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We investigate the interplay between moduli dynamics and inflation, focusing on the Kachru-Kallosh-
Linde-Trivedi scenario and cosmological α-attractors. General couplings between these sectors can induce
a significant backreaction and potentially destroy the inflationary regime; however, we demonstrate that
this generically does not happen for α-attractors. Depending on the details of the superpotential, the volume
modulus can either be stable during the entire inflationary trajectory or become tachyonic at some point and
act as a waterfall field, resulting in a sudden end of inflation. In the latter case there is a universal
supersymmetric minimum where the scalars end up, preventing the decompactification scenario.
The gravitino mass is independent from the inflationary scale with no fine-tuning of the parameters.
The observational predictions conform to the universal value of attractors, fully compatible with the Planck
data, with possibly a capped number of e-folds due to the interplay with moduli.
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I. INTRODUCTION

Compactifications of string theory generically come with
many moduli: classically massless scalar fields that para-
metrize properties of the internal manifold and that give rise
to unobserved long-range interactions. While one expects
quantum effects to generate masses for these scalar fields, it
is difficult to realize this while retaining computational
control [1]. In the case of Calabi-Yau compactifications, the
moduli parametrize deformations of the manifold’s Kähler
form, its complex structure and the string coupling. One
may generate a mass for the latter two by turning on fluxes
in the internal manifold [2]. However, the Kähler moduli
cannot be stabilized in this manner. Instead, Kachru,
Kallosh, Linde and Trivedi (KKLT) [3] argued that one
can stabilize the Kähler moduli using nonperturbative
corrections while maintaining computational control.
The central issue we intend to address in this paper is

how the presence of the moduli sector can affect an
inflationary regime. Coupling inflation with other moduli
generically leads to mutual backreaction. On the one hand,
the inflationary energy can destabilize the moduli. This was
anticipated in [4], where it was shown that stabilizing the
Kähler modulus in the simplest model of inflation leads to

a bound H < m3=2 on the inflationary Hubble scale H,
related to the gravitino mass m3=2 in the vacuum after
inflation.1 Conversely, the dynamics of the volume modu-
lus may induce a backreaction which renders the inflaton
scalar potential too steep to support inflation.
The issue of moduli stabilization during inflation was

subsequently investigated in an explicit string theory setup
in [7]. In this paper, a scalar field r1 parametrizing the
separation between an antibrane and a brane serves as the
inflaton. A warped geometry sourced by five-form fluxes
generates a naturally flat potential for r1. As described
above, fluxes serve to stabilize all moduli except the
volume modulus, which stabilize with a KKLT-like struc-
ture. The interplay of r1 and the Kähler modulus generi-
cally yields a large shift in the second slow-roll parameter η,
thus spoiling inflation.
More generally, the interplay between moduli stabiliza-

tion and supersymmetry breaking has been extensively
studied in the literature (see e.g. [8–10]). For quadratic
inflation, this topic has been investigated in detail at the
supergravity level in [11], where the super- and Kähler
potentials were sum separable between the moduli and
inflaton sectors. In every setup considered in [11], the naive
stability bound H < m3=2 was verified and there was a
destabilization of the Kähler modulus on the inflationary
trajectory, at large field values of the inflaton. Generating*d.roest@rug.nl
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1In the same paper [4], it was pointed out that using a specific
combination of two exponentials in the superpotential generically
improves the decoupling of the two physical scales. This so-called
Kallosh-Linde model and its coupling to inflation was further
explored in [5,6].
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enough e-folds of inflation imposed stringent constraints
on the parameter space.
The aim of this paper is to study the interplay of

KKLT-like moduli stabilization and supergravity α-attractor
models of inflation. The α-attractor models provide an
elegant description of the inflationary dynamics with robust
predictions [12–14] that are in excellent agreement with the
latest data on the cosmic microwave background [15–18].
Moreover, they have been coupled to various other sectors
[19–24] (see [25,26] for reheating constraints on this class of
models). In this paper, we will investigate their resilience
under moduli backreaction. Specifically, we will show that
combining these two sectors together yields surprising
consequences. While the Kähler modulus will turn out to
be always stable during inflation, the major effect of the
backreaction can insteadbebeneficial. It generically induces/
enhances the attractor inflationary regime aswell as produces
a supersymmetric vacuumwhere the scalars can sit at the end
of their evolution. Remarkably, this allows us to decouple
the inflationary and supersymmetry (SUSY) breaking scales
with no amount of fine-tuning.
We first review the supergravity descriptions of both

α-attractors and moduli stabilization in Sec. II, and outline
the strategy of our analysis and themain physics traits arising
from coupling these two moduli sectors. We then proceed to
discuss the vacuum structure and inflationary features of
different coupling cases. In Sec. III, we analyze the product
coupling casewhile in Sec. IVwe show how the latter can be
generalized with surprising physics outcomes. The resulting
inflationary dynamics with concrete examples and predic-
tions are the topics of Sec. V. In Sec. VI we show how the
corresponding construction simplifies in the presence of
a nilpotent superfield. We conclude in Sec. VII with a
summary of our results and future perspectives.

II. REVIEW AND STRATEGY

A. Inflation: α-attractors

The inflationary class of models referred to as α-attractors
has its origin in an underlying superconformal or super-
gravity model [12,13]. A crucial role in these theories is
played by the Kähler manifold spanned by the scalars: it is
taken to be a hyperbolic manifold of maximal symmetry
and negative curvature. For a wide range of superpotentials
of such theories, the resulting inflationary scenarios share a
common trait: inflation takes place around the boundary of
the field space leading to exponential falloff terms from a de
Sitter phase.
While the first constructions of α-attractors conform to

the general supergravity structure of [27,28] and have an
inflaton and a stabilizer superfield, it turns out that a more
minimal setup is possible involving only the inflaton
superfield [29,30] (alternatively, one can also employ a
vector supermultiplet [31]). We will mainly focus on the
chiral single-superfield formulation of [29], and comment

on the extension with a second superfield in Sec. VI.
The minimal theory consists of a Kähler and superpotential
given by2

Kα ¼ −3α logðΦþ ΦÞ; Wα ¼ Φn− − ΦnþfðΦÞ; ð3Þ

defined in terms of the monomial powers

n� ¼ 3

2
ðα� ffiffiffi

α
p Þ: ð4Þ

The Kähler geometry is maximally symmetric and has
constant curvature given by RK ¼ −2=ð3αÞ.
The superpotential contains two monomial factors,

which are related to each other by a Kähler transformation
and an inversion of Φ. Taken separately, these factors yield
a Minkowski vacuum along the trajectory in field space
defined by Φ ¼ Φ [i.e. ImðΦÞ ¼ 0]. This generalizes the
no-scale structure [32,33] that appears for α ¼ 1 and has
been dubbed the α-scale model [29] as the curvature RK
determines stabilization of the imaginary direction. When
both powers are included in the superpotential, the cross
term between them generates a nonvanishing cosmological
constant, whose sign is opposite to the relative sign
between the two factors. When α > 1, the imaginary
direction of Φ is stabilized with a high mass at
ImðΦÞ ¼ 0, so that a truncation to Φ ¼ Φ is consistent.
Finally, a function fðΦÞ is included to introduce an

inflationary profile instead of a flat de Sitter line. If this
function is expressible as a generic Taylor expansion
around Φ ¼ 0, and it induces a negative linear term, then
inflation will occur.3 Along Φ ¼ Φ and when expressed in
terms of the canonically normalized field

