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In this paper we investigate the phase structure of a (1 + 1)-dimensional schematic quark model with
four-quark interaction and in the presence of baryon (up), isospin (¢;) and chiral isospin (;5) chemical
potentials. It is established that in the large-N, limit (N, is the number of colored quarks) there exists a
duality correspondence between the chiral symmetry breaking phase and the charged pion condensation
(PC) one. The role and influence of this property on the phase structure of the model are studied. Moreover,
it is shown that the chemical potential y;5 promotes the appearance of the charged PC phase with nonzero

baryon density.
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I. INTRODUCTION

Recently, much attention has been paid to the inves-
tigation of the QCD phase diagram in the presence of
baryonic as well as isotopic (isospin) chemical potentials.
The reason is that dense baryonic matter which can appear
in heavy-ion collision experiments has an evident isospin
asymmetry. Moreover, the dense hadronic/quark matter
inside compact stars is also expected to be isotopically
asymmetric. To describe physical situations, when the
baryonic density is comparatively low, usually different
nonperturbative methods or effective theories such as
chiral effective Lagrangians and especially Nambu—
Jona-Lasinio (NJL) type models [1] are employed. In this
way, QCD phase diagrams including chiral symmetry
restoration [2-6], color superconductivity [7-9], and
charged pion condensation (PC) phenomena [10-18] were
investigated under heavy-ion experimental and/or compact
star conditions, i.e. in the presence of temperature, chemi-
cal potentials and possible external (chromo)magnetic
fields.

Among all the above-mentioned phenomena, which
can be observed in dense baryonic matter, the existence
of the charged PC phase is predicted without sufficient
certainty. Indeed, for some values of model parameters
(coupling constant G, cutoff parameter A, etc.) the
charged PC phase with nonzero baryon density is allowed
by NJL models. However, it is forbidden in the framework
of NJL models for other physically interesting values of G
and A [11]. Moreover, if the electric charge neutrality
constraint is imposed, the charged pion condensation
phenomenon depends strongly on the bare (current) quark
mass values. In particular, it turns out that the charged PC
phase with nonzero baryonic density is forbidden in the
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framework of NJL models, if the bare quark masses reach
the physically acceptable values of 5-10 MeV (see
Ref. [14]). Due to these circumstances, the question arises
whether there exist factors promoting the appearance of
charged PC phenomenon in dense baryonic matter. A
positive answer to this question was obtained in the papers
[15,16], where it was shown that a charged PC phase
might be realized in a dense baryonic system with finite
size or in the case of a spatially inhomogeneous pion
condensate. These conclusions are demonstrated in
[15,16], using a (1 + 1)-dimensional toy model with
four-quark interactions and containing baryon and isospin
chemical potentials.

In the present paper we will show that a chiral imbalance
of dense and isotopically asymmetric baryon matter is
another interesting factor, which can induce a charged PC
phase. Recall that chiral imbalance, i.e. a nonzero differ-
ence between densities of left- and right-handed fermions,
may arise from the chiral anomaly in the quark-gluon-
plasma phase of QCD and possibly leads to the chiral
magnetic effect [19] in heavy-ion collisions. It might be
realized also in compact stars or condensed matter systems
[20] (see also the review [21]). Note also that phenomena,
connected with a chiral imbalance, are usually described
in the framework of NJL models with a chiral chemical
potential [20].

Obviously, the (3 + 1)-dimensional NJL. models depend
on the cutoff parameter which is typically chosen to be
of the order of 1 GeV, so that the results of their usage
are valid only at comparatively low energies, temperatures
and densities (chemical potentials). Moreover, there
exists also a class of renormalizable theories, the (1 + 1)-
dimensional chiral Gross-Neveu (GN) type models
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[22,23]," that can be used as a laboratory for the qualitative
simulation of specific properties of QCD at arbitrary
energies. Renormalizability, asymptotic freedom, and the
spontaneous breaking of chiral symmetry (in vacuum) are
the most fundamental inherent features both for QCD
and all NJL, type models. In addition, the up — T phase
diagram (with up the baryon number chemical potential
and T the temperature) is qualitatively the same for the
QCD and NJL, models [24-27]. Let us further mention that
(1 + 1)-dimensional Gross-Neveu type models are also
suitable for the description of physics in quasi-one-
dimensional condensed matter systems like polyacetylene
28]]. It is currently well understood (see, e.g., the dis-
cussion in [26,27,29]) that the usual no-go theorem [30],
which generally forbids the spontaneous breaking of any
continuous symmetry in two-dimensional spacetime, does
not work in the limit N, — oo, where N, is the number of
colored quarks. This follows directly from the fact that in
the limit of large N, the quantum fluctuations, which would
otherwise destroy a long-range order corresponding to a
spontaneous symmetry breaking, are suppressed by 1/N..
factors. Thus, the effects inherent for real dense quark
matter, such as the chiral symmetry breaking phenomenon
[spontaneous breaking of the continuous axial U(1)
symmetry] or charged pion condensation (spontaneous
breaking of the continuous isospin symmetry) might be
simulated in terms of a simpler (1 + 1)-dimensional NJL-
type model, though only in the leading order of the large N,.
approximation (see, e.g., Refs. [29,31-34], respectively).
This paper is devoted to the investigation of the charged
PC phenomenon in the framework of an extended (1 + 1)-
dimensional NJL model with two quark flavors and in the
presence of the baryon (up), isospin (y;) and chiral isospin
(u;5) chemical potentials. Moreover, as usual, it is conven-
ient to perform all calculations in the leading order of the
large N, technique. In order to clarify the true role of
the chiral isospin chemical potential y;5 in the creation of
the charged PC in dense quark matter, we suppose
throughout the paper that all condensates are spatially
homogeneous.” Under this constraint the model was
already investigated earlier at p;5 = 0 [31-33], where it
was shown that the charged PC phase with nonzero baryon
density is forbidden at arbitrary values of up and y;. In
contrast, we show that at ;5 # 0, i.e. when there is an
isotopic chiral imbalance of the system, the charged PC
phase with nonzero baryon density is allowed to exist. This
fact, i.e. the promotion of the charged PC phenomenon in
dense quark/baryon matter by nonzero values of ys, is the

'Below we shall use the notation “NJL, model” instead of
“chiral GN model” for (1 4 1)-dimensional models with con-
tinuous chiral and/or isotopic, etc., symmetries, since the
chiral structure of the Lagrangian is the same as that of the
corresponding (3 + 1)-dimensional NJL model.

