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It has been shown that a self-gravitating system of massive keV fermions in thermodynamic equilibrium
correctly describes the dark matter (DM) distribution in galactic halos (from dwarf to spiral and elliptical
galaxies) and that, at the same time, it predicts a denser quantum core towards the center of the
configuration. Such a quantum core, for a fermion mass in the range of 50 keV≲mc2 ≲ 345 keV, can be
an alternative interpretation of the central compact object in Sgr A*, traditionally assumed to be a black
hole (BH). We present in this work the gravitational lensing properties of this novel DM configuration in
nearby Milky-Way-like spiral galaxies. We describe the lensing effects of the pure DM component both on
halo scales, where we compare them to the effects of the Navarro-Frenk-White and the nonsingular
isothermal sphere DM models, and near the galaxy center, where we compare them with the effects of a
Schwarzschild BH. For the particle mass leading to the most compact DM core, mc2 ≈ 102 keV, we draw
the following conclusions. At distances r ≳ 20 pc from the center of the lens the effect of the central object
on the lensing properties is negligible. However, we show that measurements of the deflection angle
produced by the DM distribution in the outer region at a few kpc, together with rotation curve data, could
help to discriminate between different DM models. In the inner regions 10−6 ≲ r ≲ 20 pc, the lensing
effects of a DM quantum core alternative to the BH scenario becomes a theme of an analysis of
unprecedented precision which is challenging for current technological developments. We show that at
distances ∼10−4 pc strong lensing effects, such as multiple images and Einstein rings, may occur. Large
differences in the deflection angle produced by a DM central core and a central BH appear at distances
r ≲ 10−6 pc; in this regime the weak-field formalism is no longer applicable and the exact general-
relativistic formula has to be used for the deflection angle which may become bigger than 2π. An important
difference in comparison to BHs is in the fact that quantum DM cores do not show a photon sphere; this
implies that they do not cast a shadow (if they are transparent). Similar conclusions apply to the other DM
distributions for other fermion masses in the above-specified range and for other galaxy types.
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I. INTRODUCTION

Most of the intriguing problems in particle physics and
cosmology are related to the nature of the dark matter (DM)
that composes approximately 80% of matter in the Universe
[1]. In a self-consistent particle DM model aimed to under-
stand the quasirelaxed DM halo structures, the underlying
phase-space distribution and self-gravitation establishes
how the DM distributes in the galaxy. Namely, the distri-
bution of DM inside the galaxy (e.g. mass, density and

pressure profiles) can be obtained from the solution of the
hydrostatic equilibrium equations and the corresponding
(phase-space-dependent) equation of state (see e.g. [2]).
Before a DM halo enters in the steady state we observe,

and due to the inos collisionless nature of the DM particles,
specific relaxation mechanisms such as violent relaxation
take place in a few dynamical times, giving rise to
quasistationary states which can be described by (coarse-
grained) phase-space distributions of the Fermi-Dirac type
[3,4]. Indeed, it has been recently shown that a model of
DM based on a self-gravitating system of fermions in
thermodynamic equilibrium accurately describes the dis-
tribution of DM in galactic halos, when contrasted with
observations [5–7]. In Ref. [5], it was shown that such a
self-gravitating system of fermionic DM shows a general
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DM density distribution, hereafter the RAR profile, with a
compact core–diluted halo structure (see Sec. II for details).
More recently, following the more complex and realistic
statistical approach accounting for escape of particles, in
Ref. [7] a cutoff in the fermion momentum distribution was
introduced. Such a momentum cutoff serves to account for
the finite size of galaxies, generalizing the previous RAR
profile [5]. Both Refs. [5] and [7] have put constraints on
the mass of these fermions, hereafter called inos, using
known observational properties of galaxies such as the
flatness of the rotation curves, the mass and radius of
galaxies, as well as observationally inferred correlations
involving many different galaxy types.
On the other hand, gravitational lensing (GL) has been