φ ¼ −
ffiffiffiffiffiffi
3α

2

r
logðΦÞ; ð5Þ

the potential around the singular point Φ ¼ 0 is an
exponentially suppressed deviation from a flat plateau

V ¼ V0 − V1e
−

ffiffiffi
2
3α

p
φ þ � � � ð6Þ

2Alternatively, one could work in a Kähler frame related by the
transformation

Kα → Kα −
3α

2
logðΦÞ − 3α

2
logðΦ̄Þ ¼ −3α log

�
Φþ Φ̄
jΦj

�
; ð1Þ

Wα → WαΦ−3α
2 ; ð2Þ

which makes the rescaling and inversion symmetries of the
Kähler potential explicit [13]. The rescaling symmetry translates
into a shift symmetry of the canonically normalized inflaton.

3If fðΦÞ multiplies the lower power Φn− in Eq. (3), then the
physics remains unchanged when we expand the system around
Φ → ∞.
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on which inflation can occur. The resulting observables
are very simple and predictive: at lowest order in 1=N, the
inverse of the number of e-folds, these read

ns ¼ 1 −
2

N
; r ¼ 12α

N2
; ð7Þ

which agrees very well with the latest cosmological data
[15–18] for an α of order unity.4

B. Volume stabilization: KKLT

The second model is the KKLT scenario for volume
modulus stabilization [3]. At the supergravity level, it
simply consists of the following Kähler potential and
superpotential:

Kmod ¼ −3 logðT þ TÞ; Wmod ¼ W0 þ A expð−aTÞ:
ð8Þ

The logarithmic, no-scale-like Kähler potential is naturally
generated by flux compactification (see [35,36] for some
reviews on this topic). The constantW0 is meant to contain
the contribution of other moduli, which are assumed to be
stabilized supersymmetrically at a very high scale by
some other mechanism [2]. The exponential term is a
nonperturbative correction, generated by gluino condensa-
tion or Euclidean D3-branes.
The background in which this setup is embedded is an

orientifolded Calabi-Yau flux compactification of the type
discussed above. KKLT assume a Calabi-Yau with coho-
mology hð1;1Þ ¼ 1, so that there is only a single complex
Kähler modulus.
The scalar potential generated by Kmod and Wmod has an

anti–de Sitter (AdS) minimum at T ¼ T0 defined by

3W0 ¼ −e−aT0ð3þ 2aT0ÞA; ð9Þ

which is also the condition for unbroken supersymmetry,
DTW ¼ 0. To stabilize T at a large positive value, as is
necessary for the consistency of the approximation scheme,
one must choose a W0 smaller than and opposite in sign
to A. Furthermore, the potential has the Dine-Seiberg
Minkowski minimum at T → ∞, which corresponds to
the decompactification of the internal space. This runaway
minimum is always present in the scalar potential.

C. Coupling and backreaction

The main aim of this paper is to investigate the back-
reaction of moduli on the inflationary dynamics. In
particular, we will show that α-attractors suffer from
negligible backreaction of the moduli sector in many cases.

This special immunity is mainly due to the fact that
inflation happens at the boundary of moduli space
(Φ → 0 or Φ → ∞). Here the original KKLT AdS mini-
mum can be lifted to dS thanks to the α-scale mechanism,
while the supersymmetric properties of the T sector remain
unchanged. Then, the field Φ can drive inflation while
rolling down along a stable minimum defined byDTW ¼ 0.
Upon switching to the canonical variable φ, the stretching
of the boundary to a long plateau provides the key to
understanding why δT is minimized during the inflationary
evolution (an analogous behavior has been noticed in [23],
where the interaction between α-attractors and matter
fields is exponentially suppressed). Thus the backreaction
is negligible during the expansion period. Note that this
behavior is the opposite of what was noticed in [11] for
the quadratic inflationary scenario.
Towards the end of inflation, the situation turns out to be

nontrivial as it usually depends on the specific couplings in
the superpotential. Generically, the mass of the modulus T
becomes lighter and it can produce a destabilization point.
However, we will show that a number of interesting things
happen in the case of α-attractors and KKLT: first of all, one
can always avoid the destabilization point by means of a
specific profile function f. Secondly and more importantly,
we will prove the existence of a stable universal vacuum
at a finite value of T which can prevent the inflaton from
running away towards the decompactification limit T → ∞.
We will explain all these results in detail in the following
sections.
Throughout this paper we will consider the case of

additive Kähler potentials,

K ¼ Kα þ Kmod; ð10Þ

in the combined model of inflation and moduli stabiliza-
tion. For the superpotential, we will instead consider a
variety of combinations which maintain the α-scale proper-
ties at the boundary of the moduli space.

III. PRODUCT COUPLING

We start by considering a superpotential which is product
separable in the moduli and inflaton sectors:

W ¼ WmodðTÞWαðΦÞ; ð11Þ

where the factors are given by Eqs. (3) and (8). This
corresponds to a sum-separable Kähler function G ¼ Kþ
lnðWÞ þ lnðWÞ, which is defined when W ≠ 0. The prod-
uct coupling reduces the mixing between both sectors, as
found for hybrid inflation [37]. Moreover, it allows for
important simplifications; e.g. the supersymmetric critical
points of the T or Φ sectors remain so in the combined
theory [38,39].
In the following, we separately analyze the cases without

and with an inflationary profile in Wα. In the first case

4Formally, the expression (7) agrees with the data for α≲ 30,
but the approximations used to derive (7) break down earlier. For
α ≫ 1, α-attractors tend to converge to monomial models such as
V ∼ Φn (see e.g. [12,29,34]).
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(f ¼ 1), we present the nontrivial vacuum structure which
arises from the interplay of the two sectors. In the latter case
[f ¼ fðΦÞ], we show how a consistent inflationary dynam-
ics can be implemented in this context.

