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In single-field slow-roll inflation models, the height and slope of the potential are made to satisfy certain
conditions to match with observations. This in turn translates into bounds on the number of e-foldings and
the excursion of the scalar field during inflation. In this work we consider broad classes of inflationary
models to study how much the field excursion starting from the horizon exit to the end of inflation, Δϕ, can
vary for the set of inflationary parameters given by Planck. We also derive an upper bound on the number of
e-foldings between the horizon exit of a cosmologically interesting mode and the end of inflation. We
comment on the possibility of having super-Planckian and sub-Planckian field excursions within the
framework of single-field slow-roll inflation.
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I. INTRODUCTION

The standard big bang cosmology has been proved to be
successful in explaining the observed evolution of the
Universe, albeit with some extremely fine-tuned initial
conditions. The era of cosmological inflation [1,2] was
introduced to take care of such initial conditions, and it
provides a very nice proposal for the solution to the horizon
problem, the flatness problem and a very good explanation
for the nonexistence of unwanted relics. The most salient
feature of inflation is the quantum fluctuations that render
seeds for the large scale structure, together with a possible
gravitational wave contribution, for the cosmic microwave
background (CMB) anisotropy [3,4]. In its simplest form,
inflation is best realized by means of a minimally coupled
scalar field in the framework of Einstein gravity. Recent
CMB data by Planck 2015 [5] indicate that the power
spectrum of density perturbations of the scalar field is
nearly scale invariant, which is apparent from the value of
the scalar spectral index, ns ¼ 0.968� 0.006. Planck has
also taken the cosmologists by surprise by predicting an
almost Gaussian nature of the power spectrum and putting
only an upper bound, r < 0.11, on the amplitude of
primordial gravity waves by considering a tensor amplitude
as a one-parameter extension to the ΛCDMmodel. An even
tighter bound, r < 0.09, has been obtained by combining
Planck with BICEP2/Keck likelihoods [5]. The BICEP2/
Keck array VI reports an even more tighter bound on the
tensor-to-scalar ratio, r < 0.07, when the above-mentioned
constraints from the Planck analysis of CMB temperature
are combined with BAO (Baryon Acoustic Oscillation) and

other data [6]. The height and the slope of the inflaton
potential must maintain a delicate balance for the compat-
ibility with observations. This in turn translates into
the excursion of the scalar field during the horizon exit
to the end of inflation. In this work we want to address the
question of how much the field excursion can vary for a
given set of inflationary observables.
The magnitude of the stochastic background gravita-

tional waves, for single-field slow-roll inflation, is related
to the energy scale of inflation and more importantly, it is
linked to the inflaton excursion. In the standard single-field
slow-roll inflationary scenario, according to the Lyth bound
[7], a sizable detection of tensors would mean a super-
Planckian excursion of the inflaton via the constraint
r≲ 0.01ðΔϕ=MPlÞ2, where MPl is the reduced Planck
mass. This is definitely interesting both from a model
building standpoint and from an observational one. The
original Lyth bound can be evaded if one considers non-
slow-roll inflation [8] or simply considers extra sources for
density perturbations [9], or has additional light degrees of
freedom contributing to the production of perturbations
[10]. Other theoretical bounds on the tensor fraction as a
generalization of the original Lyth bound have been
discussed in [11]. The amount of inflation between the
horizon exit of a cosmologically relevant mode and the end
of inflation is given by

N ¼ N� − Nf ¼
Z

af

a�
d ln a; ð1:1Þ

where the subscript � means that the quantities are
evaluated at the horizon exit, f means that the quantities
are evaluated at the end of inflation, and a is the scale
factor. To address the horizon problem and subsequently all
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others, it is necessary to have at least 50 e-foldings in this
period in the conventional inflationary scenario. So obser-
vationally we can only fix a lower limit forN but there is no
compelling evidence of any upper limit on the total amount
of inflation. In fact it may be extended a long way further
into the past than the present horizon size. This possibility
was explored in [12] by using the phase space analysis to
foliate a FRW (Friedmann-Robertson-Walker) universe.
Our aim, in this work, is to determine how much the field

