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We study the atomic physics and the astrophysical implications of a model in which the dark matter is the
analog of hydrogen in a secluded sector. The self-interactions between dark matter particles include both
elastic scatterings as well as inelastic processes due to a hyperfine transition. The self-interaction cross
sections are computed by numerically solving the coupled Schrödinger equations for this system. We show
that these self-interactions exhibit the right velocity dependence to explain the low dark matter density
cores seen in small galaxies while being consistent with all constraints from observations of clusters of
galaxies. For a viable solution, the dark hydrogen mass has to be in the 10–100 GeV range and the dark
fine-structure constant has to be larger than 0.01. This range of model parameters requires the existence of a
dark matter–antimatter asymmetry in the early universe to set the relic abundance of dark matter. For this
range of parameters, we show that significant cooling losses may occur due to inelastic excitations to the
hyperfine state and subsequent decays, with implications for the evolution of low-mass halos and the early
growth of supermassive black holes. Cooling from excitations to higher n levels of dark hydrogen and
subsequent decays is possible at the cluster scale, with a strong dependence on halo mass. Finally, we show
that the minimum halo mass is in the range of 103.5 to 107M⊙ for the viable regions of parameter space,
significantly larger than the typical predictions for weakly interacting dark matter models. This pattern of
observables in cosmological structure formation is unique to this model, making it possible to rule in or rule
out hidden sector hydrogen as a viable dark matter model.
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I. INTRODUCTION

While the standard ΛCDM cosmological model with
collisionless, cold dark matter (CDM) is successful in
explaining the observed large-scale structure in the
Universe, there are many puzzles on galactic scales yet
to be explained convincingly by a CDM-based scenario.
N-body simulations of CDM structure growth predict
cuspy radial density profiles (ρ ∼ r−1) with high central
densities [1–4]; however, observations of rotation curves
reveal cored (ρ ∼ constant) or otherwise low-density inner
regions in dark matter dominated galaxies, from dwarfs to
low surface brightness (LSB) galaxies [5–16]. Galaxy
clusters also show evidence for a deficit of dark matter
within the effective stellar radius of the central galaxy, with
the mass profile outside being consistent with CDM
predictions [17–19]. The dark matter density profiles in
dwarf spheroidal galaxies (dSphs) are a subject of current
debate, with various studies finding that the stellar data for
various dSphs is most consistent with a core [20–24] or a
cusp [25,26], or is unconstrained [27]. However, it seems

clear that these galaxies are less dense than expected in pure
CDM models [28–30]. The inclusion of supernovae and/or
black hole feedback processes in cosmological simulations
may ameliorate these anomalies in dwarf galaxies by
significantly altering the central gravitational potential
[4,31–38]. However, it is unclear whether such effects
are simultaneously able to affect the halo structure to the
extent observed in low-mass (M� ∼ 106–107M⊙) isolated
dwarf galaxies [39–41] and low surface brightness galaxies
[42]. It is also not clear if the diversity of cores observed
inferred from rotation curves can be explained in the
context of these models [43–45].
Self-interacting dark matter (SIDM) is an attractive

solution [46] to these anomalies that works across the
range of mass scales under consideration, from dwarf
galaxies to galaxy clusters [47]. In such a scenario,
scatterings between dark matter particles allow for energy
to be transferred from the hotter outer regions of the halo
into the colder innermost regions. SIDM halos thus have
hotter cores with higher velocity dispersions than the cold,
cuspy interiors of collisionless dark matter halos, which
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lack a mechanism to heat the inner cusp into a core.N-body
simulations [47,48] and analytic models based on these
simulations find that the aforementioned small-scale struc-
ture issues (on the dSph and LSB scales) may be alleviated
if the dark matter is strongly self-interacting with a hard-
sphere scattering cross section of 0.5 cm2=g≲ σ=m≲
5.0 cm2=g [49–52], where m is the mass of the dark
matter. In order to produce cores of radius 10–50 kpc
in cluster-sized halos in which the relative dark matter
particle velocity is v ∼ 1000 km=s, the required cross
section is σ ∼ 0.1 cm2=g [51]. We are thus motivated to
consider SIDM models with velocity-dependent cross
sections that are suppressed at cluster-scale velocities.
Upper limits on the SIDM cross section may also be
derived through the observed ellipticities of cluster-scale
halos (σ=m≲ 1 cm2=g) [53] and the measured center-
of-mass offsets in merging cluster systems (σ=m <
0.47 cm2=g) [54], but we find both these constraints to
be weaker than those obtained from measurements of the
inner density profiles of galaxy clusters [51].
Atomic dark matter [55–62], in which the features of

Standard Model (SM) hydrogen are copied to a dark sector,
has all the features required of an SIDM model to solve the
small-scale puzzles. We consider a dark proton and dark
electron, which are charged under an unbroken U(1) gauge
group and may combine to form dark hydrogen. If the
formation of dark hydrogen bound states is efficient, these
dark atoms constitute approximately all of the dark matter.
Since the dark hydrogen is a composite particle with an
extended, finite size, its self-interaction cross section can be
naturally large, as required for SIDM.
In this work, we consider atomic dark matter that exists

today exclusively in bound states—dark recombination was
fully complete. This model has uniquely testable phenom-
enology due to the ability of atomic dark matter to dissipate
energy. We calculate and explore the cosmological conse-
quences of both collisional scattering (which transfers
energy between dark atoms) and inelastic hyperfine upscat-
tering (which results in energy loss through excitations and
subsequent decays). These cross sections are velocity
dependent, allowing the self-interactions to modify the
halo profile to varying degrees in different astrophysical
systems. The general trend is that the cross sections of
particles in dwarf halos with characteristic velocities of
∼40 km=s will be larger than those in cluster halos with
characteristic velocities of ∼1000 km=s, which allows for
regions of parameter space in which this model may resolve
the aforementioned small-scale structure issues. The heat-
ing rate from scatterings as well as the cooling losses from
inelastic collisions vary widely depending on both the
model parameters and the radial position in a halo of a
given mass. The combined effects of both types of
scatterings may thus lead to nontrivial effects on dark
matter halo structure and evolution. At higher particle
energies, additional atomic interactions, such as collisional

excitations to the n ¼ 2 state and ionization, may begin to
affect the structure of cluster-sized halos.
For this interesting range of parameter space, where we

see competing effects from collisional heating and cooling
processes on the evolution of halos, we find additional
features in the small-scale halo mass function that allow us
to distinguish atomic dark matter from CDM cosmologi-
cally. Coupling between the dark matter and dark radiation
produces dark acoustic oscillations, which are weakly
constrained by measurements of the matter power spectrum
and the cosmic microwave background (CMB) [63]. The
most interesting effect of acoustic oscillations in the dark
plasma would be a cutoff in the matter power spectrum set
by the size of the fluctuations entering the horizon before
the time of matter-radiation decoupling, resulting in a
minimum dark matter halo mass that is significantly larger
than in the typical weak-scale models without hidden
sectors.
Altering small-scale structure with SIDM neither

assumes nor requires any interactions between dark matter
and SM particles beyond gravitational interactions; thus,
we take a minimal approach and seclude the dark sector
from the visible sector. Atomic dark matter has been
presented in other contexts, such as a mirror universe
[56,64] and supersymmetry [59]. The effect of hidden
sector dissipative dark matter on small-scale structure has
been previously studied in Refs. [62,64]. We note that our
approach differs from prior works [62,64]: the cored
profiles in this work result from the collisional scatterings
of the neutral dark atoms, whereas the density profiles in
Ref. [62] are shaped by a combination of bremsstrahlung
cooling processes in the dark sector as well as energy
injection from visible supernovae [which is made possible
through the inclusion of a kinetic mixing interaction
between the dark U(1) and the SM hypercharge].
Kinetic mixing has also been used to explain DAMA
and CoGeNT [58,62,65–67] and the 3.5 keV line [68].
The paper is structured as follows. In Sec. II we describe

the atomic dark matter model and the scattering properties
of dark hydrogen. In Sec. III we consider dark hydrogen as
an SIDM candidate and determine the parameter space
allowed to accommodate SIDM and satisfy cosmological
constraints. In Sec. IV we investigate how inelastic scatter-
ing processes can affect halo formation. In Sec. V we
discuss the possibility of upscatterings to the n ¼ 2 excited
state as well as collisional ionization in cluster-scale halos.
We conclude in Sec. VI.

II. ATOMIC DARK MATTER MODEL

We begin this section by describing the properties and
parameters of a secluded dark atomic model. We then
present the formalism for dark hydrogen-hydrogen scatter-
ing and show results for the scattering cross section,
obtained by numerically solving the Schrödinger equation.
Our calculations agree with a previous detailed study for
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elastic scattering [61]. We further improve upon the basic
model by incorporating inelastic processes that arise from
hyperfine interactions. In subsequent sections, we show
that the hyperfine splitting of ground-state dark hydrogen
provides a rich phenomenological framework to study
structure formation.
We consider dark matter in a secluded sector that mimics

the properties of SM hydrogen. The dark sector has two
elementary particles: a dark electron with mass me and a
dark proton with mass mp. These particles have opposite
charge under an unbroken U(1) gauge, and they interact
with a strength given by a dark fine-structure constant α.
The dark electron and dark proton may combine to form a
neutral dark hydrogen atom with mass mH and a binding
energy BH ¼ α2μH=2, where μH is the reduced mass of the
dark electron-proton system. It is convenient to parametrize
the theory in terms of the following:

μH ¼ memp

me þmp
; R≡mp

me
;

fðR; αÞ≡mH

μH
¼ Rþ 2þ 1

R
−
α2

2
: ð1Þ

Without loss of generality, we set R > 1. If R ≫ 1, we may
ignore the contribution from the binding energy so that
fðRÞ is a function of R only,

fðRÞ ≈ Rþ 2þ R−1: ð2Þ

All mass and coupling variables refer to dark-sector
quantities and are not used in this paper to refer to their
visible-sector counterparts. However, since the analysis in
this section closely follows that of SM hydrogen, dark
hydrogen can have the same atomic properties of SM
hydrogen by setting the model parameters appropriately. In
fact, we can further diminish the distinction between the
generic dark atomic model and SM hydrogen by expressing
all dimensionful quantities in terms of the atomic energy
and length scales

E0 ¼ α2μH; a0 ¼ ðαμHÞ−1: ð3Þ

In doing so, we may adapt numerical results from the
visible sector to the dark sector by adjusting these atomic
scales. For the remainder of this section, we express
quantities in terms of atomic units for full generality.