A. α-KKLT and universal Minkowski vacuum

Let us take f ¼ 1 and consider the following super-
potential:

WðΦ; TÞ ¼ ½Φn− − Φnþ�½W0 þ A expð−aTÞ�: ð12Þ

The product structure of W allows us to easily uplift the
original KKLT minimum by means of the same α-scale
mechanism described in Sec. II A. For this reason, we will
refer to this branch as α-KKLT. It is characterizedDTW ¼ 0
and represents an extremum of the full model at T ¼ T0,
given by Eq. (9), independently of the value of the field Φ
(see Fig. 1). Along this branch, supersymmetry in the Φ
direction is spontaneously broken, yielding a positive dS
phase with

V ¼ 21−3αa2A2e−2aT0

3T0

: ð13Þ

Although the product separable superpotential guarantees a
critical point along this branch, it does not imply stability.
In general, this trajectory may instead be a maximum or an
inflection point in the T direction.
In the left and right asymptotic limits (Φ → 0 and

Φ → ∞, respectively), T ¼ T0 is a minimum in the
ReðTÞ direction. To see this, note that the scalar potential
defined by Eq. (12) has terms proportional to Φ−3

ffiffi
α

p

and Φ3
ffiffi
α

p
, which dominate in the left and right asymptotic

limits, respectively. These terms are non-negative and
cancel exactly when the supersymmetry condition equa-
tion (9) is substituted. Therefore, the α-KKLT trajectory
T ¼ T0 is a minimum at the asymptotic limits; the Φ�3

ffiffi
α

p

terms generate a large mass for ReðTÞ in the left and right
asymptotic limits, which is the opposite behavior from
what was found in [11].
In the intermediate region between the asymptotic limits

Φ → 0 and Φ → ∞, the vacuum structure is different (see
Fig. 1). In particular, there is a universal Minkowski vacuum
that has both product factors of the superpotential vanishing,
rendering it supersymmetric. When WmodðTÞ ¼ 0, [i.e. at
T ¼ TS ¼ −logð−W0=AÞ=a], the scalar potential reads

VðΦ; TSÞ ¼
2−3α−1a2A2e−2aTSΦ−3

ffiffi
α

p ðΦ3
ffiffi
α

p
− 1Þ2

3TS
: ð14Þ

At Φ ¼ 1, we find a supersymmetric Minkowski minimum
(regardless of the choice of parameters). This minimum is
part of a secondbranchof solutions to∂TV ¼ 0, distinct from
the α-KKLT trajectory. This branch of solutions corresponds
to solutions T ¼ T1ðΦÞ of the following equation:

− 9ð1þ Φ3
ffiffi
α

p Þ2eaT1W0

¼ ð9þ 8aT1 þ 4a2T2
1 þ 9Φ6

ffiffi
α

p

− 16aT1Φ3
ffiffi
α

p þ 18Φ3
ffiffi
α

p þ 8aT1Φ6
ffiffi
α

p

þ 4a2T2
1Φ

6
ffiffi
α

p ÞA; ð15Þ

which is obtained by first solving ∂TV ¼ 0 forW0. The latter
approach lets us clearly differentiate different branches of
solutions from ∂TV ¼ 0, even though it may exclude some
of them. At Φ ¼ 1, Eq. (15) reduces to W0 ¼ −Ae−aT1 , to
which the solution is T1 ¼ TS. Therefore, this branch of
solutions includes the universal SUSY Minkowski vacuum.
At the asymptotic limits, Eq. (15) determines the location
of the maximum in between the α-KKLT branch and the
Dine-Seiberg Minkowski minimum at T → ∞. Figure 2
illustrates this situation.
The extremal branch T1ðΦÞ defined by Eq. (15) inter-

sects the α-KKLT branch in two points in field space. These
are inflection points in the T direction and the Kähler
modulus becomes massless. After the first inflection point,
the α-KKLT branch becomes a maximum and the other
branch a minimum, until the second inflection point on the
other side of Φ ¼ 1. The locations Φ� of the inflection
points are obtained by equating the two expressions
Eqs. (9) and (15):

ð1þ 2aT0ÞΦ3
ffiffi
α

p
� ¼ 7þ 2aT0 �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð2þ aT0Þ

p
1þ 2aT0

; ð16Þ

where T0 is the solution to Eq. (9).

FIG. 1. Plot of the scalar potential defined by Eq. (12) as a
function of ReðTÞ and ReðΦÞ. The α-KKLT branch, placed at T0

with the potential value given by Eq. (13), is highlighted by the
red dashed line. It develops an instability around Φ ¼ 1 where
one can clearly appreciate the universal Minkowki minimum,
placed at shifted values of T. (Parameters are A ¼ 1, W0 ¼
−0.0004, a ¼ 0.1, α ¼ 1.5.)
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B. Inserting an inflationary profile

One can tilt the original flat positive plateau of the
α-KKLT branch and produce a consistent inflationary
regime by turning the profile function fðΦÞ on in W.
The superpotential of the full model then reads

WðΦ; TÞ ¼ ½ΦnþfðΦÞ − Φn− �½W0 þ Ae−aT �: ð17Þ

This procedure is analogous to the single-superfield case
presented in [29] and summarized in Sec. II A. Along the
α-KKLT branch, the scalar potential becomes

V ¼ a2A2½Φf0ðΦÞ þ 3
ffiffiffi
α

p
fðΦÞ�½3 ffiffiffi

α
p þ Φ3

ffiffi
α

p þ1f0ðΦÞ�
23α−127αT0e2aT0

;

ð18Þ

which is identical to the potential generated by Eq. (3), up
to a Φ-independent rescaling. For f being a generic
expansion in the geometric field Φ, the scalar potential
at large values of the canonical inflaton φ becomes an
exponential deviation from dS, as given by Eq. (6).
The stability conditions of the real directions and

vacuum structure features of the model with an inflationary

slope fðΦÞ strikingly resemble the ones described above
with f ¼ 1. In addition to the tilted α-KKLT which is
still supersymmetric in the T sector, there is generically a
second branch which breaks supersymmetry in both direc-
tions. Moreover, for a large class of choices of f, there is
always a supersymmetric Minkowski minimum along the
latter. To see this, we substitute T ¼ TS in the scalar
potential to obtain

VðΦÞ ¼ 2−3α−1a2A2Φ−3
ffiffi
α

p
e−2aTSðΦ3

ffiffi
α

p
fðΦÞ − 1Þ2

3TS
: ð19Þ

The universal Minkowski vacuum is therefore located at
Φ ¼ ΦS ¼ fðΦSÞ−1=3

ffiffi
α

p
, when the latter gives a real

solution for Φ.
At the asymptotic boundaries of the moduli space (very

small/large values of Φ), the α-KKLT extrema are stable
minima, serving as a perfect starting point for inflation. At
finite values of Φ, depending on the choice of f, the two
branches may intersect and produce again two inflection
points. However, now these yield important consequences
for the inflationary dynamics: the Kähler modulus becomes
indeed massless, which implies that the single-field effec-
tive description breaks down. Running off to the Dine-
Seiberg decompactification limit is one of the greatest risks.
Nevertheless, this is not the only option for the inflaton
field, which can instead follow a safe route and still produce
a consistent cosmological scenario with a proper vacuum.
Two possible scenarios arise indeed at this point:

(i) An appropriate choice of the profile function fðΦÞ
may lead to the end of inflation and produce a
phenomenologically suitable vacuum before the
inflection point. This completely avoids the pos-
sibility of decompactification of the internal mani-
fold, as the Kähler modulus never becomes
massless. In this case, inflation proceeds as it does
in the single-field α-scale model [29]. The observ-
able predictions are the usual Eq. (7).

