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Supersymmetric extensions of the standard model predict the existence of nontopological solitons,
Q-balls. Assuming the standard cosmological history preceded by inflation, Q-balls can form in the early
universe and can make up the dark matter. The relatively large masses of such dark-matter particles imply a
low number density, making direct detection very challenging. The strongest limits come from the
existence of neutron stars because, if a baryonic Q-ball is captured by a neutron star, the Q-ball can absorb
the baryon number releasing energy and eventually destroying a neutron star. However, in the presence of
baryon number violating higher-dimensional operators, the growth of a Q-ball inside a neutron star is
hampered once the Q-ball reaches a certain size. We reexamine the limits and identify some classes of
higher-dimensional operators for which supersymmetric Q-balls can account for dark matter. The present
limits leave a wide range of parameters available for dark matter in the form of supersymmetric Q-balls.
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I. INTRODUCTION

Supersymmetric (SUSY) extensions of the standard
model predict a scalar potential with a large number of
flat directions [1]. Such potentials admit stable configura-
tions, SUSY Q-balls [2–4]. Even if the scale of supersym-
metry breaking is well above the reach of the present
collider experiments, the flat directions can exist at a high
scale and can play an important role in cosmology. If
inflation took place in the early universe, a scalar con-
densate can form along the flat directions, leading to
matter-antimatter asymmetry [5–7]. In general, this scalar
condensate is unstable with respect to fragmentation into
Q-balls [4,8–10], which can be entirely stable and can play
the role of dark matter [4,7,11,12]. This scenario offers a
common origin to ordinary matter and dark matter.
Dark-matter Q-balls have relatively large masses and,

therefore, very small number densities. A direct detection
of such dark matter is extremely challenging [8,13]. These
flat directions are only flat at tree level, and in general they
are lifted by nonrenormalizable terms in the potential
coming from loop corrections and grand unified theory
(GUT) or Planck-scale physics, taking the form of poly-
nomials in the squark fields and their conjugates

V lifting ¼
g

Λnþm−4 ϕ
nðϕ�Þm þ c:c: ð1Þ

suppressed by some energy scale Λ ∼ 1016 GeV. If n ≠ m,
then the baryon number is no longer conserved, fulfilling
one of the Sakharov conditions for baryogenesis [14]. The
same operators will destabilize the Q-ball [15] and allow it
to decay via processes that do not conserve the baryon

number. If supersymmetric Q-balls make up the main
component of dark matter, limits on their lifetimes (namely,
τ ≳H−1) restrict the set of operators in the lifting potential
in order to prevent their decay on too short of a time scale.
However, one can set additional constraints on the types

of operators in the lifting potential by examining the effects
of a star infected with a Q-ball. A Q-ball composed of
squarks in the presence of baryonic matter absorbs the net
baryon number and radiates pions on its surface [16]. For a
main sequence star, a Q-ball should pass through with a
negligible change in velocity, due to the relatively low
density of the star, and high inertia of theQ-ball. A neutron
star, however, has a high enough density of baryons that a
collision with a Q-ball should slow it to a crawl, at which
point it would sink to the center of the star and begin to
consume it from the inside out [17,18]. If the Q-ball is
absolutely stable, it grows without bound as it absorbs more
neutrons until either the neutron star is completely con-
sumed or theQ-ball collapses into a black hole, causing the
neutron star to collapse. Either way, we find the star dies
relatively quickly on cosmological time scales, on the order
of 108 years.
However, the baryon number violation at a high scale is

both plausible and necessary for the Affleck-Dine baryo-
genesis to work. In the presence of baryon-number violat-
ing operators, the growth of a Q-ball inside a neutron star
may be stymied by the baryon number destruction in the
Q-ball interior, which becomes important once the Q-ball
vacuum expectation value (VEV) reaches a certain magni-
tude [18,19]. In this paper, we will reexamine the astro-
physical bounds, taking into account the baryon number
violating operators. The paper is organized as follows:
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Section II provides a brief review of allowed Q-ball states,
Sec. III explains the machinery of calculating the decay rate
of the Q-ball, Sec. IV details the interaction of the Q-ball
with a neutron star, and Sec. Vexplains the evolution of the
baryon number within the Q-ball and star. Section VI takes
this analysis and applies limits to the class of baryon-
violating operators.

II. STABLE Q-BALL STATES

We begin with a review of the stable ground states of
Q-balls. The minimum necessary ingredients are a complex
scalar field ϕ with a U(1) symmetry unbroken at the origin
ϕ ¼ 0. Given a theory of multiple scalar fields with the
action

S ¼
Z

d4x

�
∂μϕ

†
i ∂μϕi þ

1

2
∂μχj∂μχj − Vðϕi; χjÞ

�
; ð2Þ

we can perform a Legendre transformation to get the
Hamiltonian density of the theory, which gives us a
functional for the energy,

E ¼
Z

d3xH; ð3Þ

H ¼ j _ϕij2 þ j∇ϕij2 þ
1

2
_χ2j þ

1

2
ð∇χjÞ2 þ Vðϕi; χjÞ: ð4Þ

Explicitly adding a Lagrange multiplier ωiðQi −
i
R
d3xð _ϕ†

iϕi−ϕ
†
i
_ϕiÞÞ to enforce charge conservation,

we get a modified energy functional,

E ¼
Z

d3x ~Hþ ωiQi; ð5Þ

~H ¼ j∇ϕij2 þ
1

2
ð∇χjÞ2 þ ~Vðϕi; χjÞ; ð6Þ

~Vðϕi; χjÞ ¼ Vðϕi; χjÞ − ω2
i jϕij2; ð7Þ

where we have assumed time dependence ϕi ¼ ϕiðxÞeiωit

and χj ¼ χjðxÞ. If for any value of ϕ, χ ≠ 0 and 0<ωi <m
there exists a point where ~V < 0, then stable Q-ball states
exist. Furthermore, we can postulate that the stable states
will be spherically symmetric, so that they depend only on
the radial coordinate r.