A. Quantum formalism

We are interested in the interaction between two n ¼ 1
ground-state dark hydrogen atoms, where n is the principal
quantum number. The formalism is adapted from SM
hydrogen [69,70], and we outline the procedure here.
An essential tool for simplifying the computation of a
molecular wave function is the Born-Oppenheimer (BO)
approximation, in which wewrite the total wave function as

Ψ ¼
X
γ

ψγðxÞϕγðx; yÞ; ð4Þ

where x is the relative separation (in atomic units) of the
dark protons and y is a collective coordinate (in atomic
units) for the dark electrons—we discard the center-
of-mass motion. The subscript γ is a shorthand notation
for the quantum numbers that define a set of basis states.
Although, in principle, γ runs over all possible states, we
truncate it to include only n ¼ 1 atomic ground states.
In writing Eq. (4), we treat ψγðxÞ as the nuclear wave
function for the dark proton, and it has no explicit
dependence on the motion of the dark electrons. On the
other hand, the electronic wave function ϕγðx; yÞ is
dependent on the relative position of the dark protons.
Accordingly, the Hamiltonian of the system separates into a
part that describes only the relative motion of the protons
and a part that encompasses the motion of the electrons and
all Coulomb interactions. To solve the Schrödinger equa-
tion for Ψ, the dark protons are initially held fixed, leaving
just the electronic part of the Schrödinger equation. By
repeatedly solving for ϕγ under various nuclear configu-
rations, the electronic BO eigenvalues ϵγðxÞ form a poten-
tial energy surface, which depends on the distance between
the dark protons. These eigenvalues receive higher-order
corrections from vibrational and rotational nuclear motion
and from relativistic electronic motion. The validity of the
BO approximation relies on the dark proton being suffi-
ciently heavier than the dark electron; the error of the
approximation is ∼R−3=2 [71] and so should be near and
below the percent level for R≳ 20.
We use existing calculations [72–74] of the BO

eigenvalues for SM, ground-state molecular hydrogen.
The states are labeled by the total electronic spin S. The
S ¼ 0 spin-singlet state X1Σþ

g has a BO eigenvalue ϵ0ðxÞ
and positive electronic parity; the S ¼ 1 spin-triplet state
b3Σþ

u has a BO eigenvalue ϵ1ðxÞ and negative electronic
parity. The explicit forms of ϵ0ðxÞ and ϵ1ðxÞ that we use
are found in Ref. [61], with the exception of ϵ0ðxÞ in the
range 0.3 < x < 12, for which we interpolate tabulated
results in Ref. [74]. We identify these states with our
electronic states ϕγðx; yÞ, modulo rotated configurations
of the dark protons [75].
With the BO eigenvalues at hand, we reincorporate the

kinetic energy of the dark protons. Solving the full
Schrödinger equation reduces to solving a one-dimensional
)1 D) Schrödinger equation for the relative nuclear motion
in the potential ϵγðxÞ. In ket notation, we write the basis for
the total wave function as jSMSIMIi, where S and I are the
total electronic and nuclear spins, respectively, andMS and
MI are their associated z-axis projections. The label γ runs
over 16 states (or scattering channels) for two ground-state
dark hydrogen atoms. Since the potential depends only on
the nuclear separation x, we may expand the nuclear wave
function in terms of partial waves,
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ψγðxÞ ¼
X
l;m

x−1½FγðxÞ�lYlmðθ;ϕÞ; ð5Þ

where ½FγðxÞ�l is the partial wave radial amplitude. The
Schrödinger equation we must solve is

�
d2

dx2
−
lðlþ 1Þ

x2
þ fðRÞ½E − ϵγðxÞ�

�
½FγðxÞ�l ¼ 0 ð6Þ

for each channel γ with angular momentum l and energy E
(in atomic units). Employing a more succinct notation, we
discard the label γ and express the Schrödinger equation in
vector/matrix notation. We group the amplitudes into a
single vector Fl of length 16, whose row entries correspond
to the various channels γ ↔ jSMSIMIi. The potential then
becomes a diagonal 16 × 16matrix VðxÞ, whose entries are
ϵ0;1ðxÞ for corresponding channels with S ¼ 0, 1. The
Schrödinger equation becomes

�
d2

dx2
−
lðlþ 1Þ

x2
þ fðRÞ½E − VðxÞ −W�

�
Fl ¼ 0; ð7Þ

where we have included an additional constant 16 × 16
potential matrix W in anticipation of the next section, but
here we set W ¼ 0.

B. Hyperfine interaction

We now incorporate a hyperfine interaction of the form

Ĥhf ¼ EhfðÎA · ŜA þ ÎB · ŜBÞ; ð8Þ

between the nuclear and electronic spins of atoms A and B
involved in the scattering process. The interaction creates
an energy splitting

Ehf

E0

¼ 2

3
gegpα2

1

fðRÞ ð9Þ

of the n ¼ 1 ground state into a hyperfine ground state and
a hyperfine excited state. We set the Landé-g factors of the

dark electron and dark proton to be ge ¼ 2 and gp ¼ 2,
respectively. The hyperfine excited state is unstable with a
decay width

Γ ¼ 1

3

αE3
hf

m2
e
: ð10Þ

The basis jSMSIMIi is not ideal for this interaction, so
we perform a change of basis [70] to jFAMAFBMBi, where
F̂A ¼ ÎA þ ŜA is the total angular momentum of atom A
with spin projection MA (and similarly with atom B).
Table I lists the quantum numbers for each channel, and
Fig. 1 shows a schematic energy-level diagram for the
ground state dark hydrogen atom with a hyperfine splitting.
The hyperfine potential

½W�F0
AM

0
AF

0
BM

0
B

FAMAFBMB
¼ δF0

AFA
δF0

BFB
δM0

AMA
δM0

BMB

Ehf

2E0

½FAðFA þ 1Þ

þ FBðFB þ 1Þ − 3� ð11Þ

is a diagonal matrix in this basis, while the change of basis
induces off-diagonal elements in VðxÞ. As a result, the
Schrödinger equation (7) becomes a system of 16 coupled
differential equations. However, the selection ruleΔM ¼ 0,
where M ¼ MA þMB, allows VðxÞ to be written as a
block-diagonal matrix with four1 submatrices, whose form
is given explicitly in Ref. [70]. The horizontal lines in

FIG. 1. Energy-level diagram for the n ¼ 1 ground state of dark
hydrogen. Hyperfine interactions break the degeneracy between
the FA;B ¼ 0 and FA;B ¼ 1 states for the dark atoms A and B. The
labels b, c, and d correspond to mF ¼ −1, 0, and 1, respectively.

TABLE I. List of interaction channels with associated quantum
numbers. The level for dark atoms A and B corresponds to the
labeling in Fig. 1. The horizontal lines exhibit the block diagonal
nature of the potential VðxÞ.
Channel jFAMAFBMBi Level

1 0 0 0 0 aa
2 1 0 1 0 cc
3 0 0 1 0 ac
4 1 0 0 0 ca
5 1 −1 1 1 bd
6 1 1 1 −1 db

7 0 0 1 1 ad
8 1 1 0 0 da
9 1 0 1 1 cd
10 1 1 1 0 dc

11 0 0 1 −1 ab
12 1 −1 0 0 ba
13 1 −1 1 0 bc
14 1 0 1 −1 cd

15 1 1 1 1 dd
16 1 −1 1 −1 bb

1Channels 15 and 16 have different values of M, but they are
grouped in a single submatrix to maintain consistency with
Ref. [70].
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Table I indicate which sets of channels correspond to
different submatrices. Thus, we may solve Eq. (7) by
solving multiple systems of fewer coupled equations,
which is more computationally efficient.

C. Scattering

The numerical details of solving the Schrödinger equa-
tion (7) are given in Appendix A, and we summarize the
results here. The cross section (in atomic units) from the
state jji≡ jFAMAFBMBi to jii≡ jF0

AM
0
AF

0
BM

0
Bi is [76]

σðj → iÞ ¼ π

2k2j

X
l

ð2lþ 1ÞjðT lÞij þ ð−1ÞlðT lÞ~ijj2; ð12Þ

where kj is the wave number (in atomic units), Sl ¼ 1þ T l

is the Smatrix, and ~i denotes swapping the labels on (or the
quantum numbers of) dark atoms A and B. The wave
number depends on which hyperfine energy level the dark
atoms occupy; at a given energy E, a dark atom in the
excited state will have a smaller velocity than one in the
ground state. The wave number kj relates the relative
velocity vj to the asymptotic energy of the channel j via

kj ¼
1

2
fðRÞ vj

α
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞ½E − ðWÞjj�

q
: ð13Þ

If there is sufficient energy such that k2j > 0, then channel j
is open and accessible; otherwise, it is closed.
Instead of using the cross section for specific channels, a

more useful quantity is the spin-averaged cross section for a
particular type of process. Based on the change in the total
angular momentum F̂ ¼ F̂A þ F̂B, we group spin-averaged
cross sections into seven categories: ΔF ¼ �2, ΔF ¼ �1,
and three separate groups of ΔF ¼ 0. Table II lists these
cross sections and their corresponding scattering channels.
Note that the channels in each group have the same initial
and final velocities. The spin-averaged cross sections σþ
and σþþ represent one and two dark atoms, respectively, in
the hyperfine ground state upscattering to the excited state.
Similarly, σ− and σ−− represent one and two dark atoms
downscattering from the excited state to the ground state.
The remaining spin-averaged cross sections involve dark
atoms that either do not make an energy transition or simply
swap energy states. Atoms remain in the ground state for
σgg and in the excited state for σee. For σge, one dark atom is
in the ground state while the other is in the excited state.
There are some processes not listed in Table II; they are
zero due to selection rules or because total angular
momentum is not conserved.
The total spin-averaged cross section σtot is obtained by

summing over all individual cross sections in Eq. (12) and
dividing by 16, if all channels are open. There are
also variations of the total cross section that incorporate
nonuniform weights for the angular integration. The
momentum-transfer cross section σtot;T weights the cross

section by the fractional longitudinal momentum trans-
ferred in the scattering process, thereby suppressing for-
ward scattering; whereas the viscosity cross section σtot;V
weights the cross section by the fractional transverse
energy transfer, thereby suppressing both forward and
backward scattering,

σtot;T ¼
Z

dσtot
dΩ

ð1 − cos θÞdΩ; ð14Þ

σtot;V ¼
Z

dσtot
dΩ

sin2θdΩ: ð15Þ

We may apply these variations to the individual cross
sections in Eq. (12), under the assumption that the scatter-
ing particles are identical. For ease of notation, we define
ðT eff

l Þij ≡ ðT lÞij þ ð−1ÞlðT lÞ~ij. To obtain σVðj → iÞ, we
replace ð2lþ 1Þ → ðlþ 1Þðlþ 2Þ=ð2lþ 3Þ and T eff

l →
T eff
lþ2 − T eff

l . The normalization ensures that σtot;V has the
proper limits for pure s-wave scattering, for which the
differential cross section is isotropic. For σtot;T, however,
the part of the integrand with the additional cos θ yields
zero, so σtot;T ¼ σtot [77]. The suppression of forward
scattering is compensated by the identical backward scat-
tering, resulting in no change from σtot.