excursion Δϕ ¼ jϕ� − ϕfj can vary given an inflaton
reproducing observed cosmological parameters such as
ns, αs, and r. To this end we consider the classification
of single-field slow-roll inflationary models as demon-
strated in [13,14]. All those models whose slow-roll
parameters scale with 1/N or a higher power can be
classified into two broad categories characterized by a
single parameter Δϕ, the field excursion. By expressing the
inflationary observables in terms of N, one can also group
the models of inflation into broad classes like constant,
perturbative, nonperturbative, and logarithmic [13,14]. This
large-N formalism is a more effective way of studying the
inflationary models instead of doing the case-by-case
analysis.
Now as the benchmark we choose a model of inflation

with a strong field theoretical background, which passes
successfully through the observational constraints set by
recent CMB data. There can be many viable phenomeno-
logical models that fit well with observations. In this article
the choice for the benchmark model has been made by
giving stress on a high energy theoretical background. We
select a model that arises in the context of type IIB string
theory via Calabi-Yau flux compactification. One such
example occurs when one of the Kähler moduli plays the
role of an inflaton when internal spaces are weighted as
projective spaces in type IIB string theories [15]. The
version with the canonically normalized inflaton field
known as the Kähler moduli II (KM II) inflaton [16] has
been chosen as the benchmark in our case. Most impor-
tantly, this model can be understood in the context of
supergravity, viewed as an effective theory. It has been the
general practice earlier [17] to choose the chaotic infla-
tionary scenario [18] as the benchmark. However the
minimal chaotic models are almost ruled out after
Planck 2015 for not satisfying the bound on the stochastic
gravity wave amplitude (for the chaotic model, r > 0.09).
In addition to that, the BICEP2 results giving a large value
of r have also been discredited; therefore one cannot be
sure about the benchmark status of the chaotic model. We
are interested to explore the effect of ns and r on the field
excursion by considering the observational bounds set by
the recent Planck data. Now the KM II model of inflation
gives a very low value of r, thus giving a sub-Planckian
field excursion. Given the fact that the benchmark model
passes all observational tests, we find it to be a pertinent
question to ask whether the field excursion of inflation

should be in the same range of the benchmark or not? To
this end we would like to explore the effect of ns and r on
the field excursion by considering the observational bounds
set by Planck [5].

II. ASYMPTOTIC HUBBLE FLOW FUNCTIONS
IN KM II INFLATION

We start by recalling the basics of the KM II model
[15,16] of inflation and finding the Hubble flow functions
in the large N formalism. The potential is given by

VðϕÞ ¼ V0

�
1 − α

�
ϕ

MPl

�
4=3

exp

�
−β

�
ϕ

MPl

�
4=3

��
: ð2:1Þ

Making use of the typical orders of magnitude one can
write the parameters α and β as

α ¼ OðV5=3Þ; β ¼ OðV2=3Þ; ð2:2Þ

where the quantity V represents the Calabi-Yau volume.
The potential starts from a maximum, V ¼ V0 at ϕ ¼ 0,
then reaches the minimum at ϕ

MPl
¼ β−3=4, and finally

asymptotes to V ¼ V0 for ϕ
MPl

approaching ∞.
Maintaining the consistency with reheating, the slow-roll
predictions for the KM II model can be achieved for
V ∈ ½105; 107� and thus the parameters α and β can have
values in the range α ∈ ½2.15 × 108; 4.64 × 1011� and
β ∈ ½2.15 × 103; 4.64 × 104�. It can be shown that the
Hubble slow-roll predictions do not depend significantly
on the vales of α and β [19]. We now intend to find the
Hubble flow functions ϵn, defined as [20]

ϵnþ1 ¼
d
dN

log jϵnj; n ≥ 0; ð2:3Þ

for large N in the case of the KM II model of inflation. The
above functions basically play the role of slow-roll param-
eters in the standard formulation in terms of ϕ. Here ϵ0 is
nothing but the Hubble parameter and the range of N runs
starting from the horizon exit to the end of inflation. As N
depends on derivatives of VðϕÞ it is apparent from Eq. (2.3)
that the successive Hubble flow functions are related to the
derivatives of the potential VðϕÞ. Consequently the slow-
roll parameters can also be expressed in terms of the
Hubble flow parameters varying as 1=Np for some values
of p at leading order in the limit of large N. This will
become evident from the following calculations. Further at
first order in ϵn, one can represent the CMB observables of
inflation as

ns ¼ 1 − 2ϵ1 þ ϵ2; ð2:4Þ

r ¼ 16ϵ1: ð2:5Þ
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To set up a connection with the observables, one needs to
calculate these quantities at the time of the horizon crossing
of a cosmologically relevant scale. It has been noticed by
Lyth [7] that the tensor-to-scalar ratio of temperature
fluctuations, i.e., the first slow-roll parameter, can be
related to the field excursion via the relation