widely used to determine the distribution of DM in galaxies
and galaxy clusters [8,9]. Hence, given a specific density
profile it is systematically possible to infer the GL proper-
ties for any lens system or vice versa; i.e., if we know the
lensing signal, we can reconstruct the mass distribution of
the lens under some assumptions of it. Moreover, in [10] a
Bayesian statistical method was presented that permits
us to reconstruct a model-independent mass profile
without initial assumptions by combining measurements
of magnification bias along with lens distortion. For
instance, the gravitational lensing properties given by the
phenomenological Navarro-Frenk-White (NFW) profile,
commonly used to describe the cold dark matter (CDM)
distribution of halos, have been very well investigated (see
e.g. Ref. [11], and references therein). The same applies to
the nonsingular isothermal sphere (NSIS) profile [12].
Interestingly, the lensing data are better fitted by the latter
kind (see e.g. [13]), which is coredlike (i.e. with a shallower
inner DM halo density profile in contrast to the more cuspy
NFW one), in a way similar to the RAR profile in that
galaxy region (see Fig. 3 in [5]). Particular attention has
been paid in the previous decade to single galaxies where
strong lensing effects are commonly present. Surveys such
as SWELLS [14,15] and DiskMass [16], among others,
have placed constraints on the properties of spiral galaxies,
revealing for instance the DM fraction within 2.2 disk radii,
the inner logarithmic slope of the DM halo profile, as well
as the stellar mass component (disk plus bulge). Including
kinematic analysis, it is also possible to break the disk-halo
degeneracy [14] and to put a more stringent constraint on
the aforementioned properties (see also [17] for a theo-
retical study and [18] for a summary of the DM properties).
Likewise, the slope of the average DM-projected density
profile in the innermost regions of massive early-type
galaxies has been constrained by using strong gravitational
lensing data along with stellar dynamics and stellar
population [19–21]. Recently, the DM density profile
has been constrained at a few kpc, contributing signifi-
cantly in the same way as the stellar component does
[22,23], exhibiting that these types of galaxies have a non-
negligible amount of DM in their central regions.

Observations also indicate that most galaxies host a
massive central compact object, usually assumed to be a
black hole (BH). Its presence substantially affects lensing
features such as the critical curves and the formation
(suppression) of an additional (existing) faint central image,
as predicted in [24] and already observed [25]. Remarkably,
such effects depend on the halo core radius and a critical
value of the mass of the BH [22,24], leading to a strong
degeneracy between these parameters.
At this point we turn back to the discussion of DM

models on galaxy scales to recall an interesting feature of
the RAR model [7]: its DM central core, hereafter DMCC,
can be compact enough to correctly describe the observa-
tional properties in the Galactic center, which are usually
associated with the existence of a massive BH centered in
Sgr A*. Namely, it can produce a gravitational potential
which suffices to explain the dynamics of the stars closest
to Sgr A*, the S-cluster stars (see Ref. [7] for details). Thus,
the RAR profile could, in principle, explain the Milky Way
(MW) properties from the center all the way to the halo.
It is thus natural to ask ourselves about the GL properties

of nearby lensing galaxies modeled within the RAR model.
Without loss of generality, we compute in this work the GL
properties of DM halos for spiral type galaxies such as the
MW. In addition to the inclusion of the halo part, which is
slightly but appreciably distinguishable from other DM
models, we consider the lensing effects of the DM
distribution near the GC where a maximum deflection of
light is predicted, in contrast to standard models of DM
such as NFW and NSIS. We also show that, at such scales,
the deflection angles are no longer small, so that the exact
equations from general relativity must be used.
This work is organized as follows: In Sec. II we describe

the general features of the novel model of DM fermions and
compare themwith the ones obtained by the standard density
profiles. We compute in Sec. III the gravitational lensing
properties of ourDMdistribution inMilky-Way-likegalaxies
and compare them in the halo with those of the NFW and
NSIS profiles and in the core with those of a Schwarzschild
BH as they have been predicted for Sgr A* [26]. Finally we
present a general discussion in Sec. IVof theGLproperties of
the fermionic DM distribution in galaxies.

II. THE DENSITY PROFILES

We first recall the widely used phenomenological DM
density profile arising within the ΛCDM cosmological
paradigm, i.e. the NFW profile [27]

ρðrÞ ¼ ρc
ðr=rsÞð1þ r=rsÞ2

; ð1Þ

where ρc is the characteristic density and rs is the scale
radius. This density profile exhibits a sharp cusp in the
inner region ρ ∝ r−1 while in the halo part the density
scales as ρ ∝ r−3.
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Another often-adopted DM density profile which also
yields the asymptotic flatness of the rotation curves is
represented by the NSIS profile [28],

ρðrÞ ¼ ρ0
1þ ðr=r0Þ2

; ð2Þ

where ρ0 is the central density and r0 is the core radius.
We turn now to the RAR profile [5,7] which describes

the DM distribution along the entire galaxy in a continuous
way, i.e. from the halo part to the GC and without spoiling
the baryonic component which dominates at intermediate
scales (see [7] for details).
Assuming a self-gravitating system of massive fermions

(within the standard Fermi-Dirac phase-space distribution)
in thermodynamic equilibrium, the DM density profile was
computed in [5]. By imposing fixed boundary conditions at
the halo and including the fulfillment of the rotation curve
data, the parameters of the system have been constrained.
This procedure was applied for different types of galaxies
from dwarfs to big spirals exhibiting a universal compact
core–diluted halo density profile. An extended version of
the RAR model was recently presented [7] by introducing a
fermion energy cutoff ϵc in the fermion distribution. This is
also motivated by the formal stationary solution (Fermi-
Dirac-like) of the generalized statistics which includes the
effects of escape of particles and violent relaxation [4]. The
new emerging density profile serves to account for the finite
galaxy sizes due to the more realistic boundary conditions,
while also opening the possibility to achieve a more
compact solution for the quantum core working as a good
alternative to the BH scenario in Sgr A* (see Fig. 1).