III. APPLICATIONS OF ATOMIC DARK MATTER

We now examine the atomic dark matter model of Sec. II
in a cosmological and astrophysical context. First, we
determine the necessary conditions for dark matter to be
in the form of n ¼ 1 ground state dark hydrogen. Then,
with calculations of scattering cross sections from the
previous section at hand, we examine the atomic
dark matter model as an SIDM candidate. Instead of

TABLE II. Definition of various spin-averaged cross sections.

Cross section Transition (ΔF) Processes

σþþ 2 aa → cc, bd, db
σ−− −2 cc, bd, db → aa
σþ 1 ac, ca → bd, db

ad, da → cd, dc
ab, ba → bc, cb

σ− −1 bd, db → ac, ca
cd, dc → ad, da
bc, cb → ab, ba

σgg 0 aa → aa
σee 0 cc, bd, db → cc, bd, db

cd, dc → cd, dc
bc, cb → bc, cb

dd → dd
bb → bb

σge 0 ac, ca → ac, ca
ad, da → ad, da
ab, ba → ab, ba
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parametrizing the model in terms of those listed in Eq. (1),
we opt for the quantities R, α, and mH; furthermore, since
Eq. (9) relates Ehf=E0 to α and R, we may use Ehf=E0 in
place of R as a free parameter. We consider two specific
cases for the hyperfine splitting, Ehf ¼ 10−4E0 and
Ehf ¼ 10−5E0, and determine what regions of the remain-
ing parameter space can address the small-scale structure
puzzles. These values are chosen such that the cooling from
inelastic scatterings may lead to interesting observable
effects in dwarf-scale to cluster-scale halos. Larger values
of Ehf ≳ 10−3E0 require correspondingly larger relative
particle velocities in order to upscatter to the hyperfine
excited state; for Ehf ¼ 10−3 this means that cooling effects
would only occur in halos with vrms > 260 km=s. If the
hyperfine splitting Ehf is decreased below 10−6E0, the
energy losses from upscatterings become negligible and our
collisional cross sections approach those obtained in the
elastic approximation (see Appendix A 2). Splittings of
Ehf ∼ 10−4 are of particular interest to us as they lead to
large swaths of mH − α parameter space in which colli-
sional heating effects can solve the aforementioned small-
scale structure puzzles.
In the following analysis, we work under the simplifying

assumptions that the dark matter halos are completely
neutral and are not affected by excitations to the n ¼ 2
state. For the reasons that we discuss later on, the effects of
excitations to the n ¼ 2 (see Sec. IV B) state as well as
collisional ionizations (see Sec. V B) may become non-
negligible at galaxy cluster scales for Ehf ¼ 10−5E0, the
smaller of the two hyperfine splittings considered here.
Without a more detailed treatment of the dark atomic
physics, it is possible that for hyperfine splittings ∼10−5E0

these effects may change the cluster-scale halo structure in

such a way as to become inconsistent with current
observations. To be conservative, one should not interpret
the results below for Ehf ¼ 10−5E0 as predictions, but
should instead use them as a comparison to the more
straightforward Ehf ¼ 10−4E0 case to see how the results
are affected for different hyperfine splittings.

A. Cosmological considerations

Our goal is to uncover the cosmological phenomenology
of neutral atomic dark matter in which the dominant
inelastic scattering mode is through dark hyperfine tran-
sitions. We must first map out the region of parameter space
that is allowed for this model.
Under what circumstances does dark matter today

consist of dark hydrogen bound states, with no dark ions
remaining? In analogy with SM hydrogen, there is a
period of dark recombination in the early universe, and
for large regions of parameter space, the majority of
dark ions do indeed form into a neutral bound atomic
state. We assume the Universe has no overall dark charge,
so perfect recombination would result in no remaining
dark ions. Most of the recombination occurs in the range
0.007≲ TD=BH ≲ 0.01, where TD is the temperature of the
dark radiation bath [60]. At the end of dark recombination,
the residual ionization fraction χe is given by [60]

χe ∼ 2 × 10−16
ξ

α6

�
0.11

ΩDMh2

��
mH

GeV

��
BH

keV

�
; ð16Þ

where ξ≡ ðTD;L=TV;LÞ is the ratio of the dark radiation
temperature to the visible-sector CMB temperature in the
present-day late universe. The number density of dark
matter particles changes with mH, where larger masses

FIG. 2. Parameter space scan comparing the viscosity cross section (19), which involves only hyperfine ground-state atoms, to the total
viscosity cross section in the elastic approximation, used in Ref. [61]. The left plot shows σV with Ehf ¼ 10−5E0, while the right plot

shows σV with Ehf ¼ 10−4E0. The spin averaging factors for σV and σðelasticÞtot;V are different, so we do not necessarily expect σV to be less

than σðelasticÞtot;V .
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correspond to lower number densities and hence a later
recombination redshift and a larger ionization fraction. A
higher binding energy, E0=2, results in a larger ionization
fraction because recombination is less efficient. However,
the dependence on α is much stronger: if α is too small, the
interaction between ions is simply not strong enough for
them to attract one another and form bound states.
Constraints in the mH-α plane are plotted in Fig. 3 below

for different values of χe. Postrecombination, we will
require χe ≲ 0.01. With this simplification, we assume
all the dark matter is in the form of dark hydrogen and
do not consider processes such as dark ion-ion or ion-
hydrogen scattering. Furthermore, we avoid dark particles
with long-range forces, which affect structure formation
[58,65]. Note that dark hydrogen typically recombines to
the n ¼ 2 state and not the n ¼ 1 state analyzed in Sec. II.
However, the lifetime of the n ¼ 2 state is very short
(≪ 1 year [60]), so we expect all dark hydrogen to have
settled into its n ¼ 1 ground state by the time of structure
formation.
A complication for our desired dark hydrogen model is

that dark hydrogen can potentially form molecules and
affect halo cooling. The formation of dark molecular
hydrogen H2 may occur through (1) neutral-neutral dark
atom processes Hþ H → H2 þ γ or (2) processes requiring
a dark electron or proton catalyst (e− þ H → H− þ γ;
H− þ H → H2 þ e−), (Hþ þ H → Hþ

2 þ γ;Hþ
2 þ H →

H2 þ Hþ), where γ is the dark photon. The first type of

process is very suppressed due to the fact that it must occur
through a quadrupole transition [78]. The second type of
process requires a free ionized population and thus may
occur before or during recombination; however, at these
times there are enough dark Lyman-Werner photons to
photodissociate the dark H2. Hence, although a very small
amount of dark molecular formation is possible, we do not
consider it further. However, in the visible sector, we know
that even small traces of SM molecular hydrogen dramati-
cally affect the cooling of gas in the first dark matter
minihalos: for high-redshift (z ¼ 23) minihalos of masses
5 × 105–106M⊙, a SM molecular hydrogen fraction of
≲10−3 can cool the innermost regions and precipitate
gravitational collapse [79]. Analogously, even a small
amount of dark H2 present may allow for much more
efficient cooling in halos from excitations of the rotational
and vibrational modes. A comprehensive treatment of dark
H2 formation would be necessary to investigate this effect.
Finally, we consider the abundance and temperature of

the dark sector, as both can dramatically affect the
expansion history of the Universe and clustering of dark
matter. We assume there is a dark matter–antimatter
asymmetry [65], and the full annihilation of dark anti-
particles in the early universe yields the correct relic
abundance of dark particles. Since we assume the dark
sector is overall charge neutral (i.e., an equal number of
dark protons and electrons) by the time of recombination,
the abundance is controlled by the heavier dark protons.

FIG. 3. Viscosity scattering cross sections are calculated at the velocities of interest at each point in the mH-α plane and then used to
determine which areas either satisfy target cross sections or are in tension with observations. The hyperfine splitting is fixed to
Ehf ¼ 10−5E0 in the left panel and Ehf ¼ 10−4E0 in the right panel. The vertical hatched grey area is disfavored by measurements of
cluster halo ellipticities and corresponds to the region where σV=mH > 1 cm2=g for velocities vrms ¼ 1000 km=s. We show contours of
the ionization fraction χe ¼ 10−1, 10−2, and 10−3; we consider χe ≲ 10−2 sufficiently low to ignore dark ions, which excludes a large
portion of the displayed parameter space for Ehf ¼ 10−5E0. Points within the cross-hatched green region satisfy 0.5 cm2=g < σV=mH <
5 cm2=g for velocities vrms ¼ 30–100 km=s, which approximates the condition for cores to form in lower-mass halos. Points within the
solid orange region provide the best-fit viscosity cross sections for cores to form in relaxed cluster halos. The dashed lines show contours
of constant minimum halo mass for values of Ehf ,mH, and α in our model, assuming ξ ¼ 0.6. Lower, allowed values of ξ lead to smaller
minimum halo masses.
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Thus, α is bounded from below by requiring that the dark
antiprotons annihilate efficiently. For pþ p → 2γ annihi-
lation in the nonrelativistic regime, the velocity-averaged
annihilation cross section is given by

hσvi¼πα2

m2
p
¼3.66×10−25 cm3=s

�
α

0.01

�
2
�

mp

100GeV

�
−2
:

ð17Þ

For Dirac dark matter, the thermal relic annihilation cross
section is hσvi ≈ 4.4 × 10−26 cm3=s [80]. Thus, for effi-
cient annihilation of antiprotons, we have the following
lower bound on α:

α > 0.0035

�
mp

100 GeV

�
: ð18Þ

We also need to include the annihilation to the hidden
electrons and positrons, which would weaken the lower
limit. However, this is not required because these limits
are much less constraining than our lower limits on α
derived by imposing χe < 0.01 on the late-time ionization
fraction. We will also find that in most of the parameter
space where the SIDM phenomenology could be relevant
for the small-scale puzzles, the α value will be larger than
the lower limit in Eq. (18). Given these constraints, the dark
matter abundance must be set by a dark matter–antimatter
asymmetry.
Dark photons contribute to the effective number of

relativistic degrees of freedom Neff , measured at the time
of last scattering and during big bang nucleosynthesis
(BBN). Since the dark sector is secluded from the visible
sector, the temperatures in each are naturally allowed to
differ. If ξ≲ 0.65 (at ∼1σ), then we avoid BBN bounds on
Neff for the range of mH; α, and Ehf considered here [60].
One may attempt to motivate a natural value for ξ by
allowing the visible and dark sectors to interact, for
instance, via a kinetic mixing term 1

2
ϵkF0

μνFμν, which
would give the SM electrons a charge of ϵke under the
hidden U(1). Then, the two sectors could come into thermal
equilibrium through the process eSM þ γSM ↔ eSM þ γ at
some temperature T if the condition T2=MPl ¼ αSMαϵ

2
kT is

met in the thermal bath [81]. However, direct detection
constraints from the LUX experiment place strong con-
straints on the mixing parameter ϵk ≲ 2 × 10−10 for the
preferred regions of parameter space determined below
[82]. For the range of ϵk small enough to satisfy direct
detection constraints, the condition for achieving thermal
equilibrium is not reached prior to the freeze-out of SM
eþe− annihilation. The resulting low SM electron density
causes the equilibration process between the dark and
visible sectors to be inefficient, so the sectors do not
achieve thermal equilibrium; thus, we do not have a
well-motivated value to assume for the ratio ξ of their

present-day temperatures. If initially set by inflationary
reheating, the visible and dark sectors could have different
temperatures depending on the inflaton couplings to the
respective sectors. We use the value ξ ¼ 0.6 in the
following work. By using a value close to the upper limit
on ξ, the contours we show later on in Sec. III D may be
interpreted as approximate upper limits on the minimum
halo mass.
In summary, our requirement that dark matter consists

exclusively of dark hydrogen bound states means that we
only consider χe < 0.01. In order not to exceed the tight
BBN constraints on the light degrees of freedom in the
early universe, we require that the temperature of the dark
sector be no greater than approximately 0.65 times the
temperature of the visible sector. Both of these constraints
are easily met with a secluded dark U(1) sector.

B. Cross sections, lifetimes, and structure formation

One of the difficulties in determining the effects of SIDM
models on structure formation is that it is unclear how the
microphysical scattering can be represented by macro-
scopic simulation particles in N-body experiments or in
more general macroscopic descriptions of halos. In this
section, we advocate the use of the viscosity cross section
of n ¼ 1 ground-state dark hydrogen atoms to model the
microphysics of atomic dark matter in the evolution of dark
matter halos. We first show that nearly all dark atoms
should be in their hyperfine ground state, and then motivate
our choice of the viscosity cross section to model the
scattering-induced energy flow in a dark matter halo.
Dark hydrogen may be in either its hyperfine ground or

excited state. For the hyperfine splittings we consider here,
the time scale in Eq. (10) for decays from the hyperfine
excited state to the ground state is always much less than
the time scale for excitation via upscattering. Specifically,
for parameter space of interest in Sec. III C, the excited state
lifetime is always Γ−1 ≪ 1 Gyr; a particle that upscatters
into the excited state almost always emits a dark photon and
returns to the ground state before scattering with another
particle. Hence, we focus on cross sections in which both
particles are initially in the ground state.
A dark matter halo can be altered if interactions occur

that transfer momentum: elastic scatterings between atoms
allow for heat to flow into the cold halo interior and
increase the velocity dispersion of the inner halo relative to
the CDM case. The momentum-transfer cross section σtot;T
(introduced in Sec. II C) is commonly used in the literature
to describe astrophysical constraints on the SIDM cross
section, since it suppresses the far-forward scattering case
of θ ¼ 0, which is equivalent to no interaction occurring.
However, σtot;T preferentially weights backward scattering,
which also does not change the velocity distribution away
from the CDM case, despite the fact that a large amount of
momentum is transferred. An alternative is instead to use
the viscosity cross section σtot;V to favor scattering in the
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transverse direction. While this choice may not be the fully
correct quantity to use for comparison with SIDM con-
straints from simulations, we argue that it better captures
the relevant SIDM physics at lowest order compared to the
momentum-transfer cross section. Additionally, the viscos-
ity cross section is more physically well motivated to use
with identical particles, for which forward and backward
scattering are identical, and we agree with Ref. [61] that the
use of σtot;T ¼ σtot for identical particles [55,60,77,83] is
unwarranted. Although the overall structure of the halo
should be insensitive to the quantum mechanical nature of
individual dark matter particles, it is reassuring that the
viscosity cross section provides a consistent description for
SIDM limits on both the macroscopic and the microscopic
scales. Thus, we consider σgg, σþþ, and their viscosity
counterparts. Recall from Sec. II C that a single excitation
from the scattering of two ground-state atoms does not
occur because of selection rules (for aa → ab; ad) or
because total angular momentum is not conserved at a
fixed orbital angular momentum (for aa → ac). Instead of
the total σtot;V , it is

σV ≡ σgg;V þ σþþ;V ð19Þ

that we use to compare with target SIDM cross sections in
Sec. III C.
The use of the viscosity cross section is complicated by

introducing a hyperfine splitting, and σtot;V may not be an
appropriate quantity to use with SIDM either. Keep in mind
that the constraints from SIDM simulations assume elastic
scattering—kinetic energy is conserved. There may be
regions of parameter space where σþþ;V is a substantial
contribution to σV at energies near the hyperfine threshold,
resulting in a significant loss in kinetic energy. In this case,
applying SIDM constraints using σV is not necessarily a
valid comparison, and we discuss this issue further
in Sec. IV.
Figure 2 shows the ratio of σV (with Ehf ¼ 10−4E0 and

Ehf ¼ 10−5E0) to σðelasticÞtot;V (with Ehf ¼ 0) and demonstrates
how the inclusion of the hyperfine interaction affects the
cross section, as compared to Ref. [61]. Since we assume
all dark atoms are in their hyperfine ground state, the spin-

averaging factor for σV is unity; meanwhile, σðelasticÞtot;V

contains more contributions from the other scattering
channels, but it has a spin-averaging factor of 1=16.

Thus, in our comparison of σV and σðelasticÞtot;V , it is not
generically true that σV is the strictly smaller quantity. At
higher energies, the two cross sections are comparable, so
using either results in very similar regions of acceptable
SIDM parameter space. At lower energies, there is a
resonant effect from the scattering of low-velocity particles;
these particles can exchange multiple dark photons and
form quasibound states, resulting in an enhancement of the
scattering cross section. In this regime, σV can be larger or

smaller than the total elastic viscosity cross section by a
factor of a few, and the resulting shapes of the acceptable
SIDM regions will differ. Although the SIDM constraints
might look similar between our model and its counterpart in
the elastic approximation, the crucial difference comes
from the potentially significant energy losses that result
from hyperfine transitions. We discuss this issue further
in Sec. IV.

C. SIDM halo profiles

We now show how we use the viscosity cross section to
identify interesting regions of dark atom parameter space.
Self-interacting dark matter models are motivated by their
ability to produce cored density profiles in dark matter
halos below ∼1011M⊙ (corresponding to vrms≲
100 km=s), thereby relieving tensions between the predic-
tions for small-scale structure from collisionless N-body
simulations and the inferred halo profiles of observed
galaxies [47,50]. Simulations of galaxies in this mass
range find that hard-sphere scattering cross sections of
σ=m ∼ 0.5–5 cm2=g are capable of reproducing the cored
density profiles of low surface-brightness galaxies (and
perhaps dwarf spheroidals) [47,50]. We thus require that
the atomic dark matter models in our allowed region of
parameter space result in cross sections σV=mH within this
range for halos characterized by velocities of
vrms ¼ 30–100 km=s, which roughly corresponds to halo
masses of 5 × 109–1011M⊙.
One may also calculate a target range for the velocity-

dependent viscosity cross section at higher velocities of
vrms ∼ 1000 km=s using the core sizes of cluster-mass
halos. The scattering cross section required to produce a
core of radius rc may be approximated by assuming that the
size of the cluster core is equal to the maximum radius at
which the average dark matter particle will scatter at least
once during the lifetime of the halo,

tscatterðrcÞ ¼ tage ¼
� ffiffiffiffiffiffi

16

3π

r
σVðvÞ
mH

ρðrcÞvrmsðrcÞ
�−1

; ð20Þ

where ρðrÞ is the dark matter density at radius r. The 1D
velocity dispersion in a halo vrms and the average relative
collisional velocity v between particles are related by
v ≈

ffiffiffi
2

p
vrms. Reference [51] sets the cluster age tage ¼

5 Gyr and uses the halo profiles reported for the set of
relaxed galaxy clusters in Ref. [19] to derive the cluster-
scale cross sections; they find that the observed core sizes
may be reproduced if the cross section is ∼0.1 cm2=g at
cluster velocities vrms ∼ 1000 km=s. We use the inferred
cluster-scale cross sections, velocities, and uncertainties
from Ref. [51] and require that our atomic dark matter
models must have a viscosity cross section within this
range at velocities vrms ∼ 1000 km=s.
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While target cross sections for velocity-dependent SIDM
may be obtained using the core sizes in dark matter halos
across a wide range of characteristic velocities, upper limits
on the scattering cross section at high velocities may be
derived from observations of cluster-scale systems.
Constraints on SIDM cross sections at larger scales may
be derived from measurements of merging galaxy clusters
[54,84], displacements of galaxies from cluster centers long
after merging [85], and ellipticities of dark matter halos
[86,87]. A constraint on σV=mH ≲ 1 cm2=g at the cluster
scale may be derived from the observed ellipticities of
cluster halo profiles inferred through gravitational lensing
[53,87]: if the SIDM cross section is too high, then repeated
scatterings of particles in cluster halos will transform the
halo shape from a triaxial ellipsoid into a sphere. We use
this value as an upper limit on σV=mH at cluster scales in
the analysis below.
Another constraint on self-interaction cross sections may

be derived from the lack of observed deceleration of the dark
matter components due to a drag force in systems of merging
clusters, although for a completely different type of cross
section than can be produced in atomic dark matter models.
Reference [54] uses observations of multiple merging cluster
systems to place an upper limit of σ=m < 0.47 cm2=g at
relative velocities v ∼ 900 km=s. We note that this limit is
not a true constraint on our parameter space, as it assumes an
SIDM model where anisotropic and frequent scattering
events with low momentum exchange give rise to a drag
force with a v2 dependence within merging clusters.
At the high end of the galactic mass scale, past works