A. Flat direction Q-balls

Assuming VðϕÞ ≈M4 ∼ ð1 TeVÞ4 far from the origin,
the VEV in the interior of theQ-ball is not well localized in
ϕ-space, and the thin wall approximation does not hold.
Instead, one can consider a thick-wall variational ansatz
ϕ ¼ ϕ0 exp ð−ðr=RÞ2Þ. While the r → 0 behavior may be
better described by sinðωrÞ=ωr, the analysis of Ref. [20]
shows that the exponential ansatz is in good overall

agreement with a numerical solution. Evaluating Eq. (5)
with the assumption that

R
d3xV ≈ 4πR3M4=3, extremizing

with respect to R and using Hamilton’s equation of motion
ω ¼ _θ ¼ ∂E=∂Q, we arrive at

ω ¼ �M½4π · 33=2=Q�1=4; ϕ0 ¼ M

�
8Q

33=2π2

�
1=4

;

R ¼ 1

M

�
31=2Q
4π

�
1=4

; E ¼ M½4π · 33=2Q3�1=4: ð8Þ

We can see that these types ofQ-balls are stable in the large
Q limit since ω < m for a large charge [the critical charge is
Qc ¼ 12

ffiffiffi
3

p
πðM=mÞ4 with m the mass of the scalar at

ϕ ¼ 0], and E ∝ Q3=4.
Q-balls of this type are common in supersymmetric

theories where a flat direction develops in the scalar
potential for the superpartners of the quarks and leptons
[3,17]. The conserved U(1) charge in these cases are then
lepton and/or baryon number and are referred to in the
literature as L-balls and B-balls. In addition to being able to
form stable solitons, the interior of these Q-balls can
sometimes support lepton- or baryon-violating vacua [3],
which may be exploited in theories of baryo- or lepto-
genesis. Theories with charged inflatons may also be able
to support these types of Q-balls since inflaton potentials
must be relatively “flat” to satisfy the slow-roll conditions.

B. Curved direction Q-balls

As the charge of a flat direction Q-ball grows, and the
value of the scalar field VEV ϕ0 slides to higher values, the
corrections introduced by the lifting potential V lifting begin
affecting the Q-ball (see Fig. 1). This happens when
ϕ0 ∼ Λ. If the lifting potential is of a form that respects
the baryon number conservation, it can continue growing,
albeit in a different manner. The VEV hits a wall when it
reaches its maximum at ϕ0 ¼ Λ and cannot climb any
higher, so we can approximate the scalar potential near this
point as

M

V

FIG. 1. Schematic scalar potential with a flat direction which is
lifted by higher-dimensional terms near jϕj ∼ Λ. Potentials of this
form admit flat direction Q-balls which eventually grow into the
curved direction type once the critical charge is surpassed.
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VðϕÞ ≈M4 þ VB¼0
lifting ¼ M4 þ 2ReðgÞ

Λ2n−4 jϕj2n: ð9Þ

Since the VEV is constrained to be near Λ, we can use the
thin wall approximation. Substituting into Eq. (5) and
fixing ϕ0 ¼ Λ, we vary with respect to R to get

ω ¼ �Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ReðgÞ þ ðM=ΛÞ4

q
;

ϕ0 ¼ Λ;

R ¼ 1

2Λ

�
3Q

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ReðgÞ þ ðM=ΛÞ4

p �
1=3

;

E ¼ Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ReðgÞ þ ðM=ΛÞ4

q
Q: ð10Þ

Since we expect M=Λ ≪ 1, we can neglect those terms
under the square roots for simplicity. The critical charge at
which point a flat direction Q-ball will become a curved
direction Q-ball is Qc ≈ 6.4ðΛ=MÞ4 ∼ 1052.
If the lifting potential is not baryon conserving, the U(1)

symmetry is no longer respected and the Q-ball destabil-
izes, rapidly decaying until the lifting term is negligible and
theQ-ball has reverted back to the flat direction type. Since
curved direction Q-balls are necessarily more massive than
the flat direction type (and their baryon consumption rate
even faster), any limits obtained for flat direction Q-balls
will also apply to the curved direction type, so we need only
consider those belonging to the flat direction classification
from now on.

III. THE DECAY RATE

We would now like to calculate the decay rate of the
quanta of theQ-ball to other particles. The decay ofQ-balls
to neutrinos was first treated as an evaporation phenome-
non due to the Pauli exclusion principle preventing decays
in the interior of the Q-ball [21]. Bosons present no such
obstacles, and therefore decays to scalar and vector
particles can occur throughout the volume of the Q-ball,
provided their mass is less than ω. This may be difficult to
achieve in general since most coupled scalar/gauge fields
will get a mass term due to the nonzero expectation value in
the Q-ball interior. However, the Nambu-Goldstone modes
of the Q-ball field itself do not suffer this mass term, and
decays to these modes can occur if the Uð1Þ symmetry is
very slightly broken by the lifting potential.
Much work has been done calculating the decay and

evaporation rates and energy spectra of Q-ball decays to
fermions (both massless and massive) [22,23]. However,
these previous studies did not treat the decay of the
condensate to bosons and are related, but not relevant, to
the problem at hand. In this situation, we can utilize a
simple method of calculating the decay rate that uses
regular perturbation theory (with some extra steps).

A. Mathematical background

The probability for an initial state jfϕigi to evolve into
the final state jfϕfgi is given by P ¼ jhfϕfgjfϕigij2. In the
case of decays from a Q-ball, we are interested in the
situation where the initial state is simply the scalar con-
densate describing the Q-ball: jϕci. Since the condensate
is a persistent feature of the vacuum, the expectation value
of the field operator is simply the wave function:
hϕðxÞi ¼ ϕcðxÞ, a c-number function. ϕcðxÞ is the solution
to the classical equations of motion in vacuum, which admit
Q-ball solutions. Therefore, we can decompose the field
operator into a classical and quantum part: ϕ ¼ ϕc þ ϕ̂ (we
later employ a different decomposition in order to properly
separate the field into its mass eigenstates, but it is
conceptually similar to this one).
However, we are interested in how the Q-ball decays, so

we must consider the state in which the scalar condensate is
in the background of an interacting vacuum: jΦci. The
transition probability to any set of final state particles fϕfg
is then P ¼ jhΦcjΦcfϕfgij2. Using the single-particle
expansion of the final particle states

jfϕfgi ¼
Z Y

f

�
d3pf

ð2πÞ3
ϕfðpfÞffiffiffiffiffiffiffiffi

2Ef
p �

jfpfgi; ð11Þ

the transition probability is then

P ¼
����
Z Y

f

�
d3pf

ð2πÞ3
ϕfðpfÞffiffiffiffiffiffiffiffi

2Ef
p �

hΦcjΦcfpfgi
����2: ð12Þ

Instead of using arbitrary wave functions as the final state,
we can simply use the states of definite momentum, as is
typically done, so that ϕfðpfÞ ¼ ð2πÞ3δ3ðpf − pÞ= ffiffiffiffi