Motivated by these features between the DM profiles,
we compute in the next section both the GL properties of
MW-type galaxies for the RAR model and the GL effect of
the DMCC in order to study the possibility of strong
lensing effects around the GC. We describe now the RAR
profile following Ref. [7].
The density ρ and pressure P for this system are given by

ρ ¼ g
h3

m
Z

ϵc

0

fcðpÞ
�
1þ ϵðpÞ

mc2

�
d3p; ð3Þ

P ¼ 2

3

g
h3

Z
ϵc

0

fcðpÞ
1þ ϵðpÞ=2mc2

1þ ϵðpÞ=mc2
d3p; ð4Þ

where g denotes as usual the particle spin degeneracy and
fcðpÞ is the phase-space distribution function including an
energy cutoff,

fcðpÞ ¼
�

1−eðϵ−ϵcÞ=kT
eðϵ−μÞ=kTþ1

ϵ ≤ ϵc;

0 ϵ > ϵc:
ð5Þ

Here ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p2 þm2c4

p
−mc2 is the particle kinetic

energy, m is the particle mass, μ is the chemical potential
(with the particle rest mass subtracted off), T is the
temperature, k is the Boltzmann constant, and h is the
Planck constant.
Considering the spherically symmetric space-time

described by the metric

ds2 ¼ eνdt2 − eλdr2 − r2dΘ2 − r2sin2Θdϕ2; ð6Þ

along with the thermodynamic equilibrium conditions
eν=2T ¼ const and eν=2ðμþmc2Þ ¼ const and the equation
of state given by Eqs. (3) and (4), the dimensionless
Einstein equations are finally obtained (see Ref. [7] for
details),

dM̂
dr̂

¼ 4πr̂2ρ̂; ð7Þ

dθ
dr̂

¼ −
½1 − β0ðθ − θ0Þ�

β0

M̂ þ 4πP̂r̂3

r̂2ð1 − 2M̂=r̂Þ ; ð8Þ

dν
dr̂

¼ 2
M̂ þ 4πP̂r̂3

r̂2ð1 − 2M̂=r̂Þ ; ð9Þ

βðrÞ ¼ β0e
ν0−νðrÞ

2 ; ð10Þ

WðrÞ ¼ W0 þ θðrÞ − θ0; ð11Þ

where we have introduced the temperature parameter
β ¼ kT=mc2, the degeneracy parameter θ ¼ μ=kT and
the cutoff parameter W ¼ ϵc=kT. In addition, we have
introduced the dimensionless quantities r̂ ¼ r=χ,

FIG. 1. Density profiles for MW-type galaxies for different
particlemass values that satisfy the boundary conditions:MDMðr¼
20 kpcÞ¼ 9×1010M⊙ [or equivalently MDMðr ¼ 40 kpcÞ ¼
2 × 1011M⊙], with a DMCC of mass Mc ¼ 4.2 × 106M⊙. The
set of initial conditions θ0 ¼ 32.2; β0 ¼ 2.7 × 10−7; W0 ¼ 58.5,
θ0 ¼ 37.1; β0 ¼ 1.04 × 10−5; W0 ¼ 65, 20, θ0 ¼ 45.8;
β0 ¼ 4.0 × 10−3; W0 ¼ 76.049 for m ¼ 10 keV, m ¼ 48 keV
and m ¼ 345 keV, respectively, have been here adopted from
the original solutions computed in [7].
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M̂ ¼ GM=ðc2χÞ, ρ̂ ¼ Gχ2ρ=c2 and P̂ ¼ Gχ2P=c4 with
χ ¼ 2π3=2ðℏ=mcÞðmp=mÞ and mp being the Planck mass.
The subscript 0 in the Einstein equations denotes the initial
condition values. Thus, the fermionic DM density profile
was computed numerically and characterized by a quantum
central core of almost constant density, an intermediate
transition region followed by an extended plateau and a
Boltzmannian density tail ρ ∝ r−α, with α > 2 due to the
cutoff condition (see Fig. 1). This latter feature, together
with the addition of the standard baryonic disk component,
leads to the observed flat rotation curves (see [7] for the
specific analysis of the MW). Based on this property, a
family of solutions can be obtained to guarantee the
fulfillment of both the boundary conditions of the halo
part and rotation curve data, with different central quantum
cores of different compactness presenting a clear depend-
ence on the fermion mass (see Fig. 1 for the case of the
three solutions of interest).
The size of the degenerate quantum core depends on the

