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General features of spontaneous baryogenesis are studied. The relation between the time derivative of the
(pseudo) Goldstone field and the baryonic chemical potential is revisited. It is shown that this relation
essentially depends upon the representation chosen for the fermionic fields with nonzero baryonic number
(quarks). The calculations of the cosmological baryon asymmetry are based on the kinetic equation
generalized to the case of nonstationary background. The effects of the finite interval of the integration over
time are also taken into consideration. All these effects combined lead to a noticeable deviation of the
magnitude of the baryon asymmetry from the canonical results.
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I. INTRODUCTION

The usual approach to cosmological baryogenesis is
based on three well-known Sakharov’s conditions [1]:
(a) nonconservation of baryonic number, (b) breaking of
C and CP invariance, and (c) deviation from thermal
equilibrium. There are however some interesting scenarios
of baryogenesis for which one or several of the above
conditions are not fulfilled. A very popular scenario is the
so-called spontaneous baryogenesis (SBG) proposed in
Refs. [2–4]; for reviews see, e.g., [5,6]. The term sponta-
neous is related to spontaneous breaking of underlying
symmetry of the theory. It is assumed that in the unbroken
phase the Lagrangian is invariant with respect to the global
Uð1Þ-symmetry, which ensures conservation of the total
baryonic number including that of the Higgs-like field, Φ,
and the matter fields (quarks). This symmetry is supposed
to be spontaneously broken and in the broken phase the
Lagrangian density acquires the term

LSB ¼ ð∂μθÞJμB; ð1:1Þ

where θ is the Goldstone field, or in other words, the phase
of the field Φ and JμB is the baryonic current of matter fields
(quarks). Depending upon the form of the interaction of Φ
with the matter fields, the spontaneous symmetry breaking
(SSB) may lead to nonconservation of the baryonic
current of matter. If this is not so and JμB is conserved,
then integrating by parts Eq. (1.1) we obtain a vanishing
expression and hence the interaction (1.1) is unobservable.
The next step in the implementation of the SBG

scenario is the conjecture that the Hamiltonian density

corresponding to LSB is simply the Lagrangian density
taken with the opposite sign,

HSB ¼ −LSB ¼ −ð∂μθÞJμB: ð1:2Þ

This could be true, however, if the Lagrangian depended
only on the field variables but not on their derivatives, as it
is argued below.
For the time being we neglect the complications related

to the questionable identification (1.2) and proceed further
in description of the SBG logic.
For the spatially homogeneous field θ ¼ θðtÞ the

Hamiltonian (1.2) is reduced to HSB ¼ −_θnB, where
nB ≡ J4B is the baryonic number density of matter, so it
is tempting to identify _θ with the chemical potential,
μ, of the corresponding system; see, e.g., [7]. If this is
the case, then in thermal equilibrium with respect to the
baryon nonconserving interaction the baryon asymmetry
evolves to

nB ¼ gSBQ

6

�
μT2 þ μ3

π2

�
→

gSBQ

6

�
_θT2 þ

_θ3

π2

�
; ð1:3Þ

where T is the cosmological plasma temperature, and gS
and BQ are respectively the number of the spin states and
the baryonic number of quarks, which are supposed to be
the bearers of the baryonic number.
It is interesting that for successful SBG two of the

Sakharov’s conditions for the generation of the cosmologi-
cal baryon asymmetry, namely, breaking of thermal equi-
librium and a violation of C and CP symmetries, are
unnecessary. This scenario is analogous to the baryogenesis
in the absence of CPT (CPT is the product of charge

conjugation (C), mirror reflection (P), and time reversal (T)

transformations. According to CPT theorem the usual field
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theories are invariant with respect to this transformation. In
our case CPT-invariance is broken by external field θðtÞ)
invariance, if the masses of particles and antiparticles are
different. In the latter case the generation of the cosmo-
logical baryon asymmetry can also proceed in thermal
equilibrium [8,9]. In the SBG scenario the external field
θðtÞ plays the role of the CPT “breaker”.
However, in contrast with the usual saying, the identi-

fication _θ ¼ μB is incorrect. Indeed, if _θðtÞ is constant or
slowly varying, then according to Eq. (1.2) it shifts the
energies of baryons with respect to antibaryons at the same
spatial momentum, by _θ. Thus there would be different
number densities of baryons and antibaryons in the plasma
even if the corresponding chemical potential vanishes. In
this case the baryon asymmetry is determined by effective
chemical potential μeff ¼ μ − _θ to be substituted into
Eq. (1.3) instead of μ. The detailed arguments are presented
in Sec. IV. It is also shown there that the baryonic chemical
potential tends to 0 when the system evolves to the thermal
equilibrium state. So in equilibrium the baryon asymmetry
is nonzero with vanishing chemical potential.
The picture becomes different if we use another repre-

sentation for the quark fields. Redefining the quark fields by
the phase transformation, Q → expðiθ=3ÞQ, we can elimi-
nate the term (1.1) from the Lagrangian, but instead it
appears in the interaction term that violates B-conservation;
see Eq. (2.5). Clearly in this case _θ is not simply connected
to the chemical potential. However, as is shown in the
present paper, the baryonic chemical potential in this
formulation of the theory tends in equilibrium to c_θ with
a constant coefficient c. Anyway, as we see from the
solution of the kinetic equation presented below, the
physically meaningful expression of the baryon asymmetry,
nB, expressed through θ, is the same independently of the
above-mentioned two different formulations of the theory,
though the values of the chemical potentials are quite
different. Seemingly this difference is related to nonaccu-
rate transition from the Lagrangian LSB to the Hamiltonian
HSB, made according to Eq. (1.2). Such identification is
true if the Lagrangian does not depend on the time
derivative of the corresponding field, θðtÞ, in the case
under scrutiny. The related criticism of spontaneous baryo-
genesis can be found in Ref. [10]; see also the review [6].
Recently the gravitational baryogenesis scenario was

suggested [11]; see also [12]. In these works the original
SSB model was modified by the substitution of curvature
scalar R instead of the Goldstone field θ. With the advent of
the FðRÞ-theories of modified gravity the gravitational
baryogenesis was studied in their frameworks [13] as well.
In this paper the classical version of SBG is studied. We

present an accurate derivation of the Hamiltonian for the
Lagrangian that depends upon the field derivatives. For a
constant _θ and sufficiently large interval of the integration
over time the results are essentially the same as obtained in

the previous considerations. With the account of the finite
time effects, which effectively break the energy conserva-
tion, the outcome of SBG becomes significantly different.
We have also considered the impact of a nonlinear time
evolution of the Goldstone field,

θ ¼ _θ0tþ θ̈0t2=2; ð1:4Þ

and have found that there can be significant deviations from
the standard scenario with _θ ≈ const.
A strong deviation from the standard results is also found

for the pseudo-Goldstone field oscillating near the mini-
mum of the potential UðθÞ.
The paper is organized as follows. In Sec. s-ssb the

general features of the spontaneous breaking of baryonic
Uð1Þ-symmetry are described and the (pseudo) Goldstone
mode, its equation of motion, as well as the equations
of motion of the quarks are introduced. In Sec. III the
construction of the Hamiltonian density from the known
Lagrangian is considered. Next, in Sec. IV the standard
kinetic equation in stationary background is presented.
Section V is devoted to the generation of cosmological
baryon asymmetry with out-of-equilibrium purely
Goldstone field. The pseudo-Goldstone case is studied in
Sec. VI. In Sec. VII we derive the kinetic equation in the
time dependent external field and/or for the case when
energy is not conserved because of finite limits of integra-
tion over time. Several examples, for which such a kinetic
equation is relevant, are presented in Sec. VIII. Lastly in
Sec. IX we conclude.