V
p

. In
this case, the differential transition probability is then

dP ¼
Y
f

�
d3pf

ð2πÞ3
1

2Ef

�
jhΦcjΦcfpfgij2: ð13Þ

The matrix element M ¼ hΦcjΦcfpfgi can be computed
perturbatively just as is normally done in quantum field
theory (QFT), except that we have to keep in mind the
expansion of the scalar field operator ϕ ¼ ϕc þ ϕ̂. This
leads to a bit of a complication, since working in the
momentum space involves a Fourier transform of ϕc,
introducing an additional integral which consumes some
of the delta functions that normally can be separated from
the scattering amplitude M. In addition, there is also no
integral over the impact parameter since there are no
collisions involved in this decay process. Depending on
the number of interaction vertices in the process, we find
the matrix element can be written schematically as

M ¼ hΦcjΦcfpfgi ¼ AnðfpfgÞð2πÞδðnω − ΣfEfÞ; ð14Þ
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where ω is the Q-ball energy per particle (chemical
potential), n is the number of Q-ball quanta consumed
by the decay (determined by the number of external legs
attached to the condensate), and A is a “reduced” matrix
element. The delta function enforces global energy con-
servation, and although momentum is conserved at each
vertex internal to the diagram, global momentum is not.
This can be understood by the fact that the existence of the
condensate breaks the spatial translation invariance of the
vacuum, and therefore momentum is no longer a conserved
quantity, the condensate instead absorbing the difference,
similar to how a crystal lattice will absorb the recoil from a
nuclear decay in the Mössbauer effect.
Now, one will find that Eq. (13) implicitly contains the

square of a delta function, which is a little troubling.
However, integration over the final state momenta will eat
up one of the delta functions, leaving a δð0Þ, which is
proportional to an infinite period of time T ¼ 2πδð0Þ, in the
sense that the limit of T is this quantity, so that stripping this
from the right-hand side gives us a probability per unit time
per unit phase space; in other words, the differential decay
rate

dΓ ¼
Y
f

�
d3pf

ð2πÞ3
1

2Ef

�
jAnðfpfgÞj2ð2πÞδðnω − ΣfEfÞ:

ð15Þ

This method has wide applicability in calculating the decay
of condensates and background fields, as the final state
particles can be of either bosonic or fermionic type (the initial
states can only be bosonic since fermions cannot form
condensates). The authors have also verified in the limit
that the condensate wave function is that of a single zero-
momentum particle ϕc ∼ 1=

ffiffiffiffi
V

p
, the Fourier transform of

which is a zero-momentum delta function, the decay rate
reduces to that of a familiar single particle decay, as one
would expect. The only drawback of this method is that it
cannot handle decays that significantly alter the condensate
wave function since ϕc would then be different in the initial
and final states and it would not be appropriate to expand
around. Thankfully, we will only be interested in decays
involving ΔQ≲ 10 from Q-balls with Q ∼ 1025, so the
change in charge per decay is entirely negligible.

B. Mass eigenstates and phonons

As briefly mentioned earlier, we would like to use a
decomposition of the field operator that respects the mass
eigenstates of the theory. For a theory with an unbroken
U(1), a polar decomposition ϕ ¼ ρeiθ=

ffiffiffi
2

p
shows that the

scalar potential depends only on the radial field ρ.
Therefore, this field is massive with the same mass as
the original complex field: m2jϕj2 ¼ 1

2
m2ρ2. The potential

is completely devoid of any terms containing θ, however,
due to the U(1) symmetry. This angular degree of freedom

is therefore a massless Goldstone boson of the theory
(inside the Q-ball it picks up a small mass due to the fact
that it has a minimum wavelength λ ∼ R). Therefore we
need a representation of the phonon operator that captures
perturbations around the condensate while keeping the
mass eigenstates separate. This leads us to consider the
decomposition of the phonon field into radial and angular
parts,

ϕ ¼ 1ffiffiffi
2

p ρeiθ ¼ 1ffiffiffi
2

p ðρc þ ρ̂Þeiðθcþθ̂Þ

≈ ϕc þ
1ffiffiffi
2

p ρ̂eiωt þ iffiffiffi
2

p ψ̂eiωt þ � � � ; ð16Þ

where ψ̂ ≡ ρcθ̂, θc ≡ ωt, and the � � � refers to the higher-
order terms in the Taylor expansion of the exponential.
Although there is no way to invert the full relationship for ρ̂
and ψ̂ in terms of ϕ̂ and ϕ̂�, the expansion to linear order
can be inverted, and this gives us an approximate dictionary
between the different phonon operators,

ϕ̂ ¼ 1ffiffiffi
2

p ðρ̂þ iψ̂Þeiωt; ϕ̂† ¼ 1ffiffiffi
2

p ðρ̂− iψ̂Þe−iωt;

ρ̂ ¼ 1ffiffiffi
2

p ðϕ̂†eiωt þ ϕ̂e−iωtÞ; ψ̂ ¼ iffiffiffi
2

p ðϕ̂†eiωt − ϕ̂e−iωtÞ:

ð17Þ

Unfortunately, we cannot simply substitute the above
relationships into the Lagrangian because these are
only correct to first order; we must expand around ρc
and θc in each term, and then do a Taylor expansion in the
exponential.
The ϕ̂ operator is complex, yet is not charged under the

Uð1Þ of the theory inside the Q-ball because ϕ̂ → ϕ̂eiα is
not a symmetry of the Lagrangian unless ϕc ¼ 0 (in which
case we are outside the Q-ball). Neither of the ρ̂ nor ψ̂ is
charged either, so a charged current cannot exist in the
interior unless it is via bulk motion of, or interaction with,
the condensate field ϕc.

