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We investigate the properties of strange quark matter (SQM) and quark stars (QSs) in the framework of
SU(3) Nambu–Jona-Lasinio (NJL) model with two types of vector interactions under strong magnetic
fields: (1) the flavor-dependent repulsion among u, d, and s quarks with the coupling constant GV , and
(2) the universal repulsion and the vector-isovector interaction with the coupling constants gV andGIV . The
effects of the two types of vector interactions on the constituent quark mass, vacuum quark mass, quark
chemical potential, and quark fraction in SQM under strong magnetic fields are studied, and the results
indicate that these physical quantities for SQM are all sensitive to the two types of vector interactions in
NJL model under magnetic fields. Using a density-dependent magnetic field profile which is introduced to
describe the magnetic field strength distribution inside the magnetars, we calculate the properties of
spherical QSs by using two extreme cases for the orientation of the magnetic field inside the stars, i.e., the
radial orientation in which the magnetic fields are along the radial direction in stars, and the transverse
orientation in which the magnetic fields are randomly oriented in the plane which is perpendicular to the
radial direction. Our results indicate that the maximum mass of QSs may dependent on both the strength
distribution and the orientation of the magnetic fields inside QSs by using SU(3) NJL model.
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I. INTRODUCTION

In terrestrial laboratories, heavy ion collisions (HICs)
provide unique tools to explore the properties of strong
interaction matter, which is one of the main topics of
quantum chromodynamics (QCD). The hot quark-gluon
plasma (QGP) is expected to be created in heavy ion
collisions at the Relativistic Heavy Ion collider (RHIC)
and the Large Hadron Collider (LHC). The knowledge of
strong interaction matter at high baryon density regions can
be further complemented by future experiments planned in
heavy ion collisions at FAIR inGSI and the Nuclotron-based
Ion Collider Facility (NICA) at JINR, while the cold and
dense quarkmatter may exist in the inner core of the compact
stars, which provide another way to explore the strong
interaction matter at high baryon density and low temper-
ature. Neutron stars (NSs), which have been shown to
provide natural testing grounds of the knowledge on the
properties of neutron-rich matter [1,2], are a class of the
densest compact stars in the Universe. Theoretically, NSs
maybe converted to quark stars (QSs) [3–6], which are
made purely by deconfined u, d, s quark matter and some
leptons, and the possible existence of QSs is one of the
most intriguing aspects of modern astrophysics. There are

also hybrid star conjectures with a phase transition from
the nuclear phase to the quark phase at high baryon
density [7–13].
In the inner core of compact stars, the baryon density

can reach or be larger than around 6 times the normal
nuclear matter density n0 ¼ 0.16 fm−3, so there might exist
hyperons [14–16], meson condensations [17–19], and even
strange quark matter (SQM) [20–23]. Theoretically, SQM
has been conjectured to be the absolutely stable true ground
state of QCD matter (i.e., the strong interaction matter)
[20,21], and studying the properties of SQM is helpful to
understand and calculate the structure of QSs.
The equation of state (EOS) of dense quark matter

at finite density is usually soft due to the asymptotic
freedom of QCD feature for the interactions among quarks
at ultra high density. In addition, the EOS of SQM can be
further softened because of the addition of s quark, which
contributes a new freedom for quarks. Recently, by using
the general relativistic Shapiro delay, two heaviest
neutron stars have been measured with high accuracy.
One is the radio pulsar J1614-2230 [24] with a mass of
1.97� 0.04 M⊙, and the other is J0348þ 0432 [25] with a
mass of 2.01� 0.04 M⊙. Even heavier compact stars have
been discussed in the works [26,27]. This high mass seems
to rule out conventional QS models with soft EOSs. For the
NJL model, it has been pointed out that the repulsive vector
interaction model can produce a stiff EoS for dense quark
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matter and thus can generate a two-solar-mass compact
star [28–33]. The role of the vector interaction in QCD
vacuum and medium has been discussed in the literature
[28,29,34–50], and the coupling constants are determined
by the vector spectra [34,37].
In recent decades, properties of strange quark matter at