II. SPONTANEOUS SYMMETRY BREAKING
AND THE GOLDSTONE MODE

We start with the theory of a complex scalar field Φ
interacting with fermions Q and L with the Lagrangian,

LðΦÞ ¼ gμν∂μΦ�∂νΦ − VðΦ�ΦÞ þ Q̄ðiγμ∂μ −mQÞQ
þ L̄ðiγμ∂μ −mLÞLþ LintðΦ; Q; LÞ; ð2:1Þ

where it is assumed that Q and Φ have nonzero baryonic
numbers, while L do not. Here VðΦ�ΦÞ is the self-
interaction potential of Φ defined below in Eq. (2.4).
The interaction Lagrangian Lint describes the coupling
between Φ and fermionic fields. In the toy model studied
below we take it in the form

Lint ¼
ffiffiffi
2

p

m2
X

Φ
f
ðL̄γμQÞðQ̄cγμQÞ þ H:c:; ð2:2Þ

where Qc is the charged conjugated quark spinor and mX
and f are parameters with dimension of mass. We prescribe
to Φ and Q the baryonic numbers ð−1Þ and 1=3, respec-
tively, so the interaction (2.2) conserves the baryonic
number. The interaction of this type can appear, e.g., in
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SUð5Þ grand unified theory (GUT). For simplicity, in our
toy model we do not take into account the quark colors.
Q and L can be any fermions, not necessarily quarks and

leptons of the standard model. They can be, e.g., new heavy
fermions possessing similar or the same quantum numbers
as the quarks and leptons of the standard model. They
should be coupled to the ordinary quarks and leptons in
such a way that the baryon asymmetry in the Q-sector is
transformed into the asymmetry of the observed baryons.
Other forms of Lint can be considered leading, e.g., to

transition 3L ↔ Q or 2Q ↔ 2Q̄. They are not permitted
for the standard quarks. However, for the usual quarks the
process 3q ↔ 3q̄ is permitted. Note that the kinetics of all
these processes is similar. We denote by q the usual quarks
or the fermionic field with the same quantum numbers.
The Lagrangian (2.1) is invariant under the following

Uð1Þ transformations with constant α:

Φ → eiαΦ; Q → e−iα=3Q; L → L: ð2:3Þ

In the unbroken symmetry phase this invariance leads to the
conservation of the total baryonic number of Φ and of
quarks. In the realistic model the interaction of left- and
right-handed fermions may be different but we neglect this
possible difference in what follows.
The global Uð1Þ-symmetry is assumed to be sponta-

neously broken at the energy scale f via the potential of the
form,

VðΦ�ΦÞ ¼ λðΦ�Φ − f2=2Þ2: ð2:4Þ

This potential reaches the minimum at the vacuum expect-
ation value of Φ equal to hΦi ¼ feiϕ0=f=

ffiffiffi
2

p
with an

arbitrary constant phase ϕ0.
Below scale f we can neglect the heavy radial mode of Φ

with the massmradial ¼ λ1=2f, since being very massive it is
frozen out, but this simplification is not necessary and is not
essential for the baryogenesis. The remaining light degree
of freedom is the variable field ϕ, which is the Goldstone
boson of the spontaneously broken Uð1Þ. Up to a constant
factor the field ϕ is the angle around the bottom of the
Mexican hat potential given by Eq. (2.4). Correspondingly
we introduce the dimensionless angular field θ≡ ϕ=f and
thus Φ ¼ hΦi expðiθÞ.
The low energy limit of the Lagrangian (2.1) in the

broken phase, which effectively describes the dynamics of
the θ field, has the form

L1ðθÞ¼
f2

2
∂μθ∂μθþQ̄1ðiγμ∂μ−mQÞQ1þ L̄ðiγμ∂μ−mLÞL

þ
�
eiθ

m2
X
ðL̄γμQ1ÞðQ̄c

1γμQ1ÞþH:c:

�
−UðθÞ: ð2:5Þ

Here we added the potential UðθÞ, which may be induced
by an explicit symmetry breaking and can lead, in

particular, to a nonzero mass of θ. We use the notation
Q1 for the quark field to distinguish it from the phase
rotated field Q2 introduced below in Eq. (2.7). In a realistic
model the quark fields should be (anti) symmetrized with
respect to color indices, omitted here for simplicity.
If UðθÞ ¼ 0, the theory remains invariant with respect to

the global Uð1Þ-transformations (i.e. the transformations
with a constant phase α),

Q → e−iα=3Q; L → L; θ → θ þ α: ð2:6Þ

The phase transformation of the quark field with the coor-
dinate dependent phase α ¼ θðt;xÞ introduces the new field
Q1 ¼ e−iθ=3Q2. In terms of this field the Lagrangian (2.5)
turns into

L2ðθÞ¼
f2

2
∂μθ∂μθþQ̄2ðiγμ∂μ−mQÞQ2þ L̄ðiγμ∂μ−mLÞL

þ
�

1

m2
X
ðQ̄2γμLÞðQ̄2γμQc

2ÞþH:c:

�

þð∂μθÞJμ−UðθÞ; ð2:7Þ

where the quark baryonic current is Jμ ¼ ð1=3ÞQ̄γμQ. Note
that the form of this current is the same in terms ofQ1 andQ2.
The equation of motion for the quark field Q1 that

follows from Lagrangian (2.5) has the form

ðiγμ∂μ −mQÞQ1

þ e−iθ

m2
X
½γμLðQ̄1γμQc

1Þ þ 2γμQc
1ðQ̄1γμLÞ� ¼ 0: ð2:8Þ

Analogously the equation of motion for the phase rotated
field Q2 derived from Lagrangian (2.7) is

�
iγμ∂μ −mQ þ 1

3
γμ∂μθ

�
Q2

þ 1

m2
X
½γμLðQ̄2γμQc

2Þ þ 2γμQc
2ðQ̄2γμLÞ� ¼ 0: ð2:9Þ

Equations for the θ field derived from these two
Lagrangians in flat space-time have respectively the forms

f2ð∂2
t − ΔÞθ þ U0ðθÞ

þ
�
ie−iθ

m2
X
ðQ̄1γμLÞðQ̄1γμQc

1Þ þ H:c:

�
¼ 0 ð2:10Þ

and

f2ð∂2
t − ΔÞθ þ U0ðθÞ þ ∂μJ

μ
B ¼ 0; ð2:11Þ

where U0ðθÞ ¼ dU=dθ.
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Using either the equation of motion (2.8) or (2.9) we can
check that the baryonic current is not conserved. Indeed, its
divergence is

∂μJ
μ
B ¼ ie−iθ

m2
X
ðQ̄1γμQc

1ÞðQ̄1γ
μLÞ þ H:c: ð2:12Þ

The current divergence in terms of the rotated field Q2 has
the same form but without the factor expð−iθÞ. So the
equations of motion for θ in both cases (2.10) and (2.11)
coincide, as expected.
Equation (2.11) expresses the law of the total baryonic

current conservation in the unbroken phase. When the
symmetry is broken, the nonconservation of the physical
baryons (in our case of quarks) becomes essential and may
lead to the observed cosmological baryon asymmetry. Such
a B-nonconserving interaction may have many different
forms. The one presented above describes the transition
of three quark-type fermions into the (anti) lepton. There
may be transformation of two or three quarks into an equal
number of antiquarks. Such an interaction describes neu-
tron-antineutron oscillations, now actively looked for [14].
There even can be a quark transition into three leptons.
Depending on the interaction type the relation between _θ
and the effective chemical potential has different forms, i.e.,
different values of the proportionality coefficient c men-
tioned in the introduction.
If we consider realistic modes dealing only with the

known quarks and leptons, the processes of nucleon decay
into a lepton or leptons plus some other particles with
vanishing total leptonic and baryonic numbers or the
processes of three quarks transforming into three antiquarks
are of interest. Among them is, first, the proton or neutron
decay. These processes have been actively searched for
and the existing bound on the proton lifetime is about
τp ≥ 1033 years [15]. It means that the mass mX should be
above 1014 GeV, which makes such processes not very
promising for baryogenesis. The B-nonconserving neutron
decay, see, e.g., [16], especially into invisible modes, e.g.,
into 3ν, is much more weakly restricted (approximately by
6 orders of magnitude). This leaves such processes more
appropriate for baryogenesis. Quark-antiquark transforma-
tions leading to neutron-antineutron oscillations may also
be of interest for baryogenesis [14].
In the spatially homogeneous case, when ∂μJ

μ
B ¼ _nB

and θ ¼ θðtÞ, and if UðθÞ ¼ 0, Eq. (2.11) can be easily
integrated giving

f2½_θðtÞ − _θðtinÞ� ¼ −nBðtÞ þ nBðtinÞ: ð2:13Þ

It is usually assumed that the initial baryon asymmetry
vanishes; nðtinÞ ¼ 0.
The evolution of nBðtÞ is governed by the kinetic

equation discussed in Sec. IV. This equation allows us
to express nB through θðtÞ and to obtain the closed systems

of, generally speaking, integrodifferential equations. In
thermal equilibrium the relation between _θ and nB may
become an algebraic one, but this is true only in the case
when the interval of the integration over time is sufficiently
long and if _θ is a constant or slowly varying function of time.
In the cosmological Friedmann-Robertson-Walker

(FRW) background the equation of motion of θ (2.11)
becomes

f2ð∂t þ 3HÞ_θ − a−2ðtÞΔθ þ U0ðθÞ ¼ −ð∂t þ 3HÞnB;
ð2:14Þ

where aðtÞ is the cosmological scale factor andH ¼ _a=a is
the Hubble parameter. For the homogeneous theta field,
θ ¼ θðtÞ, this equation turns into

f2ð∂t þ 3HÞ_θ þU0ðθÞ ¼ −ð∂t þ 3HÞnB: ð2:15Þ

We do not include the curvature effects in the Dirac
equations because they are not essential for what follows.
Still we have taken into account the impact of the
cosmological expansion on the current divergence using
the covariant derivative in the FRW space-time:
DμJμ ¼ _nB þ 3HnB.