C. Calculation of the matrix element

We will now use the method of Secs. III A and III B in
order to derive the matrix element for the decay of several
Q-ball quanta to phonons within the Q-ball (the Feynman
diagram representation of which is given by Fig. 2). We
consider the lifting potential discussed earlier and expand it
in polar form,

Llifting ¼ −
g

Λnþm−4 ϕ
nðϕ†Þm þ c:c:

¼ −gnm
�

ρffiffiffi
2

p
�

nþm
eiðn−mÞθ þ c:c:; ð18Þ
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where gnm ≡ g=Λnþm−4. We now expand around the Q-ball condensate in the way prescribed above, giving us

Llifting ¼ −
gnm

2ðnþmÞ=2
Xnþm

j¼0

X∞
k¼0

�
nþm

j

�
ikðn −mÞk

k!
ðρnþm−j−k

c eiðn−mÞθcÞρ̂jψ̂k þ c:c: ð19Þ

Now we calculate the matrix element for the decay of the condensate to Nρ ρ’s and Nψ ψ’s,

M ¼ i

2ðnþmÞ=2
X
j;k

�
nþm

j

� ðn −mÞk
k!

Z
d4xρnþm−j−k

c ½ikgnmeiðn−mÞωt þ c:c:�

× h0jρ̂jψ̂kjp1;…; pNρ
; k1;…; kNψ

i ð20Þ

¼ 2πi

2ðnþmÞ=2 C
nm
NρNψ

Z �YqD
q¼q1

d3q
ð2πÞ3 ρcðqÞ

�
ð2πÞ3δ3ðQ − ðpþ KÞÞ

× ½iNψ gnmδððn −mÞω − ðP0 þ K0ÞÞ þ ð−iÞNψ g�nmδððm − nÞω − ðP0 þ K0ÞÞ�; ð21Þ

where Cnm
jk ≡ j!ðnþm

j Þðn −mÞk, D≡ nþm − Nρ − Nψ , and Q ¼ P
q, P ¼ P

p, K ¼ P
k are the sums of the various

4-momenta. We substitute in the Q-ball wave function to the Fourier transform ρcðqÞ ¼
ffiffiffi
2

p
ϕcðqÞ ¼ffiffiffi

2
p

π3=2R3ϕ0e−q
2R2=4,

M ¼ ið2πÞ4–3D2D=2

2ðnþmÞ=2 Cnm
NρNψ

ð
ffiffiffi
2

p
π3=2R3ϕ0ÞD

Z �YqD
q¼q1

d3qe−
R2
4
q2
�
δ3ðQ − ðpþ KÞÞ

× ½iNψ gnmδððn −mÞω − ðP0 þ K0ÞÞ þ ð−iÞNψ g�nmδððm − nÞω − ðP0 þ K0ÞÞ�: ð22Þ

Now, we use an interesting geometric argument to
solve this integral. Since d3q ¼ dq1dq2dq3 and q2 ¼
q21 þ q22 þ q23, we observe that (besides the delta functions),
the integral is hyperspherically symmetric in the 3D-
dimensional q-space. The three delta functions each define
a hyperplane in this space, the union of which is a
3ðD − 1Þ-dimensional hypersurface which is a subspace
of the larger 3D-dimensional space. This hypersurface is
displaced from the origin by the vector v ¼ ðpþ KÞ= ffiffiffiffi

D
p

[notice the hyperplane defined by Qi − ðPi þ KiÞ ¼ 0

has a unit normal vector of n̂ ¼ ð1; 1;…; 1Þ= ffiffiffiffi
D

p
and is

displaced from the origin by a distance of jPi þ Kij=
ffiffiffiffi
D

p
].

This integral therefore represents a spherically symmetric
Gaussian integral over a 3ðD − 1Þ-dimensional space offset
from the origin by v. We can therefore rotate our coordinate
system so that v points in the new “ẑ” direction and
transform to a type of “hypercylindrical coordinates”:
ðs;ϕ; θ1;…; θ3ðD−1Þ−2; x; y; zÞ where the coordinates x, y,
and z are Euclidean and a specification of ðx; y; zÞ ¼
ð0; 0; vÞ constrains one to the hypersurface. Then, we
simply perform the spherically symmetric integral over
this surface,

Z �YqD
q¼q1

d3qe−
R2
4
q2
�
δ3ðQ − ðpþ KÞÞ

¼
Z

d3ðD−1Þse−R2
4
ðs2þv2Þ ¼ Ω3ðD−1Þ−1e−

R2
4
v2

×
Z

∞

0

dss3ðD−1Þ−1e−R2
4
s2 ; ð23Þ

where Ωn−1 ¼ 2πn=2=Γðn=2Þ is the solid angle of the
(n − 1)-sphere, and the remaining integral can be written
in terms of a gamma function as well (it actually cancels
with the one from Ω3ðD−1Þ−1). After the dust has settled, the
matrix element is found to be

FIG. 2. Feynman diagram representation of the matrix element
responsible for decay of the Q-ball into phonons. External lines
on the left marked by a cross are interactions of the operator with
the condensate ϕc, whereas external lines on the right are the
phonons produced from the decay. Arrows denote the flow of
momentum, not the charge.
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M ¼ 2iπ5=22ðnþmÞ=2−Nρ−NψCnm
NρNψ

R3ϕD
0 e

−R2
4DðpþKÞ2

× ½iNψ gnmδððn −mÞω − ðP0 þ K0ÞÞ
þ ð−iÞNψ g�nmδððm − nÞω − ðP0 þ K0ÞÞ�: ð24Þ

The number of Q-ball quanta that decay in each event (and
thereby the amount of charge violation) can be read off
from the delta function and is ΔQ ¼ jn −mj, as expected.
One important note is that since mρ ≫ ω, the condensate
cannot decay to ρ’s unless jn −mjω > mρ, which requires
the amount of charge violation to be very high. Decays to
ψ’s might appear to proceed unimpeded, however, because
they are massless. However, these phonons pick up a small
mass from two different sources. First, as mentioned
before, because the phonons are confined to the Q-ball,
they are essentially standing waves with a maximum
(Compton) wavelength of λ ≈ 2R, which implies a mini-
mum rest energymψ ¼ 1=k ¼ 1=4πR. Since in a thick-wall
Q-ball ωR ¼ ffiffiffi

