
Two-loop integrand decomposition into master integrals and surface terms

Harald Ita
Institut of Physics, University of Freiburg, D-79104 Freiburg, Germany

(Received 26 October 2015; published 23 December 2016)

Loop amplitudes are conveniently expressed in terms of master integrals whose coefficients carry the
process dependent information. Similarly before integration, the loop integrands may be expressed as a linear
combination of propagator products with universal numerator tensors. Such a decomposition is an important
input for the numerical unitarity approach, which constructs integrand coefficients from on-shell tree
amplitudes. We present a new method to organize multiloop integrands into a direct sum of terms
that integrate to zero (surface terms) and remaining master integrands. This decomposition facilitates a
general, numerical unitarity approach for multiloop amplitudes circumventing analytic integral reduction.
Vanishing integrals are well known as integration-by-parts identities. Our construction can be viewed as an
explicit construction of a complete set of integration-by-parts identities excluding doubled propagators.
Interestingly, a class of “horizontal” identities is singled out which hold as well for altered propagator powers.

DOI: 10.1103/PhysRevD.94.116015

I. INTRODUCTION

Currently the experiments at the Large Hadron Collider
(LHC) are entering a new energy and luminosity regime.
Further upgrades are expected for a number of years to
come. The increasing amount of data will allow us to zoom
into known physics and extend the discovery potential for
new physics. An important ingredient in this quest are
precise predictions which match the measurements’ stan-
dards. Predictions for key observables will be necessary,
but providing a larger set of predictions beyond this
minimal set will be a clear benefit. Here we present new
theoretical methods towards these latter aims.
An important input for precision predictions are first-

principle computations in perturbative quantum-field theory.
Inrecentyears,significantprogresshasbeenmadebythetheory
community in providing predictions through automated fixed-
order computations including quantum corrections [1–8].
These have already lead to a wide range of next-to-leading
order (NLO) predictions for Standard Model processes. In
addition, a number of impressive two-to-two next-to-next-to-
leading order (NNLO) results [9–14] and further higher-order
predictions [15] have become available. These developments
have been driven by a combination of analytic and numerical
advances for computing loop integrals. At one-loop level one
can highlight explicit [16–19] and implicit methods [2,20–25]
for reducing (tensor) loop integrals to a standard set of master
integrals. Similarly, at two-loop level, explicit analytic reduc-
tion techniques for integrals [26–31] play an important role.
Here we discuss methods which bypass analytic integral
reduction and make a numerical approach to multiloop
computations possible. Such methods are at the core of the
unitarity based approaches [2–6,32] to NLO predictions and
allowus topush towardsprocesseswithmanypartons [33–37].
We are motivated by these results to explore a numerical
unitarity approach for multiloop amplitudes.

The unitarity method [20,21,38,39] has continuously
provided cutting-edge results for formal as well as
phenomenology oriented multiloop amplitudes (see e.g.
[40–42] and [38,43]). This method relates universal repre-
sentations of amplitudes in terms of master integrals to full
scattering amplitudes. By comparing the analytic structure
(e.g. branch cuts) of both representations the process
dependent coefficients of master integrals are obtained. In
this approach, the cutting operation simplifies the loop
integrals to phase-space integrals over on-shell tree-level
input. On the one hand, the strength of this approach arises
from efficiently dealing with physical (on-shell) building
blocks. On the other hand, the unitarity approach provides an
implicit integral-reduction mechanism, since by cutting one
targets coefficients of master integrals very directly.
In this article we discuss a numerical variant of the

unitarity approach. This approach is well developed at
one-loop level [2,24,25] and we extend it to higher-loop
orders. In the numerical approach, the loop integrations are
delayed to the very end of the computation. First one
compares the rational integrands of the Feynman amplitudes
with a universal basis of loop integrands. Delaying the loop
integration, however, comes with a price; in order to
maintain the equality of the integrand basis and Feynman
amplitudes additional terms, i.e. surface terms, have to be
added to the basis. These are terms that integrate to zero
eventually are but required in intermediate steps. The explicit
construction of the multiloop surface terms is the main result
of this article. The importance of the surface terms becomes
clear in the remaining computational steps. The coefficients
of the integrand basis are obtained by solving linear
equations, which are systematically solved by inserting
numerical on-shell values for the loop momenta, i.e. by
imposing unitarity cuts. Once the coefficients of surface
terms and the numerators of master integrals are obtained the
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loop integration is performed. In this final step surface terms
can be dropped and only the master integrals have to be
provided to yield the loop amplitudes. In this way the
reduction of tensor integrals is accomplished by the inte-
grand parametrization and is implicit. Given the classifica-
tion of surface terms we obtain a general, i.e. process and
multiplicity independent, numerical algorithm.
Even though the unitarity method operates on shell, the

surface terms have to be known off shell. This is required,
since already computed unitarity cuts have to be subtracted in
cuts with fewer on-shell propagators in order to avoid double
counting. However, the cut conditions can only be relaxed if
we have a way to take results off shell. The prescription to go
off shell is provided through the integrand parametrization.
A number of recent developments have advanced the

unitarity method to a promising approach for automated
multiloop computations in QCD. Parametrizations of loop
integrands have been developed recently [44–46], which are
given in terms of a minimal basis of irreducible integrands.
Theseparametrizations identifya subset of the terms(spurious
numerators)which integrate tozero,butnotall.Thus, standard
reduction techniques [26–29,31] are required to obtain a final
representation in terms of master integrals. Here we put
forward a different type of representation of loop integrands
which is organized into surface terms and master integrals. In
our approach, the integral reduction is built in and does not
have to be performed in a second step, which is important in a
numerical approach. Furthermore, in analogy to thenumerical
one-loop unitarity approach, the integral coefficients can be
computed through generalized unitarity cuts [47] by solving
linear equations (e.g. via Fourier transforms). This approach
does not require integration over multidimensional phase
spaces and thus differs from the direct extraction of integral
coefficients [48] or possible extensions using the duality
between master integrals and homology cycles of the phase
spaces [49–51]. Nevertheless, the latter approaches hold the
promise to be very efficient once available in a completeway.
Technically, a number of new observations lead to the

present construction. First of all, we combine integration-by-
parts (IBP) identities and master integrals to parametrize the
loop integrands. Although this approach is natural it has not
been appreciated for the numerical unitarity approach so far.
For the unitarity approach it is necessary to use IBP identities
that include well specified propagator structures and powers
[52]. The identities are obtained from a specialized set of
vector fields in loop-momentum space. We provide the
explicit form of such IBP generating vectors. Algorithms to
obtain IBP vectors have been suggested in the original
literature and improved in Refs. [53,54]. We give a complete
set of (off-shell) vectors for two-loop topologies. This
construction is important in order to obtain compact analytic
expressions as well as numerical control throughout momen-
tum space. The presented construction reproduces the known
results at one-loop level [25].

Moreover, we find interesting properties of the IBP
generating vectors; using general coordinate transforma-
tions to adjust the integration variables to the integral
topology, IBP vectors can be constructed explicitly with
pen and paper. In fact, the IBP vectors turn out to come in
two types, (complexified) rotations in momentum space,
which leave propagators invariant, and scaling transforma-
tions of the propagators. For our construction the former
“horizontal” generators will be most important. A special
example of such horizontal vectors was given already in
[52] (based on Gram determinants).
Although we construct special IBP relations that do not

double propagators, we obtain a much bigger set of IBP
relations. In fact, once the numerators of the horizontal
IBP relations are obtained, the propagator powers may be
changed to give new relations.
Furthermore, we find that the IBP generators are tangent

vectors to the unitarity-cut phase spaces. This property
allows one to link off-shell and on-shell information in
unitarity cuts; we show (see Sec. III G) that surface terms
from special IBP relations are as well surface terms on the
unitarity-cut phase spaces. Interestingly, we observe as well
a Lie-algebra structure which simplifies the construction of
the IBP vectors. This structure appears to be fundamental
linking unitarity cuts to full amplitudes (Sec. IV F).
Finally, the link between off-shell and on-shell informa-

tion allows one to relate master integrands and surface
terms to closed and exact holomorphic forms on the phase
spaces, respectively. The number of master integrals is then
given through topological properties of the unitarity-cut
phase spaces, that is, the number of closed-modulo-exact
forms. The importance of cohomology for the construction
of on-shell IBP identities has been discussed recently [50].
We set up a related but simplified on-shell approach to
multidimensional phase spaces. Although we construct off-
shell surface terms, the on-shell perspective serves as
valuable guidance and a cross-check. In fact, the on-shell
construction is simpler and its completeness can be verified
in a combinatorial way. We use the on-shell approach to
verify that the constructed surface terms are complete.
In this article we focus on planar two-loop integrals,

however, our methods can be extended to nonplanar as well
as a full D-dimensional approach, and we suggest how the
generalizations can be done. In fact, we give IBP generating
vectors for the nonplanar two-loop topologies. Furthermore,
we work with generic nonvanishing internal and external
masses and, thus, we capture much of the D-dimensional
aspects. We believe that the IBP vectors are sufficient as well
for most massless integrals; this is plausible assuming that
factorization limits relate this massive information to the
massless one.1 Finally, we suggest a geometric interpretation