As it was noted above, spatial inhomogeneity of condensates
by itself can cause charged PC in dense baryon matter [16].
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main result of the present paper. In addition, we show that
in the leading order of the large-N, approximation there
arises a duality between chiral symmetry breaking (CSB)
and charged PC phenomena in the framework of the NJL,
model under consideration. It means that if at 4; = A and
U;s = B (at arbitrary fixed chemical potential y), e.g., the
CSB (or the charged PC) phase is realized in the model,
then at the permuted values of these chemical potentials,
ie. at y; = B and p;5 = A, the charged PC (or the CSB)
phase is arranged. So, it is enough to know the phase
structure of the model at y; < p;s, in order to establish the
phase structure at p; > p;5. Knowing condensates and
other dynamical and thermodynamical quantities of the
system, e.g. in the CSB phase, one can then obtain the
corresponding quantities in the dually conjugated charged
PC phase of the model, by simply performing there the
duality transformation, y; <> p5.”

The paper is organized as follows. In Sec. II a toy
(1 + 1)-dimensional NJL-type model with two quark fla-
vors (u and d quarks) and including three kinds of chemical
potentials, pp, uy, 45, is presented. Next, the unrenormal-
ized thermodynamic potential (TDP) of the NJL,-type
model is given in the leading order of the large-N,
expansion. Here the dual symmetry of the model TDP is
established. It means that it is invariant under the simulta-
neous interchange of y;, ;5 chemical potentials and chiral
and charged pion condensates. In Sec. III the renormaliza-
tion of the TDP is performed. Section IV contains a detailed
numerical investigation of various phase portraits with
particular emphasis on the role of the duality symmetry
of the TDP. It is clear from this consideration that in the
framework of our model the charged PC phenomenon of
dense and isotopically asymmetric quark matter is allowed
only if in addition there is a chiral isotopic asymmetry of
matter, i.e. in the case u;5 # 0. Some technical details are
relegated to Appendixes A and B.

II. THE MODEL AND ITS THERMODYNAMIC
POTENTIAL

We consider a (1 + 1)-dimensional NJL model in order
to mimic the phase structure of real dense quark matter
with two massless quark flavors (¥ and d quarks). Its
Lagrangian, which is symmetrical under the global color
SU(N,.) group, has the form

L=g|pio, + 58,0 4 B0 L B3 000,51,
3 2 2
G (i 2o (75202
+-—1(gq9)” + (gir’7q)”]. (1)

N,

*Note that another kind of duality correspondence, the duality
between CSB and superconductivity, was demonstrated both in
(1 4+ 1)- and (2 + 1)-dimensional NJL models [35,36].
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where the quark field ¢(x) = ¢;,(x) is a flavor doublet
(i=1,20ri=u,d) and color N.-plet (@ =1,...,N,) as
well as a two-component Dirac spinor [the summation in
(1) over flavor, color, and spinor indices is implied]; 7,
(k =1, 2, 3) are Pauli matrices in two-dimensional flavor
space. The Dirac y*-matrices (v = 0, 1) and y° in (1) are
matrices in two-dimensional spinor space,

01 0 -1 1 0
0_ . 1_ . 5_ 0,1 _ ]
4 <1 O)’ 14 <1 O>’ r=rvy <O _1>
2)

Note that at 4;5 = 0 the model was already investigated in
detail, e.g., in Refs [31-34]. It is evident that the model (1)
is a generalization of the two-dimensional GN model [22]
with a single massless quark color N_.-plet to the case of
two quark flavors and additional baryon pp, isospin y; and
axial isospin ;5 chemical potentials. These parameters are
introduced in order to describe in the framework of the
model (1) quark matter with nonzero baryon ng, isospin n;
and axial isospin n;5 densities, respectively. It is evident
that Lagrangian (1), both at u;s =0 and ;5 #0, is
invariant with respect to the Abelian Ug(1), U, (1) and
U, (1) groups, where*

Up(1): g—>exp(ia/3)q; U (1): g —exp(ifrs3/2)q;
UA13(1) 1 g = exp(iwy’13/2)q. (3)

[In (3) the real parameters a, f, @ specify an arbitrary
element of the Up(1), Uy, (1) and Uy, (1) groups, respec-
tively.] So the quark bilinears 7/, 3gy°r’q and
1qy°y°c’q are the zero components of corresponding
conserved currents. Their ground state expectation values
are just the baryon ng, isospin n; and chiral (axial) isospin
|

UL(l): 6 =07 73— 73

Uai,(1): my = w5 7y = 73

In general the phase structure of a given model is
characterized by the behavior of some quantities, called
order parameters (or condensates), vs external conditions
(temperature, chemical potentials, etc). In the case of model
(1), such order parameters are the ground state expectation
values of the composite fields, i.e. the quantities (¢(x)) and
(m,(x)) (a=1,2,3). Itis clear from (6) that if (o(x)) # 0
and/or (73(x)) # 0, then the axial isospin Uy (1) sym-
metry of the model is spontaneously broken down, whereas

*Recall for the following that exp(ifir3/2)=cos(f/2)+
ir3sin(B/2), exp(iwy>t3/2) = cos(w/2) + iy’ 75 sin(w/2).

7y — cos(B)my + sin(f)7,;

6 — cos(w)o + sin(w)73;
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nys densities of quark matter, i.e. ng =21(7/%), n; =
Hagy’w*q) and n;s = 1 (gy°r’q). As usual, the quantities
ng, n; and n;s can also be found by differentiating the
thermodynamic potential of the system with respect to the
corresponding chemical potentials. The goal of the present
paper is the investigation of the ground state properties and
phase structure of the system (1) and its dependence on the
chemical potentials up, y; and ps.

To find the thermodynamic potential of the system, we
use a semibosonized version of the Lagrangian (1), which
contains composite bosonic fields o(x) and 7,(x) (a = 1,
2, 3) (in what follows, we use the notations u = ug/3,

v=p/2 and vs = p;5/2):
L = g[y*i0, + uy° + vr3y° + vst3y°y’ — 6 — i’ mat4q

N
- i loo+ 7um). )

In (4) the summation over repeated indices is implied. From
the Lagrangian (4) one gets the Euler-Lagrange equations
for the bosonic fields,

G

o) = =2 (@a): na<x>——2Nﬁc<qiysraq>. (5)

Note that the composite bosonic field 73 (x) can be identified
with the physical 7z, meson, whereas the physical z*(x)
meson fields are the following combinations of the

composite fields: 7% (x)= (7, (x)+iz,(x))/+/2. Obviously,
the semibosonized Lagrangian Lis equivalent to the initial
Lagrangian (1) when using Eqgs. (5). Furthermore, it is clear
from (3), (5) and footnote 4 that the bosonic fields transform
under the isospin U, (1) and axial isospin U 4, (1) groups in

the following manner:

my, = cos(f)my — sin(f)y,

73 — cos(w)m3 — sin(w)o. (6)

I
at (r;(x)) # 0 and/or (m,(x)) # O we have a spontaneous
breaking of the isospin U, (1) symmetry. Since in the last
case the ground state expectation values (condensates) of
both the fields z(x) and 7z~ (x) are not zero, this phase is
usually called charged pion condensation (PC) phase. The
ground state expectation values (¢(x)) and (rz,(x)) are the
coordinates of the global minimum point of the thermo-
dynamic potential Q(c, 7,) of the system.