3
p

, we have mψ ¼ ω=4π
ffiffiffi
3

p
≈ ω=22, which

is small, but still a significant fraction of ω. Second, the
baryon-violating term itself introduces a small mass, which
we can see by expanding to second order in ψ̂ ,

Llifting ⊃
1

2

�ðn −mÞ2ρnþm−2
c

2ðnþmÞ=2−1 ðImðgnmÞ sinððm − nÞωtÞ

− ReðgnmÞ cosððm − nÞωtÞÞ
�
ψ̂2; ð25Þ

where the quantity in square brackets can be identified with
m2

ψ . Not only is this mass small in magnitude compared
with the first contribution, but it also has harmonic time
dependence, and therefore averages out to zero over time
scales longer than about jn −mj=ω. Thus, it is safe to
assume that the mass from the Compton wavelength is the
only mass that contributes.

D. Calculation of the decay rate

We now apply Eq. (15) to calculate the decay rate,
focusing on decays to only the Goldstone modes and setting
Nρ ¼ 0 and N ≡ Nψ . We take the squared amplitude (which
can be simplified because the cross terms are zero due to the
conflicting delta functions), drop one of the delta functions,
and integrate over the final state phase space,

ΓN
nm ¼ 4π52nþm−2N jgnmj2ðCnm

0NÞ2R6ϕ2D
0 INðjðn −mÞjω;

R=
ffiffiffiffiffiffiffi
2D

p
; mψ Þ; ð26Þ

where

INðΩ; a; mÞ ¼
Z �YpN

p¼p1

d3p
ð2πÞ3

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p �

× e−a
2ð
P

pÞ2δ
�
Ω −

X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q 	
: ð27Þ

For N ¼ 1 we can get an exact answer,

I1ðΩ; a; mÞ ¼ 1

ð2πÞ2 e
−a2ðΩ2−m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 −m2

p
ΘðΩ −mÞ:

ð28Þ
However, using the relationships mψ ¼ ω=4π

ffiffiffi
3

p
and

R ¼ ffiffiffi
3

p
=ω, we can reduce the integral to something even

simpler,

INðjn−mjω;R=
ffiffiffiffiffiffiffi
2D

p
;mψ Þ

¼
Z �YpN

p¼p1

d3p
ð2πÞ3

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

ψ

q �

×e−
R2
2Dð
P

pÞ2δ
�
jðn−mÞωj−

X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

ψ

q �

¼ω2N−1
Z �YpN

p¼p1

d3ðp=ωÞ
ð2πÞ3

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=ωÞ2þðmψ=ωÞ2

q �

×e−
24π2

D ð
P

ðp=ωÞ2Þδ
�
jn−mj−

X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=ωÞ2−ðmψ=ωÞ2

q �
:

ð29Þ

We then change coordinates to ξ≡ p=ω and substitute the
phonon mass so that mψ=ω≡ μ ¼ 1=4π

ffiffiffi
3

p
,

¼ ω2N−1
�Z �YξN

ξ¼ξ1

d3ξ
ð2πÞ3

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ μ2

p �

× e−
24π2

nþm−Nð
P

ξÞ2δ
�
jn −mj −

X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ μ2

q ��
; ð30Þ

where we will define the integral in square brackets as JNnm
(note JNnm ¼ JNmn and J ¼ 0 if N ≥ nþm or n ¼ m).
Because n, m, and N are integers and J is a dimensionless
number, we can simply tabulate all its possible values using a
numerical integration such as Monte Carlo (MC) integration.
However, because of the delta function, we cannot do MC
until we integrate that out. We convert to spherical coor-
dinates and separate the Nth coordinate from the rest, and
then integrate over it to remove the delta function, leaving
us with

JNnm ¼ 1

ð16π3ÞN
Y 0

ξ;ϕ;θ

�Z
2π

0

dϕ
Z

π

0

dθ sin θ
Z

∞

0

ξ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ μ2

p �Z
2π

0

dϕN

Z
π

0

dθN sin θNξNðfξgÞ

× e−
24π2

nþm−Nð
P0

i
ξ2iþ

P0
i≠j

ξi·ξjþξ2NðfξgÞþ2
P0

i
ξNðfξgÞξiðsin θN sin θi cosðϕN−ϕiÞþcos θN cos θiÞÞ; ð31Þ
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where the primed sums/products mean we sum/multiply over all coordinates except the Nth, and

ξNðfξgÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
jn −mj −

X0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ μ2

q �
2

− μ2

s
; ð32Þ

ξi · ξj ¼ ξiξjðsin θi sin θj cosðϕi − ϕjÞ þ cos θi cos θjÞ: ð33Þ

Some sample values of JNnm (I will restrict to nþm > 4 and jn −mj ¼ 1 for now) are

N¼ 1∶ J123¼ 5.5×10−28; J134¼ 1.9×10−19; J145¼ 3.8×10−15; J156¼ 1.4×10−12; J167¼ 7.1×10−11;

N¼ 2∶ J223¼ 1.0×10−7; J234¼ 3.0×10−7; J245¼ 5.0×10−7; J256¼ 8.0×10−7; J2671.2×10−6;

N¼ 3∶ J323¼ 2.0×10−11; J334¼ 5.0×10−10; J345¼ 1.0×10−9; J356¼ 2.0×10−9; J367¼ 7.0×10−9;

N¼ 4∶ J423¼ 8.0×10−17; J434¼ 6.0×10−14; J445¼ 9.0×10−13; J456¼ 5.0×10−12; J467¼ 2.0×10−11;

N¼ 5∶ J534¼ 3.0×10−19; J545¼ 7.0×10−17; J556¼ 3.0×10−15; J567¼ 2.0×10−14:

Clearly, final states involving more phonons have a
smaller amount of phase space volume. The exception
is N ¼ 1, which gets extra suppression from the fact that
any decay involving one final state particle does not
conserve momentum. It should be noted that repeated
evaluation of the Monte Carlo calculation shows that the
uncertainty in these answers is quite large; variation in
the first digit is common, though the order of magnitude
remains consistent over repeated evaluations. It turns out
that this is not terribly important for computing the
neutron star lifetimes; variations of Oð1Þ in J translate to
variations of Oð10−3Þ in the lifetimes. This is because the
dependence of Γ on Q is most important. There is also a
small imaginary part attached to some of these numbers
which is not shown. This is from integrating over a
region in phase space which is not kinematically allowed,
and it does not contribute to the decay rate, so we can
simply ignore it.
If the dimension of the lifting potential is extremely high

(nþm → ∞), then the exponential in the integrand
becomes order unity, and we can reduce this even further
by transforming to a dimensionless energy coordinate
σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ μ2

p
and integrating out all the angles. The

integral JNnm approaches

JNnm →
1

ð2πÞ2N
�YσN

σ¼σ1

Z jn−mj−ðN−1Þμ

μ
dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − μ2

q �

× δ

�
jn −mj −

X
σ

�
: ð34Þ

This can be calculated via Monte Carlo calculation in a
similar manner to Eq. (31). Note that in this limit JNnm only
depends on ΔQ ¼ jn −mj and N. Now, putting all of this
together, we can express the decay rate to N Goldstone
bosons as

ΓN
nm ¼ 4π52nþm−2N jgnmj2ðN!Þ2ðcnm0N Þ2R6ϕ2D

0 ω2N−1JNnm:

ð35Þ
Writing out R, ϕ0, and ω in terms of Q [see Eqs. (8)] and
lumping all the nondimensional constants together,

ΓN
nm ¼ jgj2KN

nmQ
1
4
ð7þ2ðnþm−2NÞÞM

�
M
Λ

�
2ðnþmÞ−8

; ð36Þ

KN
nm ≡ 2

1
2
ð5ðnþm−NÞ−3Þ3

3
8
ð1−2ðnþm−2NÞÞπ13

4
−ðnþm−3N=2Þ

× ðn −mÞ2NJNnm; ð37Þ

where M is the mass scale associated with the potential
energy density in the flat direction of the scalar potential
(V0 ¼ M4). We can now simply tabulate the KN

nm and have
a semianalytic expression for the decay rate that will be
easy to use in the analysis of Sec. V.

IV. INTERACTIONS BETWEEN Q-BALLS
AND NEUTRON STARS

We would now like to understand how a Q-ball interacts
with its host star in order to determine the neutron
consumption rate. As discussed in the work of one of
us, Loveridge, and Shaposhnikov (KLS) [18], the transport
mechanism of neutrons inside a neutron star is complicated
and is not very well understood. The authors outline two
different possible situations for neutron accretion, which
we will summarize here for clarity.

A. Surface conversion of neutron flux

As a rough estimate, KLS assume the rate of neutron
absorption is simply equal to the flux of neutrons moving
across the surface of theQ-ball. In this scenario, the growth
rate of the Q-ball is given by
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_Q ¼ b−14πR2n0v ¼ 4 · 35=4n0
M2ð4πÞ1=2 Q

1=2

≈ ð2 × 10−8 GeVÞQ1=2; ð38Þ

where b ¼ 1=3 is the baryon number of a squark, n0 ≈
1015g=cm3 ¼ 4 × 10−3 GeV3 is the neutron number
density at the center of the star, and v ≈ 1 is the speed
of the neutrons, assumed to be of the order of the speed of
light. This estimate for the absorption rate is likely too high,
as it does not take into account the pressure backreaction
from the pions and antineutrons produced on the surface of
the Q-ball.

B. Hydrodynamic considerations
due to pion production

Using a couple of different methods, KLS determine the
pressure at the center of the star in hydrostatic equilibrium
is approximately P ≈ ð0.1 GeVÞ4. For light degrees of
freedom such as pions, electrons, and neutrinos, this
implies a temperature of about 100 MeV from the relation
P ≈ gT4=π2. This temperature cannot be maintained by
thermal effects alone, but can be maintained by the pions
produced on the surface of the Q-ball. The rate of pion loss
to decay inside the star is given by

_Nπ ≈ 2π3=2
ffiffiffiffiffi
λ

3τ

r
nπð0ÞR2; ð39Þ

where λ ≈ n−1=30 and τ ≈ 108 GeV−1 are the mean free path
and neutral pion lifetime, respectively. They also assume
nπð0Þ ≈ n0 in order to maintain pressure. Each neutron only
has enough mass and energy to supply about 4–5 pions, so
the rate of neutron absorption is about that much lower,
giving us

_Q ¼ 10π3=2n5=60 R2

b
ffiffiffiffiffi
3τ

p ¼ 5πn5=60

31=4bM2τ1=2

≈ ð10−11 GeVÞQ1=2: ð40Þ

This estimate is slightly lower than the raw neutron flux
estimate and is a little more realistic.

V. BARYON NUMBER EVOLUTION
IN AN INFECTED NEUTRON STAR

Now that we have expressions for both the growth rate
and the decay rate of the Q-ball, we can set up a simple set
of differential equations to model the evolution of the
baryon number in both the Q-ball and the neutron star,

_BQ ¼ b _Q ¼ − _Nn − bjn −mjΓnm; ð41Þ

_BNS ¼ _Nn ¼ −ð10−11 GeVÞQ1=2; ð42Þ

where Γnm ≡P
NΓN

nm. Or, eliminating Nn and assuming
decays are dominated by a specificN (usually either 1 or 2),
we can put it in a more aesthetically pleasing form,

_Q ≈ 3 _N0Q1=2 − Γ0Qα; ð43Þ

where _N0 ¼ 10−11 GeV, Γ0 ¼ jgj2KN
nmMðM=ΛÞ2ðnþmÞ−8,

and α ¼ 1
4
ð7þ 2ðnþm − 2NÞÞ (α > 1 unless N is some

ridiculously high number, which is unlikely). The initial
conditions for this system are Qð0Þ ¼ Q0 ≈ 1025 and
Nnð0Þ ¼ BNS ¼ 1057, and the total number of neutrons
absorbed by the Q-ball is given by integrating Eq. (42),