1

MPl

dϕ
dN

∼

ffiffiffiffiffiffiffiffiffiffi
rðNÞ
8

r
¼

ffiffiffiffiffiffiffi
2ϵ1

p
: ð2:6Þ

Assuming rðNÞ to be invariant throughout the phase of
inflation it can be shown that [7,11] the field excursion is

Δϕ ≈
�

r
0.002

�
1=2

�
N�
58

�
MPl; ð2:7Þ

where N� is set to 58, which falls within the range of N�
allowed by the Planck [5] pivot scale. However, this
particular value has been chosen arbitrarily within the
permissible range. It is apparent from the above equa-
tion (2.6) that for r < 0.002 we have Δϕ < MPl, leading to
a sub-Planckian field excursion, while for r > 0.002 we get
a super-Planckian field excursion. As a result one can
distinguish the inflationary models in terms of the field
excursion variable.
Now we are all set to calculate the Hubble flow functions

for the KM II model given in (2.3). From the observational
point of view, one needs N to be large and thus these
parameters are of singular importance for the rest of the
analysis as we will see that there are large classes of models
that agree on the large N limit. The first-order Hubble flow
function is given by

ϵ1 ¼
b

2N2
ffiffiffiffiffiffiffiffiffi
lnN

p ; ð2:8Þ

where b ¼ 9
16

1
β3=2

, and the second Hubble flow function is as

follows:

ϵ2 ¼ −
2

N
: ð2:9Þ

The basic features of the inflationary model under consid-
eration have been encoded by the above functions at the
leading order of N. Subsequent correction terms have a
very insignificant role to play with the observational
parameters. Let us consider that from now on the quantities
of the benchmark model will be denoted by an overhead bar
to differentiate them from the other classes of inflation and
choose to work with MPl ¼ 1.
We take three values of V ¼ 105; 106, and 107 for our

analysis, leading to the values of b ¼ 5.63 × 10−6,
5.63 × 10−7, and 5.63 × 10−8 respectively. As most of
the inflation takes place at large values of N we can
consider Nf to be negligibly small and thus N̄� ≈ 58 is
justified. This particular choice for the number of e-folds
remaining after the exit of the horizon to the end of inflation

is in agreement with the Planck pivot scale. Other allowed
values of N̄� may be chosen but that will only enable us to
infer a similar output for the analysis. Let us now define a
quantity as follows:

ϵ1� ¼
b

2N̄2�
ffiffiffiffiffiffiffiffiffiffiffi
ln N̄�

p ; ð2:10Þ

which is the value of the first Hubble flow parameter at
horizon crossing and N̄� is the number of e-folds at that
point in time. As the benchmark matches very well with
observational parameters, we set our aim to learn how
compatible these predictions are with universality classes of
inflationary models that agree in the large N limit. We are
also curious to know what happens to the field excursion
variable Δϕ for the broad classes of models mentioned
earlier in comparison with the KM II model.

III. COMPARISON OF FIELD EXCURSIONS
IN DIFFERENT CLASSES OF INFLATON

We now intend to look at how the field excursions of the
inflationary models vary for a given set of values of the
CMB observables ns and r. It will be interesting to explore
whether the field excursion Δϕ and the number of e-folds
N remain the same or change. The largeN behavior of wide
classes of inflationary models has been discussed rigor-
ously in [13,14] by finding the dependence on N of the
Hubble flow parameters. At leading order the 1=Np

behavior for the slow-roll parameter ϵ is considered the
perturbative class. In addition to that, there are constant,
nonperturbative, and logarithmic classes [13,14]. For these
three classes we will find the leading-order contribution of
the first and second Hubble flow parameters and by
equating those to the respective values for the KM II
model we will compare the field excursion for a given set of
spectral tilt ns and tensor-to-scalar ratio r.