III. HAMILTONIANS VERSUS LAGRANGIANS

Though, as we see in Secs. IV and VII, the baryon
asymmetry originated in the frameworks of SBG is propor-
tional to _θ in many interesting cases, as justly envisaged in
Refs. [2,3]; the identification of _θ with baryonic chemical
potential, _θ ¼ μB, is questionable, as we argue below.

A. General consideration

In the canonical approach the Hamiltonian density,H, is
derived from the Lagrangian density, L, in the following
way. The Lagrangian density is supposed to depend upon
some field variables, ϕa, and their first derivatives, ∂μϕa.
First, we need to define the canonical momentum con-
jugated to the coordinate ϕa,

πa ¼
∂L
∂ _ϕa

: ð3:1Þ

The Hamiltonian density is expressed through the canoni-
cal momenta and coordinates as

H ¼
X
a

πa _ϕa − L; ð3:2Þ

where the time derivatives, _ϕa, should be written in terms of
the canonical momenta, πa.
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The Hamilton equations of motion,

_ϕ ¼ ∂H
∂π and _π ¼ −

∂H
∂ϕ ; ð3:3Þ

are normally equivalent to the Lagrange equations obtained
by the least action principle from the Lagrangian.
For example for a real scalar field with the Lagrangian

LðχÞ ¼ ð∂χÞ2=2 −m2
χχ

2=2 ð3:4Þ

the canonical momentum is πχ ¼ _χ and the Hamiltonian
density is:

HðχÞ ¼ ð1=2Þ½π2χ þ ð∇χÞ2 þm2
χχ

2�; ð3:5Þ

while for a complex scalar field with

LðϕÞ ¼ j∂ϕj2 −m2
ϕjϕj2 ð3:6Þ

the canonical momenta are πϕ ¼ _ϕ� and πϕ� ¼ _ϕ and the
Hamiltonian density is

HðϕÞ ¼ πϕπϕ� þ j∇ϕj2 þm2
ϕjϕj2: ð3:7Þ

The corresponding Hamilton equations lead, as expected,
to the usual Klein-Gordon equations for ϕ or χ.
For the Dirac field with

LðψÞ ¼ ψ̄ði∂ −mψÞψ ð3:8Þ

the canonical momenta are πψ ¼ iψ† and πψ† ¼ 0, so we
arrive to the well-known expression,

HðψÞ ¼ ψ†ðiγ4γk∂k þ γ4mÞψ : ð3:9Þ

Let us now do the same exercise but with the symmetric
Lagrangian, which differs from the canonical one by a total
derivative,

LsymðψÞ ¼ ½ψ̄ði∂ − 2mψÞψ − ið∂μψ̄Þγμψ �=2: ð3:10Þ

The corresponding canonical momenta are πψ ¼ iψ†=2 and
πψ† ¼ −iψ=2 and the Hamiltonian density is

HsymðψÞ ¼ mψψ
†γ4ψ þ i

2
ðψ†γ4γk∂kψ − ∂kψ

†γ4γkψÞ;
ð3:11Þ

which differs from the usual expression (3.9) by the space
divergence, ði=2Þ∂kðψ†γ4γkψÞ. The total Hamiltonian,
defined as

H ¼
Z

d3xH; ð3:12Þ

remains the same in both cases, (3.9) and (3.11), if the
fields vanish at spatial infinity. Below the field θ depending
only on time is considered, but one can assume that it
weakly depends upon the space coordinates and vanishes
at infinity. The local dynamics in this case remains
undisturbed.

B. The case of SSB

Let us consider now a model with the coupling

LSBðΘÞ ¼ ð∂μΘÞJμB; ð3:13Þ

where Θ is some scalar field and JμB is a vector baryonic
current. It has the form

JμB ¼ Bψ̄γμψ ; ð3:14Þ

where ψ is some fermionic baryon (e.g., quark) and B is
its baryonic number. Such an interaction is postulated in
spontaneous baryogenesis scenarios [2–5] or in gravita-
tional baryogenesis [11,12]. In the former case Θ ¼ θ is a
(preudo) Goldstone field, while in the latter Θ ¼ R=m2

R
with R being the curvature scalar and mR is a constant
parameter with dimension of mass.
In what follows we confine ourselves to consideration of

the Goldstone field θ and distinguish between the following
two possibilities:
(A) θ is a dynamical field with the free Lagrangian of

the form given by Eq. (3.4) where χ ¼ fθ. This is
exactly the situation that is realized in the case of
spontaneous symmetry breaking.

(B) θ is an external “fixed” field. The term fixed is used
here in the sense that the dependence of θ on
coordinates is fixed by some dynamics which does
not enter into the Lagrangians under scrutiny. This is
the case which is studied both in the spontaneous
baryogenesis and in the gravitational baryogenesis.
It is considered in the next subsection.

In the canonical case A the Hamiltonian density is
calculated in accordance with the specified above rules.
Correspondingly, for the Lagrangian (2.5) we obtain

H1ðθÞ ¼
f2

2
ð_θ2 þ ð∇θÞ2Þ þQ†

1γ4ðiγk∂k þmQÞQ1

þ L†γ4ðiγk∂k þmLÞL

−
�
e−iθ

m2
X
ðQ†

1γ4γμLÞðQ†
1γ4γμQ

c
1Þ þ H:c:

�
þ UðθÞ;

ð3:15Þ

where the θ-conjugated canonical momentum is π1θ ¼ f2 _θ.
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Analogously for the Lagrangian (2.7) the Hamiltonian
density is

H2ðθÞ ¼
f2

2
ð_θ2 þ ð∇θÞ2Þ þQ†

2γ4ðiγk∂k þmQÞQ2

þ L†γ4ðiγk∂k þmLÞL

−
�

1

m2
X
ðQ†

2γ4γμLÞðQ†
2γ4γμQ

c
2Þ þ H:c:

�

þ UðθÞ − ð1=3Þð∂kθÞðQ†
2γ4γkQ2Þ; ð3:16Þ

where the canonical momentum is π2θ ¼ f2 _θ þ nB.
Correspondingly, _θ should be expressed through the
canonical momentum π2θ according to

_θ ¼ ðπ2θ − nBÞ=f2: ð3:17Þ

Taking into account that Q1 ¼ e−iθ=3Q2 we can check
that the Hamiltonians (3.15) and (3.16) interchange under
this transformation. Thus we see that the calculation of
Hamiltonians according to the specified rules is self-
consistent.
Note that both Hamiltonians, as they are presented in

Eqs. (3.15) and (3.16), do not contain chemical potential, _θ,
in the form _θnB and in this sense contradict the presumption
(1.2). However, the case is somewhat more tricky. Written
in terms of the canonical momentum the corresponding part
of the Hamiltonian (3.16) (the first term) has the form
δH2ðθÞ ¼ ðπ2θ − nBÞ2=ð2f2Þ. In the spatially independent
case and in the absence of UðθÞ the Hamiltonian equation
of motion for H2 has the form _π2θ ¼ 0, so its solution is
π2θ ¼ const. Evidently this equation is equivalent to the
Lagrange equation of motion for the θ field (2.11) (where
the cosmological expansion is neglected).
The presence of the ð−π2θnB=f2Þ term in the

Hamiltonian (3.16) implies that π2θ=f2 can be understood
as the baryonic chemical potential, μB. Since it is usually
assumed that initially nBðtinÞ ¼ 0, π2θ ¼ f2 _θðtinÞ and thus
μB ¼ _θðtinÞ, but not μB ¼ _θðtÞ taken at the running t for
which thermal equilibrium is established.