finite temperature under strong magnetic fields have
attracted lots of interest, and as shown in Ref. [51], the
presence of external magnetic field can even harden the
equation of state of dense quark matter when considering
that the compact stars can be endowed with strong
magnetic fields, which are called magnetars. In the labo-
ratory, through noncentral heavy ion collisions [52,53] at
the Relativistic Heavy Ion Collider (RHIC) and the
Large Hadron Collider (LHC), strong magnetic fields
with the strength of 1018–1020 G [which is equivalent to
eB ∼ ð0.1–1.0 GeVÞ2] can be generated. At the surface
of the compact star, a large magnetic field strength of
B ∼ 1014 G has been estimated [54–56], and the magnetic
field strength may reach as large as B ∼ 1018 G in the core
of the compact stars [57]. In the work by Ferrer et al. [58],
the estimated magnetic field strength can even reach about
1020 G in the core of the self-bound QSs. Under such
strong magnetic fields, the spatial rotational [Oð3Þ] sym-
metry will break and one should introduce the pressure
anisotropy of the system [58–61]. In order to describe the
spatial distribution of the magnetic field strength in
compact stars, a density-dependent magnetic field profile
[62,63] is introduced, and it is important to investigate the
effects of the spatial distribution and the orientation of the
magnetic fields on the properties of compact stars. It is still
a question whether the inclusion of the strong magnetic
fields can reduce or enhance the maximum mass of
compact stars [62–73]. For instance, the maximum mass
of compact stars increases with the increment of the
magnetic fields in the work [65], while in the work [73]
the maximum mass of compact stars decreases with
magnetic fields. The main motivation of this work is to
explore the properties of SQM and QSs under strong
magnetic fields. Due to the soft EOSs for quark matter,
we introduce two types of vector interactions to stiffen the
EOS of quark matter in SU(3) NJL model in order to
describe two solar mass QSs under strong magnetic fields.
The paper is organized as follows. In Sec. II, we give a

general description of the SU(3) NJL model with two
types of vector interactions under magnetic field in β
equilibrium condition,and then present our numerical
results in Sec. III. The conclusion and discussion is given
in Sec. IV.

II. THREE-FLAVOR NJL MODEL WITH VECTOR
INTERACTION UNDER MAGNETIC FIELD

We start from the Lagrangian density to investigate the
properties of u, d, and s quark matter under strong magnetic
fields Aext

μ

L ¼ Lq þ Ll −
1

4
FμνFμν; ð1Þ

where Ll and Lq are the Lagrangian densities for leptons
(including electrons and muons) and quarks, respectively.
The magnetic field B is set as the static magnetic field along
z direction, and Aext

μ ¼ δμ2x1B. Fμν ¼ ∂μAext
ν − ∂νAext

μ is
the external electromagnetic field strength tensor.
The lepton Lagrangian density is given as

Ll ¼ l½ði∂μ − eAμ
extÞγμ�l: ð2Þ

The Lagrangian density for quarks can be written by the
gauged Nf ¼ 3 NJL model with vector interaction [35,36]

Lq ¼ ψf½γμði∂μ − qfA
μ
extÞ − m̂c�ψf þ L4 þ Ldet; ð3Þ

where L4 stands for four-fermion interaction compatible
with QCD symmetries, and Ldet indicates the six-point
interaction which breaks the axial Uð1ÞA symmetry. ψ ¼
ðu; d; sÞT represents the three flavor quark field, m̂c ¼
diagðmu;md;msÞ is the current quark mass matrix, and qf
means the quark electric charge. The four-fermion inter-
action including scalar, pseudoscalar, and the two types of
vector interaction takes the form of