1Exceptions may appear when only a single massless leg is
attached to a loop.
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of the IBP vectors (Sec. IV E) which makes generalizations to
multiple loops natural.
The article is organized as follows. We start with a

heuristic formulation of the central research question in
Sec. II. In Sec. III we present important technical back-
ground and methods. This includes general coordinate
transformations of the loop momenta as well as the
discussion of tensor insertions and the unitarity cuts.
The off-shell construction of two-loop surface terms is
presented in Sec. IV. The reader interested in the final result
should be able to read starting from Secs. IV C–IV E
which give the IBP generating vectors, the formula for
surface terms and the vectors’ geometric interpretation. In
Sec. IV F we speculate about the Lie-algebra structure of
the IBP vectors. In Sec. V we present the on-shell
construction of surface terms and count master integrands
which serves as valuable cross-checks of the off-shell
approach. In Secs. IVA and VA one-loop examples are
given in order to illustrate the off-shell and on-shell
constructions, respectively. Finally, we close with a sum-
mary and a discussion of a number of interesting future
directions. Technical aspects of differential calculus are
discussed in the Appendix.

II. SETUP AND NOTATION

We start with a heuristic introduction of the key
structures that we will be dealing with.

A. Loop integrand decomposition

We consider two-loop computations with the integral
topologies as shown in Fig. 1. Integrals typically include
tensor insertions which are denoted by tðl; ~lÞ giving,

I ½t� ¼
Z

dDldD ~l
tðl; ~lÞ

ρ0 � � �ρN−1ρ̂0 � � � ρ̂ðN̂−1Þ ~ρ0 � � � ~ρð ~N−1Þ ;

with ρi¼ðl−qiÞ2−m2
i ; ρ̂i ¼ðl̂− q̂iÞ2− m̂2

i ;

~ρi¼ð ~l− ~qiÞ2− ~m2
i : ð2:1Þ

Momentum conservation is imposed l̂ ¼ −ðlþ ~l − q0−
q̂0 − ~q0 þ ~pbÞ. We will work with dimensional regulariza-
tion keeping the loop-momentum dimensions as free param-
eters. The tensor insertions are assumed to be polynomial in
the loop momenta as is the case in Feynman amplitudes.
Given a complete basis of numerator tensors f ~miðl; ~lÞg

with the index i labeling the basis elements, one can
evaluate tensor integrals by first decomposing the tensor
numerator into the basis,

tðl; ~lÞ ¼
X

i∈numerator basis

~di ~miðl; ~lÞ; ð2:2Þ

with loop-momentum independent coefficients ~di. In a
second step one has to integrate all the basis tensor

insertions. To this end, typically tensor reduction tech-
niques [26–29,31] are used to decompose the basis of
tensor integrals into a small set of independent master
integrals.
Here we aim to shortcut the step of the tensor reduction

by constructing a particular numerator basis. Following the
strategy of one-loop computations [24,25], we decompose
the numerator tensors into the tensor insertions associated
with master integrals miðl; ~lÞ and surface terms m̂jðl; ~lÞ,
which integrate to zero,

tðl; ~lÞ ¼
X

i∈master integrals

dimiðl; ~lÞ

þ
X

j∈ surface terms

d̂jm̂jðl; ~lÞ; ð2:3Þ

with the properties,

I i ≔
Z

dDldD ~l
miðl; ~lÞ

ρ0 � � � ~ρð ~N−1Þ ;

×
Z

dDldD ~l
m̂jðl; ~lÞ

ρ0 � � � ~ρð ~N−1Þ ¼ 0: ð2:4Þ

Thus, we directly obtain the decomposition of the initial
tensor integral in terms of master integrals I i,

FIG. 1. A generic two-loop integral topology is displayed with
the naming conventions used in the main text. In order to reuse
structures well known at one-loop level we interpret the two-loop
topology as three rungs. The rungs carry loop momentum l, l̂
and ~l, and have external momenta pi, p̂i and ~pi exiting. The
rungs are joined in two four-point vertices on the top and bottom
with external momenta pt and pb leaving, respectively. Most of
our considerations will be focused on the planar case with no
external momenta p̂i attached to the central rung at all. Many
considerations work analogously for the three rungs and we will
often refer to the joint variables by dropping hat and tilde
superscripts.
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I ½t� ¼
X

i∈master integrals

diI i; ð2:5Þ

while the coefficients d̂j drop out of the final result. The
surface terms contribute only prior to the loop integration
expressing for example angular correlations.
Within the (numerical) unitarity approaches one works at

the integrand level and parametrizations (2.2) of the loop
integrands are required. Parametrizations have been devel-
oped in recent years [44–46], however, a decomposition in
terms of surface terms and master integrals (2.3) would be
important in order to avoid the explicit tensor reduction.
The construction of the surface terms has so far not been
developed sufficiently and we will provide this missing
piece here.
It is important to know the surface terms off shell, that is,

all over momentum space and in particular away from the
regions of on-shell propagators. This is required on the one
hand, to ensure that they in fact integrate to zero in the full
loop integrals. On the other hand, even in the unitarity
approach off-shell information is required to avoid double
counting. That is, given a result for a unitarity cut it has
to be subtracted in cuts with fewer on-shell conditions
imposed. (For example at one-loop results from triple cuts
have to be subtracted from two-particle cuts etc.) This can
only be done if the initial cut results can be taken off shell in
a consistent way. A priori a cut, i.e. a product of on-shell
tree amplitudes, cannot be taken off shell. However, once
we have used the cut to compute coefficients of an
appropriate loop integrand parametrization (using on-shell
momenta), we can take the latter off shell and subtract it
from daughter cuts. Steps of this kind are explicit or
implicit in almost all variants of the unitarity approach,
but may possibly be circumvented by introducing phase-
space integrals [48] or exploiting discrete symmetries [23].
Here we require an off-shell representation of the loop
integrands ideally in terms of surface terms. As a final
remark we add that the surface terms have to be algebraic
expressions in the loop momenta times propagators. This is
the case since they should represent Feynman amplitudes,
which have this property.
Integral relations such as IBP identities have all the

properties needed for surface terms and can be used when
available. This fact is very important for a numerical
unitarity approach at higher-loop order. In principle IBP
relations may be obtained through standard techniques.
However, for the numerical unitarity cuts it is important to
use an integral basis with very specific propagator powers.
Thus, we will construct surface terms from the specialized
IBP relations first introduced in Ref. [52] which from the
outset allow to control propagator powers.
An automated construction of the specialized IBP

relations has been given in the original article [52] and
has been advanced in Ref. [53]. Here we prefer to follow an
analytic approach, since we require additional control over

the expressions. That is, we do not only need a compact
representation of the surface terms, but we will also need
sufficient numerical control when solving for the integral
coefficients in all regions of phase space. Nevertheless, it
would be instructive to compare the approaches in detail
in the future. A geometric on-shell construction of spe-
cialized IBP relations has been put forward in Refs. [51,55]
which is, however, not suitable for our purposes, since we
require the full off-shell information of the surface terms.
Nevertheless, we will use a related on-shell approach for
cross-checks below in Sec. V.