(ii) Generic and non-fine-tuned choices of fðΦÞ will
have instead the inflaton coming across one of the
two inflection points. The subsequent dynamical
evolution of the scalar fields is difficult to anticipate
and usually depends on the initial conditions. It can
happen that the Kähler modulus T runs off to the
Dine-Seiberg decompactification limit. Alterna-
tively, it may follow the second branch T1 of minima
towards the universal Minkowski vacuum. Here, all
directions become stabilized again at a high mass
scale and the scalar trajectories are quite predictable.
In this scenario, inflation ends immediately at the
inflection point as ReðTÞ experiences a large shift
which renders the effective potential too steep. This
is a waterfall effect akin to that in models of hybrid
inflation [40]. It introduces a positive shift ΔN in the
effective number of e-folds probed by inflation, as

FIG. 2. Effective potential VðΦÞ (upper panel) and vacuum
structure (lower panel) for the product separable case. The
minimum of the potential in T is denoted by the solid lines,
the maximum with the dashed ones. The red line denotes the α-
KKLT branch at T0 while the green line represents the non-SUSY
branch defined by Eq. (15). (Parameters are A ¼ 1, W0 ¼
−0.0004, a ¼ 0.1, α ¼ 1.1.)

MODULI BACKREACTION ON INFLATIONARY ATTRACTORS PHYSICAL REVIEW D 94, 123503 (2016)

123503-5



the abrupt end moves the inflationary window farther
up on the scalar potential plateau. The predictions
thus become

ns ¼ 1 −
2

N þ ΔN
; r ¼ 12α

ðN þ ΔNÞ2 : ð20Þ

The above qualitative descriptions of the two possible
situations will be complemented by concrete examples with
dynamical simulations in Sec. V.

IV. GENERAL COUPLING

Wecan generalize the product separablemodel, presented
above, in a way that preserves the concave inflationary
valley represented by the stable α-KKLT branch at the
boundary. We then consider the following superpotential:

W ¼ Φn−W−ðTÞ − ΦnþWþðTÞ; ð21Þ

where we allow for two distinct KKLT structures,

W� ¼ W0 þ A� expð−aTÞ: ð22Þ

Note that the constant parts can be set equal by rescaling Φ,
while for simplicity we have chosen to keep the power in the
nonperturbative term identical (which would be natural if
they follow from the same nonperturbative physics). The
deviation from the product separable case is therefore
parametrized by the ratio Aþ=A−.

A. α-KKLT at the boundary

In the general coupling case, when Aþ ≠ A−, the original
α-KKLT branch (DTW ¼ 0) is no longer guaranteed to be a
critical point. Furthermore, its location T0 is no longer a
constant, but becomes a function of Φ. However, in the left
and right asymptotic limits, the situation turns out to be
analogous to the product case and the fluctuation of T0

becomes negligible. At the boundary, the α-KKLT structure
remains indeed unperturbed: it has unbroken supersym-
metry in the T direction and a stable de Sitter minimum.
The intuitive reason is because, at the asymptotic limits,
one of theΦn� terms dominates over the other andW can be
effectively considered again product separable. We explic-
itly show this below.
The equation that determines T0 (DTWjT¼T0;Φ ¼ 0) as a

function of Φ is

Wþ0ðTÞ − Φ−3
ffiffi
α

p
W−

0ðTÞ ¼ 3

2T
½WþðTÞ − Φ−3

ffiffi
α

p
W−ðTÞ�;

ð23Þ

which is symmetric under the simultaneous interchange
Φ−3

ffiffi
α

p
→ Φ3

ffiffi
α

p
, WþðTÞ → W−ðTÞ. As Φ → 0, the latter

equation reduces to the KKLT condition equation (9),

W−
0ðTÞ ¼ 3

2T
W−ðTÞ: ð24Þ

Therefore, in the left asymptotic limit, the piece W− alone
determines the DTW ¼ 0 asymptotic trajectory. The analo-
gous statement holds in the Φ → ∞ limit with Wþ.
Furthermore, one can calculate the scalar potential by

means of Eqs. (10) and (21) and substitute the full SUSY
condition for T equation (23). One then finds

V ¼ 3 · 2−3α−1W−ðT0ÞWþðT0Þ
T3
0

; ð25Þ

where T0 is implicitly a function of Φ. This is de Sitter at
the asymptotic limits as long as W−ðTÞ and WþðTÞ have
the same sign at each other’s supersymmetric points.
Therefore, along the DTW ¼ 0 trajectory, the situation is
just analogous to the single-superfield case of [29] as well
as to the product case of Sec. III, along the α-KKLT
trajectory.
The stability of this branch is guaranteed at the boundary.

The full scalar potential contains a term

2−3ðαþ1ÞΦ−3
ffiffi
α

p ½3W−ðTÞ − 2TW−
0ðTÞ�2

3T3
; ð26Þ

which dominates in the limit Φ → 0. It vanishes just when
the SUSY condition for the T sector equation (24) is
substituted. Since the term is non-negative, this asymptotic
α-KKLT trajectory turns out to be a stable minimum in
the T direction, as we found in the product separable case.
The Kähler modulus T becomes then highly massive on the
inflationary plateau. This is again an inversion of the
behavior highlighted in [11], where the T becomes light
(and later tachyonic) in the region of field space where
inflation happens.