particlemass, as can be seen in Fig. 1 for the case of theMW.
As shown in [7], for an ino mass in the range of
48 keV≲m≲ 345 keV, the DM core has a size (and a
mass) appropriate to describe the orbit of the S-cluster stars
around Sgr A* [29]. Thus, the DM core represents a valid
alternative to the central BHhypothesis. In addition, for such
fermion masses the DM contribution properly reproduces
the total rotation curve data, without spoiling the baryonic
components available above parsec scale (see [7] for details
and see [30] for the latest data available in the MW).
Therefore, the narrow particle mass range provides

several solutions to satisfy either the rotation curve data
in the halo part or both sets of data, namely including

additionally the orbits of the S-cluster stars, such as the S2
star, necessary to establish the compactness of the DMCC.
A comparison between the RAR model, NFW profile and
NSIS for MW-like spiral galaxies is also shown in Fig. 2,
describing the outstanding inner structure below parsec
scale for the inos’ profile.

III. GRAVITATIONAL LENSING PROPERTIES

As the RAR density profile cannot be given analytically,
we here compute numerically the general GL properties for
this model. The lensing effect causes the image of the source
to be displaced, magnified (or demagnified) and sometimes
split. Interestingly, these effects can be quantified and
contrasted with observations; however, we do not focus
on any particular lens system but rather on describing the GL
properties of the RAR solutions in nearby MW-type spiral
galaxies. To do so, we consider the particular solutions
provided by the particle mass value m ¼ 345 keV and
m ¼ 48 keV to account also for the central compact object.
In Secs. III A and III Bweuse the standard lensing formalism
which is based on the assumption that the gravitational field
is so weak that the deflection angles are small. In Sec. III C
we consider light rays that come so close to the central object
that this approximation is no longer valid; there we have to
calculate the deflection angles with the exact equations from
general relativity. We also make a comparison of our results
with the respective ones of the NFW and NSIS profiles as
lensing models, in order to infer significant differences that
might help us, along with rotation curve data, to discriminate
between these DM galactic profiles. Henceforth, we will
consider in all computations that the source and lens position
are located at zs ¼ 2 and zl ¼ 0.3, respectively, which
correspond to typical separations for both the source and
the lens. The cosmological parameters have been taken from
the last results of Planck [1]: H ¼ 67.80 km s−1Mpc−1,
Ωm ¼ 0.3 and ΩΛ ¼ 0.7 to determine the angular diameter
distances of the system. For this cosmology, the scale in the
lens plane is 1 arcsec ¼ 4.74 kpc.

A. Surface mass density and convergence

Considering the lens system as an axially symmetric lens,
the planar distribution of matter, i.e. the projected surface
density, is obtained by integrating the three-dimensional
density profile ρðrÞ1 along the line of sight [32]

ΣðξÞ ¼ 2

Z
∞

0

ρðξ; zÞdz; ð12Þ

where ξ is the impact parameter measured from the center
of the lens. For this configuration, the mean surface density
inside the radius ξ is

FIG. 2. Distribution of DM in MW-type galaxies predicted by
the RAR model. The solid line refers to the most compact (MC)
solution for m ¼ 345 keV (“inos MC” in the legend). For
comparison, we show with the dotted brown line the solution
for m ¼ 48 keV, which we refer to as “inos” in the legend. We
also show the NFW and NSIS profiles given by the formulas (1)
and (2), respectively. The free parameters in these profiles were
taken from [30] and [31], respectively, satisfying the same (total)
rotation curve data as in the RAR case, with the corresponding
considerations of bulge and disk counterparts.

1Here the radial coordinate r is related to cylindrical polar
coordinates by r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ z2

p
.
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Σ̄ðξÞ ¼ 1

πξ2

Z
ξ

0

2πξ0Σðξ0Þdξ0: ð13Þ

A useful dimensionless quantity that characterizes the
system is the convergence, defined as the ratio of the
surface density and the critical density,

kðξÞ ¼ ΣðξÞ
Σcr

; ð14Þ

where Σcr ¼ c2
4πG

Ds
DlDls

and c is the speed of light.Ds,Dl and
Dls are the angular diameter distances of the observer to the
source, of the observer to the lens, and of the lens to the
source, respectively. Based on these definitions, we com-
pute the convergence as a function of the impact parameter
ξ for all the above density profiles (see Fig. 3). It is common
to give the impact parameter in units of a reference length
ξ0. For the RAR model, however, ξ0 has not yet been
identified, in contrast to e.g. the NFW profile. For this
reason, all quantities related to lensing properties are
plotted as a function of the physical impact parameter ξ
instead of the usually used dimensionless radius ξ=ξ0.
The influence of the DMCC of the RAR profile on the
convergence can be clearly seen in Fig. 3. If κ > 1, multiple
images and Einstein rings may be formed. It is common to
speak of “strong lensing” in such situations. Note, however,
that we are still in the regime where the gravitational field is
weak and bending angles are small. From the diagram we
read that for the RAR profile strong lensing effects start to
be appreciable at a radius smaller than 10−4 pc, whereas in
the halo part only weak lensing takes place, for all the
density profiles, as expected [33].
The density of the RAR profile is, at small distances,