B. Adapted coordinates

Important structures of the loop integrals can be made
manifest by using appropriate integration variables. The
aim is to change from the loop-momentum components
flμ; ~lμg to using the inverse propagators fρi; ~ρj; ρ̂kg as
integration variables [56,57] (see also [58]). Given
the mismatch in the number of propagators and loop-
momentum components additional internal variables have
to be introduced, which we denote by indexed α’s in the
following. The loop integrals are then given by integrations
over the inverse propagators in addition to an internal
integration over the α coordinates,

I ½t� ¼
Z ½dρ�

ρ0 � � � ~ρð ~N−1Þ × tðρ; αÞμðρ; αÞ½dα�; ð2:6Þ

where μðρ; αÞ is the nontrivial integration measure from the
coordinate change. The expressions ½dρ� and ½dα� denote
the differentials of the integration variables, ρ’s and α’s,
respectively. The insertion tðρ; αÞ is the tensor tðl; ~lÞ
evaluated in the new coordinates.
It is instructive to consider first the integration over

an internal space with the inverse propagators held fixed.
From this perspective we can now use the properties of
the internal space to organize the computation. To give
an example, at one-loop level the internal integration is
performed over spheres.2 We can think of the function
tðρ; αÞ being decomposed into a linear combination of
spherical harmonics. Only the constant function gives a
nonvanishing integral, while the higher harmonics integrate
to zero. The later can be interpreted as surface terms.
Fittingly the IBP generators turn out to be generators of
rotations along the internal space directions. Spherical
harmonics are part of the multiplets of representations of
the rotation groups. All harmonics apart from the singlet,
can be obtained by acting with raising/lowering operators.
Thus, given that rotation generators are divergence free, all
harmonics can be interpreted divergences and thus as IBP
relations. A similar picture holds at higher-loop level.

2Typically these spheres are part of the complex internal spaces
which are tangent bundles of the real spheres TSd.
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It is useful to consider the integral in amore formalmanner
as well. In formal terms we may relate the task of finding
nontrivial integrals to understanding the cohomology of the
internal spaces, so that exact forms (total derivatives) in
the internal space are related to surface terms, while
closed but nonexact forms are related to the nonvanishing
master integrals. We will find this perspective useful when
considering generalized cuts of the loop integrals.
Not all vanishing integrals arise from surface terms of

the internal space alone. For example discrete symmetries can
lead to further vanishing integrals. Furthermore IBP relations
may as well relate distinct integral topologies. We will not
consider the role of discrete symmetries further here, but will
focus on the identificationof surface terms in the earlier sense.

1. Maximal cuts

Once we transform to adapted coordinates (2.6) as
described above we can naturally make contact with
unitarity cuts. Formally, unitarity cuts amount to replacing
propagators with delta distributions, i=ρ → δðρÞ. The
insertion of the delta distributions localizes the integral
to vanishing inverse propagators ρk ¼ 0. The Jacobian
factors from the coordinate change to adapted coordinates
already provides the correct measure for the remaining
integrations in the internal variables. (Details about the
coordinate change can be found in Sec. III.)
In the maximal cuts of a given integral topology all

independent propagators are formally replaced by delta
distributions. Once we localize to vanishing inverse propa-
gators, the loop momentum takes on-shell values. Thus the
on-shell loop momenta and tensor insertions are obtained
by setting all the ρi, ~ρj and ρ̂k’s to zero. The internal α
variables then are the coordinates of the on-shell loop-
momentum space. We will refer to this subspace as the
maximal-cut phase space in the following. The maximal-
cut phase space shares many properties with the surfaces of
fixed propagator values allowing us to infer properties of
the full loop integral from on-shell information.

C. Surface terms as specialized IBP identities

Surface terms can be obtained from total derivatives
starting from (sufficiently regular) vector fields fuμ; ~uνg,Z

dDldD ~l
�
∂μ

�
uμt

ρ0 � � � ~ρð ~N−1Þ

�
þ ~∂ν

�
~uνt

ρ0 � � � ~ρð ~N−1Þ

��
¼ 0:

ð2:7Þ
The components of the vector fields are polynomial in
the loop momenta to obtain relations between Feynman
integrals. We suppress function arguments in uμ ≔
uμðl; ~lÞ; ~uμ ≔ ~uμðl; ~lÞ and t ≔ tðl; ~lÞ. Typically doubled
propagators appear when the derivatives act on them.
Doubled propagators can be avoided, by a very specific

choice of vector-field insertions [52] fulfilling the equations,

ðuμ∂μ þ ~uν ~∂νÞρi ¼ fiρi; ð2:8Þ

for all inverse propagators ρi and similarly for ~ρj and ρ̂j with
independent functions fi ≔ fi and fĵ. The functions fi ≔
fiðl; ~lÞ are polynomials in the loop momenta. Due to the
chain rule, the doubled propagators are canceled for such
special IBP-vector fields (2.8). The index i on the right-hand
side is not summed over. The functions fiðl; ~lÞ are again
polynomial in the basic momentum contractions. Typically
it is difficult to find this kind of vector field, however, we
will point out a simplified construction when adapted
coordinates are used.
Eqn. (2.8) has an interesting on-shell interpretation.

When specializing to the on-shell phase spaces with
ρi ¼ ~ρj ¼ ρ̂k ¼ 0, we find that the vector fields fuμ; ~uνg
turn into tangent vectors along the maximal-cut phase
spaces: since the right-hand side of Eq. (2.8) vanishes, the
vectors generate translations that keep the propagators
fixed to zero and thus point along on-shell phase space,

fuμ; ~uνg ⟶
½on�shell�

phase-space tangent vector: ð2:9Þ

This property allows one to link off-shell surface terms
to on-shell ones as will be discussed in Sec. III G. A related
interpretation of IBP generators in differential geometry
was given as well in [54].
Although the on-shell perspective is instructive, we

eventually need surface terms that are valid off shell. To
this end we can use the adapted coordinates of the loop
integration. Interestingly, the construction of IBP gener-
ators can be solved by inspection. In adapted coordinates
the defining equations are

ðua∂a þ uk∂kÞρi ¼ ui ¼ fiρi;

⇒ ui ¼ fiρi; ð2:10Þ

which follows from ∂kρ
i ¼ δik. The i labels are not summed

over in the above equation. The notation is explained in
more detail in Sec. III B and we provide only minimal
explanations here. We use the shorthand notation that the
index a labels the α variables and ∂a ≔ ∂=∂αq. Similarly
the partial derivative ∂k denotes either of f∂ρi ; ∂ ~ρi ; ∂ ρ̂ig.
Furthermore, we suppress function arguments in the f
functions; fi ≔ fiðρ; αÞ.
The form of the IBP generating vectors allows for a

natural geometric interpretation: the ua components gen-
erate to horizontal transformations (with a fixed ρ) and, the
fi components induce local conformal transformations in
the individual propagator directions.
To summarize, the specialized vector fields have the

restriction that the ρi components are proportional to ρi and
analogously for tilde/hat coordinates. The general form
reads
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fua; uig ¼ fua; ρifig: ð2:11Þ

(The doubled labels i are not summed over here.) The
component functions fua; fig are unconstrained apart
from the requirement that they are polynomial in the loop
momenta (see also Sec. III E). As we will see below, given
the parametrization of the loop momenta adjusted to the
integral topology, it is straightforward to write down the
vector fields and consequently the surface terms.
Wewill often consider vector fields with fi ¼ 0 and refer

to them as horizontal IBP vectors. These vectors induce
translations along surfaces of fixed propagator values,
which justifies their name. Horizontal vectors are a natural
off-shell continuation of the tangent space of the unitarity-
cut phase spaces,

phase-space tangent vector ⟶
½off�shell�

fua; 0g; ð2:12Þ

linking on-shell and off-shell data. The conversion between
the two is guided by their Lie-algebra structure (see
Secs. IV C and IV B).

III. LOOP-MOMENTUM PARAMETRIZATIONS

We will need the explicit form of the general coordinate
changes to coordinates adapted to the integral topologies.
We will relate the two-loop topology to nested one-loop
topologies and reuse one-loop parametrizations. The below
considerations hold without restrictions to the dimension-
ality of the loop momentum which we often suppress. For
simplicity we later focus on planar integral topologies and
assume generic propagator masses and external masses in
order to deal with generic structures rather than special
cases.