B. Universal inflation from backreaction

Moving away from the boundary, the shift in T0

generates a small falloff from de Sitter as a backreaction.
This effect is the main qualitative difference between the
product separable case and this more general model. The
backreaction renders the effective potential suitable for
slow-roll inflation even without introducing a nontrivial
profile function fðΦÞ. We show this below.
The shifts of the position T0 are OðΦ3

ffiffi
α

p Þ in the Φ → 0

limit, andOðΦ−3
ffiffi
α

p Þ in the opposite Φ → ∞ limit. Near the
left asymptotic limit, the first falloff from de Sitter is then of
the form

V ¼ V0 − V1Φ3
ffiffi
α

p þ � � � : ð27Þ
It is interesting to notice that the power of Φ is not generic
but specifically depends on

ffiffiffi
α

p
. This exponent cancels the

α−1=2 in the relation (5) between the geometrical inflaton Φ
and the canonically normalized field φ, and we have
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Φ3
ffiffi
α

p ¼ e−
ffiffiffi
18
3

p
φ: ð28Þ

The parameter α therefore drops out of the predictions for
ns and r in this model:

ns ¼ 1 −
2

N
; r ¼ 4

3N2
; ð29Þ

at leading order in the inverse of the number of e-folds N
and for any order unity α. Note that, unlike the usual α-
attractors’ prediction equation (7), this scenario provides a
precise value for the expected amount of primordial
gravitational waves, independently of the value of the
Kähler curvature.
It seems remarkable that the simple coupling of two

moduli sectors naturally induces an inflationary regime with
the universal cosmological predictions given by Eq. (29),
without inserting any profile function5 fðΦÞ. Yet more
intriguing is the strong insensitivity of the inflationary
predictions to the details of model. Equation (29) would
indeed hold for a very large class of parameter choices. We
will provide a concrete and detailed investigation of the
inflationary dynamics of this model in Sec. V.

C. Vacuum structure and universal AdS minimum

In the intermediate region of the field space, the interplay
of both KKLT terms W� is very important. The vacuum
structure is markedly different from the product separable
case. Specifically, the structure of the inflection points at
finite Φ changes drastically when we allow for Aþ ≠ A−.
We will discuss this as a continuous deformation from the
product separable model. An infinitesimal change with
Aþ > A− has the following effect on the two inflection
points, as illustrated in Fig. 3:

(i) The left inflection point disappears: the two extremal
branches (that correspond to the α-KKLT and the
nonsupersymmetric trajectories in the Φ → 0 limit)
no longer meet and rather are located at different
values of T, along the entire range of Φ up to the
second inflectionpoint. This is goodnews as it implies
that the Kähler modulus never becomes massless
along the inflationary trajectory, depicted in dark blue
in Fig. 3. However, there is still a sudden shift in the
Kähler modulus which ends inflation in a waterfall
effect. We will explore this in detail in Sec. V.

(ii) The right one splits up in two new inflection points
at close-by values in Φ; in between these two
inflection points, there are no critical points in the
scalar potential. This is indicated by the empty

regions in Φ of Fig. 3, which imply that T would
run off to the asymptotic Dine-Seiberg minimum.

The corresponding effective potential is pictured in the left
panel of Fig. 3. This also shows the asymptoticΦ−3

ffiffi
α

p
falloff

from de Sitter due to backreaction induced by the Kähler
modulus (note however that the inflationary potential is not
expressed in terms of the canonical fieldφ).Uponmaking the
difference between bothmoduli functionsmore pronounced,
the vacuum structure is further deformed along these lines.
For Aþ < A−, the situation is mirror reversed.
The last noteworthy difference between product separable

and general α-scale coupling concerns the universal SUSY
vacuum. We find this minimum at ðΦS; TSÞ once we impose
∂TV ¼ ∂ΦV ¼ 0, which returns the following equations:

TS ¼
1

a
log

�
AþΦ

3
ffiffi
α

p
S þ A−

−W0ðΦ3
ffiffi
α

p
S þ 1Þ

�
;

3Φ3
ffiffi
α

p
S ðA− − AþÞ ¼ ðΦ3

ffiffi
α

p
S þ 1ÞðAþΦ

3
ffiffi
α

p
S − A−Þ

× log

�
AþΦ

3
ffiffi
α

p
S þ A−

−W0ðΦ3
ffiffi
α

p
S þ 1Þ

�
: ð30Þ

This minimum is connected continuously to the asymptotic
α-KKLT trajectory, as can be seen in Fig. 3. Theminimum is
induced by a large shift in the Kähler modulus, which
creates a waterfall effect that ends inflation immediately.

FIG. 3. Effective potential VðΦÞ (upper panel) and vacuum
structure (lower panel) for the general coupling case. The
minimum of the potential in T is denoted by the solid line,
the maximum by the dashed line. (Parameters are Aþ ¼ 1.1,
A− ¼ 1, W0 ¼ −0.0004, a ¼ 0.1 and α ¼ 1.1.)

5One may consider the role of the profile function fðΦÞ as
parametrizing freedom in the model. However, in light of
building concrete string theory models, its presence might
become an obstacle due to the difficulty of generating higher
powers than cubic in Φ.
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Furthermore, it is supersymmetric as DTW ¼ DΦW ¼ 0.
However, as the superpotential does not vanish it is an AdS
vacuum. This is in line with the general theorem that
infinitesimal changes to the theory will deform a SUSY
Minkowski vacuum to a SUSYAdS one [10] (see [41] for a
practical application).

V. INFLATIONARY DYNAMICS

A. Product coupling with inflationary profile

As outlined above in Sec. III B, in the product separable
case with inflationary profile fðΦÞ, there are two distinct
scenarios for inflation which both end in an appropriate
Minkowski minimum.
In the first, one simply tunes the profile function fðΦÞ to

produce a minimum along the DTW ¼ 0 trajectory, before
the T-direction inflection point. The profile function fðΦÞ
must be of at least quadratic order in Φ for this purpose.
Therefore we will consider

fðΦÞ ¼ c0 þ c1Φþ c2Φ2; ð31Þ

with the following parameter values:

c0 ¼ 1; c1 ¼ −
2

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 ffiffiffi

α
p þ 3αÞc0c2

p
j1 − 9αjj1 − 3

ffiffiffi
α

p j−1 ; c2 ¼ 1:

ð32Þ

This tuning on the parameters generates a Minkowski
minimum, whose location is determined by the choice of
c0 and c2. The resulting scalar potential is given in the left
panel of Fig. 4 and has two Minkowski minima. The first of
these occurs on the asymptotic α-KKLT trajectory and is
generated by the fine-tuned inflationary profile function.
The second is the universal Minkowski minimum on the
non-SUSY branch, which has been shifted to ΦS as given
by ΦS ¼ fðΦSÞ−1=3

ffiffi
α

p
.