several orders of magnitude higher than that of the NFW
and NSIS counterparts. Hence, the compactness of the DM
compact core may eventually lead to the additional for-
mation of (relativistic) Einstein rings or (relativistic)

multiple images, similarly to the case of a supermassive
BH. This possibility will be analyzed in Sec. III C via a
general relativity treatment beyond the weak-field
approximation.
On the other hand, an interesting quantity that character-

izes the system is the shear

γðξÞ ¼ Σ̄ðξÞ − ΣðξÞ
Σcr

: ð15Þ

which determines the distortion of images. For our DM
fermionic configuration, the formation of peaks in the shear
(which correspond to the formation of Einstein rings)
appears presumably in zones where the surface density
changes abruptly due to the dominance of DM (in the
central and halo part). This feature is similar to that of the
deflection angle plotted in Fig. 4.

B. Deflection angle and magnification

The deflection angle can be written as

α̂ðξÞ ¼ 4G
c2

2π
R ξ
0 Σðξ0Þξ0dξ0

ξ
¼ 4GMðξÞ

c2ξ
; ð16Þ

with MðξÞ being the mass enclosed by a circle of radius ξ.
For any given density profile ρðrÞ we may (numerically)
first calculate ΣðξÞ and then MðξÞ which, by (16), gives us
the deflection angle α̂ðξÞ. The results are shown for the
NFW, NSIS and RAR profiles in Fig. 4 where the
deflection angle is plotted as a function of the position
angle in the sky, θ ¼ ξ=Dl. For the RAR profile it can be
observed that the deflection angle becomes larger when a
light ray is close to the DMCC in comparison to one in the
halo part, giving rise to one extra Einstein ring, see below.
This is a unique feature of the GL produced by the RAR
profile, since for the other profiles the maximum deflection
angle is obtained in the halo part near the flat part of the

FIG. 3. Convergence for the NFW, NSIS and RAR density
profiles. The condition of strong lensing is achieved for the RAR
profile (inos MC) below 10−4 pc while the halo part is charac-
terized byweak lensing effects in away similar to the other profiles.

FIG. 4. Deflection angle for the NFW, NSIS and RAR density
profiles. It can be seen the relation between the deflection angle
and the rotation curve as it was found in [34]. See also Ref. [5] for
the rotation curve behavior.
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rotation curve. The maximum deflection in the RAR profile
case has the value 9.49 × 104 arcsec (α̂ ¼ 0.46 rad), at
radius 0.30 nanoarcsec (1.42 × 10−6 pc) which is slightly
underestimated because in this regime the weak-field
approximation is actually no longer valid. An exact
relativistic treatment will be given in the next section.
In the halo part, all the DM density profiles must fit as a

first condition the rotation curve data. Moreover, a com-
plementary requirement can be added by considering the
light deflection by the galactic halo. With this extra
information at our disposal we can in principle discriminate
between different halo models [35,36] which predict
slightly different deviations of light (of 0.1 arcsec) as
can be seen in Fig. 4. On the other hand, starting from
2 milliarcsec (20 pc) the RAR profile produces a constantly
increasing deflection in logarithmic scale, toward the
central part, reaching the maximum value at 0.30 nano-
arcsec (1.42 × 10−6 pc) due to the DMCC gravitational
potential (see Fig. 4).
Looking at the halo part, the deflecting angle (in arcsec)

for each profile is computed (according to the best-fit
parameters) at a distance RGC ¼ 8.3 kpc (our distance from
the Galactic center) where the circular velocity is near its
maximum value,

α̂NFWðRGCÞ ≈ 0.2600; ð17Þ

α̂NSISðRGCÞ ≈ 0.6900; ð18Þ

α̂inosðRGCÞ ≈ 0.1500: ð19Þ

We recall that at such a radius scale the total circular
velocity must fulfill Vc ≈ 220 km s−1, which implies that
lensing data could serve as a discriminator between dark
matter models. Interestingly, it has been recently inferred
the model parameters, i.e. the total (diskþ bulge) stellar
mass, the DM halo asymptotic circular velocity and the
core radius, among others, for the spiral galaxy lens SDSS
J2141000 system by using either strong lensing data,
kinematics data, or both combined [14]. This analysis
shows that the uncertainty associated with the circular
velocity when only the optical emission and absorption line
spectroscopy is considered is commonly less than that of
strong lensing data (see Table 5 in [14] for comparison). It
implies directly that we can fit very well data from strong
lensing since the RAR profile fits the rotation curves with a
good precision [7].
In addition, the source is also magnified by a factor

