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Neutrino emissivities and bulk viscosity in neutral two-flavor quark matter
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We study thermodynamic and transport properties for the isotropic color-spin-locking (iso-CSL) phase
of two-flavor superconducting quark matter under compact star constraints within a Nambu-Jona-Lasinio-
type chiral quark model. Chiral symmetry breaking and the phase transition to superconducting quark
matter leads to a density dependent change of quark masses, chemical potentials, and diquark gap. A self-
consistent treatment of these physical quantities influences the microscopic calculations of transport
properties. We present results for the iso-CSL direct URCA emissivities and bulk viscosities, which fulfil
the constraints on quark matter derived from cooling and rotational evolution of compact stars. We compare
our results with the phenomenologically successful, but yet heuristic 2SC + X phase. We show that the
microscopically founded iso-CSL phase can replace the purely phenomenological 2SC 4 X phase in
modern simulations of the cooling evolution for compact stars with color-superconducting quark matter

interior.
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I. INTRODUCTION

Present astrophysical observational programs monitor-
ing compact stars (CS) have provided new, high-quality
data for their static properties, thermal and spin evolution.
These modern measurements constrain the equation of state
(EoS) and the transport properties of dense matter in CS
interiors [1]; for a recent review see [2]. In particular, the
evidence for high masses [3-5] and large radii [6] of CSs
suggests that the EoS at high densities must be sufficiently
stifft. This prompts the question of the possibility of
deconfined quark matter in CS interiors [7]. In this debate,
it has been demonstrated that microscopic models of quark
matter EoS allow for extended quark cores of CS, while
satisfying current mass and radius constraints [8§—11]. This
offers still a broad spectrum of possible realizations of
hybrid stars in nature, as classified recently in Ref. [12].
The two extreme scenarios are the masquerade case [13],
where the corresponding quark-hadron hybrid stars appear
to have almost identical static properties to pure neutron
stars, and the high-mass twin case [14,15] associated with a
strong first-order phase transition. The latter can be
identified by observing CSs with similar high masses (such
as PSR J1614 — 2230 [3,4] and PSR J0348 + 0432 [5]) but
significantly different radii. This requires an accuracy of
radius measurements of about 500 m, as will be provided
by the NICER mission of NASA [16], planned for launch in
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the near future. In the case of a smooth crossover transition,
i.e., the masquerade case, precise observations of CS mass
and/or radii do not allow us to provide evidence for the
existence of quark matter at their interiors. In such a
situation, the transport properties of dense matter may
provide the decisive diagnostic tool via the cooling history
of CSs.

Besides cold CSs, also in protoneutron stars (PNS) the
transport properties play a crucial role. PNSs are born hot
and lepton rich in the violent event of a core-collapse
supernova. They deleptonize and cool on a time scale on
the order of 10-30 s via the emission of neutrinos of all
flavors [17-22]. The appearance and role of quark matter in
PNS and core-collapse supernovae has long been studied
by means of conducting numerical studies [23-26], and
also, in particular, as the trigger of the actual supernova
explosion via a strong first-order phase transition at
high density. This launches a strong hydrodynamics shock
wave, in addition to the standard supernova standing
bounce shock, and the release of an outburst of neutrinos
of all flavors [27]. Those neutrinos are released during
the shock passage across the neutrinospheres of last
scattering, located always at low densities where matter
is composed of hadronic degrees of freedom. The future
observation of such a neutrino signal may reveal yet
unknown details associated with the quark-hadron phase
transition. The caveat in all these studies was the treatment
of neutrino interactions in quark matter, which was treated
at the level of nucleons only. This approximation is
valid when temperatures are on the order of 10 MeV or
above. However, during the long-term evolution of the
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deleptonizing protoneutron star, as the core temperature
decreases below about 1 MeV, weak interactions at the
quark level become important. Unlike in studies of cooling
CSs, where neutrino-quark interactions are treated at
different levels of sophistication [28-30], for supernova
studies the general framework has to be derived along the
lines of Refs. [31,32].

Since the cooling and spin evolution of the CS depends
sensitively on the thermal and transport properties of dense
matter, the latter can be determined from the observation of
cooling CSs, with particular emphasis on young objects
like Cassiopeia A [33]. For a recent discussion of the role of
the stiffness of the EoS and the superfluidity gaps in this
context, cf., Refs. [34,35]. If quark matter is present in the
CS interior we expect it to be in a color-superconducting
state that entails a strong dependence on the pairing pattern
and the sizes of pairing gaps. In the present study, we focus
on the discussion of direct Urca neutrino emissivities and
bulk viscosities of color-superconducting quark matter. The
numerical analysis is based on a Nambu-Jona-Lasinio-
(NJL-) type model, allowing a consistent description of
the density and temperature dependent quark masses,
pairing gaps and chemical potentials under neutron star
constraints. The resulting phase diagram suggests that
three-flavor phases of the color-flavor-locking (CFL) type
occur only at rather high densities [36,37] and render
hybrid star configurations gravitationally unstable [9,38].
Moreover, due to large pairing gaps in CFL quark matter,
the r-mode instabilities cannot be damped [39] and cooling
is inhibited [40].