A. One-loop topologies

We introduce a particular parametrization of the loop
momentum adapted to the topology of the loop diagram
in Fig. 2. The aim is to change coordinates from the
components of the loop momentum lμ to inverse propa-
gators ρi. The construction of such a coordinate trans-
formation can be obtained from Ref. [25] which we review
below. We use an all-outgoing convention for the external
momenta fpi¼1;Ng. The case of generic nonvanishing
external and internal masses fmig is considered. Using
dimensional regularization in D physical dimensions it
suffices to consider N-gon topologies with N ≤ Dþ 1.
(This allows the loop-momentum dimension to exceed
the physical one.) Higher polygons are reducible using
Gram-determinant identities [59,60] and we do not con-
sidered them explicitly.
Inverse propagators will be denoted by ρi and are

expressed in terms of the loop momentum lμ by

ρi ¼ ðl − qiÞ2 −m2
i ¼

�
l −

Xi

j¼1

pj

�2

−m2
i : ð3:1Þ

We set the arbitrary constant vector q0 to zero for
simplicity. When fewer propagators than loop-momentum
components are present an additional set of internal
(angular) coordinates is required which we denote by αa.
The final result will be the following Dþ 1 degrees of
freedom,

inverse propagators: ρ0;…; ρDp;

transverse coordinates: α1; α2;…; αDt;

with Dp ¼ N − 1 and Dp þDt ¼ D and one additional
quadratic constraint. The form of the quadratic equation
will be discussed below and is given in Eq. (3.4).
Explicitly, the coordinate change to adapted coordinates

is given by

l ¼ VðρÞ þ
XDt

a¼1

naαa; VðρÞ ≔
XDp

i¼1

rivi;

ri ≔ −
1

2
ððρi þm2

i − q2i Þ − ðρi−1 þm2
i−1 − q2i−1ÞÞ;

qi ¼
Xi

j¼1

pj: ð3:2Þ

Here the vectors vi and na are elements of the van Neerven–
Vermaseren (vNV) basis [59] which we introduce momen-
tarily. This basis is adapted to the integral topology and
splits momentum space into a Dp ¼ ðN − 1Þ dimensional
“physical” space spanned by the external momenta and a

FIG. 2. Conventions for coordinate change for a one-loop
diagram. Propagator masses and external momenta enter as
parameters. The loop momentum l is parametrized by the inverse
propagators and additional internal variables, in case further
parameters are required.
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Dt ¼ ðD −DpÞ dimensional “transverse” space. For the
considered N-gons we haveDp linear independent external
momenta in the set fpi¼1;…;ðDpþ1Þg due to momentum
conservation. (We will also use the convenient notation
p0 ¼ pN .) Using the inverse of the Dp-dimensional
Gram matrix Gij ¼ ðpi; pjÞ the vectors dual to the external
momenta are introduced with vi ¼ ðG−1Þijpj so that they
fulfill ðvi; pjÞ ¼ δij. In transverse space an orthonormal
basis is used fna¼1;…;Dt

g, with ðna; pjÞ ¼ 0 and
ðna; nbÞ ¼ δab. The transverse basis is not unique and
may be changed by (complex) orthogonal rotations. The
linear dependence of the vectors fpig and fvjg implies as
well ðvi; naÞ ¼ 0. Explicit analytic expressions for the vNV
basis may also be found in Ref. [25]. Particularly compact
expressions for the basis decomposition can be obtained in
spinor-helicity notation and is inherent in most literature
considering analytic unitarity methods (see e.g. [2,23]).
The parametrization (3.2) solves the linear equations,

ðpi;lÞ ¼ −
1

2
ððρi þm2

i − q2i Þ
− ðρi−1 þm2

i−1 − q2i−1ÞÞ ¼ ri; ð3:3Þ

due to the vectors pi and vj being dual. An additional
quadratic constraint equation for the internal variables αa is
imposed to make sure that the square of the loop momen-
tum gives the inverse propagator,

cðρ; αÞ ¼ ðl2 −m2
0Þ − ρ0 ¼

XDt

a¼1

ðαaÞ2 þ CðρÞ ¼ 0;

CðρÞ ¼ VðρÞ2 − ρ0 −m2
0; ð3:4Þ

with VðρÞ2 ¼ ðG−1Þijrirj. With the linear and quadratic
equations fulfilled this parametrization returns the correct
values for all inverse propagators. Most of the physical
information is condensed neatly into the quadratic equation
through the Grammatrix as well as its momentum and mass
dependence.
A few remarks can be added here: the equation

cðρ; αÞ ¼ 0 allows one to eliminate one αa in terms of
the inverse propagators and the remaining transverse
coordinates. Explicit solutions can be obtained using for
example the light-cone coordinates

α1 ¼ 1

2

�
t −

CðρÞ þPDt
a¼3ðαaÞ2

t

�

α2 ¼ i
2

�
tþ CðρÞ þPDt

a¼3ðαaÞ2
t

�
;

for Dt > 1, and the sum term is dropped for Dt ¼ 2. Here
both α1 and α2 were traded for a new complex coordinate t.
For Dt ¼ 1 one can solve for α1 directly to obtain

α1 ¼ �i
ffiffiffiffiffiffiffiffiffiffi
CðρÞ

p
;

where the internal manifold degenerates to two distinct
points, i.e. a zero-dimensional sphere. However, it is often
useful to consider the loop momentum as a hypersurface
in fαa; ρig space, without using an explicit solution of the
quadratic equation inserted.
The inverse coordinate change is given by

ρiðlÞ ¼ ðl − qiÞ2 −m2
i ; αaðlÞ ¼ ðna;lÞ: ð3:5Þ

For the above loop-momentum parametrization the
maximal-cut on-shell conditions are implemented by set-
ting the inverse propagators to zero, ρi → 0.

B. Two-loop topologies

Loop-momentum parametrizations can be obtained
by decomposing multiloop diagrams into subdiagrams
which admit one-loop parametrizations. To be specific, any
rung in a multiloop diagram admits a one-loop coordinate
transformation yielding sets of internal coordinates and
quadratic equations. When the rungs are joined in vertices
the momentum-conservation conditions impose additional
linear equations. Planar as well as nonplanar multiloop
parametrizations may be obtained in this way. We will
focus first on the planar diagrams.
The generic two-loop topology is displayed in Fig. 1.

The planar integrals are obtained by specializing to the
case where no external momenta are attached to the central
rung, i.e. N̂ ¼ 0. In an approach best adapted to planar
diagrams we consider the left and right one-loop subdia-
grams in the figure and ignore the central rung at first. For
the left loop the following external momenta and propa-
gators are used,

fp1;…; pN−1; pN ¼ −ðp1 þ � � � þ pðN−1ÞÞg;
ρi ¼ ðl − qiÞ2 −m2

i ; i ¼ 1;…N:

The quantities for the one-loop coordinate transformation
ri, vi, Gij ¼ ðpi; pjÞ and na are obtained as in Sec. III A.
Analogously, for the right loop we apply the one-loop
transformation with the following list of external momenta
inserted:

f ~p1;…; ~p ~N−1; ~pN ¼ −ð ~p1 þ � � � þ ~pð ~N−1ÞÞg;
~ρi ¼ ð ~l − ~qiÞ2 − ~m2

i ; i ¼ 1;… ~N: ð3:6Þ

Now we denote the parameters and functions by ~ri, ~vi,
~Gij ¼ ð ~pi; ~pjÞ and ~na. It is often convenient to distinguish
the vectors and derived quantities by their index only,
e.g. α ~a ¼ ~α ~a.
With these transformations we have the loop momenta

parametrized in terms of fDp ¼ ðN − 1Þ; ~Dp ¼ ð ~N − 1Þg
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inverse propagators fρi; ~ρjg with 1≤ i≤Dp and 1≤ j≤ ~Dp.

In addition Dt¼ðD−DpÞ and ~Dt¼ðD− ~DpÞ internal
coordinates fαag and f ~α ~ag are introduced, respectively.
Explicitly the loop momenta are given by

l ¼ VðρÞ þ
XDt

a¼1

αana; ~l ¼ ~Vð~ρÞ þ
X~Dt

~a¼1

~α ~a ~n ~a; ð3:7Þ

with VðρÞ ¼ PDp

i¼1 r
ivi and ~Vð~ρÞ ¼ P ~Dp

i¼1 ~r
i ~vi. The internal

coordinates have to fulfill the conditions

cðρ; αÞ ¼
XDt

a¼1

ðαaÞ2 þ CðρÞ ¼ 0;

~cð~ρ; ~αÞ ¼
X~Dt

~a¼1

ð ~α ~aÞ2 þ ~Cð~ρÞ ¼ 0; ð3:8Þ

where CðρÞ ¼ ðVðρÞ2 − ρ0 −m2
0ÞÞ, and ~Cð~ρÞ ¼ ð ~Vð~ρÞ2 −

~ρ0 − ~m2
0Þ setting q0 ¼ ~q0 ¼ 0.