[60,88] have also used the halo ellipticity of the elliptical
galaxy NGC 720 as inferred through x-ray observations
[86] to set an upper bound on the scattering cross section.
However, we do not use NGC 720 to set an upper limit at its
velocity scale vrms ∼ 250 km=s for the following reasons
[53]: (1) particles in such halos may on average undergo
multiple scatterings over the halo lifetime while still
preserving ellipticities, and (2) NGC 720 is the only object
at this mass scale which has so far been measured to have
an elliptical halo, and the scatter in simulated halo shapes
may still allow for this halo to be accommodated as an
outlier even if σV=mH ≳ 0.1 cm2=g.
In Fig. 3 we show the regions of mH-α parameter space

which satisfy the target cross section ranges for dwarf and
low surface brightness galaxies, as well as galaxy clusters.
The cross-hatched green areas denote the region where
0.5 cm2=g < σV=mH < 5 cm2=g in halos with vrms ¼
30–100 km=s, while the solid orange shaded areas denote
the 68% confidence limit for the best-fit region where the
viscosity cross sections can reproduce cluster core sizes.
The resonant structure of the scattering cross section is
evident in the green curves, since the associated velocities
are quite low; the orange curves, on the other hand, do not
probe the resonant regime. The vertical hatched grey
region is excluded by the cluster halo shape constraint

of σV=mH < 1 cm2=g in halos with vrms > 1000 km=s.
After imposing the constraint on σV=mH from cluster halo
shapes, the regions of allowed parameter space in Fig. 3
extend to lower masses (≲100 GeV) than those given in
Refs. [60] and [61]. The overlap between the cross-hatched
green region and the solid orange region encloses the values
ofmH and α which give the desired viscosity cross sections
at both of the velocity scales of interest. For Ehf ¼ 10−5E0

there is very little overlap region, and much of the
parameter space shown is excluded by our requirement
that the Universe is neutral: χe ≲ 0.01. For both cases, the
calculation of the preferred SIDM regions in green and
orange may not be reliable for χe > 0.01.

D. Minimum halo masses

Prior to kinetic decoupling, the coupling between the
dark radiation and the dark matter affects the growth of
density perturbations and suppresses the small-scale matter
power spectrum relative to predictions from CDM. The
dark radiation-matter coupling leads to dark sector analogs
of the phenomena of diffusion (or Silk) damping and
baryon acoustic oscillations. The growth of density per-
turbations below the damping scale rD is damped, leading
to a cutoff in the matter power spectrum at small scales. For
a detailed review and explanation of these effects, see
Refs. [57,60,63,89,90].
One may associate a minimum dark halo massMmin with

the smallest perturbation mode below which the growth of
structure is suppressed, given by [89]

Mmin ≃ 0.1

�
Tdec

MeV

�
−3
M⊙: ð21Þ

The minimum halo mass is set by the decoupling
temperature Tdec, which in turn is set by the physics of
the atomic dark matter. Unlike the equivalent scenario
involving SM hydrogen, the dark atoms do not necessarily
become transparent to dark photons soon after recombi-
nation—for high enough values of α, the contribution to the
opacity from Rayleigh scattering between photons and
neutral atoms may keep the dark plasma opaque even if it is
not ionized [60]. There are thus two expressions for Tdec,
depending on whether Compton or Rayleigh scattering
provides the dominant contribution to the dark matter
opacity prior to decoupling. If Rayleigh scattering domi-
nates, we use the following equation for Tdec [60]:

TRayleigh
dec ≃ 7 × 10−4BH

�
1

α6ξ3

�
BH

keV

��
mH

GeV

��1
5

; ð22Þ

where ξ is the ratio of the dark radiation temperature to the
visible sector CMB temperature in the present-day late
universe. As mentioned in Sec. III A, we take this ratio to
be ξ ¼ 0.6 so that the minimum halo masses calculated are
approximately upper limits.
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If Compton scattering is the dominant source of opacity,
we follow the method of Ref. [63] to solve for the scale
factor at decoupling adec and then convert this to the
temperature Tdec. We approximate that the dark electrons
and photons decouple when the expansion rate begins
to exceed the Thomson scattering rate, i.e. when
H ≃ nHχeσThomson. This leads to the following equation
for the scale factor at decoupling adec:

a3dec þ
ΩR

Ωm
a2dec ¼

1

Ωmh2

�
ϵDαξ

�
BH

eV

�
−1
�

mH

GeV

�
−1
6

�
2

:

ð23Þ
The constant ϵD is obtained by fitting to the numerically
calculated ionization fraction and thermal evolution of the
dark sector and is approximately ϵD ∼ 8 × 10−3 for the range
of α considered here [63]. We find that the Rayleigh
scattering case dominates for the parameter space considered
here, and thus the minimum halo masses shown in Fig. 3 are
calculated using the decoupling temperatures given
by Eq. (22).
We calculate the minimum halo masses in our region of

mH-α parameter space and show these as dashed contours
in Fig. 3. In general, the minimum halo masses in the
allowed region of parameter space lie below the current
observational limits. The highest minimum halo mass that
is not ruled out by the constraints from cluster shapes is
Mmin ∼ 107.5M⊙ for hyperfine splittings of Ehf ¼ 10−5E0,
orMmin ∼ 105M⊙ for Ehf ¼ 10−4E0. If the parameter space
is constrained by demanding that velocity-dependent elas-
tic cross sections produce cores at both high and low halo
masses, then this would lead to a prediction of a minimum
halo mass of around Mmin ∼ 107M⊙ for fixed Ehf ¼ 10−5,
or Mmin ∼ 103.5–5M⊙ for fixed Ehf ¼ 10−4. Halos of these
sizes may be observed in next-generation substructure
lensing or galactic tidal stream surveys [91,92].
The temperature ratio ξ may take on different values in

various inflationary reheating scenarios (as long as the
BBN constraint of ξ≲ 0.65 is still satisfied). From
Eqs. (21) and (22), Mmin ∝ ξ9=5 if Tdec is set by the
dominance of Rayleigh scatterings: lower values of ξ result
in lower minimum halo masses. For a sufficiently large
difference in potential values of ξ (e.g. 0.1 versus the upper
limit of 0.65), the minimum halo mass can vary by an order
of magnitude. If one were able to observe the matter power
spectrum cutoff associated with Mmin in an atomic dark
matter scenario, this measurement could be translated into a
lower bound on the dark to visible sector temperature ratio
in various regions of the ðEhf ; mH; αÞ parameter space.
In summary, we find regions of dark atom parameter

space that satisfy observed constraints on the elastic
SIDM cross section on scales from dwarfs to clusters.
Because dark acoustic oscillations lead to a dark-sector
temperature-dependent truncation of the halo mass function
on potentially observable scales, it may be possible to fully

constrain the atomic dark matter model with halo core sizes
and the halo power spectrum.

IV. CONSEQUENCES OF INELASTIC
SCATTERING

The constraints on atomic dark matter so far come from
assuming elastic scattering. One of the most interesting
aspects of dark atoms is that they have excited states, which
admit inelastic processes. In this section, we consider the
magnitude of inelastic hyperfine scattering in our model.
The net effect of two particles upscattering and then
decaying back to the ground state is an overall loss in
kinetic energy; this provides a mechanism for cooling in
dark matter halos which may potentially counterbalance or
dominate over the heating mechanism provided by elastic
scatterings. Depending on the values of Ehf , mH, and α,
either one or both of these effects may have a large
influence on the evolution of a halo. In the following
discussion, we investigate whether inelastic cooling effects
may significantly impact the halo structure in any regions
of the parameter space considered in this work.

A. Comparison of viscosity and upscattering
cross sections

In Fig. 4 we plot examples of upscattering and viscosity
cross sections per unit mass for values of mH and α lying
within the allowed regions of parameter space in Fig. 3
which may produce cores in cluster, LSB, and dwarf halos
consistent with observations. We plot these cross sections
for multiple values of Ehf , mH, and α in order to show the
range of velocity-dependent behavior allowed in our model
which may resolve small-scale structure issues. In the
following discussion, we explore the phenomenology that
may arise in different regions of parameter space due to the
different velocity-dependent behaviors of the viscosity and
upscattering cross sections.
We now compare the velocity dependence of the viscosity

and upscattering cross sections at cluster-scale velocities
vrms ∼ 1000 km=s. At velocities of order Oð100Þ km=s and
lower, the viscosity cross section is generally comparable to
or larger than the upscattering cross section; at higher
velocity scales above 1000 km=s, the viscosity cross section
decreases at a steeper rate such that it falls well below the
upscattering cross section. We choose to plot cross sections
and velocities in units of astrophysical observables in Fig. 4,
though the same quantities can be plotted in terms of the
geometric cross section πa20 and atomic energy E0. The
shape of the viscosity cross section changes noticeably at
two velocities or energies; these changes are more easily
seen for the case where Ehf ¼ 10−4E0. At very low energies,
the viscosity cross section is s wave and constant. There is a
break in the viscosity cross section near E ¼ E0R−3=2, where
the de Broglie wavelength of the atoms can probe the
structure of the lowest-order Van der Waals interaction
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potential (∼1=x6), and higher partial waves begin to con-
tribute. For R ∼ 100, this break occurs near v ∼ 100 km=s.
In atomic units, σV=πa20 scales roughly as ðE=E0Þ−0.4. There
is another power-law break in the viscosity cross section near
E ∼ 0.1E0 or v ∼ 1000 km=s for R ∼ 100. At these higher
energies, higher order multipoles of the Van der Waals
potential are able to be probed, and thus higher partial waves
contribute to the viscosity cross section. The increased
importance of higher partial waves cause the viscosity cross
section to fall quickly as σV=πa20 ∼ ðE=E0Þ−1.3. This behav-
ior allows for the model to produce high viscosity cross
sections at dwarf scales that decrease quickly enough with
energy to become consistent with cluster observations at
higher velocities.
Depending on the values of Ehf and α, the inelastic