ΔNnðtÞ ¼ −
Z

t

0

dt0 _N0Q1=2: ð44Þ

1. 10 45 1. 10 25 1. 10 5 1015

1025

1029

1033

1037

t [yr]

Q

n 4

n 5

n 6

n 7

n 8

n 9

Q ball charge with Q=1 decays

FIG. 3. Plot of the evolution of charge within the Q-ball at the
center of a neutron star with decay channels attributed to various
ΔQ ¼ 1 operators, indexed by ðn;mÞ ¼ ðn; nþ 1Þ. The Q-ball
very quickly equilibrates so that the rate of decay is equal to the
rate of neutron consumption. Not shown are the contours for
n ¼ 2 and n ¼ 3, which are ruled out because the corresponding
operators would destabilize the Q-ball in free space on short time
scales.

Q

Nn

10 55 10 35 10 15 105

10 20

1

1020

1040

1060

t [yr]

Baryon number evolution of Q ball infected NS (n 4,m 6)

FIG. 4. Plot of the charge Q contained within a Q-ball and the
number of neutrons consumed by the Q-ball over the life of the
neutron star. Once −ΔNn ¼ BNS ¼ 1057, integration is stopped
and the star is gone. This specific example is for a Q-ball with
decays mediated by a ðn;mÞ ¼ ð4; 6Þ operator, resulting in a
neutron star lifetime of τNS ¼ 1 × 1020 yr.
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We can see that Eq. (43) has late-time attractor solutions,
whereby setting _Q ¼ 0, we solve for the equilibrium

charge: Qeq ¼ ð3 _N0=Γ0Þ
1

α−1=2 (see Fig. 3). If this charge
is reached relatively quickly compared to the total lifetime
of the neutron star, then Eq. (44) implies that the neutron
depletion is linear in time, and the lifetime of the star is then

τNS ≈
BNS

_N0

�
3 _N0

Γ0

� 1=2
1=2−α

: ð45Þ

In free space, the evolution of the charge of a Q-ball is
given by Eq. (43) with _N0 ¼ 0, which can easily be solved
for

QðtÞ ≈
�
ðα − 1Þ

�
Q1−α

0

α − 1
þ Γ0t

�� 1
1−α
: ð46Þ

The Q-ball lifetime can then be solved for by setting
QðτQÞ ¼ 1, which gives us

τQ ≈
1 −Q1−α

0

ðα − 1ÞΓ0

: ð47Þ

If we want to be more exact and take into account decays
from all channels (not just the dominant one), we can
numerically solve for τNS and τQ by evolving Eqs. (41) and
(42) until Nn ¼ 0 or Q ¼ 1, at which point either the
neutron star has been consumed or the Q-ball has decayed,
and we stop integration (a specific example is given in
Fig. 4). This is how we will derive the limits in the next
section.

VI. LIMITS ON BARYON-VIOLATING
(AND CONSERVING) OPERATORS

Using Eqs. (41) and (42) and the algorithm prescribed in
the previous section, we can tabulate the lifetimes of
infected neutron stars and free Q-balls endowed with the
lifting potential of Eq. (1), indexed by the integers n andm.
We will find that baryon-violating terms are necessary if an
infected neutron star is to survive to present day.

A. From decay of Q-balls in free space

We solve the baryon number evolution equations with
_N0 ¼ 0 in order to model the decay of the Q-ball in free
space. The results are plotted in Fig. 5 and tabulated in
Table I in the Appendix. The most striking feature is that for
n ¼ m, the Q-ball is completely stable because the
Goldstone field does not appear in the potential. We can
also see that in general, as the dimension of the operator
increases, so does the lifetime of the Q-ball. In fact, all
Q-balls with lifting potentials of dimension 5 or less are
unstable and decay in a matter of hours or less, whereas
those with dimension greater than 5 are stable on time

scales much longer than the age of the Universe. This
immediately rules out dark matter Q-balls with nþm ≤ 5.
In the high-dimension limit (nþm → ∞), we can calculate
JNnm using Eq. (31) and solve the baryon evolution
equations again, though this does not lead to any interesting
revelations; the Q-ball lifetime continues to increase as the
dimension of the operator increases and is pretty much
independent of ΔQ. The largest lifetime calculated
(dim ¼ 100) was over 102000 yr.

B. From lifetime of neutron stars

Solving the baryon number evolution equation with
_N0 ≠ 0 and integrating until Nn ¼ 0 gives us the lifetime
of an infected neutron star. This information is plotted in
Fig. 6 and Table II. As we can see, the diagonal where
n ¼ m is ruled out, with a lifetime of about 108 yr. This is
due to the fact that the Q-ball is absolutely stable in this
regime, and therefore grows without bound as it eats away
at the neutron star, quickly consuming it. In fact, this is an
upper limit on the lifetime; the final charge of the Q-ball in
this situation is 3 × 1057, which is beyond the critical
charge for a flat direction Q-ball to change into a curved
direction type, which as mentioned before, has an even
higher rate of neutron consumption. The highest charge for
a Q-ball with baryon-violating decays is only 1042, well
below the critical charge. Interestingly, in the regions with
operator dimension ≤4, the Q-ball decays so quickly that it
breaks down completely before the neutron star is con-
sumed. As mentioned in the previous subsection,Q-balls in
this regime are not stable in free space anyway. We can see
that as we move away from the n ¼ m diagonal (increasing
ΔQ), the lifetime of the star begins to drop, then levels out,
with the magnitude of the drop decreasing as the operator
dimension increases. In order to study the effects of very

log10( [yr])
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FIG. 5. Plot of Q-ball lifetimes with an initial charge of
Q0 ¼ 1025 as a function of various n, m corresponding to the
terms in the lifting potential. The diagonal n ¼ m is actually
completely stable because decays are not permitted due to
restoration of the Uð1ÞB symmetry.
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high-dimensional operators (nþm → ∞), we once again
use Eq. (31) to calculate JNnm and solve the baryon number
evolution equations. This is plotted in Fig. 7. What we find
is quite interesting: the lifetime appears to approach a
limiting value around 1012 yr as the operator dimension
increases. The lifetime is roughly independent of ΔQ,
though it does drop slightly near ΔQ ¼ 0. This appears to
match the trend of Fig. 6 as the operator dimension is
increased.