L4 ¼ LS þ
�
LVa

LVb
ð4Þ

The scalar part is

LS ¼ GS

X8
a¼0

½ðψfλaψfÞ2 þ ðψfiγ5λaψfÞ2�; ð5Þ

where GS is the coupling constant in the scalar channel.
λaða ¼ 1;…; 8Þ are the Gell-Mann matrices and the gen-
erators of the SU(3) flavor groups, and λ0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
I with I

being the unit matrix.
We now consider two types of vector interaction,

“type A” (LVa) and “type B” (LVb), in the Lagrangian as

LVa ¼ −GV

X8
a¼0

½ðψγμλaψÞ2 þ ðψiγμγ5λaψÞ2�; ð6Þ

LVb ¼ −gVðψγμψÞ2 − GIV ½ðψγν~τψÞ2 þ ðψγνγ5~τψÞ2�; ð7Þ

where GV and gV are vector interaction coupling constants,
andGIV is the vector-isovector coupling constant. The term
proportional to GVð>0Þ in Eq. (6) gives a flavor-dependent
repulsion for quarks, while the one proportional to gVð>0Þ
in Eq. (7) contributes the universal repulsion which cannot
be distinguished in different flavors. The term proportional
to GIVð>0Þ in Eq. (7) indicates the vector-isovector
interaction for quarks, and ~τ is the Pauli matrices. Since

PENG-CHENG CHU et al. PHYSICAL REVIEW D 94, 123014 (2016)

123014-2



theGV term interaction is flavor-dependent while gV term is
flavor independent, we add the extra term for the vector-
isovector channel (GIV term) in Eq. (7) so as to distinguish
the isoscalar and isovector for the vector channel.
The ’t Hooft term Ldet the takes the form of

Ldet ¼ −Kfdetf½ψfð1þ γ5Þψf� þ detf½ψfð1 − γ5Þψf�g;
ð8Þ

which is to break the Uð1ÞA symmetry.

A. The pressure from quark contribution

In the mean-field approximation, the Lagrangian density
for the quark part is

LM ¼ ψf

�
γμði∂μ − qfA

μ
extÞ − M̂ − 4GVγ0n̂

− 2gVγ0
X

i¼u;d;s

ni − 2GIVγ0τ3fnf

�
ψf

− 2GSðσ2u þ σ2d þ σ2sÞ þ 4Kσuσdσs ð9Þ

þ

8>><
>>:

2GVðn2u þ n2d þ n2sÞ

gV

� P
i¼u;d;s

ni

�
2

þGIVðnu − ndÞ2
; ð10Þ

where

n̂ ¼

0
B@

nu 0 0

0 nd 0

0 0 ns

1
CA

is the density matrix for quarks, and

M̂ ¼

0
B@

Mu 0 0

0 Md 0

0 0 Ms

1
CA

is the constituent quark mass matrix.
The quark mass can be derived by the gap equation of

Mi ¼ mi − 4GSσi þ 2Kσjσk; ð11Þ

where ði; j; kÞ is any permutation of ðu; d; sÞ. The chiral
condensate is written as

σf ¼ hψfψfi ¼ −i
Z

d4p
ð2πÞ4 tr

1

ðp= −Mf þ iϵÞ : ð12Þ

We can obtain the pressure for quarks pq ¼ −Ωq (Ωq is
the thermodynamical potential for quarks) as

pq ¼ −2GSðσ2u þ σ2d þ σ2sÞ þ 4Kσuσdσs

þ ðΩu
ln þ Ωd

ln þ Ωs
lnÞ

þ
�
2GVðn2u þ n2d þ n2sÞ
gVðnu þ nd þ nsÞ2 þGIVðnu − ndÞ2

; ð13Þ

with the logarithmic contribution

Ωf
ln ¼ −i

Z
d4p
ð2πÞ4 tr ln

�
1

T
½p= − M̂f þ γ0 ~μf�

�
; ð14Þ

here T comes from the Matsubara frequencies for fermions,
and

~μf ¼ μf−4GVnf−2gV
X

i¼u;d;s

ni−2GIVτ3fðnu−ndÞ; ð15Þ

where μf is the chemical potential for quarks and τ3f
indicates the isospin quantum number for quarks: τ3u ¼ 1,
τ3d ¼ −1, and τ3s ¼ 0.
The calculation forΩf