upscattering cross section surpasses the viscosity cross
section in halos with characteristic velocities as low as
vrms ∼ 300 km=s, and can be over an order of magnitude
larger at cluster scales. The ratio σþþ=σV increases with
decreasing Ehf ; for Ehf ¼ 10−5 the upscattering cross
section is Oð10Þ times higher than the viscosity cross
section at cluster scales. However, this does not necessarily
mean that cooling is more efficient in atomic dark matter
models with lower hyperfine splittings—although upscat-
terings may occur more frequently in these models, the
smaller values of Ehf mean that less energy is lost when the
particles upscatter into the excited state and decay. We
quantify the relative effectiveness of the heat transfer and
energy loss mechanisms in the following Sec. IV B.
The right panel of Fig. 4 demonstrates an interesting

feature of the atomic dark matter model: if the average
kinetic energy of two incoming particles in a halo is lower
than the hyperfine splitting Ehf , then the dark atoms cannot
upscatter to the hyperfine excited state and the inelastic

cross section drops precipitously. The value of Ehf thus sets
a halo scale below which our mechanism for cooling is
“turned off.” Dark atoms in halos with velocities below this
scale may still be upscattered if they lie in the high-velocity
tail of the velocity distribution, but the overall upscattering
rate will be severely lowered by this effect. For hyperfine
splittings of Ehf ¼ 10−4E0, upscatterings are suppressed in
halos with vrms ≲ 40 km=s. For hyperfine splittings of
Ehf ¼ 10−5E0, upscatterings are only suppressed for
vrms ∼ 1–2 km=s, which corresponds to halos of mass
Mhalo ∼ 106M⊙. If the cooling effects of collisional upscat-
tering lead to observable effects in the structural evolution
of the dark halo, then measurements of halo profiles below
and above this turn-off velocity may allow us to infer a
hyperfine splitting value in an atomic dark matter scenario.
In the right-hand subpanels of Fig. 5, we plot the fraction

of the viscosity cross section σV that arises from the
inelastic viscosity cross section σþþ;V at velocities of
vrms ¼ 40 km=s and vrms ¼ 1000 km=s. We are particu-
larly interested in the fraction σþþ;V=σV for the larger
hyperfine splitting of Ehf ¼ 10−4E0 at low velocities
vrms ¼ 40 km=s: if this fraction is large, inelastic collisions
are no longer approximately equivalent to elastic collisions
in terms of momentum transfer, and comparison to existing
SIDM constraints becomes difficult. From the right panel
of Fig. 5, we see that for the majority of the target parameter
space in this case (green triangles), the inelastic viscosity
cross section contributes only a small (≲0.2) fraction of the
viscosity cross section at low velocities. We therefore
assume that our comparison to existing SIDM cross section
constraints are valid for these values of α at which the
viscosity cross section is close to the elastic viscosity cross
section. We do note that there are narrow ranges of α where
the inelastic contribution to the viscosity cross section is

FIG. 4. Viscosity (red curves) versus upscattering (blue curves) cross sections per unit mass as a function of halo velocity. Because of
the short decay time scale for the hyperfine excited state, we assume that both initial particles are in the ground state. The value of the
hyperfine splitting is fixed to Ehf ¼ 10−5E0 and Ehf ¼ 10−4E0 in the left and right panels, respectively. Each line is drawn randomly
from values of mH and α lying within the overlapping regions of Fig. 3 corresponding to parameters which lead to cores consistent with
observations in both cluster-scale halos as well as dwarf- to LSB-scale halos.
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significant (≳0.8). Nonetheless, we retain this definition for
σV for two reasons: we want to include σþþ;V far from the
hyperfine threshold where all scattering processes are
approximately elastic, and it is not clear to what extent
inelastic processes near threshold affect the SIDM
constraints.

B. Halo cooling

We now quantify the energy loss rate due to hyperfine
upscatterings. In what follows, we assume that halos are
optically thin to the dark photons emitted following decays
from the excited state. In the limit Eγ ≪ ELyα, which is
valid for Eγ ¼ Ehf, the Rayleigh scattering cross section for
dark photons of energy Eγ is approximately given by [60]

σRayleigh ≈
81π

24

�
α

me

�
2
�

Eγ

ELyα

�
4

: ð24Þ

Since this quantity is negligible for dark photons with
energies equal to the hyperfine splittings considered here,
we assume that the emitted photons free stream out of the
halo after emission.
Although the upscattering cross section can be large

relative to the total viscosity cross section, the more
important quantity to compare is the energy flow from
each process. We now calculate the energy losses expected
from inelastic upscatterings and compare this energy loss
rate to the rate of inward heat flow due to dark atom-atom
collisions. We outline below the net kinetic energy loss per
particle expected per hyperfine upscattering and decay. We
define the parameter

ε≡m2
H� −m2

H

4m2
H

¼ Ehf

2mH
; ð25Þ

where mH� ≡mH þ Ehf and mH refer to the excited and
ground state masses, respectively. For the halos and
parameter space studied here, v0 ≪ 1 and ε ≪ 1, where
v0 is the incoming relative velocity of the colliding

particles. In this limit, the net change in kinetic energy
per particle per upscattering in the center-of-momentum
frame is simply ΔKEupscatter ≈ −2mHε ¼ −Ehf.
After the upscattered particle decays, its velocity in the

lab frame is given by

v2f ¼ 1 −
1 − v20
1þ 4ε

�
1 −

2ε

1þ 4ε

1 − v20
ð1 − v0 cos θÞ

�−2
; ð26Þ

where θ is the angle between v0 and the outgoing dark
photon. The change in kinetic energy after undergoing this
decay is

ΔKEdecay ¼ 2εmHð8εþ 2v20 − v0 cos θÞ: ð27Þ

After averaging over possible angles θ, this is a net increase
—emitting a dark photon imparts a net positive kick
velocity to the final ground state atom. However, the
increase in kinetic energy from decay processes is Oðε2Þ
or Oðεv20Þ (the dominant term depends on the value of Ehf
and the halo in question), while the decrease from upscat-
tering processes is OðεÞ. [The net ΔKEupscatter of both
particles is still OðεÞ after shifting back to the lab frame.]
Henceforth, we will approximate the change in kinetic
energy per particle per upscattering as ΔKE ≈ Ehf when
investigating the regimes in which cooling effects become
important.
The rate of energy loss in a thin shell of width dr at a

radius r is given by

4πr2drΓupscatternHΔE

≈ 4πr2dr

ffiffiffiffiffiffi
16

3π

r
σþþðvÞvrmsðrÞρ2ðrÞEhf

m2
H

; ð28Þ

where we have used the above reasoning to assume that the
average energy lost per particle upscattering is approx-
imately equal to Ehf . The total amount of energy lost due to
atomic upscatterings in a halo over its lifetime may be
estimated by integrating Eq. (28) over the radius r and
multiplying by the lifetime. We verify that the energy lost

FIG. 5. The left subpanels in each figure show the constrained (vertical grey hatched) and target (solid orange and cross-hatched green)
areas of parameter space. The right subpanels show the ratio of the inelastic viscosity cross section to the viscosity cross section as a
function of α. The left and right figures are shown for fixed hyperfine splittings of Ehf ¼ 10−5 and 10−4, respectively.
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due to collisional cooling is never more than 0.001 times
the total initial kinetic energy of the halo—for the range of
parameters studied here, hyperfine upscatterings cannot
disrupt the entire halo. However, as we demonstrate below,
the energy losses from inelastic upscatterings can be up to
0.1–0.5 times the rate of inward heat flow from scatterings
within the inner halo for particular ranges in α. Hyperfine
upscatterings may therefore play an important role in the
structural evolution of the inner halo if the atomic SIDM
model parameters lead to significant cooling rates.
To calculate the rate of heat flow resulting from particle

collisions, we treat the dark halo as a fluid with the
luminosity L at radius r given by [93,94]

L
4πr2

¼ −κ
∂T
∂r ¼ −

3

2
abv

σV
mH

�
a
�
σV
mH

�
2

þ b
C
4πG
ρv2

�
−1 ∂v2

∂r :

ð29Þ

The dimensionless coefficients a (which describes hard
sphere scattering),2 b (which describes the short mean-free-
path regime), and C (which describes the scale at which the
transition between long- and short-mean-free path regimes
occurs) are taken to be a ¼ ffiffiffiffiffiffiffiffiffiffi

16=π
p

, b ¼ 25
ffiffiffi
π

p
=32, and

C ≈ 0.75 as in Ref. [94]. In Sec. III B, we explain why the
viscosity cross section σV—as opposed to the transfer cross
section σT—is the quantity that best describes the rate
of events which result in a net transfer of energy. In line
with this reasoning, we use our calculated values for σV in
Eq. (29) when calculating the rate of heat flow.
In Fig. 6 we show the ratio of heat lost through

upscattering and decays to heat inflowing through colli-
sional processes in a thin shell at radius r ¼ 0.5 rs in
low-mass and high-mass halos. The low-mass halo is
chosen to be approximately the lowest-mass halo in which
the inelastic upscattering rate is not suppressed by the
average particle velocity being lower than the hyperfine
splitting. For a hyperfine splitting of 10−4E0 (10−5E0), this
corresponds to a halo mass of 1010 M⊙ (6 × 106 M⊙). The
high-mass halo corresponds to a cluster-scale halo with
Mhalo ¼ 1014 M⊙. We choose to plot this ratio at the radius
r ¼ 0.5 rs as this is roughly where the cooling and heating
rates are both maximized in the halo.
We find that cooling is preferentially important for small

halos relative to big halos. This is because the energy loss
ΔKE ∼ Ehf is fixed, while the typical kinetic energy per
particle increases with increasing halo mass. Furthermore,
the cooling and heating processes have different overall
effects on the halo: heating the inner part of the halo is
caused by a transferral of energy within the halo, whereas
the energy emitted as dark photons is presumably not
reabsorbed and is instead permanently lost from the halo. In
Fig. 6, the cases with high cooling rates have high heating
rates as well, so the moderate cooling-to-heating ratios
could be underestimating the overall importance of cooling.
The structural evolution of the halo in instances of non-

negligible cooling effects is nontrivial and may be modeled
using numerical integration methods. Evolving an atomic

FIG. 6. We compare the effects of SIDM heating and cooling mechanisms in atomic dark matter halos by plotting the ratios of outward
energy flow lost through cooling over the inward heat flow from scatterings at a radius of r ¼ 0.5 rs in the halo, which is approximately
the radius at which the inward heat flow due to scatterings and the outward energy loss due to upscatterings are greatest, as well as
r ¼ rs. The left and right figures in both rows are shown for fixed hyperfine splittings of Ehf ¼ 10−5 and 10−4, respectively. The lower
mass halo plotted in each panel (black triangles) corresponds to the smallest halos in which upscatterings to the hyperfine excited state
are not suppressed by low particle velocities. We also show the cooling to heating ratios at cluster scales for cooling through hyperfine
excitations (magenta circles) and n ¼ 2 excitations (blue squares). See Sec. VA for details and discussion regarding our estimation of
the n ¼ 2 cooling rate.