VII. CONCLUSION

We have shown here that Q-balls can make up dark
matter if baryon-violating terms of dimension nþm > 5
are present in the scalar potential. Cases in which there is no
baryon violation (n ¼ m) are ruled out as well due to
unrestrictedQ-ball growth. The baryon number violation is
also necessary for the Affleck-Dine mechanism to work.
This eliminates the neutron star bounds. Beyond this, there
appears to be no restriction on these operators, even at very
high dimension. The low level of baryon number violation
does not affect the experimental limits based on IceCube
[13], Super-Kamiokande [24], and other direct detection
experiments. However, one should keep in mind that
Q-balls may carry some electric charge [8,24,25], making
them almost invisible to most direct-detection searches.
(A positively charged Q-ball cannot destabilize nuclei
because the Coulomb repulsion prevents any strong inter-
actions between nonrelativistic Q-balls and matter nuclei.)
This leaves a wide range of parameters available for dark
matter in the form of supersymmetric Q-balls.
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APPENDIX: TABLES OF Q-BALL AND
NEUTRON STAR LIFETIMES

Tables I and II correspond to Figs. 5 and 6, and list the
lifetimes of Q-balls and neutron stars infected by Q-balls
with baryon-violating decays.
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FIG. 6. Plot of neutron star lifetimes after being infected by a
Q-ball with initial chargeQ0 ¼ 1025 as a function of various n,m
corresponding to the terms in the lifting potential. The diagonal
n ¼ m is ruled out because the B-violating decays are forbidden,
and the stability of the Q-ball causes it to grow without bound,
quickly consuming the star.
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FIG. 7. Plot of neutron star lifetimes after being infected by a
Q-ball with initial charge Q0 ¼ 1025 as a function of the charge
violation per decay ΔQ > 0 and the dimension of the operator in
the lifting potential. The white region in the lower right corner is
where ΔQ > dim, which is not allowed since it implies one of
either n or m is negative.
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TABLE I. Q-ball lifetimes (in years) for various lifting potentials. Lifetimes with an ∞ are absolutely stable due to restoration of the
Uð1ÞB symmetry.

nnm 1 2 3 4 5 6 7 8 9 10

1 ∞ 7 × 10−55 9 × 10−31 6 × 10−6 1 × 1020 4 × 1045 7 × 1071 1 × 1097 2 × 10123 2 × 10149

2 7 × 10−55 ∞ 4 × 10−4 1 × 1021 1 × 1046 3 × 1071 1 × 1097 2 × 10123 7 × 10148 6 × 10174

3 9 × 10−31 4 × 10−4 ∞ 1 × 1048 5 × 1072 6 × 1097 1 × 10123 8 × 10148 1 × 10175 4 × 10200

4 6 × 10−6 1 × 1021 1 × 1048 ∞ 9 × 1099 3 × 10124 4 × 10149 1 × 10175 5 × 10200 9 × 10226

5 1 × 1020 1 × 1046 5 × 1072 9 × 1099 ∞ 7 × 10151 3 × 10176 4 × 10201 1 × 10227 4 × 10252

6 4 × 1045 3 × 1071 6 × 1097 3 × 10124 7 × 10151 ∞ 7 × 10203 3 × 10228 4 × 10253 9 × 10278

7 7 × 1071 1 × 1097 1 × 10123 4 × 10149 3 × 10176 7 × 10203 ∞ 7 × 10255 3 × 10280 >10300

8 1 × 1097 2 × 10123 8 × 10148 1 × 10175 4 × 10201 3 × 10228 7 × 10255 ∞ >10300 >10300

9 2 × 10123 7 × 10148 1 × 10175 5 × 10200 1 × 10227 4 × 10253 3 × 10280 >10300 ∞ >10300

10 2 × 10149 6 × 10174 4 × 10200 9 × 10226 4 × 10252 9 × 10278 >10300 >10300 >10300 ∞

TABLE II. Infected neutron star lifetimes (in years) for various lifting potentials. Lifetimes with an ∞ are absolutely stable.

nnm 1 2 3 4 5 6 7 8 9 10

1 5 × 108 ∞ ∞ 6 × 1032 1 × 1028 1 × 1025 7 × 1022 2 × 1021 1 × 1020 2 × 1019

2 ∞ 5 × 108 2 × 1032 7 × 1027 9 × 1024 8 × 1022 2 × 1021 1 × 1020 2 × 1019 3 × 1018

3 ∞ 2 × 1032 5 × 108 2 × 1026 5 × 1022 2 × 1021 1 × 1020 2 × 1019 3 × 1018 7 × 1017

4 6 × 1032 7 × 1027 2 × 1026 5 × 108 3 × 1023 1 × 1020 1 × 1019 3 × 1018 7 × 1017 2 × 1017

5 1 × 1028 9 × 1024 5 × 1022 3 × 1023 5 × 108 3 × 1021 4 × 1018 6 × 1017 2 × 1017 7 × 1016

6 1 × 1025 8 × 1022 2 × 1021 1 × 1020 3 × 1021 5 × 108 1 × 1020 9 × 1017 6 × 1016 3 × 1016

7 7 × 1022 2 × 1021 1 × 1020 1 × 1019 4 × 1018 1 × 1020 5 × 108 1 × 1019 2 × 1017 1 × 1016

8 2 × 1021 1 × 1020 2 × 1019 3 × 1018 6 × 1017 9 × 1017 1 × 1019 5 × 108 1 × 1018 7 × 1016

9 1 × 1020 2 × 1019 3 × 1018 7 × 1017 2 × 1017 6 × 1016 2 × 1017 1 × 1018 5 × 108 3 × 1017

10 1 × 1019 3 × 1018 7 × 1017 2 × 1017 7 × 1016 3 × 1016 1 × 1016 7 × 1016 3 × 1017 5 × 108
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