There is one remaining transformation required; in order
to express one internal degree of freedom from fαa; ~α ~ag in
terms of the inverse propagator ρ̂0 of the central rung we
have the relation

ĉðρ; α; ~ρ; ~αÞ ¼ ðlþ ~lþ pbÞ2 − ρ̂0 − m̂2
0

¼ 2ðlþ pb; ~lþ pbÞ − ρ̂0 − m̂2
0 þ ρ0 þm2

0

þ ~ρ0 þ ~m2
0 − p2

b: ð3:9Þ

It will be helpful to make the dependence on the α
coordinates more explicit, by inserting the form of the
loop momenta. We obtain the quadratic equation

ĉ ¼ αa ~α ~aĈa ~a þ αaĈa þ ~α ~aĈ ~a þ Ĉ; ð3:10Þ

with the definitions

Ĉ
~k
a ¼ 2ðna; ~v~kÞ; Ĉk

~a ¼ 2ðvk; ~n ~aÞ; Ĉa ~a ¼ 2ðna; ~n ~aÞ; Ĉk~k ¼ 2ðvk; ~v~kÞ;
Ĉa ¼ Ĉa ~a ~α

~a
0 þ Ĉ

~k
að~rþ ~r0Þ~k; Ĉ ~a ¼ ĈT

~aaα
a
0 þ Ĉk

~aðrþ r0Þk;
αa0 ¼ ðpb; naÞ; ~α ~a

0 ¼ ðpb; ~n ~aÞ; r0;l ¼ ðpb; plÞ; ~r0;~l ¼ ðpb; ~p~lÞ;
Ĉ ¼ −ρ̂0 − m̂2

0 þ ρ0 þm2
0 þ ~ρ0 þ ~m2

0 þ p2
b þ ðrk ~r~k þ r0;k ~r~k þ rk ~r0;~kÞĈk~k; ð3:11Þ

where Ĉa, Ĉ ~a and Ĉ depend on external kinematics and

inverse propagators, while the two-index terms Ĉa ~a, Ĉ
~k
a, Ĉ

k
~a

and Ĉk~k depend only on the external momenta. The latter
matrices quantify the alignment of the physical and trans-
verse spaces of the respective one-loop subdiagrams.
In general, complex orthogonal transformations may be

used to rotate the basis vectors of the internal spaces (acting on
a labels) and transform theaboveconstraint (3.11) to canonical
form.Wewill discuss the relationof integral topologies and the
form of these equations in more detail below.
For some topologies it is possible to align the basis for

the transverse spaces of left and right loop in Fig. 1. This
leads to a block diagonal form of Ca ~a and vanishing entries
in Ck~k and Ca~k. Similarly the (D > 4)-dimensional com-
ponents of the transverse space can be aligned. Rotation
symmetries in these independent parts of transverse space
are then manifest and simplify the quadratic equations.
In summary, we have traded the loop momenta lμ and ~lν

for the following coordinates and conditions:

inverse propagators: ρ0;…;ρDp; ~ρ0;…;ρ ~Dp and ρ̂0;

transverse coordinates: α1;…;αDt; ~α1;…; ~α ~Dt;

quadratic equations: c¼ 0; ~c¼ 0 and ĉ¼ 0:

ð3:12Þ

The quadratic equations c ¼ ~c ¼ ĉ ¼ 0 have to be solved
for the internal coordinates α. Instead of finding explicit
solutions it is often useful to think of the loop-momentum
space as the submanifold defined by the quadratic equa-
tions in the unconstrained coordinate space of the ρ’s
and α’s.

C. Nonplanar parametrization

Two equivalent ways to consider nonplanar topologies
will be discussed. The first emphasizes the general structure
of multiloop parametrizations, the second is most conven-
ient for two-loop topologies being an adaptation of the
planar setup.
(1) Generic parametrization. The nonplanar two-loop

topology can be viewed as multiple rungs which are
joined in vertices; for our notation we refer to Fig. 1
(see also later in Fig. 3). The individual rungs carry
the loop momenta l, ~l and l̂, respectively, which
are related by momentum conservation. Each rung
can be parametrized using one-loop parametriza-
tions to give three sets of α coordinates and ρ
coordinates constrained by three quadratic equa-
tions. Compared to the planar case we obtain as
well
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ĉðρ̂; α̂Þ ¼
XD̂t

a¼1

ðα̂aÞ2 þ Ĉðρ̂Þ ¼ 0; ð3:13Þ

with all functions being natural generalizations of
the ones above (3.7) with tildes replaced by hats. In
a second step momentum conservation,

ðl − q0Þ þ ð ~l − ~q0Þ þ ðl̂ − q̂0Þ þ pb ¼ 0; ð3:14Þ

is imposed to relate the transverse coordinates of
the individual rungs. In this way one obtains
additional coordinates and equations, while the
concepts remain the same. Considering multiloop
topologies amounts to adding further rungs and
vertices in a similar way.

(2) Planar induced parametrization. Alternatively we
can start from a planar parametrization of the loop
momenta and include additional relations to trans-
form the transverse coordinates (α coordinates) to
inverse propagators.
As far as loop-momentum parametrizations are

concerned rungs can be exchanged, so we can
always consider the central rung to have the least
amount of external momenta attached; N̂ ≤ N and
N̂ ≤ ~N. Given that we can have at most eight

propagators we have N̂ ≤ 2. Thus, compared to
the planar case only one additional inverse-
propagator variable is required. The constraints from
the central rung are explicitly given by

ĉðl; ~lÞ ¼ ðl̂− q̂0Þ2− m̂2
0− ρ̂0

¼ ðlþ ~l−q0 − ~q0þpbÞ2− ðρ̂0þ m̂2
0Þ;

ĉ00ðl; ~lÞ ¼ ðl̂− q̂1Þ2− m̂2
1− ρ̂1

¼ ðlþ ~l−q0 − ~q0þpbþ p̂1Þ2− ðρ̂1þ m̂2
1Þ

¼ ĉðl; ~lÞþ ðρ0þ ~m2
0Þ− ðρ1þ m̂2

1Þ
þ 2ðlþ ~l−q0− ~q0þpb; p̂1Þ:

While the first constraint is the one already present
in the planar topologies, the second one gives one
additional linear equation for the loop momenta.
It is useful to introduce the simplified constraint
explicitly,

ĉ0ðl; ~lÞ ¼ ðρ0 þ ~m2
0Þ − ðρ1 þ m̂2

1Þ
þ 2ðlþ ~l − q0 − ~q0 þ pb; p̂1Þ: ð3:15Þ

We will return to the nonplanar cases when discussing
explicit IBP vectors in Secs. IV B and IV C.

D. A useful integral classification

It will be useful to refer to individual integral topologies.
In principle it is sufficient to specify the number of rung
momenta ðN − 1; ~N − 1; N̂ − 1Þ, with conventions as in
Fig. 1 and stating which of the vectors pt and pb vanish. We
use the following terminology for the topologies:

generic: pt ≠ 0; pb ≠ 0

semigeneric: pt ¼ 0; pb ≠ 0; or pt ≠ 0; pb ¼ 0

simple: pt ¼ 0; pb ¼ 0:

These subclasses differ in the number of dependent external
momenta which are present in the set fpi; ~pi; p̂ig.
For planar topologies we label the integral topologies

by only two numbers which specify external legs ðn; ~nÞ ¼
ðN − 1; ~N − 1Þ.
If the number of linear independent external momenta is

smaller than the physical dimension the transverse spaces
of left and right loops overlap and a common transverse
space can be defined. We will assume that the transverse
vNV vectors are aligned whenever possible.

E. Algebraic data

Tensor insertions from Feynman rules give polynomial
functions that can be obtained by contracting loop

FIG. 3. The junction of internal lines of a generic multiloop
diagram is displayed. The loop momenta li and the external
momentum pv join at the vertex. The momenta are constrained
by momentum conservation. Each of the loop legs (here referred
to as rungs) may have external momenta entering, which is
indicated by small attached arrows. IBP vectors generate rota-
tions in the respective transverse spaces of the individual rungs.
Vertices impose interesting compatibility conditions between the
rotations of the individual rungs. Via momentum conservation
individual rotations of the rungs with loop momenta
fl1;…;lk−1g lead to a resulting transformation of lk. The
resulting transformation must be a rotation within this rung’s
transverse space to give a valid IBP vector.
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momenta with themselves or with tensors derived from
external momenta. These terms are natural in canonical
coordinates in momentum space. When using the adapted
coordinates we have to make sure that we deal with
expressions that arise from coordinate transformations of
such algebraic functions.
It turns out that tensor insertions correspond to poly-

nomial expressions in the adapted coordinates. This can be
shown as follows: on the one hand, adapted coordinates are
conventional loop-momentum contractions being inverse
propagators ρi or contractions of the form αa ¼ ðna;lÞ.
Consequently polynomials in these coordinates are poly-
nomial in the loop momenta. On the other hand, these
functions are sufficient to represent all loop-momentum
contractions: given an expression ðtμ1…νkl