The maximum in between the two Minkowski minima
occurs at the T-direction inflection point. To the left of the
maximum, the Kähler modulus is entirely stable, becoming
very highly massive on the inflationary plateau close to
Φ ¼ 0. Any deviation inT from the supersymmetric valueT0

is quickly suppressed by the high mass on the inflationary
plateau. The inflaton then proceeds to the α-KKLT branch
Minkowskiminimum,where it first oscillates and then settles
during reheating. In this scenario, there is essentially no
dynamics in T and the observable predictions are (7).
In the second scenario, we leave fðΦÞ generic and make

use of the universal Minkowski minimum along the non-
SUSY trajectory. An example is given by

fðΦÞ ¼ 1 − 0.3Φþ 0.1Φ2; ð33Þ

whose effective scalar potential is plotted in the right panel
of Fig. 4. In the case of a product separable superpotential,

this scenario can be dangerous because the Kähler modulus
becomes massless at the inflection point along the infla-
tionary trajectory. It is necessary that T does not run off
to infinity after the inflection point is reached. However,
the scenario is interesting because the inflaton settles
into a minimum which is SUSY Minkowski without any
fine-tuning.
Figure 5 shows the result of a simulation of the scalar

field dynamics in this scenario. With these initial conditions
(Ti ¼ 99, Φi ¼ 0.2), the scalars evolve towards the
Minkowski minimum along the non-SUSY trajectory.
When the inflection point is reached, a waterfall happens
which ends inflation almost immediately. This induces a
shift ΔN in the effective number of e-folds which deter-
mines the observable prediction equation (20). With this
choice of parameters, this shift is small, ΔN ≃ 1, as the
inflection point occurs at a point in Φ space which is close
to where inflation would have ended had T been fixed at its
supersymmetric value. The small shift keeps the predictions
firmly in the observationally favored region.
In this example, we end up at a Minkowski minimum

without fine-tuning (see Fig. 4) and generate viable
observable predictions. There are two caveats: firstly, with
a different choice of initial conditions, the scalars can
evolve to the decompactification limit instead. We cannot
calculate the probability of avoiding the decompactifica-
tion, because there is no sensible definition for a prior

FIG. 4. The effective scalar potential for product separable
models with tuned profile (31) (upper panel) and generic profile
(33) (lower panel). Note the presence of the universal Minkowski
minimum in both cases. In the tuned setup, there is an additional
Minkowski minimum before the waterfall point. (Parameters are
W0 ¼ −0.0004, A ¼ 1, a ¼ 0.1, α ¼ 1.)
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distribution in initial conditions. However, if we imagine
that inflation starts higher up on the plateau than pictured
here, then the high mass scale of the real Kähler modulus
should dampen any deviations from T ¼ T0 quickly. This
implies that the chosen initial conditions are quite sensible.
Secondly, with a different fðΦÞ, the shift in the effective
number of e-folds ΔN can push ns too close to unity.
The choice α ¼ 1 requires some additional considera-

tions due to the stability of the imaginary directions, as we
will discuss in a moment. However, the results on the
effective scalar potentials do not change qualitatively when
we change α by a small amount to e.g. α ¼ 1.1.

1. Stability of the imaginary directions

We have examined the scalar potential along the
trajectory defined by Φ ¼ Φ and T ¼ T, i.e. at
ImðΦÞ ¼ ImðTÞ ¼ 0. In order for this truncation to be
consistent, the imaginary directions of both complex
scalars must have a positive mass of at least order
Hubble scale along this trajectory. In the case of product
separable coupling, the scalar potential along the super-
symmetric trajectory T ¼ T0 is equivalent to the single-
superfield α-scale model in the whole complex Φ space, up

to a rescaling. It follows that the stability analysis of [29]
carries over to our model. For α > 1, the imaginary Φ
direction is positive and divergent in the limit Φ → 0.
For α < 1, it is negative and divergent, and for α ¼ 1 it is
negative and has a finite limit as Φ → 0. The most
important contributions to the mass are

M2
ImðΦÞ ¼

a2ðα − 1ÞA2e−2aTΦ−3
ffiffi
α

p

23α−19αT
−
a2A2c0e−2aT

9T
: ð34Þ

When α ≠ 1, the Φ−3
ffiffi
α

p
term dominates in the inflationary

limit. When α ¼ 1, the negative constant term determines
the mass.
At the universal SUSY Minkowski minimum all direc-

tions are stable and become very highly massive. The
expression for the mass of ImðΦÞ at the vacuum reads

M2
ImðΦÞ ¼

a2A2e−2aTΦ−3
ffiffi
α

p
S ½3 ffiffiffi

α
p þ Φ3

ffiffi
α

p þ1
S f0ðΦSÞ�2

23α−19αT
; ð35Þ

where ΦS ¼ FðΦSÞ3
ffiffi
α

p
. Clearly, this mass is universally

non-negative. The same can be shown for the other
directions in the SUSY Minkowski vacuum.
In the intermediate region, the stability of ImðΦÞ is

dependent on the choice of inflationary profile function
fðΦÞ. For a generic choice of fðΦÞ, there is some instability
at intermediate field values which flattens out (but does not
disappear) as α is increased (see Fig. 6). There are several
ways to deal with this apparent issue. Firstly, the high mass
of ImðΦÞ in the inflationary limit (when α > 1) dampens
fluctuations away from ImðΦÞ ¼ 0 quickly. Furthermore,
the instability occurs close in canonical variables to the
ReðTÞ waterfall which ends inflation. These effects con-
spire to make the ImðΦÞ instability generally irrelevant for
the classical inflationary dynamics. The scalar fields reach
the completely stable region around the SUSY Minkowski
vacuum before ImðΦÞ fluctuates enough to upset inflation.
Once again, we find a simplification of the dynamics due to
the asymptotic freedom of the inflaton.
Secondly, one can use the methods described in [42] to

stabilize ImðΦÞ universally for any α. The inflaton sector
Kähler potential KαðΦ;ΦÞ can be generalized in the follow-
ing way:

KαðΦ;ΦÞ ¼ −
3α

1þ 2k2
log

�
Φþ Φ
jΦj

�
1þ k2

ðΦ − ΦÞ2
ðΦþ ΦÞ2

þ k4
ðΦ − ΦÞ4
ðΦþ ΦÞ4 þ…

��
; ð36Þ

in the shift-symmetric Kähler frame (2). The ellipses stand

for higher even powers of ðΦ−ΦÞðΦþΦÞ, which preserve the inversion

and dilatation invariance of the Kähler potential. Taking
k2; k4;… → 0, we recover the usual shift-symmetric Kähler

FIG. 5. Simulation of scalar field dynamics of Φ (upper panel)
and T (lower panel) versus time for the product coupling case
with generic profile (33). Initial displacements in T from the
α-KKLT trajectory are quickly dampened close to Φ ¼ 0. The
waterfall effect is clearly visible in this picture: the scalars
oscillate around the universal Minkowski minimum after pro-
ducing inflation on the plateau. (Parameters are W0 ¼ −0.0004,
A ¼ 1, a ¼ 0.1, α ¼ 1.)
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potential. The higher-order terms have no effect on the scalar
potential along Φ ¼ Φ, but they dramatically alter the mass
of the imaginary directions. A suitable choice of parameters
renders ImðΦÞ stable over the entire field range.