By this reasoning, we focus on two-flavor quark matter as
the relevant case for discussion of quark deconfinement in
CSs as well as in the protoneutron star evolution during
supernova collapse. Because of the pairing instability the
scalar antitriplet diquark correlations form a condensate in
the color-superconducting 2SC phase with a critical temper-
ature T»gc that is on the order of 20-50 MeV [36,37]. Within
the Polyakov-loop extension of the NJL model, this temper-
ature may even reach up to the pseudocritical temperature
T, = 154 MeV found in recent lattice QCD simulations
[41,42] for the chiral and Polyakov-loop transition at
vanishing baryon number densities; see [43,44].

The standard 2SC phase, however, pairs only two of the
three colors (e.g., red and green) of quarks, leaving colors
unpaired (blue quarks in this example) on which the rapid
direct Urca cooling process may then proceed, too rapid in
comparison with compact star phenomenology. This prob-
lem has prompted the introduction of a purely phenom-
enological gap (X-gap) for the quarks of the unpaired color
[45]. For a recent investigation of such a fully gapped 2SC
phase see [46,47], which may be contrasted to the transport
[48] and cooling properties [49] in the original 2SC phase.
In this context also the anisotropic crystalline color super-
conductivity phases have been discussed, which have been
reviewed in [50,51].
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It is an unsatisfactory situation to have no candidate for
the microscopic pairing pattern that could justify the
phenomenological X-phase in the 2SC 4 X model of
the fully gapped 2SC phase. One alternative is provided
by the isotropic color-spin-locking (iso-CSL) phase sug-
gested in [52,53] modifying earlier work on spin-1 color-
superconducting phases [54]. The iso-CSL phase is a single
flavor pairing scheme and therefore rather inert against
isospin asymmetry and strong magnetic fields, thus quali-
fying as a robust pairing pattern for compact star applica-
tions. Technically the description of the transport and
cooling properties of this phase follows that of the family
of spin-1 color superconductors that has been studied in
detail in [55].

In the present work, we focus on two-flavor color-
superconducting phases in CSs, the 2SC + X phase of
Ref. [45], for which a detailed investigation of the cooling
phenomenology for hybrid stars has already been worked
out [56,57]; and the iso-CSL phase [52,53] for which a
consistent microscopic calculation of the direct Urca
emissivity and the bulk viscosity has been worked out
and is presented here for the first time [58]. This forms the
basis of further phenomenological studies in astrophysics,
with applications to supernovae and CSs.

II. THERMODYNAMICS OF ISO-CSL
AND 2SC PHASES

One can introduce a general thermodynamical potential
that is in mean field approximation

52 4+5% A2 4 A2
Qug, pg s, T) = 4+ ———4
(s 1. ps,T) 8Gy 8Gp
&Ep K

-2 | =5 |24+ Tn(l + e 4/T

W,Z{ﬁ n(1 4+ e7)

+Qe_90’ (1)

where A; are the excitation energies for the corresponding
modes. Here Q, = —u} /127 — uyyT*/6 —T2*T*/180
denotes the thermodynamic potential of ultrarelativistic
electrons, where uy = —p,, and Q is the divergent vacuum
contribution which has to be subtracted to assure vanishing
energy and pressure of the vacuum.

A. iso-CSL phase
The gap matrix of the iso-CSL phase [52,53] is
A = Alyahy + 1r2hs + 7147), (2)

a scalar product of the three antisymmetric color matrices
with the spin matrices (y3, 72, v1) [52], whereas the pairing
pattern for the 2SC phase is

A= A(iYSTzﬂz)v (3)

coupling two different flavors with each other.
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Note that in the iso-CSL phase all modes have a gap in
the corresponding excitation spectra

/1% = (eu,eff(p) - ,uu.eff(p))z + Ai,eff(p)’ (4)

with the effective values

Eyeff = p2 + M%.eff(p)’
Hu
M, ew(p) = M, (p).
n(P) Huett(P) 2
/’lu,eff(p) = Ky \/ 1+ Ag/(ﬂu)Z’
A o (P) = a1 A% (5)
and
)“%,S(p) = (eu(p) _qu)Z + au,(3,5)(p)Aiv (6)

with the momentum-dependent coefficients

M:(p)
a,,(p) =
! lui,eff(p)
1 P’
au(35)(P) =5 ls el

PP\ 8Mi(p)
jE\/ (o) + 5t ] 7

where €,(p) = \/p* + Mi(p).

The excitation energies A,_j, are obtained by changing
the flavor (¥ — d) and the even modes by exchange of
u — —u in Egs. (4)—(7).