ln and σf at zero temperature can be
acquired as

Ωf
ln ¼ Ωf;vac

ln þ Ωf;mag
ln þΩf;med

ln : ð16Þ

The first term is tahe vacuum contribution to the thermo-
dynamical potential

Ωf;vac
ln ¼ −

Nc

8π2

�
M4

f ln

�
Λþ ϵΛ
Mf

�
− ϵΛΛðΛ2 þ ϵ2ΛÞ

�
; ð17Þ

where ϵ2Λ ¼ Λ2 þM2
f and Λ is the noncovariant cutoff. The

magnetic field contribution is calculated as

Ωf;mag
ln ¼ Nc

2π2
ðjqfjBÞ2

�
x2f
4
þ ζ0ð−1; xfÞ

−
1

2
ðx2f − xfÞ lnðxfÞ

�
; ð18Þ

where xf ¼ M2
f

2jqf jB and ζðz; xÞ is the Riemann-Hurwitz

function. The medium contribution is

Ωf;med
ln ¼

Xkfmax

k¼0

αk
ðjqfjBNcÞ

4π2

(
~μf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~μ2f − sfðk; BÞ2

q

− sfðk; BÞ2 ln
"
~μf þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~μ2f − sfðk; BÞ2

q
sfðk; BÞ

#)
; ð19Þ

where

sfðk; BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2jqfjBk

q
; ð20Þ
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and

kfmax ¼
~μ2f −M2

2jqfjB
¼ p2

f;F

2jqfjB
; ð21Þ

is the upper Landau level with αk ¼ 2 − δk0.
Then the condensates for each flavor of quarks can be

acquired as:

σf ¼ σvacf þ σmag
f þ σmed

f ð22Þ

with

σvacf ¼ −
MfNc

2π2

8<
:Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

f

q

−M2
f ln

2
64
	
Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

f

q 

2

ðM2
fÞ

3
75
9=
;; ð23Þ

σmag
f ¼ −

MfNc

2π2
ðjqfjBÞ

�
ln½ΓðxfÞ�

−
1

2
lnð2πÞ þ lnðxfÞ

2
− xf lnðxfÞ

�
; ð24Þ

σmed
f ¼

Xkfmax

k¼0

αk
MfjqfjBNc

π2

×

8<
:ln

2
64 ~μf þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~μ2f − sfðk; BÞ2

q
sfðk; BÞ

3
75
9=
;: ð25Þ

B. The SQM

For SQM, the weak beta-equilibrium condition can be
acquired as

μu þ μe ¼ μd ¼ μs; ð26Þ

where μi (i ¼ u, d, s and e−) means the chemical potential
of the particles in SQM. We can write down the electric
charge neutrality condition as

2

3
nu ¼

1

3
nd þ

1

3
ns þ nl: ð27Þ

Where

nf ¼
Xkf;max

k¼0

αk
jqfjBNc

2π2
kF;f ð28Þ

is the quark density with kF;f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~μ2f − sfðk; BÞ2

q
, and

nl ¼
Xkl;max

k¼0

αk
jqljB
2π2

kF;l ð29Þ

the lepton number density.

C. Pressure of SQM under magnetic fields

For SQM under magnetic fields, the Oð3Þ rotational
symmetry is broken and the pressure for SQM will be split
into two cases and become anisotropic. The first case is
the longitudinal pressure Pjj case, which is parallel to the
magnetic field orientation, and the second case for the
anisotropic pressure is the transverse pressure P⊥, which
is perpendicular to the orientation of the magnetic field. The
expressions for the longitudinal and transverse pressure for
the system under strongmagnetic fields take the form of [58]

pjj ¼ p −
1

2
B2; ð30Þ

p⊥ ¼ pþ 1

2
B2 −MB; ð31Þ

where we have defined

p ¼ pq þ pl − p0 ¼ −Ω; ð32Þ

with p0 ¼ −Ω0 ¼ −ΩðB ¼ 0; μ ¼ 0Þ the vacuum pressure
density, which ensures p ¼ 0 in the vacuum. And M is the
system magnetization with the form of

M ¼ −∂Ω=∂B ð33Þ

The energy density for SQM at zero temperature under
magnetic fields can be given by

ϵ ¼ −pþ
X

i¼u;d;s;l

μini þ
1

2
B2: ð34Þ

It is interesting to see that the longitudinal pressure pjj
meets the requirement of the Hugenholtz-Van Hove (HVH)
theorem [31,74], while the transverse pressure p⊥ has extra
contributions terms from the magnetic fields.