μ1… ~lνkÞ we can
insert the completeness relations ðδνμ ¼ naμnaν þ vkμpν

kÞ and
ðδνμ ¼ ~n ~a

μ ~n ~aν þ ~vkμ ~pν
kÞ into the contractions with lμ and ~lν,

respectively. The resulting terms ðpi;lÞ and ðna;lÞ (and
similar for the tilde coordinates) give ri (3.3) and αa,
respectively. Both are polynomial in ρ’s and α’s, so that any
tensor can be expressed in terms of these coordinates.
Thus we can trade any tensor in canonical coordinates

for polynomials written in terms of inverse propagators
and contractions with transverse vectors,

ðtμ1…νkl
μ1… ~lνkÞ ↔

Y
a; ~a;l;~l

ðαaÞkað ~α ~aÞk ~a × ðρlÞklð~ρ~lÞk~l :

ð3:16Þ
One may as well include ρ̂ and α̂ variables, which however
can be converted to the above monomials. The variables ki
denote non-negative integers.
In order to obtain polynomial surface terms through IBP

identities one has to consider polynomial vector fields in
momentum space. Such vectors fuμ; ~uνg are defined to
yield algebraic functions t0ðl; ~lÞ upon taking directional
derivatives of polynomial functions tðl; ~lÞ,

ðuμ∂μ þ ~uν ~∂νÞtðl; ~lÞ ¼ t0ðl; ~lÞ: ð3:17Þ

We may use general coordinate transformations to obtain
vector fields in adapted coordinates, however, it is prefer-
able to construct them directly using the above definition in
adapted coordinates,

ðua∂a þ uk∂kÞtðα; ρÞ ¼ t0ðα; ρÞ: ð3:18Þ

[We use the shorthand notation for partial derivatives
suppressing hats and tildes as in Eq. (2.11).] One can
show that the components ua and uk of polynomial vector
fields have to be polynomial functions by acting one by one
on the α and ρ coordinates. There is a further condition:
above we worked in the coordinate space prior to imposing
the conditions c ¼ ~c ¼ ĉ ¼ 0. Consistent vectors have to

be tangent vectors to this surface, which defines the
physical momentum space. This means we have to impose
the three equations,

ðua∂a þ uk∂kÞfc; ~c; ĉg ¼ 0; ð3:19Þ

to obtain an algebraic vector field. In the nonplanar case we
have to include one further analogous relation for ĉ0 (3.15).
From these definitions it is clear that multiplying an

polynomial vector field by an polynomial function yields
again an algebraic vector field.
Finally, given that we deal with integration, we will use

differential forms and outer derivatives. As usually, these
are defined as linear functions that return the components of
vector fields. The differentials,

fdαa; dρkg

are polynomial, yielding polynomial functions when
acting as linear forms on algebraic vector fields with
dαað∂bÞ ¼ δab, dρ

kð∂lÞ ¼ δkl etc. We use again a single
label which runs as well over hat and tilde variables.
The 1-forms are not independent due to the relations

dc ¼ ∂c
∂αa dα

a þ ∂c
∂ρk dρ

k ¼ 0; ð3:20Þ

and analogously for ~c and the ĉ relations. Wedge products
can be used to generate the full set of differential forms in
adapted coordinates.

F. Function ring and numerator tensors

We will require a complete set of tensor insertions for a
given integral topology limited only by power counting (of
typical field theories). Systematic constructions of such a
basis of tensor insertions can be found at one-loop level in
Ref. [25] (see also [61]) and for multiloop topologies in
Refs. [44–46]. We will review the construction and adjust
the notation to our setup. The use of the adapted coor-
dinates makes the construction of irreducible tensor inser-
tions very direct, so that it can often be obtained by hand.
For a given integral topology not all tensor insertions are

viewed as independent; inserting an inverse propagator
allows one to cancel a propagator and leads to a reduced
topology. Thus we can consider numerator tensors modulo
inverse propagators. This implies that for the construction
of independent numerators inverse propagators are best
treated as equivalent to zero ρk ∼ 0. Comparing to (3.16)
we can proceed in two steps. First, we identify an over
complete list of numerator tensors as the polynomials in the
α coordinates

Y
a; ~a

ðαaÞkað ~α ~aÞk ~a ¼
Y
a; ~a

ðna;lÞkað ~n ~a; ~lÞk ~a ; ð3:21Þ
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which are written as well in tensor notation for conven-
ience. The integers ka and k ~a take positive values limited
above by power counting. In a second step we use the
relations (c ¼ ~c ¼ ĉ ¼ 0), which allow us to turn certain
polynomials into inverse propagators or monomials of
lower degree, thus reducing the independent tensors inser-
tion further.
It is important to note that these equivalence relations

amount to imposing the on-shell conditions, with all
inverse propagators set to zero. Thus, as far as the
construction of a basis of numerator tensors is concerned,
linear independent numerator tensors remain independent
functions when considered on shell on the maximal-cut
phase spaces.
However, not all questions can be answered modulo

lower topologies and off-shell information is important.
For example, considering the tensor insertion of an inverse
propagator, we have an “uninteresting” tensor insertion,

tðl; ~lÞ ¼ ρk ∼ 0; ð3:22Þ
and even obtain zero on the maximal cut. However,
considering the loop integral, we clearly obtain a scalar
integral of lower topology yielding a nonvanishing result,

Z
dDldD ~l

ρk

ρ0 � � � ~ρð ~N−1Þ

¼
Z

dDldD ~l
1

ρ1 � � � ρ̂k � � � ~ρð ~N−1Þ ≠ 0; ð3:23Þ

with ρ̂k denoting the omission of the inverse propagator in
the numerator. Thus when surface terms are analyzed, we
have to work off shell, although we obtain guidance from
related on-shell questions.

G. Total derivatives and master-integral count

Here we discuss the relation between computing the total
derivatives and cutting all propagators of an integrand.
Cutting propagators amounts to replacing the propagators
with delta distributions (i=ρ → δðρÞ). When a tensor
integral is written in adapted coordinates [as done in
Eq. (2.6)] the operation of cutting omits all propagators
as well as the integration measure ½dρ� and sets the inverse
propagators to zero,

Z ½dρ�
ρ0 � � � ~ρð ~N−1Þ× tðρ;αÞμðρ;αÞ½dα�⟶cut

Z
tð0;αÞμð0;αÞ½dα�:

ð3:24Þ

The function μðρ; αÞ is a measure factor arising from
transforming canonical coordinates lμ to the adapted
coordinates fα; ρg and tðρ; αÞ denotes the tensor insertion.
Terms with some of the cut propagators missing are omitted
in the cutting prescription. (One might extend such terms

with the necessary inverse propagators and see it vanish
when the ρ’s are set to zero.)
For the IBP generating vectors that do not double

propagators we now show that taking total derivatives
commutes with the cut operation. That is, propagators drop
out of one class of terms in the total derivative, which leads
to vanishing terms when cuts are applied,

Z �
∂i

�
uiμt

ρ0 � � � ~ρð ~N−1Þ

�
þ ∂b

�
ubμt

ρ0 � � � ~ρð ~N−1Þ

��
½dρ; dα�

¼
Z � ∂iðfiμtÞ

ρ0 � � � nρi � � � ~ρð ~N−1Þ þ ∂b

�
ubμt

ρ0 � � � ~ρð ~N−1Þ

��
½dρ; dα�

⟶
cut

Z
∂bðubμtÞ½dα�: ð3:25Þ

Here we use the relation ui ¼ ρifi and we suppress the
arguments for better readability. In the above equation the
labels run as well over hat and tilde values. The notation
( nρi) means that the inverse propagator with label i is
omitted in the product, since it canceled with an inverse-
propagator factor in the numerator.
Had we first cut and then used (the pullback of) the IBP

vector to obtain a total derivative we would have obtained
the same answer. The special form of the IBP-vector fields
makes this identification possible in the first place: since
they are tangent vectors of the maximal-cut phase spaces
they are well defined intrinsically on the phase spaces and a
pullback is well defined.
It is important to mention that the above reasoning did

not involve the α integration itself and is valid as well at the
level of integrands (or volume forms considering their Lie
derivatives [62]).
In general the cut of a vanishing integral does not need

to give a surface term on phase space, but might vanish,
e.g. due to the choice of the physical integration contour.