B. 2SC phase

In the case of the 2SC phase four out of the twelve
eigenvalues 4, belong to the ungapped blue quarks and are
determined easily via textbook methods [59] as

A4 = €4(p) & puyp. Here the dispersion relation e/(p) =

\/P? +M}(p) contains the dynamical mass function

M(p) = my + ¢ for the two quark flavors f = u, d.
We have introduced the chemical potentials for the
quarks of unpaired color p,, = up/3 +2up/3 — 2ug/2
and pgp = pyp — Ho-

The other eight eigenvalues 15_;, belong to the red and
green quarks that are paired in the 2SC state and have
therefore an identical eigenvalue spectrum. It is thus
sufficient to determine the four eigenvalues for the real
and symmetric matrices of the red quarks,
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—Har+M,y P 0 —A
—Ugr—M A 0
M, = p Ha, d 7
0 A Apyr+M, P
-A 0 p Hur— Mu
(8)

with s = = (similar to the one discussed in [37,60] for the
CFL phase). The eigenvalues of the matrix (8) can be found
as the roots of the characteristic polynomial

M4 a3+ ar® +ajd+ay=0 9)
with the coefficients

ag = A+ 20* (M M, + pg bt + D)
+ (M7 = (pa,)* + PHIIMG = (u)* + PP
ay = =2(Mipg, + A (g y = Hur) = Mgpr
+ (Har = Hur) Bartur + D7),
ay = =207 = My — M3 + (Ha,)* = 4a b
+ (Hur)® =207,
as = 2(/4d,r - Mu,r)- (10)

The four roots of the quartic equation can be calculated by
use of the real solution of the cubic equation [61],

ud — ayu* + (ayaz — 4ag)u — (a2 + aga? — 4apa,) = 0.
(11)

The real roots of the quartic equation are then the root of the
quadratic equation,

,  as a3 > u; up\? 3
v+ ?:F T+M1—a2 1/+?:F ? —

=0. (12)

C. Comparison

The global minima of Q(up, g, g, T) in the space of the
order parameters correspond to the thermodynamical equi-
librium and are the solution of the following gap equations:

OUT py) 0T py)  OUT.p) _ OUT.p) _

96 OAf o) op 0

(13)

We investigate the phase diagram for the isotropic iso-CSL
and the 2SC phase by use of the M(p = 0) = 380 MeV
parameter set of [62].

The order parameter and the chemical potential of up and
down quarks and electrons are shown (Fig. 1) to be
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The left panel shows the dynamical quark masses and pairing gaps (7p = 3/8) for the iso-CSL phase as a function of the

quark-chemical potential and the corresponding chemical potentials for quarks and electrons are given in the right panel.
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FIG. 2. The left panel displays the minima of the thermodynamical potential for 2SC and iso-CSL quark matter at 7 = 0 as a function
of the quark chemical potential. In the right panel the iso-CSL phase diagram calculated with the NJL form factor and a diquark coupling

of np = 3/8 is shown.

dependent on the quark chemical potential x4 for temper-
ature 7 = 0. If the 2SC phase is partially suppressed or
breaks up completely, then the iso-CSL phase is realized
and the phase diagram for quark matter has the form
of Fig. 2.

III. TRANSPORT PROPERTIES

For the derivation of the kinetic equation for neutrinos in
the iso-CSL and 2SC + X phases of color-superconducting
quark matter and the corresponding direct Urca neutrino
emissivities, we follow the steps outlined in [55,63,64],
while for the discussion of the bulk viscosity of these
phases we adopt the formulation given in Ref. [65].

A. Kinetic equation for neutrinos
in warm dense quark matter

The kinetic equation for neutrino transport in the Green’s
function representation,

iTrply,Gr (X, q2)] = =Tr[G] (X, ¢2)Z5 (X, q2)

— 2/ (X, 92)G7 (X, q)), (14)

can be derived from the Kadanoff-Baym formalism [66] by
a gradient expansion, which is valid if the neutrino Green’s
functions

iGy(1.q2) = —(Yqo +uyyo)%{fy(t, 2)8(pY + 1y — |aa|) = [1 = f2(1. —a2)]6(43 + , + |a2|) }

iG; (t.q2) = (Y g5 + mu70) i{[l — f(.42)]8(q + wy, — |Qa) — f2(t, —42)8(43 + w1, + |a2))

(15)
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and the neutrino self-energies

d4611
(27%)

d4
(g = / Gty 0= 1) e o)y (1= 1)@ = a2) -1 = Felt-an)lolad + e = lan) - (16)

are slowly varying functions of the space-time coordinate X = (#, x). The functions I1;;” (¢, — ¢,) are the self-energies of
the W bosons. The W-boson exchange can be expressed in its local form due to the smallness of the neutrino energy
compared to the W-boson mass. We follow the steps of [55] to obtain the time dependent neutrino distribution function

G2 p1
Z5(t.qa) = —F (L =7s)(r*q1a + Hero)r' (1 = vs)z(q1 — q2) afe(t, q1)8(q7 + pe — 1),

o100 =% [ U gy gy (e = pa(pr + = pr I ) a7)
ot L, qs ] (2”)3prepF.y 4142 )NF\PF.e — He)NB\PFuy T He — PFe u\q
from Eq. (14), where
L(q1.q2) = Trl(roq? =7 - a0)7* (1 =) (roq3 — 7 - @2)7* (1 = 1°)] (18)

is the leptonic tensor. We insert the imaginary part of the polarization tensor Eq. (B11) and obtain

9 %" 2 d’qy d’p
i 1) = = o0, [ ot [y (o= pma(pr = o)
Z 2A* Ep’Ek)‘CMD(qlﬂqZ)Hﬂl/ (P, ) Ath(EpaEk)‘clw(ql’qZ)Hl(lﬂll/)(ﬁ’]%)]' (19)