A. Perturbative class

An attractive feature of the perturbative class of models
is that the 1=N term provides a natural explanation for the
percent variation from the scale invariance of the CMB
power spectrum. Chaotic, hilltop, inverse hilltop, and Whitt
potentials are typical examples of this particular class. The
first two Hubble flow parameters of the perturbative class
are given by

ϵ1 ¼
μ

Np

ϵ2 ¼ −
p
N
; ð3:1Þ

where μ and pð≥ 1Þ are the parameters. For different values
of these parameters, one gets different models within this
class. Now by imposing the requirement that the above
Hubble flow parameter values should fall in the same range
as those of the benchmark model as given in Eq. (2.10), i.e.,
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the same scalar spectral index and tensor-to-scalar ratio will
be produced by the perturbative class of models as those of
the benchmark, we obtain the following relationship to be
followed by the model parameters. Let us consider first the
parameter μ, which should follow the restriction given
below to reconcile with the above -mentioned demand:

μ ¼ bNp
�

2N̄2�
ffiffiffiffiffiffiffiffiffiffiffi
ln N̄�

p ; ð3:2Þ

where

N� ¼
pN̄�
2

: ð3:3Þ

Terms with an overbar correspond to the values associated
with the benchmark model. Now substituting Eq. (3.3) into
Eq. (3.2), we obtain

μ ¼ b
2

�
pN̄�
2

�
p

×
1

N̄2�
ffiffiffiffiffiffiffiffiffiffiffi
ln N̄�

p

¼ ϵ1�

�
pN̄�
2

�
p

: ð3:4Þ

Equation (3.4) explicitly indicates how the parameters
should be finely adjusted to guarantee the correct prediction
of observational parameters coming from up-to-date CMB
observations in several models in the perturbative class. A
careful investigation of how the parameter μ behaves for a
wide range of p values reveals that one can get the same
values of b for diverse values of μ and p. This in turn says
that as we fix the values of the slow-roll parameters of the
perturbative model with those of the KM II model, the
slow-roll parameters of the perturbative model and thus
subsequently the values of the spectral index ns and tensor-
to-scalar ratio r are fixed, while those of μ and p change.
Let us explore the number of e-folds N from the horizon

exit to the end of inflation and the field excursion Δϕ for
large classes of perturbative models characterized by
different values of p. It is apparent from the definition
in Eq. (2.3), the end of inflation can be associated to the
first Hubble flow parameter, ϵ1 ¼ 1. The number of
e-folds, Nf, at the end of inflation can thus be determined
from the above-mentioned condition. From Eq. (3.1) we get

Nf ¼ μ1=p: ð3:5Þ
Therefore the number of e-foldsN for the perturbative class
in terms of p and benchmark model parameters is obtained
by using the above value of Nf and Eqs. (3.3) and (3.4) as
given below:

N ¼ pN̄�
2

½1 − ϵ1=p1� �: ð3:6Þ

For a given b, the value of ϵ1� being very small, it becomes
apparent from the above relation that N increases linearly

with p for low values, which is evident from Fig. 1. One
may find it interesting to allow N to vary for a large range
that may be dependent on the postinflationary physics of
the model. Curiously, we have noted (in Fig. 2) that a
maximum limit on the value of N is reached asymptotically
with p and this seems to be a generic feature for this class of
models. The consequences of this finding will be explored
further by studying the field excursion. Using the definition
given in Eq. (2.6) we get the excursion of the inflaton as
follows:

Δϕ ¼ 2
ffiffiffiffiffi
2β

p
2 − p

ðN1−p=2
� − N1−p=2

f Þ ð3:7Þ

for the perturbative class. Putting in the values of Nf and
N�, the above expression reduces to the elegant form to the
elegant form

Δϕ ¼
ffiffiffi
2

p

2 − p
ðpN̄�Þϵ1=21�

h
1 − ϵ

2−p
2p

1�
i
: ð3:8Þ

Let us depict the results graphically in Figs. 3 and 4, which
show the variation of Δϕ with respect to p. Interestingly,
Δϕ starts out as sub-Planckian (Δϕ < MPl) for small values
of p before it becomes equal to 1 (we choose to work with
MPl ¼ 1) at a certain value of p. Beyond that a continuous
increase is seen in Δϕ as p increases, finally saturating at
high values of p. This also shows an upper bound on the

FIG. 1. N increases linearly for low values of p. Three values
of ϵ1� are used for three values of β ¼ 2.15 × 103,
1.00 × 104, 4.64 × 105.