D. The spatial distribution and the orientation
for magnetic fields inside QSs

It is generally believed that the magnetic field strength in
the core of the magnetars could be much larger than the
magnetic field strength at the surface, which suggests that a
density-dependent magnetic field profile should be intro-
duced to describe this behavior for the spatial distribution
of the magnetic field strength in magnetars [62,63]. Besides
the spatial distribution of the magnetic field strength in
magnetars, the orientation of the magnetic fields is also
very important for determining the structure of the compact
stars because the large anisotropy for quark matter pressure
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density under strong magnetic fields. In the work [31], the
authors assume two extremely special cases for the ori-
entation inside quark stars: one is that the local magnetic
fields are along the radial direction (denoted as “radial
orientation”), and the other is that the magnetic fields are
perpendicular to the radial direction but randomly oriented
in the plane which is perpendicular to the radial direction
(denoted as “transverse orientation”). For these two
extreme cases for the orientation of the magnetic fields,
one can calculate the structure of the static magnetized
quark stars by using the following Tolman-Oppenheimer-
Volkoff (TOV) equations [75]:

dM
dr

¼ 4πr2ϵðrÞ; ð35Þ

dp
dr

¼ −
GϵðrÞMðrÞ

r2

�
1þ pðrÞ

ϵðrÞ
�

×

�
1þ 4πpðrÞr3

MðrÞ
��

1 −
2GMðrÞ

r

�
−1
; ð36Þ

where MðrÞ stands for the total mass inside the sphere
of radius r, ϵðrÞ is the corresponding energy density
(which includes the magnetic field contribution), pðrÞ is
the corresponding (radial orientation) pressure (including
the magnetic field contribution), and G is Newton’s
gravitational constant.

III. NUMERICAL RESULTS AND CONCLUSIONS

For our numerical calculations, following [51], the set of
parameters we used is: Λ¼631.4MeV,mu¼md¼5.5MeV,
ms ¼ 135.7 MeV, GΛ2 ¼ 1.835, and KΛ5 ¼ 9.29.

A. Properties of SQM under strong magnetic fields

In this subsection, we study the properties of the quark
matter within β−equilibrium condition (i.e., SQM) under
strong magnetic fields by considering two types of vector
interactions in SU(3) NJL model.
The value of the coupling constant for GV can be fixed in

the vacuum by reproducing the spectrum of the vector
mesons. However, it is not clear how large the modification
ofGV in the medium for SU(3) NJL model. Instead of fixing
it by themeson spectrum in thevacuum,we treat this constant
as a free parameter in order to grasp its effects on the
properties of SQM at finite density under strong magnetic
fields.We discuss the constituent quarkmasses for u, d, and s
quarks as functions of the magnetic field within four cases
first: (1)GV¼gV¼GIV¼0, (2)GV¼0.5GS, gV ¼ GIV ¼ 0,
(3) gV ¼ 0.5GS, GV ¼ GIV ¼ 0, and (4) GIV ¼ 0.5GS,
GV ¼ gV ¼ 0, when baryon density is fixed at 10n0 (where
n0 is the normal nuclearmatter density, and the central baryon
density in QSs with different usual phenomenological
models is calculated roughly around 10n0). As Fig. 1 shown,
the constituent quark masses of u, d, and s quarks at 10n0 do