C. External field θ

The assertion (1.2) might be, in principle, valid, if θ was
an external fixed field with the dynamics determined “by
hand,” as it is noted in Sec. III B. In this case expression
(1.2) could be formally true but, as we show here, such a
theory possibly has some internal inconsistencies.
Let us study previously considered theories with

Lagrangians (2.5) and (2.7), where the kinetic and potential
terms for θ are omitted. We have two options for the
construction of Hamiltonians: either to proceed along the
usual lines specified above or to assume the validity of
the prescription Hint ¼ −Lint for the interaction parts of

Lagrangians. There is an unambiguous procedure for
Lagrangian (2.5), since its interaction part does not contain
derivatives. It is not so for Lagrangian (2.7), because of the
term ð∂μθÞJμB for which the conjecture Hint ¼ −Lint is not
true. As we have seen in Sec. III B, the standard approach
leads to the Hamiltonian (3.16), which does not contain the
term _θðtÞnB. To arrive at the mechanism of spontaneous
baryogenesis described in the literature we need to postu-
lateHint ¼ −Lint independently of the presence of the field
derivatives. If this postulate is true, the Lagrangian (2.7)
leads to a Hamiltonian containing the necessary term _θnB.
On the other hand, if we apply the standard procedure
to calculate the Hamiltonian from the Lagrangian without
the kinetic term, we find πθ ¼ nB and arrive at the
striking result

HðθÞ ¼ πθ _θ − L ¼ 0; ð3:18Þ

which clearly demonstrates an inconsistency of a theory
without the kinetic term.
Additional problems appear if we consider the theory

with the Lagrangian

Lð1Þ
SB ¼ −θ∂μJ

μ
B; ð3:19Þ

which differs from the original LSB (1.1) by the total
divergence and thus leads to the same Lagrangian equations
of motion, so these Lagrangians are physically equivalent.
However, it may be not so for the Hamiltonian densities.
The Lagrangian (3.19) does not contain the time derivative
of the theta field but contains time derivatives of the
dynamical fermionic fields. So the Hamiltonian obtained

from Lð1Þ
SB through the specified above standard rules,

applied to fermions, has the form

Hð1Þ
SB ¼ ð∂kθÞJk − ∂kðθJkÞ → ð∂kθÞJk; ð3:20Þ

where at the last step we omitted the spatial divergence.

Evidently the Hamiltonian Hð1Þ
SB differs from HSB (1.2),

though they are obtained from the equivalent Lagrangians.
It means that the Hamiltonian equations of motion corre-

sponding to HSB and Hð1Þ
SB are different. It can be checked

that the equations derived from the Hamiltonian (3.20)
disagrees with the Lagrangian ones. However, this is not a
problem inherent to SBG but to the problem with the
determination of the Hamiltonian density of the fermionic
fields, related to the degeneracy between the coordinate ψ
and the canonical momentum ψ†; see Sec. III A. These
problems are considered elsewhere, while in this work we
concentrate on the kinetics of the standard scenario of SBG,
which in many cases leads essentially to the usual results
presented in the literature. However, this is not always so.
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IV. KINETIC EQUATION FOR TIME
INDEPENDENT AMPLITUDE

A. Kinetic equilibrium

The study of the kinetics of fermions in the cosmological
background is grossly simplified if the particles are in
equilibrium with respect to elastic scattering, to their
possible annihilation, e.g., into photons, and to other
baryoconserving interactions. The equilibrium with respect
to elastic scattering implies the following form of the phase
space distribution functions:

feq ¼ ½1þ expðE=T − ξÞ�−1; ð4:1Þ

where the dimensionless chemical potential ξ ¼ μ=T
has equal magnitude but opposite signs for particles and
antiparticles. The baryonic number density for small ξ is
usually given by the expression

nB ¼ gSBQξBT3=6 ð4:2Þ

[compare to Eq. (1.3)]. Here ξB is the baryonic chemical
potential. This equation which expresses baryonic number
density through chemical potential is true only for the
normal relation between the energy and three-momentum,
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, with equal masses of particles and

antiparticles.
Vanishing baryon asymmetry implies ξB ¼ 0, as is

usually the case. If the baryonic number of quarks is
conserved, nB remains constant in the comoving volume
and it means in turn that ξ ¼ const for massless particles. If
nB ¼ 0 initially, then ξB remains identically 0. If baryonic
number is not conserved, then as we see below from
the kinetic equation, equilibrium with respect to
B-nonconserving processes leads to ξB ¼ c_θ=T, as is
envisaged by SBG. The constant c depends upon the
concrete type of reaction. Complete thermal equilibrium
in the standard theory demands nB → 0, but a deviation
from thermal equilibrium of B-nonconserving interaction
leads to generation of nonzero ξB and correspondingly to
nonzero nB.
The situation changes if quarks and antiquarks satisfy

the equation of motion (2.9), for which the following
dispersion relation is valid,

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
∓ _θ=3; ð4:3Þ

where the signs ∓ refer to particles or antiparticles,
respectively. So the energies of quarks and antiquarks with
the same three-momentum are different. This is similar
to mass difference that may be induced by CPT violation.
It is noteworthy that the above dispersion relation is
derived under the assumption of constant or slow varying
_θ. Otherwise the Fourier transformed Dirac equation cannot

be reduced to the algebraic one and the particle energy is
not well defined.
The baryon number density corresponding to the

dispersion relation (4.3) is given by the expression

nB ≡ gSBQ

Z
d3p
ð2πÞ3 ½fðpÞ − f̄ðpÞ�

¼ gSBQ

6

�
ξB þ

_θ

3T

�
T3; ð4:4Þ

where f̄ is the distribution function of antiparticles. If the
baryon number is conserved and is 0 initially, the condition
ξB þ _θ=ð3TÞ ¼ 0 is always fulfilled. If B is not conserved,
then the equilibrium with respect to B-nonconserving
processes demands ξB ¼ 0, as it follows from the kinetic
equation presented below. So evidently ξB ≠ _θ but never-
theless the baryon asymmetry is proportional to _θ as
follows from Eq. (4.4).

B. Relation between nBðtÞ and θðtÞ
in the pure Goldstone case

The equation of motion for the theta field in cosmo-
logical background (2.15) with UðθÞ ¼ 0 can be easily
integrated expressing baryon asymmetry, nB, through _θ. In
the case when the relation (4.2) is fulfilled, we obtain

f2
�
_θðtÞ
T3ðtÞ −

_θðtinÞ
T3
in

�
¼ −

gSBQ

6
½ξBðtÞ − ξBðtinÞ�; ð4:5Þ

assuming that the temperature drops according to the
law _T ¼ −HT.
The initial value of the baryon asymmetry is usually

taken to be 0, so according to Eq. (4.2) we should also take
ξBðtinÞ ¼ 0. Let us remind the reader that Eq. (4.2) is valid
for the case of the normal dispersion relation, E ¼ p (in the
massless case), both for quarks and antiquarks.
In the theory with the Lagrangian (2.7) and with the

Dirac equation (2.9) the dispersion relation changes to
(E-split) and the relation between nB and ξB becomes (4.4).
Now Eq. (2.15) is integrated as

f2
�
_θðtÞ
T3ðtÞ −

_θðtinÞ
T3
in

�

¼ −
gSBQ

6

�
ξBðtÞ − ξBðtinÞ þ

_θðtÞ
3T

−
_θðtinÞ
3T in

�
: ð4:6Þ

If initially nB ¼ 0, then ξBðtinÞ ¼ −_θin=ð3T inÞ.
In the pseudo-Goldstone case, when UðθÞ ≠ 0, equa-

tions of motion (2.11) or (2.15) cannot be so easily
integrated, but in thermal equilibrium the system of
equations containing θðtÞ and ξBðtÞ can be reduced to
ordinary differential equations that are easily solved
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numerically. Out of equilibrium one has to solve a much
more complicated system of the ordinary differential
equation of motion for θðtÞ and the integrodifferential
kinetic equation. It is discussed below in Sec. IV.

C. Kinetic equation in (quasi) stationary background

The probability of any reaction between particles in
quantum field theory is determined by the amplitude of
transition from an initial state jini to a final state jfini. In t
he lowest order of perturbation theory the transition
amplitude is given by the integral of the matrix element
of the Lagrangian density between these states, integrated
over the four-dimensional space d4x. Typically the quan-
tum field operators are expanded in terms of creation-
annihilation operators with the plane wave coefficients as

ψðt;xÞ ¼
Z

d3q
2Eð2πÞ3 ½aðqÞe

−iqx þ b†ðqÞeiqx�; ð4:7Þ

where a, b, and their conjugate are the annihilation
(creation) operators for spinor particles and antiparticles
and qx ¼ Et − qx.
If the amplitude of the process is time independent, then

the integration over dtd3x of the product of the exponents
of iqx in infinite integration limits leads to the energy-
momentum conservation factors,