1. On-/off-shell map

By relating on-shell and off-shell surface terms we can
exploit intrinsic properties of the on-shell phase spaces.
Every off-shell total derivative from special IBP vectors
gives one on the maximal cut (3.25). In formal terms, we
obtain exact holomorphic forms of maximal degree for
each surface term. We have already seen (Sec. III F) that the
basis of tensor insertions gives linear independent functions
on the maximal-cut spaces. By multiplying with the proper
volume element we obtain a holomorphic form of maximal
degree. Given that the coefficient functions are holomor-
phic and the forms are of maximal degree they are closed;
their outer derivative vanishes. Thus surface terms and
tensors are given as intrinsic objects of the phase spaces.
Master integrands can be counted on shell. The number

of master integrands is given by the number of independent
tensor insertions modulo the number of surface terms. On
shell this amounts to the number of closed modulo exact
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holomorphic forms, that is a topological (global) property
of the phase spaces. Thus a topological property, in fact the
number of half-maximal cycles, counts master integrands.
We will return to counting holomorphic forms in Sec. V.

IV. CONSTRUCTION OF OFF-SHELL
SURFACE TERMS

We now turn to the main result: the construction of off-
shell surface terms which are a central ingredient for the
numerical unitarity approach. The construction differs from
the one at one-loop level [24,25,61] which relied on tensor
algebra and symmetries of one-loop integrals. The present
construction reproduces the one-loop results and applies
also to multiloop topologies. Viewed differently, we obtain
a complete set of IBP relations which might be valuable
beyond its use for the unitarity approach.
The presentation focuses here on planar two-loop

topologies, but gives as well nonplanar surface terms.
Higher-loop generalizations should work in a similar
way as we will indicate briefly (Sec. IV E). We consider
the four-dimensional construction which yields surface
terms that involve the four-dimensional part of the loop
momentum. These terms are as well surface terms in D
dimensions; at one-loop level the four-dimensional numer-
ators were recycled for theD-dimensional approach and we
believe the same construction works here. Nevertheless,
additional IBP generating vectors can be found beyond the
four-dimensional ones [see Eq. (4.11)].
The central objects are specialized IBP generating

vectors, which upon computing divergences, are used
to obtain the complete set of off-shell surface terms (see
Sec. IV D). The master integrals are obtained as conven-
ient tensor insertions in the complement of the surface
terms. The construction works topology by topology and
reuses one-loop results in subtopologies. In order to
introduce the key steps we start with a one-loop example
in Sec. IVA. Next, we turn to the two-loop problem. A
generating set of IBP vectors is obtained first in adapted
coordinates in Sec. IV B and, finally, in canonical notation
in Sec. IV C. The latter is the main result of this article and
has a very natural geometric interpretation as we discuss
in Sec. IV E.
The set of planar generating IBP generating vectors have

the additional property that they leave the integration
measure invariant, i.e. their divergence vanishes. This
simplifies the computation of surface terms to taking
directional derivatives of irreducible numerator tensors.
In this way an overcomplete set of surface terms can be
obtained which are equivalent to a complete set of IBP
relations excluding doubled propagators. We verify the
completeness using on-shell techniques in Sec. V. Here
completeness refers to the fact that the master integrands
cannot be further reduced within the same topology.
Further relations between distinct integral topologies can
be obtained as briefly discussed in Eq. (4.10).

A. A one-loop example

The ingredients we need are an irreducible basis of
tensor insertions, IBP generating vectors and the integra-
tion measure in order to compute total derivatives. It will
turn out that all IBP generating vectors can be generated by
a set of primitive ones, which we have to consider in detail.
Furthermore, it turns out that the primitive IBP vectors
leave the volume element and all propagators invariant.
Under these circumstances the surface terms are directly
obtained by acting with IBP vectors on the irreducible
tensor basis. Although these statements hold more gen-
erally, we will discuss these steps for the triangle integrals.

1. Numerator tensors for triangles

The 4 degrees of freedom of the loop momentum are
parametrized in adapted coordinates by three inverse
propagators ρ1;2;3 and two internal coordinates α1;2 which
are constrained by a single quadratic equation (3.4),

cðα; ρÞ ¼ α1α1 þ α2α2 þ CðρÞ ¼ 0; ð4:1Þ

with CðρÞ given by scalar terms and inverse propagators.
The coordinates are related to the loop momenta through
the contractions αa ¼ ðna;lÞ and the definitions of the
inverse propagators.
Irreducible numerators are given by polynomials in the α

variables (see Sec. III F). For standard power counting we
should consider at most cubic powers of the loop momen-
tum in triangle functions. Thus the tensor insertions
ðα1Þk1ðα2Þk2 ¼ ðn1;lÞk1ðn2;lÞk2 with ðk1þk2Þ≤ 3 suffice.
Out of the ten monomials, only seven are linearly inde-
pendent modulo inverse propagators, as can be seen
by using the quadratic equation cðα; ρÞ ¼ 0, which
relates inverse propagators and internal coordinates. The
three dependent monomials are

P
aðαaÞ2 ∼ −CðρÞ and

α1;2
P

aðαaÞ2 ∼ −α1;2CðρÞ.
It is convenient to make a linear coordinate change to

the coordinates α� ¼ ðα1 � iα2Þ [and n� ¼ ðn1 � in2Þ], so
that the constraint equation is given by

αþα− þ CðρÞ ¼ 0: ð4:2Þ
The reduction to a minimal numerator basis starting from
monomials ðαþÞkþðα−Þk− then simplifies; it amounts to
dropping mixed monomials in αþ and α−, since these are
reducible αþα− ∼ −CðρÞ. The irreducible numerator basis
is then given by the seven terms f1; ðαþÞm; ðα−Þlg with
m; l ≤ 3 and thus the integrands,

~m�kðlÞ
ρ1ρ2ρ3

¼ ðα�Þk
ρ1ρ2ρ3

¼ ðn�;lÞk
ρ1ρ2ρ3

: ð4:3Þ

We will keep using the light-cone coordinates α�
below.
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2. Surface terms for triangles

The main ingredient for this construction are algebraic
vector fields obeying the condition (2.10). We start with the
ansatz

u ¼ u�∂α� þ
X

i¼1;2;3

fiρi∂ρi : ð4:4Þ

As a simplification we set the function fi to zero and focus
on such horizontal vectors which keep propagators fixed. It
turns out that this is no restriction to obtaining a complete
set of surface terms here. Imposing the consistency con-
dition (3.19) gives

0 ¼ uðαþα− þ CðρÞÞ ¼ uþα− þ u−αþ ¼ 0;

⇒ u ¼ iðαþ∂αþ − α−∂α−Þ;
where we gave the simplest solution for the IBP vector. The
generic one is obtained by multiplying u with arbitrary
polynomials in α and ρ variables.
It is instructive to rewrite the obtained IBP vector in

canonical momentum variables,

u ¼ iðαþ∂αþ − α−∂α−Þ ¼ ðα1∂α2 − α2∂α1Þ
¼ ½ðn1;lÞðn2Þμ − ðn2;lÞðn1Þμ�∂μ: ð4:5Þ

A number of remarks can be added here: (1) The IBP
generating vectors are generators of rotations in the trans-
verse space spanned by the na vectors of the vNV basis.
(2) By construction the vector u leaves the inverse
propagators invariant. In canonical coordinates this follows
from the antisymmetry of the vector and the property
ðna; piÞ ¼ 0,

uðl2Þ ¼ 2½ðn1;lÞðn2;lÞ − ðn2;lÞðn1;lÞ� ¼ 0;

uððl − qiÞ2Þ ¼ uðl2 − 2ðl; qiÞÞ
¼ 0 − 2½ðn1;lÞðn2; qiÞ − ðn2;lÞðn1; qiÞ� ¼ 0:

(3) The divergence of the IBP generating vectors vanishes.
In canonical coordinates it is straightforward to compute
the divergence of a vector field, since the volume element is
constant3 and one can verify

∂μuμ ¼ 0: ð4:6Þ

This property simplifies the computation of the divergences
of generic IBP generating vectors which are obtained by
multiplying the primitive ones by polynomial tensors
t ≔ tðlÞ,

∂μðtuμÞ ¼ uμ∂μt: ð4:7Þ

Thus the numerators of the triangle surface terms are direc-
tional derivatives of generic tensors tðlÞ with respect to the
primitive IBP vector. Given that the ρ components have been
set to zero the propagator terms do not have to be considered
when computing the total derivative (or divergence).
After these remarks it is straightforward to put together

the IBP relations of surface terms. First of all, we write
down a redundant set of IBP generating vectors IBP
generating vectors by multiplying the generator u by the
irreducible numerator basis, ðα�Þmuμ. Then we calculate
the divergences and obtain

m̂�kðlÞ
ρ1ρ2ρ3

¼ ∂μ

�ðα�Þkuμ
ρ1ρ2ρ3

�
¼ uμ∂μðα�Þk

ρ1ρ2ρ3

¼ �ikðα�Þk
ρ1ρ2ρ3

¼ �ik
ðn�;lÞk
ρ1ρ2ρ3

: ð4:8Þ

The only irreducible numerator that does not appear is the
constant one (k ¼ 0), which is associated with the master
integral. This is the well-known result for triangle integrals.
Often surface terms are represented as symmetric traceless
tensors; the tensors ðn�μ · · · n�ν Þ are symmetric as well as
traceless since the vectors n� have a vanishing norm.