Starting from the theory (4), one obtains in the leading
order of the large N, expansion (i.e. in the one-fermion
loop approximation) the following path integral expression
for the effective action S(c, 7,,) of the bosonic ¢(x) and
7,(x) fields:
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exp(iSur(o. 7)) =N [ldqllag exoi [ L),
where

o? + 72'31
4G

Su(0.7,) = =N, / sz{ ] e ()

and N’ is a normalization constant. The quark contribution
to the effective action, i.e. the term S, in (7), is given by

exp(iS) = N [ laalldqlexp i [ apalas)
= [DetD]e. (8)

In (8) we have used the notation D = D x I, where I.. is the
unit operator in the N .-dimensional color space and

D =y"10, +uy’ +vrsy’ +vsty’y’ —o — iz, (9)
is the Dirac operator, which acts in the flavor, spinor
and coordinate spaces only. Using the general formula
DetD = exp TrIn D, one obtains for the effective action

the following expression,

o’ +ﬂ§

Suslo.7,) = —N, / d%{ ]—iNCTrsfxlnD, (10)

where the Tr operation stands for the trace in spinor (s),
flavor (f) and two-dimensional coordinate (x) spaces,
|
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respectively. Using (10), we obtain the TDP Q(o, 7,) of
the system:

Seii (0, 7,) o>+ | TryInD
Qo z,) = — e\ % %a) _ s
(0 " ) NC fdzx o,m,=const 4G o deX
o* + 2 d’p _
=~ +iTry [ —=5InD(p), 11
G +i rsf/(zﬂ)2 nD(p) (11)

where the ¢ and 7, fields are now x-independent quantities,
and

D(p) = p+u° +vesy’ +vstsy’y’ —o —ir'ma,  (12)

is the momentum space representation of the Dirac operator
D (9). In what follows we are going to investigate the
u,v,vs dependence of the global minimum point of the
function Q(o, 7,) vs o, ,,. To simplify the task, let us note
that due to the U, (1) x Uy, (1) invariance of the model,
the TDP (11) depends effectively only on the two combi-
nations ¢* + 3 and x7 + 73 of the bosonic fields, as is
easily seen from (6). In this case, without loss of generality,
one can put 7, = 73 = 0in (11), and study the TDP (11) as
a function of only two variables, M =¢ and A = 7.
Taking into account this constraint in (12) and (11) as
well as the general relation

Tr,sInD(p) = InDet D(p) = Zlnei, (13)

where the summation over all four eigenvalues ¢; of the
4 x 4 matrix D(p) is implied and

€1234=—M=x \/(Po +p)?—pi A+ -t 2\/[(1’0 + v+ ps)? — A2 (V2 = 1), (14)

we have from (11)

QM. A) :WH/(‘ZF&mm(;’O). (15)

In (15) we use the notations
Py(po) = €1626364 = 1* = 2a* — by +c,  (16)
where n = py + p and

a=M>+ N+ pr+17+132 b = 8pvus;
c=a?—4pi(V* +12) —AM*? —4ANE -4l (17)
It is evident from (17) that the TDP (15) is an even function

over each of the variables M and A. In addition, it is
invariant under each of the transformations u — —pu,

|

V> —U, Vs —> —1/5.5 Hence, without loss of generality
we can consider in the following only x>0, v >0,
vs >0, M >0, and A >0 values of these quantities. In
powers of A the fourth-degree polynomial P,(pg) has the
following form,

Py(po) = A* =202 (> — p} — M* + 12 - 17)
+ [M* + (py —vs)* = (n +v)?]
x [M*+ (py +vs)? = (n—v)?]. (18)

’Indeed, if we perform simultaneously with u — —u the
change of variables py - —pgy and p; — —p; in the integral
(15), then one can easily see that the expression (15) remains
intact. Finally, if only v (only vs) is replaced by —v (by —vs), we
should transform p; — —p; in the integral (15) in order to see
that the TDP remains unchanged.
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Expanding the right-hand side of (18) in powers of M, one
can obtain an equivalent alternative expression for this
polynomial, namely,

Py(po) = M* = 2M*(if* = pi = A* + 17 —13)
+[A% + (p1 —v)* = (n +v5)]
x [A% + (p1 +v)* = (n—v5)*]. (19)
Thus, we find that the TDP (15) is invariant with respect to
the so-called duality transformation (for an analogous case

of duality between chiral and superconducting condensates,
see [35,36]),

PHYSICAL REVIEW D 94, 116016 (2016)
D:M< A, v<vus. (20)

Note that according to the general theorem of algebra, the
polynomial P,(p,) can be presented also in the form

P4(po) = (po=Po1)(Po—Po2)(Po—Po3)(Po—Pos), (21)

where the roots pg;, po2, Po3 and pg4 of this polynomial are
the energies of quasiparticle or quasiantiparticle excitations
of the system. In particular, it follows from (18) that at
A = 0 the set of roots pg; looks like

{Po1> Po2s P03 Poata—o = {—ﬂ —vt \/M2 +(p1—vs) —u+vE \/Mz +(p1 + Vs)z}y (22)

whereas it is clear from (19) that at M = 0 it has the form

{Po1- P02 P03 Post =0 = {—M BEZERY A+ (pr—v)? —u+us+ \/ A? + (p, +’/)2}- (23)

Taking into account the relation (21) and the formula [16]

/ dpoIn(po — K) = in|K]. (24)

o0

(being true up to an infinite term independent of the real
quantity K), it is possible to integrate in (15) over p,.
Then, the unrenormalized TDP (15) can be presented in the
following form,

QM. A)=Q"" (M, A)

_M2+A2 /oodpl
4G _

w 4
(25)