To simplify this expression we can neglect the anomalous contribution #j,, which is small compared to the normal part H,
[63] and obtain

0 Gin dq d’p
a. Z, = - 296 e~ He
i) = =eoso, [ oot [ e =)

x Z Z By By ng(—e &, Jnp(exdy )6(qo + ei&y, — esz,r)ﬁw(CIhCIQH;(tﬁ)(f’v k), (20)

r=135e,e,=%

where the Bose functions cancel each other, because their argument represents the momentum transfer of the W boson

(Pry+He = PFe = —q0 = &, — &,)- Contraction between the leptonic and hadronic tensor leads to
£¥(qr, a2 M) (b, k) = 64093(1 = @y - p)(1 = & - k) = 64q73(1 = c0s 0,,0) (1 = €05 0,). (21)

In the case of small angles 1 — cos@,, = 62, and one obtains the simple expression

'CML/(QD QZ>HMU ( ) 64q geue(l — COos 91/(1) = 64pF,epF,vgie(1 — COs gl/d)' (22)

The angle 62, can be expressed by the angle 67 70> see Appendix C, Eq. (C8) for the perturbative and the quark mass effect.
We concentrate on the perturbative treatment, where 936 = (4/37)a, and the Boltzmann equation for the time evolution
of the neutrino distribution function becomes

0 64 2 2 d3(11 d3p el
Efl/(tiqz):_?aSGFcos 96‘/(2”)3/(2 )3 F pFe lué Z Z BPB

r=1,35e;,ep=%

X nF(_elgp,r)nF(ezgk,»(S(sz —He — PFy + elé:p,r - erk,r)(l — COS gud)' (23)

Here the replacement gy = pr,. — f. — pr, has been made in the o-function of Eq. (20). The o-function of Eq. (23)
vanishes if the angle between up and down quarks 6,,; corresponds to a fixed value 6. The value of the angle 6, is given by
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cos Oy =1 — ku2/(uupq), with k = 2a,/(3r). The angle 6, is independent of the neutrino Fermi momentum py,. The -
function can be replaced now by u,/(u,pq)5(cos 8,4 — cos6y) [55]. Equation (23) becomes

0 64 dkdQ dpdQ
Efu(tv qZ) == ?asG%«“coszgcﬂeﬂuﬂd/ (27[)3k / (zﬂ_)g.p (1 — €08 de)(S(COS Hud — COS 60)
x >N By Beng(—ei&, Inp(exd,)ne(pr, = & + &), (24)

r=135ej.e;=%

where the variable of the integration q; is changed to k =
P +q; —q, and the phase space element for massless
quarks can be written as d°p = p3dpdQ,,. The argument in
the Fermi distribution is replaced, because pp,—pu, =
Pry — $pr + & - Introducing dimensionless variables

_k—pq _
X=— =

P~ Hy q2
, , = 25
7 y T (25)

=

changes the integration range —u, 4/ T to co. As long as the
main contribution results from x,y < u, /T the result of
the integration is not affected by a shift of the lower
boundary to —oo. Therefore the uneven parts in the
Bogoliubov coefficients,

|

0 64
&fu(tv (lz) == ?asG%COSZQCﬂeﬂuﬂde z /
r=13,5

with

aQ,
n)?

1 erx
BP? =
T2y [ A2
k.r=qd
1 e
Bi)z,r,u = L (26)

2 2y /y 4 4,02

can be neglected in the integrand; thus only the even
parts, a constant term 1/2, remain [55]. The integral
over X and y can now be done in the range from 0 to
oo, where one gets a factor 2 from the interval
—oco — 0, which cancels with the constant term 1/2
from the Bogoliubov coefficients. Therefore, Eq. (24)
becomes

/ éf:; (I —cos8,4)5(cos@,qg —cos0y)F.(z), (27)

fr<z) _ Z Aoo /Ooo dxdy<e—em/y2+a“.,Af, + 1)—1 (eez\/x2+ad.,A3 + 1)—1(ez+el\/yz-i-au.,Aﬁ—ez\/xz-&-ad,Aﬁ + 1)—1' (28)
+

ep,er=

B. Emissivity

The loss of energy by neutrinos per unit of time and volume is given by

(27)*

o [d o [&
o= [ S aalr g+ Suta) =250 [ S8 g ) 29)

(2z)?

The corresponding expression for the neutrino emissivity can be obtained by inserting Eq. (27) into Eq. (29). Performing the
angle integration gives a factor 327 [28], summation over the color states r a factor 3, and by use of the integral

ej.er=

one obtains the gapless result of Iwamoto’s seminal paper
[29] where the direct Urca emissivity of quark matter,

457

€ = 630 aSG%’ﬂeﬂuﬂdTé’ (31)

457

ood 3 OOd ood —eyy 1—1 €)X 1—] e y—esx 1_1: 30
Zi/o ZZA XA ylem + )T + 1) e D7 = 500" (30)

|
was derived for the first time. Since then, there have been a
number of calculations, in particular, for color-supercon-
ducting phases; we refer to [55,63,64]. However, none of
these is useable for cooling simulations because they have
either ungapped modes that result in too fast cooling or the
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pairing pattern is not microscopically founded. Never-
theless, in deriving the neutrino emissivities for the 2SC +
X and the iso-CSL phase we follow the strategy of these
references by using the form