B. General coupling without inflationary profile

We now consider a model of the general coupling type as
described in Sec. IV. We take α ¼ 1 and examine the real
directions of the complex scalars first. The superpotential is

W ¼ Φ3ðW0 þ Aþe−aTÞ − ðW0 þ A−e−aTÞ þ s0Φ
3
2S ð37Þ

with different parameters A�. The S term is included to
uplift the AdS vacuum at the end of inflation to Minkowski,
thus breaking supersymmetry and still allowing for a
gravitino mass significantly below the Hubble scale of
inflation. The scalar potential along the T-direction mini-
mum is pictured in Fig. 7.
The waterfall effect ends inflation at φ≃ 0.43 in

canonical variables or Φ≃ 0.70 in geometric variables.
For N ¼ 50, the shift of the effective number of e-folds due
to the waterfall is Oð1Þ. The shift ΔN is generally very
insensitive to changes of the superpotential parameters. We
conclude that the observables of the general coupling
model without inflationary profile converge to the universal

attractor point (29) for a large class of parameter choices,
for any order unity α.

1. Stability of the imaginary directions

The stability analysis changes slightly due to the
introduction of the nilpotent uplifting. This adds a constant
contribution to the squared mass of the imaginary Φ
direction. At the boundary, we have

M2
ImðΦÞ ¼

a2ðα − 1ÞA2
−e−2aTΦ−3

ffiffi
α

p

23α−19αT
þ 2−3α−2e−2aT

9αT3

× ½−8aðαþ 1ÞA2
−Tð2aT þ 3Þ

þ 24aðαþ 1ÞAþA−Sþ 9αs20e
2aT �: ð38Þ

Just as before, all directions are stable and highly massive
in the vacuum at the end of inflation. This vacuum is SUSY
AdS without nilpotent uplifting and nonsupersymmetric
Minkowski with the uplifting. In the α ¼ 1 example, the
imaginary direction of Φ is positive throughout the field
range of inflation. The mass is of the order of the Hubble
scale around Φ → 0 and then quickly rises (see Fig. 7).
If one uses a different uplifting mechanism (e.g. an

explicit supersymmetry breaking term induced by anti-
branes as considered by KKLT), this raising of the ImðΦÞ
mass at the boundary of moduli space may not occur. There
is still a stable region of field space which can support

FIG. 6. Mass of ImðΦÞ for the product case examples with
tuned profile (31) (upper panel) and generic profile (33) (lower
panel) for α > 1. In both cases, there is a divergent positive mass
at the boundary Φ ¼ 0, a large positive mass around the SUSY
Minkowski vacuum and a mild destabilization at intermediate
field values. (Parameters are W0 ¼ −0.0004, A ¼ 1, a ¼ 0.1.)

0.1 0.2 0.3 0.4 0.5

2
Im

FIG. 7. Scalar potential along T-direction minimum (upper
panel) and mass of ImðΦÞ (lower panel) for the general coupling
case. There is a finite positive mass of order Hubble scale at the
boundary Φ ¼ 0 and a large positive mass around the vacuum at
the end of inflation. (Parameters are W0 ¼ −0.0004, Aþ ¼ 6,
A− ¼ 1, a ¼ 0.1, α ¼ 1.)
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60 e-folds of inflation, but there is no decoupling of ImðΦÞ
at the boundary. It is possible to solve this using the
methods of the previous section.

VI. GENERAL COUPLING WITH NILPOTENT
SGOLDSTINO

In the previous sections, we have considered the infla-
tionary sector as given by the single-superfield formulation
of α-attractors of [29], with no need of additional super-
fields to assure stabilization. This model has an intricate
structure that is necessary to generate a de Sitter solution.
We can simplify the superpotential considerably by making
more extensive use of uplifting. However, this changes
certain qualitative aspects of our previous setup. Our new
starting point is the following model with simplified
superpotential:

W ¼ Φ
3α
2WmodðTÞ; ð39Þ

with the standard sum-separable Kähler potential and the
usual KKLT Wmod. In the modified shift-symmetric Kähler
frame defined by Eq. (2), the overall power of Φ is gauged
away and the superpotential reads simply WðΦ; TÞ ¼
WmodðTÞ.
As a product separable superpotential, the SUSY con-

dition of KKLT carries over exactly and it corresponds to a
solution of ∂TV ¼ 0. However, the scalar potential is flat
AdS with cosmological constant

Λ ¼ −
2−3α−1a2A2e−2aT0

3T0

; ð40Þ

with T0 determined by the SUSY condition (9). We can
uplift the scalar potential by means of a nilpotent chiral
superfield S. This is subject to the constraint S2 ¼ 0. The
nontrivial solution to this superfield equation involves
writing the scalar part in S as a bilinear in fermions,
divided by its auxiliary component. The nilpotent chiral
superfield therefore carries no scalar degrees of freedom.
We may treat S as a regular superfield, calculate the scalar
potential and at the end impose S ¼ 0, as advocated in [43]
and employed in different cosmological applications (see
e.g. [20,21,44–47]). To the Kähler potential we add a
canonical term SS. We choose the following superpotential:

W ¼ Φ
3α
2WmodðTÞs0S; ð41Þ

which maintains the product separable structure. The
cosmological constant becomes

Λ ¼ 2−3α−1a2A2s20e
−2aT0

9T0

: ð42Þ

We can generate an inflationary slope by deforming the
product separable superpotential. In particular, we can add

generic expansions fðΦÞ and gðΦÞ to the S-dependent
factor in the superpotential such as

W ¼ Φ
3α
2 ½WmodðTÞ�½fðΦÞ þ gðΦÞS�: ð43Þ

This breaks the product separable structure between S and
Φ, but not between T and the other superfields, so that
DTW ¼ 0 still defines an extremal trajectory. We recover
the model of [20] along the trajectory defined byDTW ¼ 0.
One can further generalize the model by decomposing

the superpotential into all the different types of coupling it
contains:

W ¼ Φ
3α
2 ½AðΦÞ þ BðΦÞe−aT þ CðΦÞSþDðΦÞSe−aT �:

ð44Þ

The latter expression generically leads to α-attractor
behavior when we consider the functions AðΦÞ, BðΦÞ,
etc. to be independent generic expansions in Φ. We
conclude that making use of a nilpotent sector simplifies
the superpotential considerably, as was already noted in
[20]. Specifically the case α ¼ 2=3 generates a very simple
setting with just integer powers of Φ in W and a simple
Kähler potential such as

K ¼ −2 logðΦþ ΦÞ − 3 logðT þ TÞ þ SS;

W ¼ Φ½AðΦÞ þ BðΦÞe−aT þ CðΦÞSþDðΦÞSe−aT �: ð45Þ

Note that one can choose the functions B, C and D also to
be independent of Φ. In addition the three-field coupling
term, parametrized by D, can be set equal to zero.
In the asymptotic region Φ → 0, the location of the