ITII. CALCULATION OF THE TDP

A. Thermodynamic potential in the vacuum
case: u=0,r=0,rv5=0

First of all, let us obtain a finite, i.e. renormalized,
expression for the TDP (25) aty = 0, v = Oand v5 = 0, i.e.
in vacuum. Since in this case a thermodynamic potential is
usually called the effective potential, we use for it the
notation V**(M, A). As a consequence of (15)-(17) and
using (24), it is clear that at 4 = v = v5 = 0 the effective
potential V**(M, A) looks like

——([po1l +poz2|+ P03l +[Poal)-

M>+A* [ dp
Vun(M, A) = T—’_ZZ / (Zﬂ)zln[p% —p% —M?2 - AZ}

M? + A? w d
:%—/ % pI+M?+ A2 (26)

It is evident that the effective potential (26) is an ultraviolet
divergent quantity. So, we need to renormalize it. This
procedure consists of two steps: (i) First of all we need to
regularize the divergent integral in (26); i.e. we suppose
there that |p;| < A. (i) Second, we must suppose also
that the bare coupling constant G depends on the cutoff
parameter A in such a way that in the limit A — co one
obtains a finite expression for the effective potential.
Following the step (i) of this procedure, we have

M*+ A% 2 (A
VM, A)=————-=[ d T M+ A?
1.8) =225 =2 [api [t e+
M*+ A% 1
=—— ——AVAT+ M+ A?
4G 71'{ M
A+ VA2 + M + A?
+ (M? + A%)In i i }
VM? + A?

(27)

Further, according to step (ii) we suppose that in
(27) the bare coupling G = G(A) has the following A
dependence:
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1 1. 2A
In—

, (28)

4G(A) © m

where m is a new free mass scale of the model, which
appears instead of the dimensionless bare coupling constant
G (dimensional transmutation) and, evidently, does not
depend on a normalization point; i.e. it is a renormalization
invariant quantity. Substituting (28) into (27) and ignoring
there an unessential term (—A?/x), we obtain in the limit
A — oo the finite and renormalization invariant expression
for the effective potential,

VoM, &) = WA {m(MZ il Az) - 1]. (29)

27 m?

B. Calculation of the TDP (25) in the general case:
p>0,v>0,v5s>0

In Appendix A the properties of the quasiparticle
energies po;, where i = 1,...,4, are investigated. In par-
ticular, it is clear from the asymptotic expansion (Al1)
that the integral over p; in (25) is ultraviolet divergent.
Since the asymptotic expansion (A11) does not depend on
chemical potentials u, v and vs, one can transform the
expression (25) in the following way,

Qu"(M, A)
M+ A?
4G

oodp

1
_[) §(|p01|+|p02|+|po3|+|l704|)|;4:u:u5:0

- A“% [i [Poil = <i |P0i|> |,4”50], (30)

i=

where we took into account that the quantities p,, are even
functions with respect to p; (see Appendix A). Now it is
evident that the last integral in (30) is convergent and all
ultraviolet divergences of the TDP are located in the first

|

(p—v)* = M? — vs)

PHYSICAL REVIEW D 94, 116016 (2016)

integral of (30). Moreover, it is clear due to the relation
(A12) that the first two terms in the right-hand side of
Eq. (30) are just the unrenormalized effective potential in
vacuum (26). So to obtain a finite expression for the TDP
(30), it is enough to proceed as in the previous subsection,
where just these two terms, i.e. the vacuum effective
potential, were renormalized. As a result, we have

Q' (M, A) = Vo(M. A)

—/ oy ! {|P01| + |poz2| + |Pos| + [Poal
0 T

4/t M+ A%, (31)

where V (M, A) is the renormalized TDP (effective poten-
tial) (29) of the model at y = v = us = 0. Moreover, we
have used in (31) the relation (A12) for the sum of
quasiparticle energies in vacuum. Note also that (as it
follows from the considerations of Appendix A) the
quasiparticle energies pg;, where i = 1, ..., 4, are invariant
(up to a possible permutation of their values) with respect to
the duality transformation (20). So the renormalized TDP
(31) is also symmetric under the duality transformation D.

Let us denote by (M, A,) the global minimum point
(GMP) of the TDP (31). Then, investigating the behavior of
this point vs p, v and vs it is possible to construct the
(4, v, vs)-phase portrait (diagram) of the model. A numeri-
cal algorithm for finding the quasi(anti)particle energies
Poi> Po2s Poz» and poy is elaborated in Appendix A. Based
on this, it can be shown numerically that the GMP of the
TDP can never be of the form (M, # 0, Ay # 0). Hence, in
order to establish the phase portrait of the model, it is
enough to study the projections F; (M) = Q™"(M,A = 0)
and F,(A) = Q™ (M = 0, A) of the TDP (31) to the M and
A axes, correspondingly. Taking into account the relations
(22) and (23) for the quasiparticle energies py; at A = 0 or
M = 0, it is possible to obtain the following expressions for
these quantities,

M2 MR\ ME R 6(u -] - M)
2r & 2w

(m—w (i) — 012

IJ5+

- —P-M7\ 0 -M
+I/5\/1/§+M2—2|,u—v|1/5—M21n|'u ”'*Jﬂ )— (”+: )<(,u—i—u) (4 +v)? - M?
2 2
vs+M

(4 +v)* =M — )

ity t \/(Z,tt/l—ku)z—Mz) +6’(,u+v—M)€(

> (6ol -ar

/ 2_M2
+v5\/v§—|—M2—2(/¢+1/)1/5—M21n'u+y+ tv) ), (32)
vs + 4 /VE + M?
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Fy(A) = Fi(A) (33)

|v<—>1/5 .
(Details of the derivation of these expressions are given in
Appendix B.) After simple transformations, one can see
that F; (M) and F,(A) coincide at v5 = 0 with correspond-
ing TDPs (12) and (13) of the paper [33].

Moreover, it is obvious that the global minimum point of
the TDP (31) is defined by a comparison between the least
values of the functions F;(M) and F,(A).

C. Quark number density

As it is clear from the above consideration, there are
three phases in the model (1). The first one is the symmetric
phase, which corresponds to the global minimum point
(Mg, Ag) of the TDP (31) of the form (M, = 0, Ay = 0). In
the CSB phase the TDP reaches the least value at the point

|

_O(u+v—=My)O(\/(u+v)* — M —v5)
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(My #0,Ay = 0). Finally, in the charged PC phase the
global minimum point lies at the point (M, = 0, Ay # 0).
[Notice, that in the most general case the coordinates
(condensates) M, and A, of the global minimum point
depend on chemical potentials.]