Z
dtd3xe−iðEin−EfinÞtþiðPin−PfinÞx

¼ ð2πÞ4δðEin − EfinÞδððPin − PfinÞ; ð4:8Þ

where Ein, Efin, Pin, and Pin are the total energies and
three-momenta of the initial and final states, respectively.
The amplitude squared contains a delta function of 0 that is
interpreted as the total time duration, tmax, of the process
and as the total space volume, V. The probability of the
process given by the collision integral is normalized per
unit time and volume, so it must be divided by V and tmax.
The temporal evolution of the distribution function of

ith-type particle, fiðt; pÞ, in an arbitrary process iþ Y ↔ Z
in the FRW background, is governed by the equation

dfi
dt

¼ ð∂t −Hpi∂pi
Þfi ¼ Icolli ; ð4:9Þ

with the collision integral equal to

Icolli ¼ ð2πÞ4
2Ei

X
Z;Y

Z
dνZdνYδ4ðpi þ pY − pZÞ

×

�
jAðZ → iþ YÞj2

Y
Z

f
Y
iþY

ð1� fÞ

− jAðiþ Y → ZÞj2fi
Y
Y

f
Y
Z

ð1� fÞ
�
; ð4:10Þ

where Aða → bÞ is the amplitude of the transition from
state a to state b, Y and Z are arbitrary, generally multi-
particle states, ðQYfÞ is the product of the phase space
densities of particles forming the state Y, and

dνY ¼
Y
Y

d̄p≡Y
Y

d3p
ð2πÞ32E : ð4:11Þ

The signs þ or − in
Qð1� fÞ are chosen for bosons and

fermions, respectively. We neglect the effects of space-time
curvature in the collision integral, which is generally a good
approximation.
We are interested in the evolution of the baryon number

density, which is the time component of the baryonic
current Jμ: nB ≡ J4. Because of the quark-lepton transi-
tions the current is nonconserved and its divergence is
given by Eq. (2.12). The similar expression is evidently true
in terms of Q2 but without the factor expð−iθÞ. Let us first
consider the latter case, with the interaction described by
the Lagrangian (2.7), which contains the product of three
quark and one lepton operator, and take as an example the
process q1 þ q2 ↔ q̄þ l.
Since the interaction in this representation does not

depend on time, the energy is conserved and the
collision integral has the usual form with conserved
four-momentum. Quarks are supposed to be in kinetic
equilibrium but probably not in equilibrium with respect
to B-nonconserving interactions, so their distribution func-
tions have the form

fq ¼ exp

�
−
E
T
þ ξB

�
and

fq̄ ¼ exp

�
−
E
T
− ξB

�
: ð4:12Þ

Here and in what follows the Boltzmann statistics is used.
According to Ref. [17], Fermi corrections are typically
at the 10% level. Since the dispersion relation for quarks
and antiquarks (4.3) depends upon _θ, the baryon asym-
metry in this case is given by Eq. (4.4) and the kinetic
equation takes the form

gSBQ

6

d
dt

�
ξB þ

_θ

3T

�
¼ −c1ΓξB; ð4:13Þ

where c1 is a numerical factor of order unity and Γ is the
rate of baryononconserving reactions. If the amplitude of
this reaction has the form determined by the Lagrangian
(2.7), then Γ ∼ T5=m4

X.
For constant or slow varying temperature the equilibrium

solution to this equation is ξB ¼ 0 and the baryon number
density (4.4) is proportional to _θ, nB ¼ ðgSBQ=18Þ_θT2,

with _θ evolving according to Eq. (4.6) as
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_θ ¼ f2

f2 þ gSBQT2=18

�
T
T in

�
3
_θðtinÞ: ð4:14Þ

We see that the equilibrium value of nB drops down with
decreasing temperature as T5. However at small temper-
atures baryon-nonconserving processes switch off and nB
tends to a constant value in comoving volume.
Let us check now what happens if the dependence on

θ is moved from the quark dispersion relation to the B-
nonconserving interaction term (2.10). The collision inte-
gral (4.10) contains delta functions imposing conservation
of energy and momentum if there is no external field that
depends upon coordinates. In our case, when quarks “live”
in the θðtÞ-field, the collision integral should be modified
in the following way. We have now an additional factor
under integral (4.8), namely, exp½�iθðtÞ�. In the general
case this integral cannot be taken analytically. However if
θðtÞ can be approximated as θðtÞ ≈ _θt with constant or
slowly varying _θ, the integral is reduced to delta-function of
the energy difference between the initial and final states
shifted by _θ. For example, in the process of two quark
transformation into an antiquark and lepton, q1 þ q2 ↔
q̄þ l the energy balance condition would be imposed by
δðEq1 þ Eq2 − Eq̄ − El − _θÞ. In other words the energy is
nonconserved due to the action of the external field θðtÞ.
The approximation of linear evolution of θ with time can be
valid if the reactions are fast in comparison with the rate of
the θ-evolution.
Note in passing that with a nonzero θðtÞ the current

nonconservation (2.12), in principle, may induce baryoge-
nensis because it breaks not only baryonic number con-
servation, but also CP, due to the complexity of the
coefficients. However, in this particular model no baryon
asymmetry is generated. The model is quite similar to the
model of the baryon asymmetry generation in heavy particle
decays, such as, e.g., GUT baryogenesis. However, as it is
argued, e.g., in Refs. [8,18], for the generation of the
asymmetry at least three different channels of baryonon-
conserved reactions are necessary. Thus one needs to add
some extra fields into the model to activate this mechanism.
Returning to our case we can see that the collision

integral taken over the three-momentum of the particle
under scrutiny [i.e., particle i in Eq. (4.10)], e.g., for the
process q1 þ q2 → lþ q̄, turns into

_nB þ 3HnB ∼
Z

dτlq̄dτq1q2 jAj2δðEq1 þ Eq2 − El − Eq̄

− _θÞδðPin − PfinÞe−Ein=TðeξL−ξBþ_θ=T − e2ξBÞ;
ð4:15Þ

where dτl;q̄ ¼ d3pld3pq̄=½4ElEq̄ð2πÞ6�. We assumed here
that all participating particles are in kinetic equilibrium,
i.e., their distribution functions have the form (4.12). In

expression (4.15) ξB and ξL denote baryonic and leptonic
chemical potentials respectively and the effects of quantum
statistics are neglected but only for brevity of notations.
The assumption of kinetic equilibrium is well justified
because it is enforced by the very efficient elastic scattering.
Another implicit assumption is the usual equilibrium
relation between chemical potentials of particles and
antiparticles, μ̄ ¼ −μ, imposed, e.g., by the fast annihila-
tion of quark-antiquark or lepton-antilepton pairs into
two and three photons. Anyhow the assumption of kinetic
equilibrium is one of the cornerstones of spontaneous
baryogenesis.
The conservation of (Bþ L) implies the following

relation: ξL ¼ −ξB=3. Keeping this in mind, we find

_nB þ 3HnB ≈ −ð1 − e_θ=T−3ξBþξLÞI

≈
�
_θ

T
−
10

3
ξB

�
I; ð4:16Þ

where we assumed that ξB and _θ=T are small. In relativistic
plasma with temperature T the factor I, coming from
the collision integral, can be estimated as I ¼ T8=m4,
where m is a numerical constant with dimension of mass.
It differs from mX, introduced in Eq. (2.5), by a numerical
coefficient.
For a large factor I we expect the equilibrium solution

ξB ¼ 3

10

_θ

T
; ð4:17Þ

so _θ up to the numerical factor seems to be the
baryonic chemical potential, as expected in the usually
assumed SBG scenario. The value of the coefficient
c ¼ 3=10 in Eq. (4.17) may be different for other types
of B-nonconserving reactions, e.g., for the reaction
3q ↔ 3q̄ one can find that c ¼ 1=6. Let us remind the
reader that for the dispersion relation (4.3) the baryonic
chemical potential is not proportional to _θðtÞ, but is equal to
0; see Eq. (4.13) and comments below.

V. OUT-OF-EQUILIBRIUM GENERATION
OF BARYON ASYMMETRY IN THE

PURELY GOLDSTONE CASE

As we have seen in the previous section the equilibrium
value of the baryon asymmetry in comoving volume drops
down as T2. So for an effective generation of the asym-
metry the B-nonconserving reactions must drop out of
equilibrium at sufficiently high temperatures. Below we
estimate the asymptotic value of the baryon asymmetry.
Let us first study the case when the cosmological

expansion is very slow and the temperature can be
considered as constant or, better to say, adiabatically
decreasing. The proper equations in this limit can be solved
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analytically and it allows better insight into the problem.
With constant T the equilibrium is ultimately reached if
time is sufficiently large and asymptotically the baryonic
chemical potential is indeed proportional to _θðtÞ, but one
should remember that this is true in the case when θðtÞ
enters the interaction term but not the quark dispersion
relation. A similar situation is realized in cosmology with
decreasing temperature of the cosmic plasma but it is
interesting that the magnitude of the resulting baryon
asymmetry is a nonmonotonic function of the strength
of B-violation. With very strong and very weak interaction
the asymmetry goes to 0 and the best conditions for
baryogenesis are realized in the intermediate case.
Using Eqs. (4.2), (4.5), and (4.16) we find

_ξB ¼ γ

�
_θin
T

− ξB

�
10

3
þ CBT2

f2

��
; ð5:1Þ

which is solved as

ξBðtÞ ¼
_θin
Tκ

½1 − e−κγðt−tinÞ�; ð5:2Þ

where CB ¼ gSBQ=18, γ ¼ T5=ðCBm4Þ, κ ¼ 10=3 þ
CBT2=f2, tin is the initial value of time, at which
ξBðtinÞ ¼ 0, and _θin ¼ _θðtinÞ.
The time derivative of the Goldstone field evolves as