€Urca — €0G3(Aua Ad)’ (32)
where we introduced the function

5040

G, (A, Ay = 37140

/Ooo dzz"[F(z) + F3(2) + Fs(2)],
(33)

with Eq. (28) characterizing the influence of the super-
conducting gaps on the corresponding emissivity. For the
iso-CSL phase, the coefficients a,,, and a,, forr =1, 3,5
are defined in Ref. [52] and the gaps, obtained from the
minimization of (1) fulfil in general A, # A,. In the 2SC +
X phase Au = Ad =A and le_l = le’3 = 1, af,5 =
(Ax/A)? for f = u, d. This simplifies Eq. (28) as long
as no dependence of a density dependent strong coupling
is taken into account. In the CSL phase the functions for the
several modes and flavors are introduced in Eq. (7) with
pa =XxT 4+ uy, p, =yT + p, and the dispersion relation
E, =
allow comparison with the spin-1 phase from the work of
[55] (see Fig. 3, lower panel). The density dependent X-gap
Ay was introduced in Ref. [45] for the first time to
appropriately fit the cooling data of CS. Here we use the
parametrization denoted as model IV in Ref. [56], where
Ay has been investigated in more detail to fulfil constraints
from recent cooling phenomenology. The influence of the
temperature dependence is taken into account by

A(T) = Ag\/1 = (T/T. ), (34)

where one can find values for § between 1.0 and 3.2 in the
literature. In the following calculations we use f = 1.0.
In Fig. 3 we show the emissivities for the microscopic
is0-CSL phase (lower panel) in comparison with the purely
phenomenological 2SC + X phase (upper panel) as a
function of temperature for different chemical potentials.
For both phases a similar suppression of the emissivity is
obtained. Hence the iso-CSL phase is probably able to
explain recent cooling data in a more consistent way
supporting the idea of superconducting phases in quark
stars as an explanation for observed fast CS cooling.

p]% + M}. The formulas are presented in a way to

C. Bulk viscosity

According to [67], in the absence of viscosity all rotating
CSs become unstable against r modes [68]. Therefore, from
the observation of millisecond pulsars, one can derive
constraints for the composition of CS interiors [39,69]. For
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FIG. 3. Neutrino emissivities due to direct Urca processes in

the 2SC + X phase (upper panel) and in the iso-CSL phase
(lower panel).

such an investigation, the bulk viscosity is a key quantity
and we consider it for the two-flavor color-superconducting
phases introduced above, following the approach described
in Ref. [65]. Note that the 2SC phase considered in [70] is a
three-flavor phase, where the nonleptonic process u + d <
u + s provides the dominant contribution; see also [71].
Because of the absence of strange quarks in the 2SC phase
of the present paper, this process does not occur. The bulk
viscosity at all temperatures is determined by

AC?
=——, 35
¢ w? + (AB/n)? (35)
with C; = C + C’ and the coefficient functions
_ ML M
3py 3pa
dag (M2 (- 2ug 2\ MZ2[ 2u, 2
PO i [ P e B P |
3z | 4y M, 3 Mo M, 3
n? (: 1 1)
B=—nl+5+-=). (36)
35 \me my o pe
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FIG. 4. Temperature dependence of bulk viscosity in the 2SC +
X phase (upper panel) and in the iso-CSL phase (lower panel) for
a frequency of w = 1 kHz, typical for excitations of r modes in
millisecond pulsars.

The relevant processes for the bulk viscosity in two-
flavor quark matter are the flavor changing weak processes
of electron capture and beta decay, with a direct relation to
the direct Urca emissivity

_360

1= 3575GI(8 Ay). (37)

The numerical results for the NJL model in self-consistent
mean field approximation are displayed in Fig. 4 for the
2SC + X phase (upper panel) and the iso-CSL phase (lower
panel) in striking similarity.

Note that in comparison with Ref. [65] the peak value
of the viscosity is also located at 7 = 1 ~2 MeV, but up
to 3 orders of magnitude higher. Since the normal quark
matter results coincide, this must be a result of the self-
consistent treatment of masses, gaps, and composition
(chemical potentials) in the present models. In particular,
the strongly density dependent X-gap is rapidly decreas-
ing with increasing density as one can see by the
dramatic change for the bulk viscosity at low quark
chemical potentials.

