
values of the perturbative parameters of the inflationary era.

FIG. 8. Evolution of the e-folding number N versus the
conformal anomaly coefficient c for different values of the α
parameter and for the tensor-scalar ratio r ¼ 0.08. We set
α0 ¼ α=m̂p.

FIG. 9. Evolution of the e-folding number N versus the
conformal anomaly coefficient c for different values of the
tensor-scalar ratio r and for α0 ¼ α=m̂p ¼ 1.22 × 10−5.

FIG. 10. Evolution of the scalar spectral index ns versus the
number of e-folds N for different values of c, for r ¼ 0.08 and
α ¼ 6 × 10−6m̂p.
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These results are obtained from Figs. 10 and 11 and show
an agreement between the observed and the predicted
inflationary parameters.
Figure 12 shows the variation of the tensor-scalar ratio

r as a function of the scalar spectrum index ns, for the α
parameter equal to 0.8×10−5m̂p (green dashed line)
and 0.6×10−5m̂p (black solid line) for the conformal
anomaly coefficient c ¼ 2.5 × 107. Similarly, Fig. 13
shows the variation of the tensor-scalar ratio r as a
function of the scalar spectrum index ns, for the con-
formal anomaly coefficients c¼3×107 (green dashed
line) and c¼2×107 (black solid line) for the α parameter
equal to 0.6 × 10−5m̂p.
In Figs. 12 and 13, we represent our theoretical predicted

results based on the Planck data [3], by plotting the
evolution of the tensor to scalar ratio versus the scalar
spectral index (straight line). As we notice, the predicted
parameters of the AdS/CFT correspondence as well as of
the exponential potential lie in the core of the data, i.e., in
the contour at the 95% C.L. We can conclude that the
description of the perturbative parameters of the

FIG. 11. Evolution of the running spectral index αs versus the
number of e-folds N, for different values of c, for r ¼ 0.08 and
α ¼ 6 × 10−6m̂p.

TABLE II. Comparison of the observed and the predicted (for
N ¼ 50, N ¼ 60, and N ¼ 70) values of the perturbative param-
eters of the inflationary era, ns and αs for α ¼ 6 × 10−6m̂p,
c ¼ 2 × 107, and r ¼ 0.08.

N ¼ 50 N ¼ 60 N ¼ 70 Planck TT, TE, EEþlowP

ns 0.96 0.966 0.971 0.968� 0.006
αs −0.00076 −0.00053 −0.00039 −0.003� 0.007

FIG. 12. Plot of the parameter r as a function of the scalar
spectral index ns for two values of the α parameter, α ¼ 0.8 ×
10−5m̂p (green dashed line) and α ¼ 0.6 × 10−5m̂p (black solid
line), and for the conformal anomaly coefficient c ¼ 2.5 × 107.
The marginalized joint 68% and 95% confidence level contours
ðns; rÞ using Planck TTþ low P, Planck TT, TE, EEþ low P data
release are shown [3].

FIG. 13. Plot of the parameter r as a function of the scalar
spectral index ns for two values of the conformal anomaly
coefficient, c ¼ 3 × 107 (green dashed line) and c ¼ 2 × 107

(black solid line), and for the α-parameter α ¼ 0.6 × 10−5m̂p.
The marginalized joint 68% and 95% confidence level contours
ðns; rÞ using Planck TTþ low P, Planck TT, TE, EEþ low P data
release are shown [3].
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inflationary era of a universe filled by a tachyon field in the
context of AdS/CFT correspondence is fully consistent
with the recent observational data for the α parameter of the
order of 10−5.
In the same way, we plot the evolution of the running