μðθÞ ¼ 1

ð1 − kðθÞÞ2 − γðθÞ2 : ð20Þ

To first order, the magnification depends on the conver-
gence only. Negative values of μ correspond to inverted

images; for large values of θ, μ → 1 and the source is
weakly affected by the lensing potential, while for θ ¼ θE,
the magnification diverges, corresponding to the formation
of an Einstein ring. We calculate the magnification for all
profiles and note the emergence of one extra Einstein ring
due to the DMCC in addition to the halo part. The angular
position of such an Einstein ring depends strongly on the
compactness of the DMCC subject to the particle mass
value between 48 keV≲mc2 ≲ 345 keV. As we can see,
the lensing signal is highly demagnified and its effect is
indeed comparable to that produced by a supermassive
black hole. This remarkable result is plotted in Fig. 5,
which clearly shows the effect of the compact DM core near
10−7 pc for the more compact solution. This result is also in
agreement with the expected demagnified central image,
since the central image flux depends inversely on the square
of the surface density whereby concentrated density pro-
files should cause central images to be very faint
[22,24,25]. We stress that Eq. (20) is only valid in the
weak-field limit; hence, a general description must be used
to account for the fully relativistic effects in the more
compact solution, i.e. the one derived in the regime of large
bending angles. Nevertheless, computing the magnification
and the angular position of the additional Einstein ring in
the full description of GR2 provides a value of
θE ¼ 0.36 nanoarcsec, which is only 18% above the one
calculated within the weak-field limit approximation,
i.e. θE ¼ 0.30 nanoarcsec.
It is important to note that we have used in all the

calculations the standard lensing formalism, based on the
assumptions that the gravitational field is weak and that
the deflection angle is small. With this, it is possible to
describe the properties of our fermionic DM gravitational
lens system, which is expected to account for such effects

FIG. 5. Magnification factor for all the profiles listed in the
legend and computed by Eq. (20).

2See for instance Sec. II in [26], where the exact equations
are described for computing the magnification of images in
this regime.
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very well in the halo part.3 However, below 10−5 pc strong
bending must be taken into account to predict properly the
deflection angle due to the DM distribution in that region.
This will significantly affect the lensing properties of the
DMCC. In the next section we calculate these lensing
properties and compare them to those of a black hole.

C. The regime of large bending angles: Dark matter
central core versus massive black hole

In this part we study lensing due to a fermionic DM core
in a galactic center when a light ray approaches it very
closely. For a compact object the bending angle may
become large, even exceeding several multiples of 2π
meaning that the light ray makes several turns around
the center. Therefore we have to use the full formalism of
general relativity, beyond the weak-field approximation.
Images associated with light rays that make at least one full
turn around the center are often called “relativistic images”
although “higher-order images” would be a better nomen-
clature. We will compare, in the regime where such images
occur, the lensing features of a fermionic DM core with
those of a black hole. The latter have been studied in great
detail in the Schwarzschild BH scenario for Sgr A* [26],
where relativistic images and relativistic Einstein rings are
formed. A natural question that arises here is whether the
DMCC compactness is large enough to account for the
formation of such relativistic images. Hence, we attempt to
answer this question by computing the deflection angle of
light rays passing very closely by the DMCC (and even
inside of it, since it is treated as transparent). To do so, we
use the formula derived from the static spherically sym-
metric metric as a function of the closest light ray distance
of approach r0 [37]

α̂ðr0Þ ¼ 2

Z
∞

r0

eλ=2drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr4=b2Þe−ν − r2

p − π; ð21Þ

where b is the impact parameter,

b ¼ r0 exp ½−νðr0=2Þ�: ð22Þ

In the case of the central BH hypothesis (as analyzed in
[26]), the metric outside is described by the Schwarzschild
solution

eνðrÞ ¼ 1 −
2GM
c2r

; ð23Þ

eλðrÞ ¼
�
1 −

2GM
c2r

�
−1
; ð24Þ

where M ¼ 4.2 × 106M⊙ is the BH mass.4 Instead, the
metric coefficients for the fermionic model we are inter-
ested in here are obtained by solving the system of
equations (7)–(11) along with the equations for the density
and the pressure, Eqs. (3) and (4). The result for the
deflection angle is plotted in Fig. 6 where we can see that
the deflection caused by the DM central core is small in
comparison to that of a black hole, although considerably
beyond the validity of the weak-field formalism which
assumes that α̂ may be identified with tan α̂. The maximum
deflection, α̂ ≈ 0.62 (distinct from that obtained by the
weak-field approach α̂ ¼ 0.46) is achieved at r0 ≈
7.18GM=c2 inside the DMCC. Not surprisingly, a similar
feature was observed as in the case of other compact objects
such as fully degenerate fermion stars as well as boson stars
[38,39] (see also Ref. [40] and references therein for a
general discussion of compact objects and their gravita-
tional lensing effects). Interestingly, at distances larger than
rc, the deflection angles are still appreciably different from
the BH ones due to the contribution of the DM distribution
leading to a slight difference in its gravitational potential.
This is illustrated in Fig. 7.
The deflection angle for the DMCC can be computed

approximately by the Einstein deflection angle provided r0
is large, i.e. in the weak-field limit5