In the present subsection we would like to obtain the
expression for the quark number (or particle) density n,
in the ground state of each phase. Recall that in the
most general case this quantity is defined by the
relation®

aQe (Mo, A
ny = _—(8/40 o), (34)

Hence, in the chiral symmetry breaking phase we have

8Qre“(M0 ?é 0, AO - 0) aFl (Mo)
nq|CSB = - 8[1[ = - aﬂ
20 -M
— W (/’t + I/)2 _ M(Z)
. Sign(u = v)0(|u — v| = Mo)o(

. [/ +0)? = MG = s

T

where sign(x) denotes the sign function and the quantity
Fi(M) is given in (32). The quark number density in the
charged pion condensation phase can be easily obtained
from (35) by the simple replacement,

Q™™ (My =0,Ay #0)
”q|Pc == £

OF,(A
- _237(0) = {ngless} mp—ngwens:  (36)
u

which is due to the relation (33). Supposing in (35)
that My =0 and wusing there the general relation
0(x) + 0(—x) = 1, one can find the following expression
for the particle density in the symmetric phase (of course, we
take into account the constraints 4 > 0, v > 0 and v5 > 0)

,u+1/+1/5_9(y5—,u—1/)
T T
sien(u—v)0(|u—v|—

| sig (u—v) TEIM 4 1/5)(

nq|SYM: (vs—p—v)

u-vl=vs).  (37)

Alternatively, one can find the expression for n,|gy,
starting from Eq. (36) with Ay = 0. In this case

®The density of baryons ny and the quark number density n,
are connected by the relation n, = 3ng.

(ﬂ—V)Z—M(Z)—Vs)[ (

p— )= M3 - s, (35)

|

Htv+tuvs Ov—p—uvs)
T

sign(u —vs)0(|u — vs| — v

+g(,u 5)ﬂ(|ﬂ 5| )(

Nglsym = (v —p—vs)

lu —vs| —v).
(38)

It is easy to verify that Eqs (37) and (38) are identical.

IV. PHASE STRUCTURE

A. The role of the duality symmetry D (20)
of the TDP

Suppose now that at some fixed particular values
of chemical potentials y, v = A and vs = B the global
minimum of the TDP (31) lies at the point, e.g.,
(M =My#0,A=0). It means that for such fixed
values of the chemical potentials the CSB phase is
realized in the model. Then it follows from the
duality invariance of the TDP (15) [or (31)] with respect
to the transformation D (20) that the permutation of the
chemical potential values (i.e. v = B and v5 = A and intact
value of y) moves the global minimum of the TDP
Q*"(M,A) to the point (M = 0,A = M,), which corre-
sponds to the charged PC phase (and vice versa). This is the
so-called duality correspondence between CSB and

116016-7



D. EBERT, T. G. KHUNJUA, and K. G. KLIMENKO

p/m

g (a)

1.6 +

1.2 |+

SYM SYM
0.8 | CSBd
04 PC
1 1 1 1 v/m

0 0.4 0.8 1.2 1.6 2

p/m

g (©

1.6 +

1.2 | SYM

PCd
0.8
0.4 F
CSB
PC
1 1 1 1 v/m

0 0.4 0.8 1.2 1.6 2

FIG. 1.
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The (v, u)-phase portrait of the model for different values of the chiral chemical potential vs: (a) the case vs = 0; (b) the case

vs = 0.2m; (c) the case vs = 0.5m; (d) the case vs = m. The notations PC and PCd mean the charged pion condensation phase with zero
and nonzero baryon density, respectively. Analogously, the notations CSB and CSBd mean the chiral symmetry breaking phase with
zero and nonzero baryon density, respectively, and SYM denotes the symmetric phase. The parameter m was introduced in (28).

charged PC phases in the framework of the model under
consideration.’

Hence, the knowledge of a phase of the model (1)
at some fixed values of external free model parameters
u, v, us is sufficient to understand what phase (we call it a
dually conjugated phase) is realized at rearranged values of
external parameters, v <> vs, at fixed . Moreover, different
physical parameters such as condensates, densities, etc.,

It is worth noting that in some (14 1)- and (2 + 1)-
dimensional models there is a duality between CSB and super-
conductivity [35,36].

which characterize both the initial phase and the dually
conjugated phase, are connected by the duality trans-
formation D. For example, the chiral condensate of the
initial CSB phase at some fixed u,v,vs is equal to
the charged-pion condensate of the dually conjugated
charged PC phase, in which one should perform the
replacement v <> vs. Knowing the particle density
n,(v,vs) of the initial CSB phase as a function of external
chemical potentials v,vs, one can find the particle
density in the dually conjugated charged PC phase by
interchanging v and vs in the expression n, (v, vs) (see also
in Sec. III C), etc.
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FIG. 2. The (vs, u)-phase portrait of the model for different values of the isospin chemical potential v: (a) the case v = 0; (b) the case

v = 0.2m. Other notations are the same as in Fig. 1.
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FIG. 3. The (v, vs)-phase portrait of the model for different values of the quark number chemical potential y: (a) the case u = 0; (b) the
case y = 0.3m; (c) the case y = 0.6m; (d) the case ¢ = m. Other notations are the same as in Fig. 1.
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The duality transformation D of the TDP can also be
applied to an arbitrary phase portrait of the model (see
below). In particular, it is clear that if we have a most
general phase portrait, i.e. the correspondence between any
point (v,vs, u) of the three-dimensional space of external
parameters and possible model phases (CSB, charged PC
and symmetric phase), then under the duality transforma-
tion (v <> v5, CSB <> charged PC) this phase portrait is
mapped to itself, i.e. the most general (v,vs,u)-phase
portrait is self-dual. The self-duality of the (v, vs, u)-phase
portrait means that the regions of the CSB and charged
PC phases in the three-dimensional (v,vs,u) space are
arranged mirror symmetrically with respect to the plane
v = vs of this space. Below, in Sec. IV B, we will present
a few sections of this three-dimensional (v, vs, u)-phase
portrait of the model by the planes of the form y = const,
v = const and v5 = const, respectively.

B. Promotion of dense charged PC phase by v5 # 0

First of all, we will study the phase structure of the model
(1) at different fixed values of the chiral isospin chemical
potential vs. To this end, we determine numerically the
global minimum points of the TDPs F (M) (32) and F,(A)
(33) and then compare the minimum values of these
functions vs external parameters y, v, vs. Moreover, using
the expressions (35) and (36), it is possible to find the
quark number density n, or baryon density ny (note that
n,=3np) inside each phase. As a result, in Figs. 1(a)-1(d) we
have drawn several (v, u)-phase portraits, corresponding to
@ vs =0, (b) s =0.2m, (c) v5s = 0.5m, and (d) v5 = m.
Recall that m is a free renormalization invariant mass scale
parameter, which appears in the vacuum case of the model
after renormalization [see (28) and (29)].