_θðtÞ ¼ _θin

�
1 −

CBT2

f2κ
ð1 − e−κγðt−tinÞÞ

�
: ð5:3Þ

So _θðtÞ drops down asymptotically at large time with
respect to its initial value, and the baryonic chemical
potential exponentially tends to ξB → _θin=ðκTÞ, as it is
expected in the SBG scenario.
As follows from Eq. (5.3), _θ tends to a constant value at

large t; however at the beginning the second time derivative
θ̈ may be non-negligible,

θ̈ ¼ −
_θinCBT2γ

f2
e−κγðt−tinÞ: ð5:4Þ

The variation of _θ with time is considered in Sec. VIII B.
Let us turn now to more realistic cosmology when the

temperature drops down according to

_T ¼ −HT ð5:5Þ

with the Hubble parameter equal to

H ¼
�
8π3g�
90

�
1=2 T2

mPl
≡G�

T2

mPl
; ð5:6Þ

where mPl ¼ 1.2 × 1019 GeV is the Planck mass and g� is
the number of species in the primeval relativistic plasma.
In the interesting temperature range g� ∼ 100.
Now _θðtÞ is expressed through ξBðtÞ according to

Eq. (4.5) and instead of Eq. (5.1) we obtain

_ξB ¼ γ

�
_θinT2

T3
in

− κξB

�
: ð5:7Þ

This equation can be more conveniently solved if we
change the time variable as dt ¼ −dT=ðHTÞ and introduce
dimensionless inverse temperature according to η ¼ T in=T.
So the baryonic chemical potential evolves as a function
of η ¼ T in=T as

ξBðηÞ ¼ K
Z

η

1

dη0

ðη0Þ6 exp
�
−N

Z
η

η0

dη00

ðη00Þ4
�
10

3
þ CBT2

in

f2η002

��
;

ð5:8Þ

where K ¼ _θinmPlT2
in=ðCBm4G�Þ, N ¼ mPlT3

in=ðCBm4G�Þ.
If K ≫ 1, which corresponds to the equilibrium case, the
integral can be evaluated up to the terms of the order of 1=K
and we find

ξeqB ðηÞ ¼
ð_θin=T inÞ

ð10η2=3Þ þ ðCBT2
inÞ=f2

: ð5:9Þ

This result coincides, as expected, with the equilibrium
solution of Eq. (5.7): ξB ¼ _θinT2=ðT3

inκÞ. Note that in
equilibrium both ξB and _θ=T fall down as T2 with
decreasing temperatures.
It is instructive to consider a different model of baryonic

number nonconservation through quark-antiquark trans-
formation 2Q ↔ 2Q̄. For realistic quarks such a process is
forbidden, but the process 3q ↔ 3q̄ is allowed in, e.g., the
SOð10Þ model of grand unification. However, we consider
the first one just for simplicity. The kinetic equation (4.16)
in this case is transformed into

_nB ¼
�
_θ

T
− 4ξB

�
T8

m4
; ð5:10Þ

so in equilibrium with respect to the process 2Q ↔ 2Q̄ the
baryonic chemical potential tends to ξB → _θ=ð4TÞ.
Now we see what happens out of equilibrium. To this end

we numerically take the integral in Eq. (5.8) for different
values of K and CBT2

in=f
2. The results for ξBðηÞ and the

ratio of ξB to the equilibrium value ð3=10Þ_θ=T as functions
of η ¼ T in=T are presented in Fig. 1, in left and right panels
respectively. As is seen from the left panel, the baryon
asymmetry is a nonmonotonic function of the rate of the
baryononconserving processes. For a large rate (large K
and N) baryon asymmetry is quickly generated and reaches
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high value, but it drops down as the equilibrium one,
∼1=η2, till lower temperatures. As a result the final baryon
asymmetry is smaller for larger rates. On the other hand,
if the rate is very small, the generation of the baryon
asymmetry is not efficient from the very beginning and
because of that the final value is also small. So there is an
intermediate magnitude of the rate for which the baryon
asymmetry is maximal.
The variation of _θðηÞ calculated according to Eq. (4.5)

with ξBðηÞ determined from Eq. (5.8) is presented in Fig. 2.
It is clearly seen that _θ is not constant, but quite strongly
changes as a function of temperature or time, especially
near the initial moment. It means that the basic assumption
of the SBG scenario is violated.

VI. PSEUDO-GOLDSTONE CASE

If the potential UðθÞ is nonzero, the equation of motion
(2.15) cannot be so easily integrated. This case is more
efficient for the generation of the cosmological baryon
asymmetry because the field θðtÞ naturally oscillates
around the potential minimum, while the mechanism

leading to nonzero _θ, especially after inflation, is unclear.
The potential is usually taken in the form

UðθÞ ¼ −f2m2
θ cos θ → f2m2

θθ
2=2; ð6:1Þ

where the last equality corresponds to expansion of the
cosine near the minimum of the potential.
To obtain a closed system of equations describing the

evolution of θðtÞ with an account of backreaction of the
created baryons, one needs to average the quantum operator
ð _nB þ 3HnBÞ over the medium. In Ref. [10] the averaging
was performed over the vacuum state. It corresponds only
to decay of θðtÞ while the backreaction of the particles in
cosmic plasma restoring the θ field is neglected. To include
this backreaction we need to use kinetic equation (4.9),
expressing _nB through the collision integral, which depends
upon θðtÞ and ξBðtÞ. As a result a system of the ordinary
differential and integral equations is obtained that com-
pletely determines the evolution of θðtÞ and nBðtÞ. The
problem becomes much simpler in thermal equilibrium
when the collision integral is reduced to an algebraic
relation between θðtÞ and ξB. However, this is true only

FIG. 2. Left: Evolution of _θðηÞ, normalized to its initial value, _θin, for CBT2
in=ð5f2Þ ¼ 0.1 and K ¼ N ¼ 20 (thick), 5 (dashed),

1 (dotted), and 0.3 (dot dashed). Right: The same with CBT2
in=ð5f2Þ ¼ 1 and K ¼ N ¼ 50 (thick), 30 (dashed), 10 (dotted), and

3 (dot dashed).

FIG. 1. Left: Evolution of ξBðηÞ according to Eq. (5.8) where CBT2
in=ð5f2Þ ¼ 0.1 for K ¼ N ¼ 20 (thick), 5 (dashed), 1 (dotted), and

0.3 (dot dashed). Right: Ratio of ξBðηÞ to its equilibrium value, ξeqB ðηÞ, determined by (5.9) for the same values of the parameters.
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if θ is a slowly varying function of time and _θ is essentially
constant. If this is so, we return to the situation considered
in the previous section. The case when the variation of θðtÞ
is of importance demands modification of the kinetic
equation for the time dependent background, discussed
in the following section.
Note that if the B-nonconserving reactions are frozen,

the baryon number density remains constant in the
comoving volume, i.e., _nB þ 3HnB ¼ 0, so the evolution
of θ is governed by the free Klein-Gordon equation.
Correspondingly θðtÞ during the equilibrium period simply
oscillates near the minimum of the potential with adiabati-
cally decreasing amplitude induced by the cosmological
expansion.
In Ref. [2,3] a different approach was taken. It was

assumed that the backreaction of the particle production on
the evolution of θ could be described by the “friction” term
Γ_θ that was added to the equation of motion,

f2ð∂t þ 3HÞ_θ þ f2Γ_θ þ U0ðθÞ ¼ 0; ð6:2Þ

where Γ is the rate of the B-nonconserving processes.
Comparing this equation with Eq. (2.15) the authors
concluded that θðtÞ oscillates with exponentially decreas-
ing amplitude, ∼ expð−ΓtÞ, and that

_nB þ 3HnB ¼ f2Γ_θ: ð6:3Þ

However, this might be true only for the decays into the
empty or overcooled state, as was mentioned in Ref. [3]. In
this case thermal equilibrium is broken and the identifica-
tion of _θ=T with ξB is questionable. Another problem is a
possibility of description of particle production by Γ_θ.
As it is shown in the paper [19], such description can
only be true, but not necessarily so, for harmonic potential
of the field, which produces particles. In the case when the
interaction is given by ð _nB þ 3HnBÞ, one has to average
this quantum operator over the medium with external field
θðtÞ. As a result a nonlocal in time expression containing
θðtÞ emerges leading to a integrodifferential equation for θ,
which is not reduced to Eq. (6.2). The problem is treated
this way in Ref. [10], where the results are different from
those obtained in the papers [2,3].