FIG. 2. N approaches a maximum value for high values of p.
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value of the field excursion similar to what is found in the
number of e-folds.
One can easily find the maximum values of the number

of e-folds and the field excursion by looking at the limiting
tendencies as p goes to infinity. Let us discuss one example
by choosing a typical value of ϵ1� ≈ 10−10. We find that

Nmax ¼ lim
p→∞

N ¼ lim
p→∞

pN̄�
2

½1 − ϵ1=p1� �

¼ −
N̄�
2
ln ϵ1� ¼ 625.99 ð3:9Þ

Δϕmax ¼ lim
p→∞

Δϕ ¼ lim
p→∞

ffiffiffi
2

p

1 − 2=p
N̄�ϵ1�½1 − ϵ1−p=21� �

¼
ffiffiffi
2

p
N̄�½1 − ϵ1=21� � ¼ 82.02: ð3:10Þ

However, such large values of N are not necessarily
realistic; from a theoretical viewpoint it is interesting to
explore such large ranges. Considering the variation of ϵ
with respect to N one can show that it is impossible to keep
ϵ constant for a large range of e-foldings. As a result there

appears an upper bound on N that translates into a limit on
the field excursion.
People have been curious for long about how deep the

inflation can be in specific classes of models. The Lyth
bound gives a guideline for the minimal single-field slow-
roll scenario. Depending on whether one considers ϵ to vary
or not during the horizon exit to the end of inflation, more
stringent constraints of the Lyth bound can be imposed
[21]. In this analysis we retain the considerations originally
used to define the field excursion. From the main results
obtained in the perturbative class we see that both the field
excursion and the number of e-folds increase with an
increase in p, even as ns and r remain the same. Most
remarkably an upper limit on both Δϕ and N has been
achieved asymptotically. A careful inspection points
towards a degeneracy in the field excursion with different
values of N for the models predicting the same values of
observational parameters. We have also explored the
possibility of having sub-Planckian and super-Planckian
field excursions. This is very interesting from both a
theoretical and an observational point of view. We only
have a bound on the tensor-to-scalar ratio from the
observations till today. A definite detection of r will
definitely solve the above puzzle, and also an independent
detection of r and ϵ1 is necessary to prove the validity of the
Lyth bound. Note that the bound given in Eq. (2.7) implies
that for sub-Planckian inflaton excursion, and thus con-
sistent field theory description, r should be less than 0.002,
implying that it was beyond the reach of Planck but within
the reach of future missions like various ground-based
experiments (AdvACT, CLASS, Keck/BICEP3, Simons
Array, SPT-3G); balloons (EBEX 10k and Spider); and
satellites (CMBPol, COrE, and LiteBIRD) [22,23].

B. Nonperturbative class

The next class that we would like to consider is the
nonperturbative models of inflation [13,14] characterized
by the Hubble flow parameters that are nonperturbative
around 1=N → 0. In this case

ϵ1 ¼ exp ð−2cNÞ
ϵ2 ¼ −2c; ð3:11Þ

where c is a constant. Equating this with the same
parameters of the benchmark model we obtain

b

2N̄2�
ffiffiffiffiffiffiffiffiffiffiffi
ln N̄�

p ¼ exp ½−2cN��; ð3:12Þ

leading to an expression for the constant c ¼ 1=N̄�. We
next consider the number of e-foldsN between horizon exit
and end of inflation. The number of e-folds at the end of
inflation, Nf, is obtained by the fact that the first Hubble
flow parameter is equal to 1 when inflation ends. Thus for

FIG. 3. Δϕ increases linearly for low values of p and is sub-
Planckian up to a certain value of p, beyond which it becomes
super-Planckian. Three values of ϵ1� are used to span the entire
range of β by choosing β ¼ 2.15 × 103, 1.00 × 104, 4.64 × 105.