T-direction minimum T0 is determined entirely by the
constant terms in the generic expansion. By choosing these
coefficients appropriately, we can generate an inflationary
plateau with stabilized volume modulus. Unlike in the
previous setup, it is possible to choose profile functions
AðΦÞ, BðΦÞ, etc. such that the scalar potential contains
a T-direction minimum throughout the entire range
Φ ¼ ð0;∞Þ. This requires tuning one of the constant order
coefficients in the expansions if we take polynomial profile
functions. The Kähler modulus minimum T0 as a function
of Φ then smoothly interpolates between its asymptotic
limits. Unlike in the previous setup, there is no waterfall
effect for a generic choice of profile functions.
The first deviation from the asymptotic T0 at Φ ¼ 0 is of

order Φ1 (when the linear terms in the expansions do not
vanish). In geometrically defined variables Φ and T, the
field excursions during inflation of Φ and T are of the same
order of magnitude. However, the moduli space geometry
aroundΦ ¼ 0 stretches out theΦ excursion in the canonical
variable φ, so that the effective single-field description
of inflation is justified. In this case, the decoupling of the
volume modulus during inflation is entirely due to the
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boundary point becoming a very long plateau in canonical
coordinates. Remember that in the previous setup based on
α-scale supergravity, there were two effects contributing to
the suppression of the Kähler modulus backreaction: the
inverse power (Φ−3

2

ffiffi
α

p
in shift-symmetric Kähler frame)

generated a large mass for ReðTÞ, and the moduli space
geometry stretched out the Φ excursion in canonical
variables.
To end with a concrete example, the choice6 AðΦÞ ¼

−0.0004 − 0.0001Φþ 0.00005Φ2, BðΦÞ ¼ 1, CðΦÞ ¼
0.0006825 and DðΦÞ ¼ 0 generates an effective scalar
potential with a linear falloff at the boundary of moduli
space and a nearly Minkowski minimum at Φ≃ 1 (i.e.
φ≃ 0). The mass squared of both imaginary directions
ImðTÞ and ImðΦÞ is order Hubble scale or higher through-
out the inflationary trajectory. The Kähler modulus makes a
relatively modest field excursion of ΔT ≃ 1.7 from Φ ¼ 0
to the vacuum at Φ ¼ 1, with most of this excursion
happening close to Φ ¼ 1, at the end of inflation. As the
falloff is linear in geometric variables at the boundary of
the moduli space, the predictions are the ones typical of
α-attractor equation (7).

VII. CONCLUSIONS

In this work, we have provided strong evidence for a
relative immunity of inflationary α-attractors to the back-
reaction of Kähler moduli, within the KKLT stabilization
scenario. Specifically, we have shown that the effects of a
Kähler modulus T is negligible during the expansion
period, which is driven by the real component of the
superfield Φ. This phenomenon has been observed in all
three coupling cases analyzed in this paper (i.e. product
coupling, general coupling and with nilpotent sGoldstino).
This stability is intimately connected to the fact that

inflation takes place at the boundary of moduli space. In
this limit, the coupling of the two sectors produces indeed a
number of interesting features. The original KKLT mini-
mum is raised to positive values thanks to the supersym-
metry breaking in the Φ direction. On the other hand, its
stability and supersymmetry (DTW ¼ 0) features remain
unaffected. This so-called α-KKLT minimum becomes a
perfect starting point for inflation. Once we switch to the
canonical variable for the inflaton field, this boundary point
gets indeed stretched to a long dS plateau.
Moving away from the boundary, the inflaton always

follows the characteristic exponential falloff, yielding the
universal cosmological predictions given by Eq. (7). This
can always be induced by inserting a profile function fðΦÞ
(a generic Taylor expansion) into W, analogously to what
happens to the original α-attractor models [12,19–21,
29,34]. More interestingly, we have shown that, in the

case of general couplings (analyzed in Sec. IV), the
exponential deviation from a positive plateau simply
becomes a genuine and natural consequence of the mutual
backreaction between T and Φ. In the latter case, the
observational prediction are universal and restricted
to Eq. (29).
Approaching the end of inflation, the interplay between

the modulus T and Φ does become important. It produces a
waterfall effect which ends inflation and leaves all the
scalars in a phenomenologically suitable vacuum. This
vacuum is supersymmetric, in absence of any uplifting
mechanism to de Sitter. Remarkably, this means that there
is generically no connection between the gravitino mass in
the vacuum and the Hubble scale of inflation. Although
some proposals have pointed out how to decouple these
physical scales [4], our results suggest a new approach to
solving this problem.
The above findings represent a novelty in the landscape

of previous studies about the interaction between moduli
and inflation. Especially in the case of large-field scenar-
ios, the claims have been often negative: the backreaction
of the Kähler modulus was destabilizing the original
inflationary dynamics. In the most optimistic scenario,
a certain amount of fine-tuning was required in order to
generate the minimum amount of e-folds of exponential
expansion, although with some modification of the origi-
nal inflationary predictions. In [11] this effect was dubbed
“flattening” as it generically lowered the value of the
tensor-to-scalar ratio with respect to the original ϕ2

predictions.
The present study appears to be free of such problems:

the backreaction of the moduli does not destabilize the
inflationary trajectory. Instead, the additional sector
induces an inflationary profile in the case of general
couplings, and moreover it offers a universal supersym-
metric minimum to the scalars after inflation. Moreover,
strict bounds between the value of the gravitino mass
and the inflationary scale were always representing a
threat to model builders.
A number of aspects deserve further study. On the

phenomenological side, these include a detailed investiga-
tion of the choice of the inflationary profile. We have
provided a proof of principle that one can either introduce a
tailor-made Minkowski minimum along the asymptotic-
KKLT branch, or end up in the universal Minkowski
minimum along the other branch. It remains to be seen
what is generic, and how stable various choices are. In
contrast, on the string theory side, it remains a challenge of
embedding α-attractors in a concrete scenario. Despite
some approximate realizations in specific contexts (see
e.g. [48,49] for fibered Calabi-Yau geometries), one would
like to identify the natural mechanism underlying the
attractor nature of these models, once the appropriate
inflaton modulus sector has been recognized. In this
respect, the present study provides a useful guideline to

6Note that the coefficients not multiplying an exponential in T
are much smaller than BðΦÞ ¼ 1, as is always necessary in KKLT
to stabilize the Kähler modulus at a large positive value.
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determine the generic structure which always preserves the
asymptotic inflationary plateau at the boundary of moduli
space. Whereas the hyperbolic Kähler geometry of the
inflaton plays again a crucial role, the coupling patterns
here discussed leave a certain freedom for the super-
potential. The general coupling setup (21) seems most
promising, as it essentially consists of two copies of no-
scale KKLT. It requires no additional inflationary profile
and has universal observational predictions (29).
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