not change much until the magnetic field increases to B ¼
2 × 1019G for all the parameter sets, and it can be observed
that several kinks appear in the mass curves when the
magnetic field continues getting larger than B¼2×1019G
in all the four cases. This phenomenon is caused by the filling
of different Landau levels under strong magnetic fields,
which can be found in Eqs. (10), (22), and (25). We can also
see that for all the four cases in this figure, the constituent
quarkmass for d quark can be larger than that for u quark once
the magnetic field exceeds B ¼ 6 × 1019G, and the oscil-
latorybehavior for s quarkmass ismore obvious than that of u
and d quarks around B ¼ 6 × 1019G in each case. For the
flavor-dependent repulsion in case(2), one can find that
the value of the constituent quark mass of s quark is less
than the other three cases at the same magnetic field, which
indicates the flavor-dependent repulsion can put a brake on
the oscillatory behavior for s quark mass. In case (3), where
we only consider the universal repulsion, it can be seen that
the lines of the constituent quarkmass for quarks are identical
to those in case(1), which implies that the vector-isoscalar
channel has no effects on the quark constituent mass in the
SU(3) NJL model under strong magnetic fields.
In Fig. 2, we investigate the vacuum constituent mass for

u, d, and s quarks as functions of the magnetic field within
the same parameter cases in Fig. 1. One can find in this
figure that the vacuum quark mass for three flavors of
quarks do not change much when magnetic field is less than
B¼1×1019G. As the magnetic field reaches B¼3×1019G,
the quark masses for u and d quarks begin to increase
drastically, and the constituent quark mass for u quark even
gets larger than the s quark mass when the magnetic field is
larger than B ¼ 1.2 × 1019G, which indicates an obvious
magnetic catalysis phenomenon. After the calculation in
this figure, we find that the vacuum quark mass is
independent of the vector interaction for SU(3) NJL model
under strong magnetic fields.

FIG. 1. Constituent quark mass for different flavors of quarks
under strong magnetic fields within different vector interaction
when baryon density is fixed.
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Figure 3 shows the quark chemical potentials for SQM as
functions of the magnetic field B within four cases:
(1) GV ¼ gV ¼ GIV ¼ 0, (2) GV ¼ 0.5GS, gV ¼ GIV ¼ 0,
(3) gV ¼ 0.5GS, GV ¼ GIV ¼ 0, and (4) GIV ¼ 0.5GS,
GV ¼ gV ¼ 0, when baryon density is fixed at 10n0. In
case (1), one can find that the value of the chemical
potential for u quark is less than d and s quarks, and the
chemical potential for d and s quark is identical due to
β-equilibrium. The chemical potential for quarks in the four
cases all increase with magnetic field at first, then oscillate
every time when a different number of Landau level is
filled. It can be obviously seen that the chemical potential
for each flavor in case (2) and case (3) is magnificently
enhanced when comparing case (1), which implies that a
stiffer EoS can be generated once the flavor-dependent
repulsion or the universal repulsion is considered, and one
can also find that the universal repulsion contributes more
to enhance the chemical potential in SQM. Comparing

case (1) and case (3), we can see that the shapes of the
chemical potential lines from this two cases are identical,
though the chemical potential in case (3) has a higher value.
For case (4), the chemical potential is a little enhanced by
considering the vector-isoscalar interaction, which indi-
cates that the vector-isovector interaction may have not
much effect on stiffening the EoS in SQM for SU(3) NJL
model under strong magnetic fields.
In Fig. 4, we show the u, d, and s quark fraction as

functions of the baryon density in SQM at B ¼ 0 and B ¼
2 × 1019 G with the four parameter sets we have discussed
before. One can observe that in all four cases, the curves for
fraction are no longer smooth owing to the filling of the
Landau level, when strong magnetic field B ¼ 2 × 1019 G
is considered, while the values of the fraction do not vary
too much. In case (2) and case (4), one can see that the
difference among the fraction of u, d, and s quark
decreases, when the flavor-dependent repulsion or isovec-
tor interaction is considered. We can also find that the
fraction for different flavors of quarks in case (3) is
identical to that in case (1) under magnetic fields, which
indicates that the universal repulsion among SQM still has
no effects on quark fraction in SU(3) NJL model under
strong magnetic fields, either.