The phase portrait of the model in Fig. 1(a) with v5 =0
was obtained earlier (see e.g. papers [15,33]). It is clear
from Fig. 1(a) that at v5 = 0 the charged PC phase with
nonzero baryon density np [in Figs. 1(b)-1(d) it is denoted
by the symbol PCd) is not realized in the model under
consideration. Only the charged PC phase with zero baryon
density can be observed at rather small values of pu.
(Physically, it means that at vs = 0 the model predicts
the charged PC phenomenon in the medium with ng =0
only. For example, it might consist of charged pions, etc.
But in quark matter with nonzero baryon density the
charged PC is forbidden.) Instead, at large values of u
there exist two phases, the chiral symmetry breaking and
the symmetrical one, both with nonzero baryon density;
i.e. the model predicts the CSB phase of dense quark
matter. However, as we can see from other phase diagrams
of Fig. 1, at rather high values of v5 there might appear on
the phase portrait a charged PC phase with nonzero baryon
density (it is denoted as PCd in Fig. 1). Hence, in chirally
asymmetric, i.e. for v5 > 0, and dense quark matter the
charged PC phenomenon is allowed to exist in the
framework of the toy model (1). Thus, we see that v5#0

PHYSICAL REVIEW D 94, 116016 (2016)
u

FIG. 4. Schematic representation of the model phase portrait in
the (v,vs, u)-parameter space. The notations are the same as in
Fig. 1. The points which are outside PC, CSB, PCd, and CSBd
phases of the diagram correspond to the symmetric phase.

is a factor which promotes the charged PC phenomenon in
dense quark matter. Note that the compact region of the
(v, u) plane, which is occupied by the PCd phase [see, e.g.,
in Fig. 1(d) at v5 = m], continues to move up along the
u-axis, when vs increases above the value vs = m.

Now, suppose that we want to obtain a (vs, u)-phase
portrait of the model at some fixed value v = const. In this
case there is no need to perform the direct numerical
investigations of the TDP (31). In contrast [due to the dual
invariance (20) of the model TDP], one can simply make
the dual transformation of the (v, u)-phase diagram at the
corresponding fixed value v5 = const. For example, to find
the (vs, u)-phase diagram at v = 0 we should start from the
(v, u) diagram at fixed vs = 0 of Fig. 1(a) and make the
simplest replacement in the notations of this figure: v — vs,
PC <> CSB, PCd <> CSBd. As a result of this mapping,
we obtain the phase diagram of Fig. 2(a) with a PCd phase.
In a similar way, to obtain the (vs,u)-phase diagram at
v = 0.2m, it is sufficient to apply the duality transformation
to Fig. 1(b) [recall that it is the (v, u)-phase portrait of the
model at v5 = 0.2m]. The resulting mapping is Fig. 2(b),
etc. It thus supports the above conclusion: the charged PC
phenomenon can be realized in chirally asymmetric quark
matter with nonzero baryon density.

Finally, let us consider the (v, vs)-phase diagrams of the
model at different fixed values of u. It is clear from the
previous discussions that each of these diagrams is a self-
dual one; i.e. the CSB and charged PC phases are arranged
symmetrically with respect to the line v = v5 of the (v, vs)
plane. This fact is confirmed by several (v,vs)-phase
portraits in Fig. 3, obtained by direct numerical analysis
of the TDPs F (M) (32) and F,(A) (33). Moreover, the
phase diagrams of Fig. 3 support once again the main
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conclusion of our paper: the charged PC phase with
nonzero baryon density, i.e. the phase denoted in
Figs. 1-3 as PCd, might be realized in the framework of
the model (1) only at v5 > O.

Taking into account the particular phase diagrams of
Figs. 1-3, it is possible to represent schematically the most
general phase portrait of the model in the space of chemical
potentials v, vs, u (see Fig. 4).

V. SUMMARY AND CONCLUSIONS

In this paper, the phase structure of the NJL, model (1) with
two quark flavors is investigated in the large-N,. limit in the
presence of baryon up, isospin y; and chiral isospin ps
chemical potentials. For the particular case with ;5 = 0, the
task was solved earlier in Refs. [15,32,33], where it was
shown that the toy model (1) does not predict a charged PC
phase of dense and isotopically asymmetric quark matter. So
our present consideration is a generalization of this approach
to the case p;5 #0; i.e. it is devoted, although in the
framework of a simpler (1 4 1)-dimensional model, to the
study of the properties of chirally (¢;5 # 0) and isotopically
(u; #0) asymmetric dense (up # 0) quark matter. The
following two new physical effects are predicted:

(1) Ttis clear from the phase diagrams of Figs. 1-3 that

the charged PC phase with nonzero baryon density
(this phase is denoted in Figs. 1-3 by the symbol
PCd), prohibited at y;5 = 0, might appear at rather
large values of p;5 > 0. Hence, chiral asymmetry
[i.e. pz5 # 0 in (1)] of dense quark matter can serve
as a factor promoting there a charged pion con-
densation phenomenon. Note that two other known
possibilities to generate a charged PC phase of dense
quark matter in model (1) are (i) to put a system
into a finite volume [15] or (ii) to take into account
the possibility for a spatial inhomogeneity of
condensates [16].

(2) We have shown in the leading order of the large-N..
approximation that in the framework of the NJL,
model (1) there is a duality correspondence between
CSB and charged PC phenomena. It means
that if, e.g., for some initial fixed set of external
parameters (up,u; = A, ;s = B), the chiral sym-
metry breaking phase is realized in the model, then
for a rearranged set of external parameters, i.e. for
the set (ug,p; = B, u;s = A), the so-called dually
conjugated charged PC phase is arranged (and vice
versa). It must be emphasized that different physical
quantities such as order parameter (condensate),
particle density, etc. of the initial phase and its
dually conjugated one are equal. In this way, it is
sufficient to have the information about the ground
state of the initial phase, which is realized for the set
(ps, p1> ys), in order to determine the properties of
the ground state of the dually conjugated phase,
corresponding to the rearranged external parameter

PHYSICAL REVIEW D 94, 116016 (2016)

set (g, s, 4p)- [Recall that another kind of duality,
the duality between CSB and superconductivity,
exists also in some (1 4 1)- and (2 + 1)-dimensional
NJL models [35,36].]