VII. KINETIC EQUATION FOR
TIME-VARYING AMPLITUDE

The canonical kinetic equation (4.9) is usually presented
for scattering or decay processes in the time independent
or slowly varying background with the collision integral
giving by Eq. (4.10).
In the case when the interaction proceeds in the time

dependent background and/or the time duration of the
process is finite, the energy conservation delta function
does not emerge and the described approach becomes

invalid, so one has to make the time integration with an
account of time-varying background and integrate over the
phase space without energy conservation.
In what follows we consider the two-body inelastic

process with baryonic number nonconservation with the
amplitude obtained from the last term in Lagrangian (2.5).
At the moment we do not specify the concrete form of the
reaction and only say that it is the two-body reaction

aþ b ↔ cþ d; ð7:1Þ

where a, b, c, and d are some quarks and leptons or
their antiparticles. The expression for the evolution of the
baryonic number density, nB, follows from Eq. (4.9) after
integration of both its sides over d3pi=ð2πÞ3. Thus we
obtain

_nB þ 3HnB

¼ −
ð2πÞ3
tmax

Z
dνindνfinδðPin − PfinÞjAj2ðfafb − fcfdÞ

ð7:2Þ

where, e.g., dνin ¼ d3pad3pb=½4EaEbð2πÞ6� and the
amplitude of the process is defined as

A ¼
�Z

tmax

0

dtei½ðEcþEd−Ea−EbÞtþθðtÞ�
�
Fðpa; pb; pc; pdÞ;

ð7:3Þ

and F is a function of four-momenta of the participating
particles, determined by the concrete form of the interaction
Lagrangian. In what follows we consider two possibilities,
F ¼ const and F ¼ ψ4m−2

X , where in the last case ψ4

symbolically denotes the product of the Dirac spinors of
particles a, b, c, and d.
In the case of equilibrium with respect to baryon-

conserving reactions the distribution functions have the
canonical form fa ¼ expð−Ea=T þ ξaÞ, where ξa ≡ μa=T
is the dimensionless chemical potential. So for constant F
the product jAj2ðfafb − fcfdÞ depends upon the particle
four-momenta only through Ein and Efin, where

Ein ¼ Ea þ Eb; and Efin ¼ Ec þ Ed: ð7:4Þ

Now we can perform almost all (but one) integrations over
the phase space in Eq. (7.2). To this end it is convenient to
change the integration variables, according to

d3pa

Ea

d3pb

Eb
¼ d4Pind4RinδðP2

in þ R2
inÞδðPinRinÞ; ð7:5Þ

where Pin ¼ pa þ pb and Rin ¼ pa − pb and masses of the
particles are taken to be 0. Analogous expressions are valid
for the final state particles. Evidently the time components
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of the 4-vectors P are the sum of energies of the incoming

and outgoing particles, Pð4Þ
in ¼ Ein and Pð4Þ

fin ¼ Efin.
First we integrate over the initial momenta d4Pind4Rin

through the following steps (to avoid an overload of the
equations we skip below the subindex “in” where it is not
necessary):
(1) Integration over d3Pin (or d3Pfin) with δðPin − PfinÞ

gives simply 1.
(2) Taking the integral over d4R ¼ 2πdR4R2djRjdζ we

first integrate over the polar angle using

δðPRÞ ¼ δðP4R4 − jPjjRjζÞ; ð7:6Þ

so ζ ¼ Q4R4=ðjRjjQjÞ and using the delta function
δðQ2

4 −Q2 þ R2
4 −R2Þ we find that R4 is bounded

by R2
4 < Q2, because jζj < 1. The integral over

R2=jQj is taken with the above-written delta func-
tion and there remains only the integration over dR4

in the limits ð−jQjÞ and ðþjQjÞ. So the integration
over the initial momenta is reduced finally to 2πdQ4.

(3) Proceeding along the same lines with the integration
over the phase volume of the final particles, but
without δðPin − PfinÞ, we obtain

ð2πÞ3
Z

dνindνfinδðPin − PfinÞ

¼ 1

29π6

Z
dEindEfindjQfinjjQ2

finj: ð7:7Þ

Naively we should expect that the integration over
jQfinj lies in the limits from 0 to Efin because

Q2
fin ¼ E2

c þ E2
d þ 2EcEdζ < ðEc þ EdÞ2 ¼ E2

fin;

ð7:8Þ

but there is a constraint Qfin ¼ Qin, so the upper
limit on jQfinj is the smaller out of Efin and Ein. Let
us introduce new notations: Eþ ¼ Ein þ Efin and
E− ¼ Ein − Efin. It is easy to check that Efin > Ein
for E− < 0 and Efin < Ein for E− > 0. Thus for
E− < 0 the integration over djQfinj in Eq. (7.7) gives
E3
in=3, while for E− > 0 the result is E3

fin=3.
(4) So we are left with the integral over dEindEfin, which

is convenient to rewrite as

Z
dEindEfin ¼ dEþdE−=2: ð7:9Þ

Note that the amplitude A (7.3) depends only on E−
but not on Eþ, while the products of the particle
densities in the phase space are

fafb ¼ exp

�
−
Eþ þ E−

2T
þ ξa þ ξb

�
and

fcfd ¼ exp

�
−
Eþ − E−

2T
þ ξc þ ξd

�
: ð7:10Þ

(5) The integral over dEþ can be taken explicitly but
first we need to establish the integration limits. The
original integration over dEindEfin is taken from 0 to
∞, so the integral over dEþ runs from jE−j to∞ and
the integral over dE− runs from ð−∞Þ to ðþ∞Þ. It is
convenient to separate the integration over dEþ into
two parts for positive and negative E−. For positive
E− we find

Z
∞

E−

dEþ

�
Eþ−E−

2

�
3

exp

�
−
EþþE−

2T

�
¼12T4e−y;

Z
∞

E−

dEþ

�
Eþ−E−

2

�
3

exp
�
−
Eþ−E−

2T

�
¼12T4;

ð7:11Þ

where y ¼ E−=T. For negative E− we obtain the
same results with an interchange of the initial and
final states, i.e., fafb ↔ fcfd and with y → jyj.
Effectively it corresponds to the change of sign of
θðtÞ in Eq. (7.3).

Thus, collecting all the factors (7.10), we finally obtain

_nB þ 3HnB ¼ −
T5

25π6tmax

Z
∞

0

dy½eξaþξbðjAþj2 þ jA−j2e−yÞ

− eξcþξdðjA−j2 þ jAþj2e−yÞ�; ð7:12Þ

where Aþ is the amplitude taken at positive E−, while
A− is taken at negative E−. With the substitution E− → jE−j
the only difference between Aþ and A− is that
A−ðθÞ ¼ Aþð−θÞ.
The equilibrium is achieved when the integral in

Eq. (7.12) vanishes. This point determines the equilibrium
values of the chemical potentials in the external _θ field.
Clearly it takes place at

ξa þ ξb − ξc − ξd ¼
hjAþj2e−y þ jA−j2i
hjAþj2 þ jA−j2e−yi

− 1; ð7:13Þ

where the angular brackets mean integration over dy as
indicated in Eq. (7.12).
The results above are obtained for the amplitude that

does not depend upon the participating particle momenta.
The calculations would be somewhat more complicated if
this restriction were not true. For example if the baryon
nonconservation takes place in four-fermion interactions,
then the amplitude squared can contain the terms of the
form ðpapbÞ2=m4

X or ðpapcÞ2=m4
X, etc. The effect of such
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terms results in a change of the numerical coefficient in
Eq. (4.16) but the latter is unknown anyhow, and what is
more important is that the temperature coefficient in front
of the integral in this equation would change from T5

to T9=m4
X.

VIII. EXAMPLES OF TIME-VARYING θ

A. Constant _θ

This is the case usually considered in the literature and
the simplest one. The integral (7.3) is taken analytically
resulting in

jAj2 ∼ 2 − 2 cos½ð_θ − E−Þtmax�
ð_θ − E−Þ2

: ð8:1Þ

Here E− is running over the positive semiaxis, see
Eq. (7.11), and comments around it.
For large tmax this expression tends to δðE− − _θÞ, so

jAþj2¼2πδðE−− _θÞtmax and jA−j2¼2πδðE−þ _θÞtmax¼0,
if _θ > 0 and vice versa otherwise. Hence the equilibrium
solution is

ξa þ ξb − ξc − ξd − _θ=T ¼ 0; ð8:2Þ

coinciding with the standard result.
The limit of _θ ¼ const corresponds to the energy non-

conservation by the rise (or drop) of the energy of the final
state in reaction (7.1) exactly by _θ. However if tmax is not
sufficiently large, the nonconservation of energy is not
equal to _θ but somewhat spread out and the equilibrium
solution is different. There is no simple analytical expres-
sion in this case, so we have to take the integrals over y in
Eq. (7.13) numerically.
The results of the calculations are presented in Fig. 3.