B. Quark stars in density-dependent magnetic fields

As we have mentioned earlier, the magnetic field inside
magnetized compact stars is generally believed to be varied
with the radius. The density-dependent magnetic field is
usually introduced to mimic the magnetic field strength
distribution inside the magnetars. Because it is hard to
detect the magnetic field strength distribution inside the
magnetars, we use the popular parametrization for the
density-dependent magnetic field profile in magnetars as in
Refs. [63,65–67].

FIG. 2. Vacuum constituent quark masses for u, d, and s quarks
as functions of the magnetic field in SQM within different vector
interactions.

FIG. 3. Chemical potentials for u, d, s quarks as functions of
magnetic field with different vector interaction in NJL model
under strong magnetic field.

FIG. 4. Chemical potentials for u, d, s quarks as functions of
magnetic field with GV ¼ 0 and GV ¼ 0.8GS at baryon density
nb ¼ 10n0 in SQM.
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B ¼ Bsurf þ B0½1 − exp ð−β0ðnb=n0ÞγÞ�; ð37Þ

where Bsurf is the magnetic field strength at the surface of
compact stars whose value is fixed at Bsurf ¼ 1015G in this
paper, n0 ¼ 0.16 fm−3 is the normal nuclear matter density,
B0 is the constant magnetic field used as a parameter, and
β0 and γ are two dimensionless parameters controlling how
the magnetic field strength decays from the surface to the
center. In order to reproduce the magnetic field that is weak
below the nuclear saturation point while getting stronger at
higher density, we set B0 ¼ 4 × 1018G, β ¼ 0.001, and
γ ¼ 3 as the parameter set in the following calculations, and
this magnetic field distribution has been already proved to
be as a gentle magnetic field distribution for SQM inside
QSs, which leads to a not big pressure anisotropy and small
maximum mass splitting for QSs in confined-isospin-
density-dependent-mass (CIDDM) model [31].
In order to describe the pressure anisotropy for quark

matter under strong magnetic fields quantitatively, one can
define the normalized pressure splitting factor as [31]

δp ¼ P⊥ − Pjj
ðP⊥ þ PjjÞ=2

: ð38Þ

Using this definition, one has δp ¼ 0 if there is no pressure
splitting between P⊥ and P∥, and δp ¼ 2 for the extremely
anisotropic case with P∥ ¼ 0.

Shown in Fig. 5 are the transverse and longitudinal
pressures together with the pressure anisotropy δp as
functions of the baryon density. The parameter set we
used here is gV ¼ 1.1GS, GIV ¼ 0.5GS, using that which
we can obtain the 2.01 M⊙ when magnetic field is zero,
which is consistent with the recently discovered large mass
pulsar J0348þ 0432ð2.01� 0.04Þ M⊙. In the work [33],
two solar mass compact stars can be obtained by using this
set of parameters, and the symmetry energy which is given
by this set of parameters is about twice than that of a free
quark gas or normal quark matter within the conventional
NJL model, which is consistent with the results given by
the CIDDM model [30]. For the smaller value of
B0ð4 × 1018 GÞ, one can find that P⊥ is larger than Pjj
at high density, while the pressure anisotropy is very tiny
when baryon density is less than 0.8 fm−3. For this smaller
value of B0, the pressure splitting between P⊥ and P∥ is not
so big and we have δp ¼ 0.11 at 1.2 fm−3. On the other
side, for B0 ¼ 1 × 1019 G, we can find that P⊥ is much
larger than P∥ at higher densities, and while P⊥ increases
with baryon density, P∥ begins to decrease with the
increment of nB when nB ≥ 1.1 fm−3, which leads to a
big pressure splitting, i.e., δp ¼ 0.65. Therefore, the pres-
sure could be strongly anisotropic in the core of magnetars
for the larger B0 (i.e., B0 ¼ 1 × 1019 G).
The large pressure anisotropy under strong magnetic

fields implies that the orientation of the magnetic fields in
magnetars will play an important role in the structure of
magnetars [31]. Shown in Fig. 6 is the maximum mass of
static QSs using the transverse and radial orientations of the
magnetic fields as a function of B0. The parameter set we
used here is gV ¼ 1.1GS, GIV ¼ 0.5GS, using which we
can obtain a 2.01 M⊙ quark star in SU(3) NJL model, when
the magnetic field is zero. We can find that the maximum
mass of static QSs increases with the increment of B0 for