It was shown recently that in the large-N . limit there is an
equivalence (duality) between the phase structure of the
SU(N.) QCD at finite y; and the phase structures of some
QCD-like models at finite pz. Moreover, if p; is outside
the BEC-BCS (i.e. Bose-Einstein condensation—Bardeen-
Cooper-Schriffer pairing) crossover region, then there might
exist an equivalence between chiral symmetry breaking and
charged pion condensation within the QCD itself (see, e.g.,
Ref. [37] and, in particular, Fig. 1 there). In a similar way it
was shown that QCD at y;5 # 0 is equivalent to QCD at
u; # 0inthe chiral limitand at N. — oo (see Sec. IVin [38]).
These facts are the basis for some hope that the present
general analysis of the (1 + 1)-dimensional toy model
(1) with three nonzero chemical potentials u, y; and p;s
will shed some new light on physical effects in chirally and
isotopically asymmetric dense quark matter in the real
(3 + 1)-dimensional QCD at large N.. Furthermore, we
believe that at large N, there is (in the chiral limit) a duality
between chiral symmetry breaking and charged pion con-
densation in the (3 4 1)-dimensional two flavor NJL. model
in the presence of the isospin and chiral isospin chemical
potentials. The check of this assumption is our next goal.

APPENDIX A: EVALUATION OF THE ROOTS
OF THE POLYNOMIAL P,(p,) (16)

1. General case
It is very convenient to present the fourth-order poly-
nomial (16) of the variable n = p, + u as a product of two
second-order polynomials (this way is proposed in [39]);
i.e. we assume that
nt = 2an* — by +c

=W +m+q—rm+s)

[ 5) o= [(-5) 5=

= (n=m)(n—m)n—n3)(n—1n4), (A1)

where r, g and s are some real valued quantities, such that
[see the relations (17)]
2a=-2M*+A*+pl+ir+ud)=s+qg-r%
—b=-8pvvs =rs—qr;
c=a’—4pt(V* +12) —AMPVP — AN — 4Pk = sq.
(A2)
In the most general case, i.e.at M > 0,A > 0,v > 0,v5 >0

and arbitrary values of p;, one can solve the system of
equations (A2) with respect to ¢, s, r and find
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! < 2a + R+ b ) ! < 2a +R b )
= — —2d —= |, S == —Zda I y=— Y
1=3 VR 2 VR
r=+R, (A3)
where R is an arbitrary real positive solution of the equation
X3 +AX =BX*+C (A4)

with respect to a variable X, and

A =4a* —4c = 1620 + M*V* + v + p2(V* +12)),
B=4da=4M>+ AN+ 1> +12+ p?}),

C= b2 = (8U5Up1)2. (AS)

Finding (numerically) the quantities ¢, s and r, it is possible
to obtain from (Al) the roots #;:

r+ r l"+ r
m 3 4 q, '72*2 4 S,
r r2 r r2
—__ LAY s A
s 5 74 =5 e (A6)

Numerical investigation shows that in the most general case
the discriminant of the third-order algebraic equation (A4),
i.e. the quantity 18ABC — 4B>C + A?B? — 4A% - 27C?, is
always non-negative. So Eq. (A4) vs X has three real
solutions R, R, and Rj5 (this fact is presented in [39]).
Moreover, since the coefficients A, B and C (A5) are non-
negative, it is clear that, due to the form of Eq. (A4), all its
roots R;, R, and R; are also non-negative quantities
(usually, they are positive and different). So we are free
to choose the quantity R from (A3) as one of the positive
solutions R;, R, or R;. In each case, i.e. for R = Ry,
R = R,, or R = R;, we will obtain the same set of roots
(A6) (possibly rearranged), which depends only on v, vs,
M, A and p, and does not depend on the choice of R. Due
to the relations (A1)-(A6), one can find numerically (at
fixed values of y, v, vs, M, A and p;) the roots i7; = pg; +
(A6) and, as a result, investigate numerically the TDP (25).
It is clear also from (A1)-(A6) that the roots #; are even
functions vs p;. So in all improper p; integrals, which
include quasiparticle energies py; [see, e.g., the integral in
Eq. (25)], we can restrict ourselves to an integration over
non-negative values of p; (up to a factor 2).

On the basis of the relations (A1)-(A6) let us consider
the asymptotic behavior of the quasiparticle energies p; at
p1 — oo. First of all, we start from the asymptotic analysis
of the roots R; ;3 of Eq. (A4) at p; — oo,

A2

2 +0(1/17?)5
1

4
Rl = 41/2 - (A7)
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4M?12
Ry =43 - e 2+ 0(1/p}). (A8)
1
4 2M2 2A2
Ry = 4p? + 4(M? + A?) +%
1
+O(1/p}). (A9)

It is clear from these relations that R is invariant under the
duality transformation (20), whereas R; <> R,. Then, using
for example R; (A9) as the quantity R in Eqgs. (A3) and
(A6), one can get the asymptotics of the quasiparticle
energies po; =n; — p{ at p; = o,

A2+ M?
por = =lpil—p +lvs —v| = ———+O(1/p?),
2|P1|
2 M2
por = |pil —u+vs+v+———+0(1/p}),
2|P1|
A% 4+ M?
S v O(1/p?).
DPo3 |pi|—p—lvs — v 2| +O(1/p7)
A% + M?
Pos = |pil —p—vs—v+ 2| +0(1/p}).  (A10)
Finally, it follows from (A10) that at p; — o
|Poil + [Poz2| + [Pos] + | Posl
2(A% + M?
—alpi| + 25 o/ an)

For the purposes of the renormalization of the TDP (25), it
is very important that the leading terms of this asymptotic
behavior do not depend on different chemical potentials;
i.e. the quantity Y | |po:| at 4 = v = v5 = 0 has the same
asymptotics (A11). Moreover, we would like to emphasize
once again that the asymptotic behavior (A11) does not
depend on which of the roots R, R, or R; of Eq. (A4) is
taken as the quantity R in the relations (A3).

2. Consideration of some particular cases

Note that in some particular cases it is possible to solve
exactly the third-order auxiliary equation (Al) and, as a
result, to present the quasiparticle energies p, [or the roots
n; of the polynomial (A1)] in an explicit analytical form.

a. The case p=r=vr5=0
It is clear from (A4) and (AS) that at v =v5 =0 we
have A=C=0, so R, =0, Ry =4(M?>+ A%+ p?).
In this case ¢ =s=r*/4=M*+ A%+ p? and n,, =
M? + A% + p2, 34 = —/M? + A% + p3. If in addition
u = 0, then we have
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([Porl =+ [Pozl + | Po3| + [ Poal) lums—vs—0 = 41/ M? + A + pi.