PHYSICAL REVIEW D 94, 123010 (2016)
IV. CONCLUSIONS

Transport properties in dense quark matter depend
sensitively on the color superconductivity pairing
patterns and provide thus a tool for unmasking the
CS interiors by their cooling and rotational evolution
characteristics. On the example of neutrino emissivities
and bulk viscosities for the 2SC + X and the iso-CSL
phase we have demonstrated that both two-flavor
color-superconducting phases fulfil constraints from
the CS phenomenology. For the 2SC + X phase with
yet heuristic assumptions for the X-gap the hybrid star
configurations and their cooling evolution have been
numerically evaluated in accordance with observational
data. The temperature and density behavior of the
neutrino emissivity in the microscopically well-
founded iso-CSL phase appear rather similar so that
we expect a good agreement with CS cooling data too.
The bulk viscosities for both phases have been
presented here for the first time and provide sufficient
damping of r-mode instabilities to comply with the
phenomenology of rapidly spinning CSs. We conclude
that the subtle interplay between suppression of the
direct Urca cooling process on the one hand and
sufficiently large bulk viscosity puts severe constraints
on microscopic approaches to quark matter in com-
pact stars.
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APPENDIX A: QUARK PROPAGATOR

The free quark propagator Sy(p) = (p—m)~' can be
represented as

So(p) = 1 p+m _ ptm
P —m T r—m)ptm) pr—m?
y+m py+m
SE(po.p) = =
CCC e oo s e A
y+m

BTETE A TEE AL (Al

with the particle energy E, = \/p* 4+ m> The upper and
lower sign corresponds to particle and antiparticle contri-
bution. Equation (A1) can be extended to
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y+m

[Po£u—E)][potu+E,]

1 y+m y+m

_ﬁ<po—E 4 po+E, iﬂ)’

1 <Y0(P0 Tu)—yp+m

S(f)t<p0’ p) =

“2E,\ po—(E, Fu)
_10(Po iu)—vp+m>
po+(Ey£u) )
I (nE,—yp+m  yoE,+7p—m
F—+ I g
2E po —E po +E
(A2)
where the poles pj, = +(E, F u) and p§, = —(E, £ )

of the denominator have been replaced in the numerator. In
addition we introduce the abbreviations Ej = E, F u and
E;,ﬁ‘E = E, =y in the denominator for the corresponding
particle/hole and antiparticle/antihole excitation energies.
Simplifying one can write

1 E,—yp+m E,+yp—m
5(pop) = (1B TTREM 1o 41D
2E pO_E P0+Ep
%(7’0_*+ ) %(70+*—Efp)
po—Ef po+E;
_ o3 (1 =yorp +vom)  vo3 (1 +yerp —vom)
p()_E;7F Po-l-E?,:
:70%[1—70(713—’51)]_}’o%[l—l-}'o(yi)—n%)]
_E;F Po-l-E]f
A~ 1+
_ }/OAP ]/()Ap (A3)
pO_E;;: Po-i-Ezpﬁ:

where the energy projectors are of the form AIﬂf =
L1 £9S)), A, =1(1£7S,) and Sp=7p+m
are introduced with their corresponding “Foldy-
Wouthhuysen” matrices and /i = m/E,. The inverse free
quark propagator is

1S517" = ro(po — E;F)A; +vo(po + E;F)A;- (A4)

To obtain the Nambu-Gorkov propagator we start with the
identity

SIS =1,

e |G B S

where we can find recursively the equations

PHYSICAL REVIEW D 94, 123010 (2016)
[S{17'A+A-C=1,
[S§17'B+ A~D =0,
ATA+[S;7'Cc =0,

A*B+[S;]7'D =1, (A6)
from which we derive the implicit expressions
A=[(85)" -2 = 6,
B=-S{A G =F",
C=-S,;A"G" =F",
=[($p) =X =G, (A7)

for the normal and anomalous parts of the Nambu-Gorkov
propagator with the self-energies * = ATSTA* where
the gap matrices for two-flavor quark matter are A~ =

—iAe*e®bys and At = —iA*e*e%#Pys. The Nambu-
Gorkov propagator obtains the form
s (G+ F_> (A8)
\Ft G )

with the normal parts
G* = [(55)"

_ po+ F po—E,
B G =y

and the anomalous parts

— ATSTAR!
+
27/0A+7 (Ag)

STA*G* = A* AT+ a* A
0 ps— (&) " pi—(E)

(A10)

The four poles of the Nambu-Gorkov propagators p,==+¢,
and py =F &} with (&5)? = (E;)? + A? correspond to the
quasiparticle/quasihole and quasiantiparticle/quasiantihole
excitation energy in the color-superconducting phase.

APPENDIX B: POLARIZATION TENSOR

The decomposition of the polarization loop diagram for
the hadronic tensor in superconducting quark matter as
shown in Fig. 5 has the following Nambu-Gorkov structure,

d4
Hﬂu(‘l) = _5/(2@ TrZD[F;%Ssz%Sp-kq]’ (B1)

. I 0

with T4 = (Ol FT) where It =y,(V £ Ays) for
. G/ Fj .

i=p, v and S-:<FJr Gf) for j=p, p+q. The

J
vector and axial vector couplmgs of charged quark currents

are YV =cosf, and A =cosf,. and the vertices have
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<ud>

@@w@

<du>

FIG. 5. Decomposition of the polarization loop diagram for the hadronic tensor into normal and anomalous parts

therefore the form I';" = cos 6,.y,(1 + ys). Performing the

— it e -Gt
trace over the Nambu-Gorkov space leads to (g0 9) l COS 0 Z / 3Tl G T G
+G-T+
; i+ +FGFGM+FFFFM
II = ——cos’0, T ST :
wl4) = =5 05°0. / @y "ol O Gy +TFST Py (B3)
+ TGyl Gy + TR FyUEF L,
+ T FST L) (B2)  as summation over fermionic [py = i(2n + 1)zT] and

bosonic (gy = i2maT) Matsubara frequencies. The trace
which can be expressed by over the Dirac space indices results in