In the left panel the values of the rhs of Eq. (7.13) are
presented as a function of _θ=T for the cutoff of the time
integration in Eq. (8.1) equal to τ≡ tmaxT ¼ 30, 10, 3. The

larger the integration time is, the closer the lines are to _θ=T,
which is also depicted.
In the right panel the relative differences between the rhs

of Eq. (7.13) and _θ=T, normalized to _θ=T, as a function of
_θ=T for a different maximum time of the integration, are
presented. We see that for τ ¼ 30 the deviations are less
than 10%, while for τ ¼ 3 the deviations are about 30%. If
we take τ close to unity, the deviations are about 100%. The
value of _θ=T is bounded from above by approximately 0.3
because at large _θ=T the linear expansion, used in our
estimates, is invalid.
The realistic values of τ depend upon the model

parameters. There is one evident limit related to the
cosmological expansion, which implies τ<tcosmT∼T=H ∼
mPl=T. Here mPl is the Planck mass, H is the Hubble
parameter, and Tcosm ∼ 1=H, so the effects of the expansion
may be significant only near the Planck temperature.
Another upper bound on τ is presented by the kinetic
equations, which demand the characteristic time variation
to be close (at least initially) to the inverse reaction rate
γ ∼ T5=m4

X. The discussed effects would have an essential
impact on the approach to equilibrium for T ∼mX, which
might be realistic.

B. Second order Taylor expansion of θðtÞ
As we have seen in the previous subsection the approxi-

mation _θ ¼ const is noticeably violated. Here we assume
that θðtÞ can be approximated as

θðtÞ ¼ _θtþ θ̈t2=2; ð8:3Þ

where _θ and θ̈ are supposed to be constant or slowly
varying. In this case the integral over time (7.3) can also be
taken analytically but the result is rather complicated. We
need to take the integral

Z
tmax

0

dt exp½iθðtÞ�: ð8:4Þ

FIG. 3. Left: The rhs of Eq. (7.13), denoted by Ξ, as a function of _θ=T for the cutoff of the time integration in Eq. (8.1): τ≡ tmaxT ¼ 30

(dashed), 10 (dotted), 3 (dot dashed), and _θ=T (thick). Right: The relative difference: ζ ¼ Ξ=ð_θ=TÞ − 1, as a function of _θ=T for τ ¼ 30
(thick), 10 (dashed), 5 (dotted), and 3 (dot dashed).
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Its real and imaginary parts are easily expressed though the
Fresnel functions. So the amplitude squared is given by the
functions tabulated in Mathematica and the position of
the equilibrium point can be calculated, as in the previous
case, by numerical calculation of the one-dimensional
integral.
The rhs of Eq. (7.13) as a function of _θ=T for different

values of τ is presented in Fig. 4, in the left panel. It is
interesting that the dependence on τ is nonmonotonic. This
may be understood by diminishing the impact of θ̈t2 at a
smaller time interval.
To check the dependence on θ̈ we calculated again the

rhs of Eq. (7.13) but now as a function of θ̈=T2 presented in
the right panel of Fig. 4 for fixed time of integration and
different values of _θ=T. We see that the equilibrium point
oscillates as a function of θ̈.

C. Oscillating θðtÞ
If the potential of θ were nonvanishing, its evolution

would be more complicated. The potential UðθÞ should be
a periodic function of the angle θ and so it is often taken as
m2 cos θ. We assume that the field θ is initially near the
minimum of the potential, which in this case can be
approximated as U ¼ m2θ2=2, where m is the mass of
the theta field. In the absence of backreaction of the
produced baryons θðtÞ should evolve as

θðtÞ ¼ θ0 cosðmtþ ϕÞ: ð8:5Þ

Unfortunately the integral (7.3) cannot be taken analyti-
cally and the numerical calculations with two-dimensional
integrals are quite time consuming. However, the integrand
can be expanded as

eiθðtÞ ¼ 1þ iθ0 cosðmtþ ϕÞ: ð8:6Þ

In this approximation the integral (7.3) can be easily
taken analytically. Thus also in this case we can reduce
the calculation of the deviation of the algebraic sum of
dimensionless chemical potentials from _θ=T (8.2) to the
numerical calculation of the one-dimensional integral.
However, to be sure of the safely of the procedure it is
desirable to compare the time integrated exact amplitude
with the approximate expanded one. Numerical compari-
son shows indeed that even for θ0 ¼ 1 the corrections are
negligible, while for θ0 ≤ 0.5 they are practically indis-
tinguishable (see Fig. 5).
The deviation of the rhs of Eq. (7.13) from _θ=T is

demonstrated in Fig. 6. The difference with the standard
predictions of SBG can be significant if the mass of θ is not
negligible, so the oscillations of θ manifest themselves
during time τ. So the standard SBG, for which the baryonic
chemical potential is proportional to _θ, is not accurate at

FIG. 5. Exact (thick) and approximate (dashed) expressions for the amplitude A (7.3) with θðtÞ determined by Eq. (8.6) as functions of
mt for θ0 ¼ 1 (left) and θ0 ¼ 0.3 (right).

FIG. 4. Left: The relative difference, ζ ¼ Ξ=ð_θ=TÞ − 1, as a function of _θ=T for the cutoff of the time integration τ ¼ 30 (thick), 10
(dashed), 5 (dotted), and 3 (dot dashed) for fixed θ̈=T2 ¼ 0.1. Right: The same difference as a function of θ̈=T2 for fixed time of
integration τ ¼ 10 and different _θ=T ¼ 0.1 (thick), 0.2 (dashed), 0.3 (dotted), and 0.4 (dot dashed).
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large times or, better to say, for large mtmax. On the other
hand, as we see in these figures, for small τ the deviations
are also quite noticeable, but now the effect is related to the
energy spread because of the finite time integration. As it is
seen in the figures, the effect changes sign—the relative
positions of thick and dashed curves interchange.

IX. CONCLUSION

To summarize, we have clarified the relation between the
Lagrangian and Hamiltonian in the SBG scenario.We argue
that in the standard description _θ is not formally the chemical
potential, though in thermal equilibrium _θ may tend to the
chemical potential with the numerical coefficient that
depends upon the model. However, this result is not always
true but depends upon the chosen representation of the quark
fields. In the theory described by the Lagrangian (2.5) that
appears “immediately” after the spontaneous symmetry
breaking, θðtÞ directly enters the interaction term and in
equilibrium μB ∼ _θ indeed. On the other hand, if we trans-
form the quark field, so that the dependence on θ is shifted to
the bilinear product of the quark fields (2.7), then chemical
potential in equilibrium does not tend to _θ, but to 0. Still, the
magnitude of the baryon asymmetry in equilibrium is always
proportional to _θ.
It can be seen, according to the equation of motion of the

Goldstone field, that _θ=T drops down in the course of the
cosmological cooling as T2, so the baryon number density
in the comoving volume decreases in the same way. So to
avoid the complete vanishing of nB the baryoviolating
interaction should switch off at some nonzero and not very
small temperature. The dependence of the baryon asym-
metry on the interaction strength is nonmonotonic. Too
strong and too weak interactions lead to small baryon
asymmetry, as is presented in Fig. 1.
The assumption of a constant or slowly varying _θ, which

is usually made in the SBG scenario, may not be fulfilled

and to include the effects of an arbitrary variation of θðtÞ,
as well as the effects of the finite time integration, we
transformed the kinetic equation in such a way that it
becomes operative in nonstationary background. A shift of
the equilibrium value of the baryonic chemical potential
due to this effect is numerically calculated.
In spite of these corrections to the standard SBG

scenario, it remains a viable mechanism for creating the
observed cosmological excess of matter over antimatter.
However, this mechanism is not particularly efficient in the
case of pure spontaneous symmetry breaking, when the
potential of the θ field is absent. Nonzero potential UðθÞ,
which can appear as a result of an explicit breaking of the
baryonic Uð1Þ-symmetry in addition to the spontaneous
breaking, may grossly enhance the efficiency of the
spontaneous baryogenesis. The evaluation of the efficiency
demands a numerical solution of the ordinary differential
equation of motion for the θ field together with the integral
kinetic equation. In the case of thermal equilibrium the
kinetic equation is reduced to an algebraic one and the
system is trivially investigated. The out-of-equilibrium
situation is much more complicated technically and is
studied elsewhere.
We assumed that the symmetry breaking phase transition

in the early Universe occurred instantly. It may be a
reasonable approximation, but still the corrections can be
significant. This can also be a subject of future work.
There remains the problem of the proper definition of the

fermionic Hamiltonian but presumably it does not have an
important impact on the problems considered here and thus
is neglected.
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FIG. 6. Left: Thick curve, the rhs of Eq. (7.13), Ξ, for m=T ¼ 0.1 and the maximal time of interation τ ¼ 30; dashed curve, _θ=T as
functions of θ0; see Eq. (8.5). Right: The same as the maximal time of integration τ ¼ 3.
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