(A12)

As was noted above, this quantity at p; — oo is expanded
in the form (A11).

b. The case A=0

In this particular case the exact expression for the set of
quasiparticle energies po; was already presented in (22).
Here we would like to demonstrate how this result is
reproduced in the framework of the procedure (A1)—(A6).

It is easy to see that at A = (O there is an evident root
R, = 412 of the polynomial (A4). On this basis we can find
exact expressions for the other two of its roots,

Ry3 =2(M?>+ 1+ ph) £ 2\/(M2 +v2+ p})?r —4ip?

= (E) £ E,)%, (A13)
where
E; = \/M* + (py +vs)*,
E, = \/M?>+ (p; —vs)> (A14)

If R, = 417 is taken as the quantity R of the relations
(A3), then, using (A3) in (A6), we obtain directly the
expression (22) for the set of quasiparticle energies py,.

If,e.g, R=Ry = (E| + E2)2, then, taking into account
the evident relation E3 — E3 = 4p,vs, we have from (A3)

PHYSICAL REVIEW D 94, 116016 (2016)

Using these relations in (A6), we receive for the quasipar-
ticle energies p, the same set as in (22). Thereby we have
demonstrated that the set of roots #; (A6) does not depend
on which of the solutions R, R, or R; of Eq. (A4) is used
as the quantity R in the relations (A3).

c. The case M =0

In a similar way it is possible to show that Eq. (A4) at

M = 0 has the following three roots:
Rl = 41/%, R2’3 = (81 + 52)2, (A16)

where

1=/ AP+ (pi+v)? &= \/ A+ (p —v)®. (A17)

On the basis of each of them, using the relations (A6) and
(A3), one can obtain the set of quasiparticle energies (23).

d. The case v5=v

In this particular case Eq. (A4) has the following three
roots:

R, = 412, Ryy = (E, £ E), (A18)
where
El = \/M2 + A2+ (p, +v)%,
By= /M2 4 021 (p -0 (A19)

Taking for simplicity R = R; in (A3) and using the
relations (A6), we have in this case for the quasiparticle
energies p,; the following set of values:

r:E1+E2, q:E1E2—l/2+l/(E1—E2>,
s=E\Ey—1?—v(E — By), {P01,P02,P03,P04}|y5=y:{—M—Vi\/M2+A2+(P1—V)2,
r (E,—E,-20)> 72 (E\—E,+2v)?
4=y A TST T —u+ui\/M2~|—A2+(p]~l—z/)2}.
(A15) (A20)
|
APPENDIX B: DERIVATION OF THE RELATION (32)
If A =0and M # 0, then the quasiparticle energies p,; are presented in the expression (22). So
([poil + [Po2| + [Pos| + |Poal)|a=0
— Z<| —p+ kv + \/M2 + (p1 +Kvs)? |+ | —p+ kv — \/M2 + (p1 +Kﬂ5)2|)
K==+
= 22{\/M2 +(p1 +xus)? + (M — KU — \/M2 + (py +KI/5)2>9(M — KU — \/M2 + (pi +K1/5)2>
k=%
+ (KV —H- \/M2 +(p1 + KV5)2>9(KV e \/M2 +(p1 + K’/s)z) } (B1)

where we have took into account the well-known relations |x| = x6(x) — x6(—x) and 6(x) = 1 — 6(—x). Hence, the
expression (31) at A =0 and M # 0 can be presented in the following form:
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M?> M?* [(M?
QEVM A = = 4+ — Inl— | — —_ B2
(M, 0) 271'+27T n<m2> v-v, (B2)
where
_ [=dp 2 2 2 2 T S
A R N N ) (83
oodp
V_;/o 71{</4—K1/—\/M2+(P1+KV5)2>9<ﬂ—KV—\/M2+(P1+Kl/5)2>
+ (Kv—u - \/M2 + (P +xv5>2)0<xv—u - \/M2 + (P +’<V5)2>} (B4)
_ [=dp: 2 2 2 2
=, x \#TET M+ (py+vs)” |0\ p—v—1/M>+ (p1 +vs)
©dp, 2 2 2 2
A Al Ul M? + (py +vs)* |0\ v—p—/M* + (p) +vs)
0
©dp, 2 2 2 2
= M (pr = vs)® |0 by = M (pr - vs) ) (B5)
0

Notice that a calculation of the convergent improper integral U (B3) can be found, e.g., in Appendix C of [15]. Moreover,
when summing in (B4) over x = £, we took into account that 4 > 0 and v > 0. So there are only three integrals in the
expression (B5). Due to the presence of the step function 8(x), each integral in (B5) is indeed a proper one. Let us denote the
sum of the first two integrals of (B5) as V; and the last integral as V,, i.e. V. = V| 4+ V,. Then, it is evident that

Vim [T (sl o s Yo (=l = o+ (07, (8)

vzzAw%(qu— M2+(p1—1/5)2>6’<,u+1/— M2+(p1—1/5)2>. (B7)

Carrying out in the integrals (B6) and (B7) the change of variables, ¢ = p; + v5 and ¢ = p; — vs, respectively, we have

v, :Lwd—;’(m—w —\/M2+q2>9<|y—z/| —\/M2+q2>
([ )% (vt o Yo (sl o ). (B8)

I RN s Y (R oy

<ZW+AVS)%(M+U—\/Mz—i—qz)@(ﬂ—i-v—\/Mz—i-qz). (BY)

Due to the presence of the 6(x)-function in the integrands of (B8), the first integral there looks like

/O°°<...)%:9(|u—u|—M)Amd;(|ﬂ_y|_\/M), (B10)

whereas the second integral in this expression has the form

Va
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6% = ot i =n) [V ()

9(|ﬂ—v|—M)9<\/m—v5)A dq<|ﬂ—l/| \/M2+q2>.

Substituting the expressions (B10) and (B11) into (B8) and using there the relation 8(x) = 1 — 6(

Vo= 0= =200yl = 7 =15 /m"q (vl o 1)

In a similar way one can transform the expression (B9) for V,,

V (utv)-M?*
Vo,=20(u+v—-M / q(ﬂ%—l/—\/Mz—f—qz)

—(9(/1+U—M)9< (u+v)?—

(B11)
—x), we have
(B12)
_ys)/‘ b= dg (ﬂ—i—v—\/Mz—i—qz). (B13)

Performing direct integrations in (B12) and (B13) (recalling that V = V; 4 V,) and taking into account the relations (B2)
and (B3) then completes the derivation of formula (32). By analogy, one can derive the expression (33).
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