FIG. 4. Δϕ becomes super-Planckian for p > 4 with the
given parameter choice and approaches a maximum value for
high values of p. Here we have taken β ¼ 2.15 × 103, 1.00 × 104,
4.64 × 105, which lead to the values of ϵ1� shown above.
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the nonperturbative case we have N ≈ N�. Using Eq. (3.12)
we can calculate the number e-foldings remaining at the
point of horizon exit as

N� ¼ −
N̄�
2
ln ϵ1�: ð3:13Þ

This in turn gives the number of e-foldings in the non-
perturbative class from the horizon exit to the end of

inflation as N ¼ − N̄�
2
ln ϵ1�. We get a startling result for the

number of e-folds. The number of e-folds N is the same as
the form for the maximum number of e-folds for the
perturbative class [Eq. (3.9)]. Apparently the N of the
nonperturbative class hits the maximum limit of the number
of e-folds for the perturbative class.
The field excursion Δϕ as obtained using Eqs. (2.6) and

(3.11) has the following form:

Δϕ ¼ −
ffiffiffi
2

p
N̄�½exp ð−cNfÞ − exp ð−cN�Þ�: ð3:14Þ

Inserting the value of Nf and using Eq. (3.13), we get

Δϕ ¼
ffiffiffi
2

p
N̄�½1 −

ffiffiffiffiffiffi
ϵ1�

p �; ð3:15Þ

which is the same as that for the maximum limit of Δϕ for
the perturbative class [Eq. (3.10)]. Most significantlyN and
Δϕ in the nonperturbative class are similar to those in the
large p limit of the perturbative class. Furthermore, there is
not much variation over the different parameters; instead
there is one particular value of Δϕ and N each for different
values of ϵ1�, corresponding to the benchmark model KM
II. Curiously, for the nonperturbative class we get super-
Planckian field excursion only. This is actually a very
strong constraint because first of all it is difficult if not
impossible to have one inflationary theory where we have a
good control over a Planckian field range. It again
establishes the necessity for the independent detection of
the first Hubble flow function and r that will tell us about
the existence of the Lyth bound.

C. Logarithmic class

The other class of model that we intend to explore is the
logarithmic one [14], in which the Hubble flow parameters
are

ϵ1 ¼ κ
lnq N
Np ; ð3:16Þ

ϵ2 ¼ −
p
N
þ q
N lnN

; ð3:17Þ

where p and the power coefficient q are model-specific
parameters, different values of which lead to different
models. We have retained logarithmic correction terms
in the generic class. However, as we are working at large N

limits, we can readily see that the second term of the above
equation for ϵ2 dies down rapidly and we can ignore its
effects compared to the first term of 1=N at leading order.
Note that the benchmark can be easily retrieved by
choosing the parameter p ¼ 2 and keeping leading-order
contributions of 1=N. Executing similar techniques as
discussed in previous sections, we obtain κ by equating
the above parameters with that of the benchmark model as

κ ¼ b
2

Np
�

N̄2�
ffiffiffiffiffiffiffiffiffiffiffi
ln N̄�

p
lnq N�

; ð3:18Þ

and also the following relationship,

2

N̄�
¼ p

N
−

q
N� lnN�

: ð3:19Þ

The field excursion in this context comes out to be

Δϕ ¼
ffiffiffi
2

p
κ

Z
lnq=2 N

Np=2 dN: ð3:20Þ

For specific choices of p and q one can infer the
implications of the above expression. In the large N limit,
the second slow-roll parameter is given by

ϵ2 ¼ −
p
N
: ð3:21Þ

Keeping p fixed, we vary the variable q and see how the
inflationary field excursion changes. It is to be noted, from
the various models conforming to the logarithmic class of
models and from working within our approximation of
neglecting the second term of Eq. (3.17) that only values of
q running less than 10 are physically acceptable. The value
of p is chosen as 2, which is not only the case for the KM II
model but also well motivated from the literature
[14,24,25]. An intensive study of the variation in the
inflationary field range with changing q shows that the
field excursion remains sub-Planckian for the parameter
range chosen above. Therefore, considering all the results
obtained in this and in the previous sections, what we can
conclude is that the degeneracy in various pictures may be
lifted from future observations aiming at a finer value of
tensor-to-scalar ratio r, and also an independent detection
of ϵ1 will help.
One may wonder why the first Hubble flow function has