spectral index versus the scalar spectral index in Figs. 14
and 15 in order to represent our theoretical predicted results
based on Planck data [3]. One of the plots is done for the α
parameter equal to 0.8 × 10−5m̂p (green dashed line) and
0.6 × 10−5m̂p (black solid line) for the conformal anomaly
coefficient c ¼ 2.5 × 107 (Fig. 14). A corresponding sit-
uation (Fig. 15) is realized for the conformal anomaly
coefficients c ¼ 3 × 107 (green dashed line) and c ¼ 2 ×
107 (black solid line) for the α parameter equal to
0.6 × 10−5m̂p. As we notice, the predicted parameters of
AdS/CFT correspondence as well as of the exponential
potential lie in the core of the data, i.e., in the contour at the
95% C.L. We can conclude that the description of the
inflationary parameters of a universe filled by a tachyon
field in the context of AdS/CFT correspondence is con-
sistent with the recent observational data for the α param-
eter of the order 10−5. We can also show that a conformal
anomaly coefficient higher than cmax gives positive values
of the running spectral index αs.
Furthermore, the α-parameter used above lies in the

range of Ref. [4] and of the one estimated by the authors in
Ref. [52]. We should also notice that the conformal

anomaly coefficient obtained above is of the order of the
values used in [43].

V. CONCLUSION

In this paper, we have studied the inflationary scenario for
a universe filled with a tachyon field in the context of AdS/
CFT correspondence. Such a tachyon field drives the
primordial inflationary era. The effect of AdS/CFT corre-
spondence on the perturbative parameters of the inflationary
era is characterized by the conformal anomaly coefficient c.
We have considered that the cosmological dynamics of

the tachyon field is responsible for the primordial infla-
tionary era and have assumed an exponential potential
characterized by a free parameter α.
We have found that in order to reproduce the standard

cosmology the values of the conformal anomaly coefficient
c should satisfy an upper limit, Eq. (3.25). Furthermore, we
have shown in Figs. 1 and 2 the range of the conformal
anomaly coefficient and of the tensor-scalar ratio for which
the imprints of AdS/CFT correspondence appears clearly at
the perturbative level.
We have shown that the background and the perturbative

parameters of the inflationary scenario are equal to the
standard one times some corrections term which at the low
energy limit tends to one. The correction terms are drawn in
Figs. 3 and 5 as a function of the conformal anomaly
coefficient for different values of the tensor to scalar ratio
and as a function of the tensor to scalar ratio for different

FIG. 14. Plot of the running spectral index αs as a function
of the scalar spectrum index ns, for different two values of the α
parameter, α ¼ 0.8 × 10−5m̂p (green dashed line) and α ¼ 0.6 ×
10−5m̂p (black solid line), and for the conformal anomaly
coefficient c ¼ 2.5 × 107. The marginalized joint 68% and
95% confidence level contours ðns; dns=d ln kÞ using Planck
TTþ low P, Planck TT, TE, EEþ low P data release
are shown [3].

FIG. 15. Plot of the running spectral index αs as a function of
the scalar spectrum index ns, for two values of the conformal
anomaly coefficient c ¼ 3 × 107 (green dashed line) and c ¼
2 × 107 (black solid line), and for the α-parameter
α ¼ 0.6 × 10−5m̂p. The marginalized joint 68% and 95% con-
fidence level contours ðns; dns=d ln kÞ using Planck TTþ low P,
Planck TT, TE, EEþ low P data release are shown [3].

CONSTRAINTS ON TACHYON INFLATIONARY MODELS … PHYSICAL REVIEW D 94, 123508 (2016)

123508-9



values of the conformal anomaly coefficient in Figs. 4
and 6. These plots show and confirm the fact that the
correction terms tend to one for an appropriate conformal
anomaly coefficient and tensor to scalar ratio.
We have compared our theoretical prediction with

observational data [3] for α ≈ 10−5m̂p and for the con-
formal anomaly coefficient c ≈ 107 by plotting the evolu-
tion of different inflationary parameters. We have shown
that the predicted inflationary parameters lie in the core of
the confidence level contours, and hence they are consistent
with the observational data for the selected range of the
conformal anomaly coefficient (Figs. 12–15).
We conclude also that the AdS/CFT correspondence may

describe the inflationary era in a universe filled with a
tachyon field and predicts the appropriate inflationary
parameters with respect to the observational data in the
slow roll regime for an allowed range of the conformal
anomaly coefficient (107 < c < 108).

In a forthcoming paper, we shall study the consistency
equation of the inflationary scenario in this approach and
look for a possible departure from standard cosmology
within the AdS/CFT correspondence.
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