2This value given for the coefficient a in Eq. (29) assumes
elastic scatterings. As noted previously in Sec. IVA, σV has
contributions from both elastic and inelastic scattering cross
sections. However, σV can be considered as an approximately
elastic cross section if (1) Ehf ≪ mHv2, i.e. the hyperfine splitting
is small compared to the initial energies of the interacting
particles, or (2) the viscosity upscattering cross section σþþ;V
does not contribute significantly to σV . Either one or both of these
conditions are met for a large majority of our favored regions in
parameter space (see Fig. 5). We therefore consider the use of this
value for a to be reasonable.
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dark matter halo over cosmic time with the inclusion of
dark cooling as well as the baryonic potential in the
innermost region r≲ 0.1 rs is beyond the scope of this
paper, but will be addressed in future work.

V. ADDITIONAL CONSIDERATIONS AT
THE CLUSTER SCALE

In our above treatment of the interactions between
neutral dark atoms, we do not consider the possibility of
collisional ionizations or excitations to n ≥ 2 states. This
simplification is adequate for lower-mass halos in which
dark matter particles have enough energy to excite the
hyperfine state, but not enough energy to ionize or excite
the n ¼ 2 state through collisions. As halo masses increase
and the typical particle velocities surpass the ionization
and n ¼ 2 excitation thresholds, these processes may
potentially affect the halo structure. Below, we discuss
the potential for these processes to affect cluster-
scale halos.

A. Upscatterings to the n= 2 excited state

Above a particular halo mass scale, particle velocities
may be high enough to collisionally excite atoms into the
n ¼ 2 excited state, which would quickly decay back to the
ground n ¼ 1 state. This additional cooling mechanism
may affect the halo structure if the relative particle
velocities are above the threshold for upscattering one of
the incident particles into the n ¼ 2 state,

v2 >
9

8gegp

Ehf

E0

: ð30Þ

For hyperfine splittings of Ehf ¼ 10−5E0, relative particle
velocities v≳ 500 km=s (corresponding roughly to a halo
mass of ∼1013M⊙) may result in upscattering to the n ¼ 2
state. Relative velocities above ∼1600 km=s are needed
for hyperfine splittings of Ehf ¼ 10−4E0, which may be
reached in massive clusters (Mhalo ≳ 4 × 1014M⊙) or sys-
tems of merging clusters.
We use the following method to obtain approximate

values for this cross section in order to estimate the
potential cooling losses from n ¼ 2 upscatterings. From
the analytic derivation of cross sections for collisions
between neutral ground-state SM hydrogen atoms pre-
sented in Ref. [95], we see that the n ¼ 2 upscattering cross
sections σn¼2ð1sþ 1s → 1sþ 2s=2pÞmay be written using
v=α as the independent variable, with σn¼2 in units of the
geometric cross section πa20. We then scale the experi-
mental measurements of this cross section [96,97] to
estimate the collisional n ¼ 2 upscattering cross sections
for the dark hydrogen analogs.
Using this scaling, the n ¼ 2 upscattering cross sections

are typically much smaller than the hyperfine upscattering

cross sections (σn¼2 ≲ 0.01σþþ).
3 However, the energy lost

per upscattering is much greater than [of order ðE0=EhfÞ−1
times] the energy lost per hyperfine upscattering. Since the
n ¼ 2 cooling rate may thus be non-negligible, we estimate
it using the expression on the left-hand side of Eq. (28) with
Γupscatter ¼ nHσn¼2v and ΔE ¼ ΔELyα ¼ 3=4BH. We show
this estimate of the n ¼ 2 cooling rate over the heating rate
in Fig. 6.
For hyperfine splittings of Ehf ¼ 10−5E0, we find that

the n ¼ 2 cooling rate over the collisional heating rate can
be up to ∼0.1 in cluster-scale halos of mass 1014M⊙.
Although the relative particle velocities in smaller halos
are above the threshold for n ¼ 2 upscattering, the cross
section σn¼2 for these interactions decreases with velocity
in this regime such that this ratio is an order of magnitude
lower for a 1013M⊙ halo than for a 1014M⊙ halo. For
hyperfine splittings of Ehf ¼ 10−4E0, halos must be at least
∼4 × 1014M⊙ in mass for enough particles to surpass
the threshold velocity for n ¼ 2 upscattering. For a
4 × 1014M⊙ halo, we find that the cooling-to-heating ratio
from n ¼ 2 upscattering is≃0.1 for α≲ 0.04 and decreases
to ≃0.02 for α≃ 0.1. We therefore expect that while the
cooling effects from n ¼ 2 upscattering processes may be
large enough to affect halo structure, they do not affect the
evolution and growth of lower mass halos and only become
significant at the cluster scale.

B. Ionization in the late universe

Once halos form, dark hydrogen remains intact if there
is insufficient energy in the system for ionization:
ðv=αÞ2 < 1=fðRÞ. The particle velocities in a halo may
be high enough to ionize the majority of dark atoms if the
following condition is met:

v2 >
3

2gegp

Ehf

E0

: ð31Þ

For the hyperfine splitting Ehf ¼ 10−5ð10−4ÞE0, the
above relation is satisfied for relative velocities of
v≳ 580ð1800Þ km=s: atoms have enough energy for ion-
ization in isolated cluster halos if Ehf ∼ 10−5, or in merging
clusters if Ehf ∼ 10−4. This raises the concern that dark
matter halos above these velocities may contain a signifi-
cant ionized component. However, the above condition is
necessary but not sufficient to ionize the majority of the
dark atoms in a halo—the cross section for collisional
ionization σi must also be high enough to allow for particles

3Cross sections quoted in Secs. VA and V B make the
simplifying assumption that all particle pairs have the same
typical relative velocity for their position in the halo. If the cross
section is appropriately averaged over the Maxwell-Boltzmann
distribution and relative velocities below the minimum threshold
for the interaction are excluded, results are consistent within
∼20%.
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to experience such an interaction over the cluster lifetime or
merger time.
In a similar manner in which we use the analytic

expression from Ref. [95] to estimate the n ¼ 2 excitation
cross sections, we scale the experimental measurements of
the collisional ionization cross section [96,97] to estimate
the collisional ionization cross sections for atomic dark
hydrogen. At its maximum, this cross section is approx-
imately the geometric cross section: σi;max ≃ πa20. Thus,
for hyperfine splittings of Ehf ¼ 10−4, the collisional
ionization cross section is always σi ≲ 0.01 cm2=g, and
we do not expect cluster halos to be significantly ionized.
However, the geometric cross sections in our preferred

region of parameter space for splittings of Ehf ¼ 10−5E0

are large enough (πa20 ∼ 0.2) such that the collisional
ionization cross section may be as large as σi ∼
0.1 cm2=g for relative velocities above v ∼ 2000 km=s.
Massive clusters or systems of merging clusters above these
velocities may become ionized if the hyperfine splitting is
of order Ehf ∼ 10−5E0. Ionization may result in increased
mass loss during mergers, cooling effects (due to recombi-
nation followed by emission of a photon), and a variety of
possible scattering cross sections between ions, electrons,
and atoms. The complex effects of ionization on the
structural evolution of a halo are not included in the
comparison of our results with existing cluster-scale
observations, and we caution that hyperfine splittings of
Ehf ¼ 10−5E0 in this model may alter the dark matter
structure at high mass scales to be inconsistent with
observations. Again, for the aforementioned reason of
low ionization cross section, this issue of late-time ioniza-
tion does not significantly affect our results for splittings
of Ehf ¼ 10−4.

VI. CONCLUSIONS

In this paper, we have investigated a model of self-
interacting dark matter that mimics the properties of atomic
hydrogen. Dark matter in the late universe takes the form of
dark hydrogen, which is neutral under a new U(1) gauge
force. We do not assume a specific interaction between this
new U(1) and the SM for the predictions in this paper. The
key features of our work are the inclusion of a hyperfine
interaction, which induces an energy splitting in the ground
state of dark hydrogen, and the calculation of the basic heat
transport properties in halos, which allows us to identify the
viable regions of parameter space where the small-scale
puzzles can be solved.
Collisions of dark atoms in halos may induce hyperfine

excitations, which then decay by emitting dark photons.
Halo cooling from this upscattering and subsequent energy
loss works against halo heating that occurs from the
scattering processes. To study these effects on halo struc-
ture, we calculated the cross sections for dark hydrogen
scattering over a wide range of parameter space, using

techniques from standard hydrogen to aid in numerically
solving the Schrödinger equation. The velocity dependence
of the cross sections allows the heating and cooling
mechanisms to operate differently on scales of dwarf
spheroidal galaxies (vrms ¼ 40 km=s) compared to scales
of galaxy clusters (vrms ¼ 1000 km=s).
We argue that the viscosity cross section where both the

forward and backward scattering are suppressed is the
better quantity, compared to the momentum-transfer cross
section, to use when comparing to SIDM simulation results
and observational constraints. The velocity dependence of
the viscosity cross section shows a sharp drop for kinetic
energies larger than about 0.1E0 ≃ 0.1α2mH=R as contri-
butions from higher partial waves become important. This
allows the model to be consistent with cluster constraints.
The typical cross section at E ¼ 0.1E0 is roughly 10a20 and
scales approximately as E−1.3 above these energies. For
kinetic energies below 0.1E0, we see a steady increase in
the viscosity cross section with decreasing relative velocity,
which implies that the scattering processes are very
important in small halos. The viscosity cross section in
this regime scales roughly as E−0.4.
We have found regions of parameter space for the atomic