α̂ðr0Þ ¼
4GM
c2r0

þO
�
G2M2

c4r20

�
; ð25Þ

which at second order implies the value α̂ðr0Þ ≈ 0.18
for r0 ¼ 25GM=c2, as can be also seen from Fig. 6.
Hence Eq. (25) underestimates by the level of just a few
percent the deflection angle compared to that given for

FIG. 6. Comparison between BH and fermionic DM quantum
core of the inos MC configuration. The vertical line indicates the
core radius of the DMCC: rc ≈ 9GM=c2.

3Such a formalism is still valid at distances far enough away
from the DMQC since strong bending effects do not take place.

4For this mass, the Schwarzschild radius, rs¼4.019×10−7 pc.
5It is important to note that this formula is strictly valid only for

the Schwarzschild metric. However, at large radius values the
fermionic solution tends to match the exterior Schwarzschild one.
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the full description Eq. (21) at r0 ¼ 25GM=c2. Below
this radial scale Eq. (25) is no longer valid since it
exceeds by more than 10% the correct relativistic result
given by Eq. (21).
We recall that, for a Schwarzschild BH, relativistic

images are formed due to large bending of light near the
photon sphere at r ¼ 3GM=c2. In this scenario, for the
closest distance of approach r0 ¼ 3.21GM=c2 the deflec-
tion angle takes the value α̂ðr0Þ ≈ 3π=2 which gives rise to
the first relativistic Einstein ring. This somewhat gives a
rough estimate of the compactness of the lens. By analogy,
the compactness of the DMCC can be obtained as
c2rc=ðGMÞ ≈ 9. However, the light rays can pass through
the DMCC since it does not possess an event horizon,
implying a vanishing deflection angle as the light rays
approach the very center of the configuration. This means
that there is no photon sphere, neither inside nor outside the
DMCC. This analysis leads to the expected result that the
DMCC does not produce such strong bending effects
as a central BH. Therefore, the computed deflection of
light rays may be used to discriminate the different core
compactness, if (highly accurate) observations of the light
deflection are available on such short scales.
Such accurate measurements could be reached in the

near future by the Event Horizon Telescope project for
the MW and for M 87.6 It is also important to note that we
only quantified the gravitational signal effect through the
deflection of light, but a more robust study must be done,
i.e. including the motion of stellar or gas components near
the MW center, in order to figure out realistic features that
may be discriminant from observations.
Finally, we compute in a general way the deflection

angle both for a BH and for the DMCC along the entire
galaxy in order to estimate the contribution of these
compact objects in comparison to the DM halo, see

Fig. 8. In both cases, we use the exact formula (21).
Apart from a very small region near the center, the
two solutions agree well up to reaching the regime where
the contribution from DM halo cannot be neglected
in comparison to the contribution from the BH. Of
course, the fermionic model has to be compared with
a combination of black hole and a conventional DM
model.

IV. CONCLUDING REMARKS

In this paper we studied for the first time the gravitational
lensing properties of the fermionic DM distribution (RAR
model) in galaxies [5,7]. The RAR model describes
correctly the properties of galactic DM halos of galaxies
(including the flatness of the rotation curves) and, at the
same time, it predicts a denser quantum core towards the
center of the distribution. As has been shown in Ref. [7],
the compactness of the quantum core, for a fermion mass in
the range 50 keV≲mc2 ≲ 345 keV, is high enough to
explain the dynamics of the S-cluster stars, the closest to the
Galactic center. Thus, it represents an alternative scenario
of the central compact object in Sgr A*, traditionally
assumed to be a BH.
We focused on the effect of the DM distribution in the

lensing properties of hypothetical and nearby Milky-Way-
like spiral galaxies. We first studied the lensing effects
caused by the DM halo region (i.e. neglecting the bulge and
disk contributions to the net lensing). Then we performed
the analysis of the strong bending features near the much
denser lens represented by the DM quantum core at the
galaxy center. We computed lensing properties such as
convergence, deflection angle and magnification. We com-
pared and contrasted the results for the RAR profile with
the ones of phenomenological profiles such as the NFW
and the NSIS ones.
For the fermion mass producing the most compact

quantum DM core of the RAR profile (see Fig. 1),
mc2 ≈ 345 keV, which can explain the Milky Way

FIG. 7. Gravitational potential comparison between the central
BH and the fermionic DM configuration. The vertical line
indicates the core radius of the DMCC: rc ¼ 9GM=c2.