only been chosen to specify the end of inflation. Note that
the large N formalism and subsequently the Hubble flow
functions considered here are based on the primary quantity
HðϕÞ. The dynamics has been used to define the slow-roll
parameters instead of the field potentials. One can show
that the first two Hubble flow functions are linked with
corresponding potential slow-roll parameters via the rela-
tions ϵ1 ¼ ϵV and ϵ2 ¼ −4ϵV þ 2ηV . Liddle et al. in [26]
have pointed out that the true end point of inflation gauged
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by the Hubble flow functions occurs exactly at ϵ1 ¼ 1. For
potential slow-roll parameters, this is a first-order approxi-
mation. Now the types of models encompassed by large N
formalism [14] exhibit such a dynamics that generically
one can assume the end inflation by ϵ1 ¼ 1. This is also the
case for models of inflation that consider the existence of
flat directions. On the other hand if one still becomes
interested in exploring the possibility of ending inflation
via alternative methods, one may look for the possibility
ϵ2 ¼ 1 (note that this is not same as setting ηV ¼ 1). This
possibility gives rise to a decreasingΔϕwith respect to p in
the logarithmic class for a given value of q. It may be a
topic of interest to explore in future endeavors. In those
cases one may also go beyond the regime of slow-roll
approximation and look for alternatives like ending infla-
tion by introducing a second field potential.

IV. SUMMARY AND DISCUSSIONS

Let us conclude with a few comments. We have
emphasized the Planck 2015 data and the strong underlying
theoretical background in choosing the benchmark model
for our analysis. Considering the span of inflaton field
profile Δϕ for the KM II model as a reference, we have
studied how the range of the field excursion varies in
different universality classes of inflationary models corre-
sponding to a chosen point in the ns−r plane. The value for
ns satisfies the value found by different experiments and
also the most recent values given by Planck 2015 [5]. The
value for the tensor-to-scalar ratio r for our benchmark
model is well within the allowed upper bound for the value
of r as found in recent experiments (unlike the chaotic
inflation benchmark case). Thus our choice of the chosen
point in the ns−r plane is quite well motivated and future
experiments which probe with greater accuracy the value of
r can comment on its viability. At present it is in excellent
agreement with the experimental results. The technique
followed in this work has been proposed in the context of
chaotic inflation as the benchmark model [17]. However,
the recent Planck data release rules out values of r > 0.09,
while for the quadratic potential in the chaotic class,
r ¼ 0.16. The KM II model predicts a spectral index ns
well within the 2σ contour of Planck. This also predicts a
value of r that gives a sub-Planckian field excursion
according to the Lyth bound.
Comparing this with other universality classes of mod-

els, we found that it is possible to have super-Planckian as
well as sub-Planckian field excursions, for example, for
different ranges of parameter p in the perturbative class of
models. While equating the slow-roll parameters at the
horizon crossing, one not only changes ϕ�, but also ϕf,

which are the values of the field at the horizon crossing and
at the end of inflation, respectively. This also changes the
value of Nf, the number of e-folds at the end of inflation.
Fixing the Hubble flow parameters at the horizon crossing
for a model amounts to fixing the value of the field variable
ϕ�, which in turn changes N�, the number of e-folds at the
horizon crossing.
Basically the demand to get the same ns and r as the

benchmark model puts a constraint on the theory via the
change of N� and ϕ� from the original value. This is why
we get a range of values for N and Δϕ for the same ns and
r. One can also go ahead and constrain the value of the
running of the spectral tilt αs for the benchmark model and
the various classes of inflation. We have checked that to
infer that it does not introduce any significant constraint for
the inflationary field range. For the perturbative and the
logarithmic class, the third slow-roll parameter has a similar
1=N dependence as the second slow-roll parameter for the
two classes of inflation and therefore adds nothing new to
the discussion. For the nonperturbative class, the third
slow-roll parameter comes out to be zero.
In this analysis with KM II as the benchmark, most

interestingly, we have found that one can get a sub-
Planckian field excursion in the regime of single-field
slow-roll inflation. There appears to be a maximum
value for the field excursion variable and the number of
e-folds. Owing to the different geometric form of the
potential in the benchmark model, we get a distinct limit
on the above-mentioned parameters. The chaotic model
is much steeper, so the rolling-down velocity of the field
is greater than that for the KM II, whose slope is much
flatter, leading to a much slower rolling speed. Thus in
this case there is a greater number of e-folds but a
smaller value of the maximum field excursion.
Interestingly, results similar to those in the perturbative
class have been observed in the nonperturbative class.
Finally we see that for the perturbative class the value of
Δϕmax is almost the same for different initial parameters
for the benchmark models while the maximum number
of e-folds changes appreciably. The degeneracy we have
observed in different forms may be lifted by future
observations [23].
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