Tip[U, Gl Gl + T Gl Gy + U Fp U F 4+ T FRT F ]
= (P I )+ T = DV B+ Wi )
I L (5 00+ T+ DV + W)
=BT T =g TR PR - TR0 - T - T

DV (b R) + Wi (b B) = Wi (3. ) = W (5. icn}) (B4)

with the tensors 75 (p k) = Trlyor, Asror,A
W:v(p’ ) = Tr[yOyuAp yOyvAk ]/5]-

We introduce the notation k = p + ¢ for simplification. Performing the Matsubara summation results in the expressions

Fl, Wi (b, k) = Telyor, Asvor,Afys), TP, k) = Telror, Ay vor,Af) and

e TZ 190 + E )(Po + qo + EY) _ 1 (&5 +$1E,) (& + $2E) np(E51E,)np(F $26;)
[(Po +490)* = (&7)7] 28,28¢ e QT 518, F 28 ng(£s1&, F $267)
A? 1 1 ng (518, )np(—s28;)
=T = — s B5
Z *1l(po + 90)* — (&)%] 28,28, siedo T 518y — 528 np(s1&, — $267) (B)

so that we obtain for the polarization loop

a0) = =i [ S4By B0+ T )= DV )+ Wil )

AT (Ey ENTr (b R) + T (b R) + DV (b R) + Wi (5. R)]}
- 828, (B, EN(T(p.0) + Ti(p.B) +

T,
~ V(. K) + Wi (b k) = Wi (p. k) = Wi (b, b)]}. (B6)

with the corresponding abbreviations

123010-10



NEUTRINO EMISSIVITIES AND BULK VISCOSITY IN ... PHYSICAL REVIEW D 94, 123010 (2016)

B¥B; BiBi n (5 r)nF(_gk r)
A;ﬁ: E , E — P =k _ Pk :| F\5p, 5
( r k) |:CIO - gp,r + ‘Sk,r 90 + ‘j:p,r - gk r nB(ép.r - gk,r)
+ |: B;Bki _ B%B]T :| nF(fp.r)nF(ék,r)
q90=6pr = Qo+ +E0r] np(&p,+ &)
1 1 1 nF(gp r)nF(_gk.r)
B.(E,.E) = - : '
r( r k) 4§p.r§k,r [QO - gp,r + fk,r qo + é:p,r - ék r:| nB(gp,r - gk,r)
1 1 nF(gp,r)nF(ék.r)
— . B7
N |:q0 + gp,r + ék.r q0 — fp,r - gk.r:| nB(gp,r + fk.r) ( )
and the Bogoliubov coefficients
e ‘fi,r + eEz_ . .
Bi:TH, (l—p,k,e—:l:). (BS)

The first term and the second term on the right-hand side of Eq. (B6) provide the same contribution, since the second term is
the charge conjugated counterpart of the first one.

J(d0-q Z Tk (b k) + Ty (k) = VL (P k) + Wi (D K]}

—A23,<E,,,Ek>{ T (P k) + T (p k) + Ty (P ) + T (P k)
— V(B K) + W) (b k) = Wi (b k) = Wi (P, R)]}). (B9)

pe

The hadronic tensors W ,,( D, k) and Wﬂ,,( P, ) are identical (Appendix C) and the expression for the polarization tensor
becomes

o) = =13 / s CALE, BT (p.R) + T(p.F) = 2W3 5. )

- A’B (Evak){ (P R) + T (b k) + T (b R) + Ty (b k) = 205 (b K) = Wi (p.K)]Y).  (BIO)

By analytic expansion and use of the Dirac identity

1 1 (=1)"
_ _ (n)
(x+ in)n+1 - xn+1 Lz n! 6 (x)

one can extract the imaginary part of the polarization tensor

d3
IS (g0 4) = ~c05°0. / QANE, EJHE (p. k) — A2BI(E,. EJHE (5. B)). (B11)
where
o) ey MF(— elfp,r)”F(esz,r)
ANE, Ey) = B)' B}’ o(go + €&, , —exli,),
( p i) = m;ﬁ P np(— €1fp,r+esz.r) (610 15;:, 2fk,)

ere; ”F(elfp np(—exéy )
Bi(E, E;) = E : o(go —ei&, , + exéi,). B12
( P k) — 4§p$r§k,r nB(elgp,r - €2§k,r) (qo =P ok ) ( )

The normal and anomalous hadronic tensors are

H = Th(p k) + T (p. k) =205 (. k), (B13)
H = To(p k) + T (po k) + T (k) + T (k) = 20V (P k) = Wi (p. K)]. (B14)
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APPENDIX C: KINEMATICS

From Fig. 6 one finds the relations

pF,ucosedu+pF,ecosgde = PF.d> (Cl)

PFu sin edu = PF.e sin ede- (CZ)

The cosine and sinus of the angles 6,, and ,;, < 1 can be
expanded in a power series to second order,