FIG. 8. Comparison between the BH lensing contribution along
the entire galaxy as well as the most compact solution for the inos
profile and the NFW profile.

6http://www.eventhorizontelescope.org.
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properties from the center all the way to the halo [7], we
conclude the following.
(1) At distances r≳ 20 pc from the center of the galaxy,

in the very inner DM halo regions where the diluted
fermionic regime settles, the effect of the central
object on the lensing properties, e.g. the deflection
angle, is negligible (see e.g. Figs. 4 and 8).

(2) Accurate measurements of the deflection angle in
regions r≳ few kpc where DM starts to dominate,
together with rotation curve data, could help to
discriminate between different DM models
(see Fig. 4).

(3) The deflection angle at distances r ≲ 20 pc from
the center of the Galaxy increases in the case of the
RAR model while it decreases for the phenomeno-
logical ones (see Figs. 4 and 8). The reason for
this fundamental difference is the presence of the
compact DM quantum core whose effects start to be
appreciable below those distances (see the next
conclusions).

(4) In the region of 10−6 pc≲ r≲ 20 pc, the lensing
effects of a quantum core and a central BH become a
theme of unprecedented precision (see Fig. 6). The
reason for this is that in this region the difference
between the two cases is very small (see Fig. 7).
This implies that the DM quantum core can affect
lensing features such as the critical curves and the
formation (suppression) of an additional (existing)
faint central image in the same fashion as a cen-
tral BH.

(5) The maximum deflection produced by the DM
quantum core occurs at r≈7GMc=c2≈1.4×10−6pc
(see Fig. 6; Mc is the mass of the DM core). This is
produced with a characteristic demagnified signal as
in the case of a central BH (see Fig. 5).

(6) The effects of strong lensing (multiple images and
Einstein rings) are important at short distances
∼10−4 pc for the more compact solution, when
the condition κ > 1 is achieved (see Fig. 3).

(7) Large differences in the deflection angle produced
by a DM central core and a central BH appear at
distances r≲ 10−6 pc (see Fig. 6). Inside this region
the density of the DM quantum core is nearly
constant (see Fig. 1) and its associated gravitational
potential becomes weaker with respect to the one of
a BH with the same mass (see Fig. 7). The reason is
that the DMCC does not possess an event horizon;
i.e. it is regular at the center in contrast to the
central BH, implying a vanishing deflection angle
as the light rays approach the very center of the
DMCC.

(8) The quantum DM core does not show a photon
sphere but it can generate multiple images and
Einstein rings (see Fig. 5). Interestingly, the proposed
Event Horizon Telescope uses a Very Long Baseline

Interferometry array of (sub)millimeter telescopes
that could resolve the predicted shadow of the central
BH within the next years with the inclusion of
the Atacama Large Millimeter/submillimeter Array
(ALMA). The expected angular resolution is
20–30 μarcsec [41], whereas the predicted angular
diameter of the shadow is 54 μarcsec. If a BH
shadow will not be observed, then it will open a
window for alternative scenarios regarding the nature
of the SgrA* central object including the DM
quantum core predicted by the RAR model.

Analogous conclusions apply as well to the RAR profiles
obtained for other fermion masses in the range 50 keV≲
mc2 ≲ 345 keV and for other galaxy types such as dwarf
and elliptical galaxies, due to the universal behavior of the
RAR density profiles (see Fig. 2 in [7]). The latter opens
the interesting possibility to use the lensing data for single
galaxies from surveys such as SWELLS [14,15] and
DiskMass [16].
We have considered in this work the gravitational lensing

produced by fermionic DM distributions within the RAR
model for isolated galaxies. Since the lensing is enhanced
in clusters of galaxies, the generalization of the RAR
profile in the presence of galaxy interactions deserves to
be explored in future works.
In Ref. [7] it has been shown that, for a fermion mass

range 50 keV≲mc2 ≲ 345 keV, the RAR profile is con-
sistent both with the Milky Way data and, when applied to
other galaxies, with observed galaxy correlations such as
the MBH −MDM relation and the constancy of the central
surface DM density. Interestingly, in the case of a fermion
mass of mc2 ≈ 50 keV, the DM core becomes gravitation-
ally unstable to BH formation when it reaches a mass of
≈ 2.3 × 108M⊙. This led to the hypothesis made in Ref. [7]
that supermassive BHs (M ≳ 108M⊙) hosted at the center
of active galaxies could be formed from a BH seed given by
this DM collapse. Such a newly born BH, soon after its
formation, can accrete baryonic and DM from its surround-
ings. In that case, the fermionic DM density profile will be
affected by the presence of, and accretion onto, the central
BH. We are planning to perform an analysis of the lensing
properties of such a accretion-modified RAR profile, as
well as its feedback on the BH shadow properties (see e.g.
Ref. [42] for the case of a NFW density profile), in a future
publication.
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