dark matter model in which dark matter self-interactions
can explain the measured core sizes in both dwarfs and
clusters, while being consistent with all other observations
including cluster halo shapes. The solutions are not fine-
tuned; for a hyperfine splitting that is about 10−4E0, we find
that much of the parameter space with χe < 0.01 and dark
hydrogen mass in the 10–100 GeV range is viable. In this
part of parameter space, the dark matter is in atomic form,
and we find that cooling mechanisms are generically
important for the structure of low-mass halos (masses
below 1010M⊙) but not important enough to completely
disrupt these halos. An immediate consequence of this
observation is that the collapse of small halos at early times
will be affected by the cooling and, therefore, it is likely
that the growth of the seeds of supermassive black holes
will also be altered. We leave this discussion for
another paper.
The kinetic energy of dark matter particles in galaxy

clusters is large enough to allow for additional atomic
physics. We find that collisional excitations to n ¼ 2 and
ionizations could be significant processes in galaxy clusters
for Ehf ¼ 10−5. For Ehf ¼ 10−4, we show that the cooling
rate due to these processes is subdominant to the heating
rate and our predictions, which assume negligible scatter-
ing to n ¼ 2 and fully atomic dark hydrogen, are robust.
Thus, galaxy clusters are important astrophysical labora-
tories for testing atomic dark matter models.
The interactions between the dark matter and the light

mediator in the early universe modifies the kinetic decou-
pling of the dark matter. The kinetic decoupling temper-
ature may be used to estimate the minimum halo mass in
the Universe. Assuming that the ratio of the hidden sector
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temperature to the visible photon temperature at late times
is 0.6 (close to the maximum allowed by BBN constraints),
we find that the range of halo minimum masses in the
viable regions of parameter space are between 103.5 and
107M⊙. These minimum masses are smaller than the host
masses of the currently observed dwarf galaxies, but much
larger than the minimum masses predicted for dark matter
in weak-scale theories. If the ratio of the temperatures is
smaller (due to the fact that the two sectors were reheated to
different temperatures and remained decoupled), then the
minimum halo masses will be lower by a factor
of ðξ=0.6Þ9=5.
In summary, we have shown that an analog of hydrogen

in the hidden sector is a viable self-interacting dark matter
candidate that can alleviate the small-scale structure for-
mation puzzles, and the dissipative nature of atomic dark
matter provides a phenomenologically rich foundation to
make observational predictions.
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APPENDIX:A NUMERICAL WORK

1. System of coupled Schrödinger equations

To solve the system of Schrödinger equations (7), we
work in the jFAMAFBMBi basis, and each partial wave
solution occupies a particular point in the parameter space
ðE; Ehf=E0; RÞ. Our numerical solver begins with a set of
initial conditions at xi > 0 and finds the solution FlðxÞ and
its derivative at a sufficiently large value xf.
Since the goal is to determine the scattering cross

section from one channel in Table I to another, we set
the initial wave function and its derivative at xi to begin
only in a particular channel. There are 16 such choices,
which correspond to 16 linearly independent solutions of
Eq. (7). We assign these solutions as the column vectors of
a 16 × 16 solution matrix F l, and we order them such that
F lðxiÞ and F 0

lðxiÞ are diagonal. As x → 0, the angular
momentum term in the Schrödinger equation dominates,
and the analytic form of the wave function in this limit is
known. Thus, we set the initial condition of the jth
component of the jth solution to be ½F lðxiÞ�jj ¼ xi and
½F 0

lðxiÞ�jj ¼ ðlþ 1Þ (with all other terms zero); the overall
normalization is irrelevant. As the numerical solver evolves
to x > xi, off-diagonal terms in F lðxÞ appear, indicating
that inelastic scattering into other channels has occurred.

At xf we match to the asymptotic solution

lim
x→∞

F l ¼ JlðkxÞ − NlðkxÞKl; ðA1Þ

where Kl is the reaction matrix. JlðkxÞ and NlðkxÞ are
diagonal matrices

½JlðkxÞ�ij ¼
�
δijkixjlðkixÞ for k2i > 0

δijkixιlðkixÞ for k2i < 0
; ðA2Þ

½NlðkxÞ�ij ¼
�−δijkixnlðkixÞ for k2i > 0

−δijkixκlðkixÞ for k2i < 0
; ðA3Þ

where jlðkxÞ and nlðkxÞ are the spherical Bessel functions
of the first and second kinds, and ιlðkxÞ and κlðkxÞ are the
modified spherical Bessel functions of the first and second
kinds. If the wave number as defined in Eq. (13) is
imaginary, then the channel is closed and is omitted from
the S matrix. Note that the asymptotic matching would be
different in the jSMSIMIi basis, because there are finite off-
diagonal terms in the total potential at infinity. By inverting
Eq. (A1), we find

Kl ¼ ½Y lðxfÞNlðkxfÞ − N0
lðkxfÞ�−1½Y lðxfÞJlðkxfÞ

− J0lðkxfÞ�; ðA4Þ

where

Y lðxÞ ¼ F 0
lðxÞ½F lðxÞ�−1: ðA5Þ

The primes denote derivatives with respect to x, not kx. The

jth diagonal element of KlðxÞ is proportional to tan δðjÞl ,

where δðjÞl is the partial wave phase shift associated with
elastic scattering in the jth channel.
Since the range ½xi; xf� is finite, we must ensure that it

yields a convergent expression for the phase shifts and is
sufficiently independent of the choice for xi and xf. We
make an initial guess by setting xi at the threshold where
the angular momentum term begins to dominate over other
terms and setting xf at the threshold where the angular
momentum term and k2 begin to dominate over the
potential term fðRÞVðxÞ. With our beginning range
½xi; xf�, we increase xf by 1% until the phase shifts
converge to 1%. We reset xf and repeat this process while
decreasing xi by 10% until the phase shifts converge to 1%.
Once we have a reliable Kl matrix, we define the scattering
S matrix and amplitude as

Sl ¼ ð1þ iKlÞ−1ð1 − iKlÞ; ðA6Þ

T l ¼ 1 − Sl: ðA7Þ
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Finally, the cross section from the state jji≡
jFAMAFBMBi to jii≡ jF0

AM
0
AF

0
BM

0
Bi is found from sum-

ming over partial waves [76] and is given by Eq. (12). We
truncate the sum over partial waves when they contribute
less than 1% to the cumulative cross section.
Although we have presented the procedure for solving

(7) in terms of 16 coupled differential equations, the
block diagonal form of V þW allows us to break the
problem into four sets of coupled equations, two of
which are identical. Even with this division, calculating
the cross section over a large region of parameter space
requires significant computational resources. For energies
much larger than threshold, we switch to an elastic
approximation.

2. Elastic approximation

In the limit of Ehf ¼ 0, it is easiest to work in the basis
jSMSIMIi, where the potential V is diagonal. The
Schrödinger equation (7) (with W ¼ 0) then represents
16 uncoupled equations, and solving for all channels
becomes a matter of individually finding the singlet and
triplet partial wave phase shifts, δsl and δ

t
l from the equations

�
d2

dx2
−
lðlþ 1Þ

x2
þ fðRÞ½E − ϵ0;1ðxÞ�

�
Fs;t
l ðxÞ ¼ 0: ðA8Þ

The asymptotic solution is

lim
x→∞

Fs;t
l ðxÞ ¼ xeiδ

s;t
l ½cos δs;tl jlðkxÞ − sin δs;tl nlðkxÞ�; ðA9Þ

where k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞEp

. We solve to some sufficiently large
value xf and invert the matching condition to obtain

tan δs;tl ¼ xfj0lðkxfÞ − βs;tjlðkxfÞ
xfn0lðkxfÞ − βs;tnlðkxfÞ

; ðA10Þ

βs;t ¼ xfðFs;t
l Þ0ðxfÞ

Fs;t
l ðxfÞ

− 1; ðA11Þ

where the primes denote derivatives with respect to x. We
use the same procedure (simplified to a single channel)
from Appendix A 1 to set the initial conditions and find the
range ½xi; xf� in which the partial wave phase shift is
convergent.
Once we have the singlet and triplet partial wave phase

shifts, we transform back into the jFAMAFBMBi basis to
find the cross sections for scattering between the channels
listed in Table I. Many of the cross sections are redundant,

so we group them according to the details of the scattering
process. There are five groups that represent ΔF ¼ 0
scattering. For σ0, particles remain in the excited state
and scatter from MA;B ¼ �1 to MA;B ¼ 0 (and vice versa).
For σ1, particles remain in the ground or excited state with
MA;B ¼ 0. For σ2, one particle is in the ground state, and the
other is in the excited state with anyMA;B. For σ3, particles
remain in the excited state withMA;B ¼ �1. The exceptions
are channels 15 and 16, which experience pure elastic
scattering, each with a cross section σ4. The remaining
cross sections haveΔF ≠ 0. The cross section σ5 represents
jΔFj ¼ 1 scattering and is p-wave suppressed. The cross
section σ6 represents jΔFj ¼ 2 scattering and is equal to σ0.
The expressions for these cross sections are given as
follows:

σ0 ¼
π

2k2
X
l even

ð2lþ 1Þsin2ðδsl − δtlÞ; ðA12aÞ

σ1 ¼
π

2k2
X
l even

ð2lþ 1Þ½4sin2δsl þ 12sin2δtl − 3sin2ðδsl − δtlÞ�;

ðA12bÞ

σ2 ¼
π

2k2

�X
l even

ð2lþ 1Þ4sin2δtl þ
X
l odd

ð2lþ 1Þ½2sin2δsl

þ 2sin2δtl − sin2ðδsl − δtlÞ�
�
; ðA12cÞ

σ3 ¼
π

2k2
X
l

ð2lþ 1Þ½2sin2δsl þ 2sin2δtl − sin2ðδsl − δtlÞ�;

ðA12dÞ

σ4 ¼
π

2k2
X
l even

ð2lþ 1Þ16sin2δtl; ðA12eÞ

σ5 ¼
π

2k2
X
l odd

ð2lþ 1Þsin2ðδsl − δtlÞ; ðA12fÞ

σ6 ¼ σ0: ðA12gÞ

We form the total spin-averaged cross section by summing
over all possible cross sections, weighted by a factor of
1=16 [83],

σtot ¼
π

2k2
X
l

ð2lþ 1Þ
�
sin2δsl þ 9sin2δtl l even

3sin2δsl þ 3sin2δtl l odd:
ðA13Þ
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