1

PFd=PFu=Pre="5 (Prub + PF.o93.).

pF.ugdu = pF,eede”

(C3)
(C4)

Eliminating 6, by inserting (C4) to (C3) one gets in lowest
order of 6,, and pr./pr.,

1 PF
Prd—PFu—Pre=—=Pr.e03, (1 + ’e)
2
pFVu

1

—_~ 2
- __pF,é‘gde’

. (c3)

which corresponds to the momentum conservation of the
direct Urca process. Note that 6, =6,,. Momentum
conservation ensures that all particles are collinear, as long
as quark masses are neglected or no perturbative correc-
tions in the dispersion relation of the free quarks are
included. Interactions modify the dispersion relation and
lead to a nonvanishing matrix element. Quark-quark
interactions can be treated either perturbatively in lowest
order of the strong coupling constant aj,

2 7
.= . 1 R R s =,
Hi pF,l( + 3 as) a, 4r

or due to the effect of finite quark masses

2 2 1/ m;\? .
Wi =\/DPp;+m;=pp;|1+= , i=u,d,e.
’ 2\pr.i

i=u.d, (C6)

PHYSICAL REVIEW D 94, 123010 (2016)

d

FIG. 6. Triangle of momentum conservation for the direct Urca
process.

Using Egs. (C6) and (C7) and the f-equilibrium condition
g = M, + p. one can find the equivalent expressions for
the angle 6,, corresponding to Eq. (C5),

2
ede_ 2 ’

C8
- mpe - eres

which 1is crucial to calculate

also [29].

the emissivity; see

APPENDIX D: CONTRACTIONS

The contraction of the matrix elements of the leptonic
tensor (21) gives

LYq1,q2) = 8(q799 + a1 - q2),
L%qy. q2) = 8lqlqh + 45 — ic* qy;q04].
L%q1. q2) = 8lalqh + 45 + i€ q1 ;g0
L(q1,q2) = 867(4793 — a1 - 42) + 45 + a1
- ieijkléhkchl]- (D1)

The elements of the tensors 7 lﬁ(ﬁ,fc), T fy(ﬁ,fc),
Wit (P, k), Wi, (p.k) in Eq. (B4) become

%

Too(p.k) =1+ p-k+ingng — Toop.k) =1+ p-k—inng,
Ta(p. k) =+(pi+ k). Top.k)=+(p; +
Ta(p.k)=%(p;+ k). Tio(p.k) ==(p; +
T5(p k) = 8,(1= p-k—ingng) + pik; + kipj. Ti5(p k) = 8,(1 = p-k+ ting) + pik; + kipj. (D2)
Wiy(p. k) = Weo(p. k) =0
W(JTri(f’viC) = VV(j)Ei(A’]AQ = —i€ijkf7 k s
Wis(p. k) = Wig(p. k) = +ieu p'k,
Wi(f’ k) = VN\%(A’A‘) =F ie;p(pF - k) + i€ijsz7kifl- (D3)
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With (D1)—(D3) we obtain for the Lorentz contraction

PHYSICAL REVIEW D 94, 123010 (2016)

£(qy.q2)T (P k) = 16[(¢) F a1 - P) (@ F a2 - k) + (¢} F a1 - k)(a5 F a2+ ) — (4Y95 — a1 - Q2 )7, 7).
L(q1,q2)T (P k) = 1600 F a1 - D)@ F @2 - k) + (¢ F au - 5) () F a2 P) + (4040 — s - @)t i)
‘C”D(Qquz)W;tv( JA‘) = 6[(‘1(1) F4q;- ’A‘)(C](z) Fq-p) - (‘]? F4q;- )(‘18 Fq- ’A‘)] (D4)

Contraction between leptonic £#*(q, q,) and the hadronic tensor of the normal phase H,(E)( D, lAc) results in

£(q1, @Y M (P- k) = £(91, 02) T (b
=16[(¢} -
— (4749
+ (4} —a1- p) (43
+(4Y4)
-2(qY -
= 64(q"

‘11']2)(
—qr- i’)(%

)+E"”(q1,q2)7~’:,,(ﬁ
ar-P)(43 — - k) + (4f -
—qp - Q)i My
~ a4z k) + (4}
= qq - q2)m, miy

~qz- p) +2(q]
—qz- k)

/AC) —EW(%’CD)WL
k)49 —az- P)

~

—q1-k)(gd—qz- P)

A

—(qp- P)( 2+ k)]

=6445(1 =g, - p)(1 = g, - k). (D5)

Contraction between the leptonic £#(q;, g,) and the hadronic tensor of the anomalous phase H,(f;,)( D, IAc) leads to

(g1, gy H (b, k) =

LW(QhQ2>TW(Pv )
+ E””(Ql»‘]Z)T;w
- 2[5””(611’ Clz)W;Z(lA”]A‘)
= 64[(¢) + a1 - k) (S + a2 - P) + (4 (
= 644131 + a1 - k)(1 + a2+ p) + (1 =4 - p)

CW(‘]hC]z) »(IA?JA‘)

(P, k) + £(q1, 42) T (P, k)

— L"(qy. q2) W (P. k)]
-q;-p)

(1= a- k). (D6)
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