FIG. 5. Density dependence of the magnetic field strength B
and the transverse and longitudinal pressures, as well as the
pressure anisotropy δp for SQM inside the magnetar by using the
density-dependent magnetic field with B0 ¼ 4 × 1018 G (left
panels) and 1 × 1019 G (right panels) being considered.

FIG. 6. Maximum mass of static QSs using the transverse and
radial orientations of the magnetic fields as a function of B0

within the SU(3) NJL model with gV ¼ 1.1GS, GIV ¼ 0.5GS.

QUARK MAGNETAR IN THREE-FLAVOR NAMBU–JONA- … PHYSICAL REVIEW D 94, 123014 (2016)

123014-7



the transverse orientation, while it decreases with B0 for the
radial orientation, especially when B0 is larger than about
2 × 1018 G. In order to describe the effect of the magnetic
field orientation on the maximum mass of magnetars, we
follow the normalized mass asymmetry δm for the maxi-
mum mass of QSs mass as

δm ¼ M⊥ −Mjj
ðM⊥ þMjjÞ=2

; ð39Þ

where M⊥ (Mjj) stands for the maximum mass of QSs
by using the transverse (radial) orientation way. Then
we acquire the result that the maximum mass of static
QSs with the transverse (radial) orientation can reach
about 2.07 M⊙ð1.95 M⊙Þ at B0 ¼ 1 × 1019 G, and the
corresponding largest mass asymmetry is δm ¼ 5.97%
at B0 ¼ 1 × 1019 G. When the magnetic field is set as
B0 ¼ 4 × 1018 G, which is used as a reasonable magnetic
field in Ref. [31], the maximum mass of static QSs with
the transverse (radial) orientation can reach about
2.04 M⊙ð1.99 M⊙Þ with δm ¼ 2.48%, which indicates
that we can approximately use TOV equations to calculate
the maximummass for magnetars, because the pressure and
maximum mass splitting is not big. Therefore, our results
indicate that the maximum mass of magnetized QSs may
be dependent on both the strength distribution and the
orientation of the magnetic fields inside the stars by using
SU(3) NJL model.

IV. CONCLUSION AND DISCUSSION

In this work, we study the properties of SQM and QSs in
the framework of SU(3) NJL model with two types of
vector interactions under strong magnetic field. The con-
stituent quark mass, vacuum quark mass, quark chemical
potential, and quark fraction in SQM under strong magnetic

fields are studied, and the results indicate that these
physical quantities for SQM are all sensitive to the two
types of vector interactions in NJL model, and begin to
oscillate when the number of Landau level is filled with the
increment of magnetic field.
We have studied the properties of static quark stars by

using two hypothetical cases for the orientation of the
magnetic fields: the radial orientation in which the local
magnetic fields are along the radius and the transverse
orientation in which the local magnetic fields are
perpendicular to the radius but oriented randomly in the
plane perpendicular to the radial direction. We first calcu-
late the density dependence of the transverse and longi-
tudinal pressures and the pressure anisotropy for SQM
inside the magnetar by using the density-dependent mag-
netic field, and we find that the transverse pressure has a
higher value than the longitudinal pressure at a certain
baryon density. The pressure anisotropy gets bigger once
larger B0 is considered, which indicates the pressure could
be strongly anisotropic in the core of magnetars for the
larger B0. Then we demonstrate that the maximum mass
of magnetars may significantly depend on the magnetic
field orientation inside the stars by using these two extreme
cases, and the magnetic fields with radial (transverse)
orientation can significantly decrease (increase) the maxi-
mum mass of the quark stars.
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