B. Two-loop IBP-generating vectors—Adapted
coordinates

For a given topology we transform to the adapted
coordinates and use the observation (2.11) that the IBP
vectors have to take the form (2.10) with their ρi compo-
nents being proportional to the associated inverse propa-
gators ρi. With this ansatz we impose the conditions (3.19)
for algebraic vector fields. Given the simplicity of the
equations, we can solve them by inspection.

1. One-loop IBP generating vectors

We require first vectors that leave the quadratic equations
c ¼ ~c ¼ 0 of the individual loops invariant. Interesting IBP
vectors are
(a) Generators of rotations,

u½ab� ¼ αa∂b − αb∂a; ð4:9Þ
and analogously for the tilde coordinates.

(b) Vectors with nontrivial ρ components,

ui ¼ αaρi∂ρi − ρið∂ρicÞ∂a ð4:10Þ
(no summation over the index i). We do not need this
class of vectors here. Nevertheless, it would be
interesting to understand the role of these vectors
better, as they may be used to relate tensor insertions
of distinct integral topologies.

(c) D-dimensional vectors,

ua ¼ αaμb∂μb − ðμbμbÞ∂αa ; ð4:11Þ
3In general coordinate systems the divergence of a vector

field is obtained as its Lie derivative acting on the volume
element [62].

TWO-LOOP INTEGRAND DECOMPOSITION INTO MASTER … PHYSICAL REVIEW D 94, 116015 (2016)

116015-13



where the labels b are summed over. Some explan-
ations are required here. Going beyond four dimen-
sions the dimensionality of the loop momentum is
increased leading to additional transverse directions.
The additional transverse coordinates are convention-
ally called μb ≔ αbþDt . Rotation invariance in the
(D − 4)-dimensional directions is maintained and
made manifest for the above vectors. We give these
vectors for completeness but will not consider them
further here.

For our purposes only the vectors of type (a) will be
important. We will refer to such vectors, which do
not contain components in the propagator directions, as
horizontal vectors.

2. Two-loop IBP generating vectors

Next, we consider the central rung and form linear
combinations of the rotation generators (4.9) which leave
the rung equation ĉ ¼ 0 invariant:
(a) For more than two transverse variables in a given loop

we find that the rung condition singles out a rotation
axis4 and we can write the linear combination

u½abc� ¼ e½ajujbc�; ð4:12Þ
where the notion [abc] denotes the labels’ antisym-
metric combinations. The rotation axis is obtained by
acting with the generator on the rung relation (3.10),

ea ¼ ∂aĉ: ð4:13Þ

The antisymmetric index structure makes sure that the
rung condition is annihilated by the vector (4.12).

(b) Diagonal rotations on the α space and ~α spaces give
valid IBP vectors, whenever the internal spaces are
lined up in at least two directions and the rung relation
is quadratic in the respective α variables. This is the
case in some semigeneric or simple topologies (see
Sec. V B 2). (The coordinates in quadratic parts of the
rung relations must not appear in linear terms.) The
vectors are then

udiag½ab� ¼ u½ab� þ ~u½ab�: ð4:14Þ

(c) Crossed rotations: these can appear, whenever both
sides give rise to at least two internal α coordinates
each,

u½ab�½cd� ¼ ~ecdu½ab� − eab ~u½cd�: ð4:15Þ

Here the antisymmetric quantities eab and ~eab are
given by the infinitesimal transformations of the rung
equation,

~eab ≔ ~u½ab�ĉ; and eab ¼ u½ab�ĉ: ð4:16Þ

(d) Additional vectors can be constructed including in-
verse-propagator derivatives as well as expressions
including D-dimensional components. We will not
discuss these vectors here.

Multiplying the above vectors with generic tensors gives
further valid IBP vectors,Y

a; ~a

αkaa ~α
~k ~a
~a × u; ð4:17Þ

which can be used to construct an overcomplete list of
surface terms. We will discuss the construction of surface
terms in more detail in Sec. IV D.
We refer to the vectors (a)–(c) as horizontal, given that

they generate motions that do not alter the propagator
values. These vectors turn into tangent vectors of the
unitarity-cut phase spaces, when on-shell conditions are
imposed. At the same time they may be viewed as an off-
shell continuation of the tangent bundles of the on-shell
phase spaces to generic propagator values. The continu-
ation is not unique. Here the IBP equation (2.8) with a
vanishing right-hand side as well as the underlying
Lie-algebra structure allows one to control the off-shell
continuation.

3. Nonplanar IBP vectors

The number of transverse variables limits the IBP
vectors that can be introduced. The relevant topologies
are given by ðN; ~N;N̂Þ¼ ð2;2;2Þ and ðN; ~N; N̂Þ ¼ ð2; 2; 3Þ.
The remaining nonplanar topologies have no unconstrained
internal degrees of freedom and no surface terms from
horizontal vectors can be obtained. The (2, 2, 2) topology
has six internal coordinates (α1;2;3 and ~α1;2;3) which
together with four constraints give a two-dimensional
internal space. The (2,2,3) topology starts from five internal
coordinates (α1;2;3 and ~α1;2) and remains with a one
parameter after all constraints are imposed. We base the
construction on the parametrizations inherited from the
planar case (3.15) where two constraints from the central
rung are imposed, ĉ ¼ ĉ0 ¼ 0.
One type of vectors works for both topologies:

u ¼ e½ ~a ~b�e
0
½cd�u½fg� − e½cd�e0½ ~a ~b�u½fg� þ e½cd�e0½fg�u½ ~a ~b�

− e½ ~a ~b�e
0
½fg�u½cd� þ e½fg�e0½ ~a ~b�u½cd� − e½fg�e0½cd�u½ ~a ~b�;

e½ab� ¼ u½ab�ðĉÞ; e0½ab� ¼ u½ab�ðĉ0Þ: ð4:18Þ

Here we use tilde labels to distinguish data of the left
and right loop. For the ðN; ~N; N̂Þ ¼ ð2; 2; 2Þ topology a

4Rotations are enumerated by the inequivalent (D − 2)-
dimensional planes they leave invariant. We use the term axis
in an intuitive way to state that the set of planes is restricted to the
ones that contain the specified axis vector.
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second such vector can be constructed by exchanging all
variables of left and right loop a ↔ ~a.
Two additional primitive vectors may be constructed for

the (2, 2, 2) topology,

u ¼ ~euabc − eu ~a ~b ~c;

u0 ¼ ~eu0abc − eu0
~a ~b ~c

; ð4:19Þ

with the various symbols defined by

uabc ¼ e½ajαjbj∂ jc�; u0abc ¼ e0½ajαjbj∂ jc�;

ea ¼ ∂aðĉÞ; e0a ¼ ∂aðĉ0Þ;
e ¼ e½ajαjbje0jc�; ~e ¼ e½ ~ajαj ~bje

0
j~c�: ð4:20Þ

and similarly for tilde coordinates.

C. Two-loop IBP-generating
vectors—Standard notation

The one-loop rotation generators are given in standard
notation by

u½kl� ¼ ðl; n½kjÞðnjl�; ∂Þ; ð4:21Þ

which allow us to construct the generic two-loop
vectors by composition. This vector matches the one in
Eq. (4.9) up to a coordinate change. This can be verified by
comparing their action on the internal coordinates and
propagators.

1. Two-loop IBP generating vectors

The above primitive IBP vectors (4.12)–(4.15) can be
given as well in canonical notation using the loop momenta
l, ~l and l̂. The momenta are related by momentum
conservation l̂ ¼ −ðl − q0 þ ~l − ~q0 þ pbÞ þ q̂0, but to
simplify expressions we use the dependent momentum l̂.
In the following we set the arbitrary shift vectors to zero
q0 ¼ ~q0 ¼ q̂0 ¼ 0 to simplify the expressions.
The two-loop vectors are given by the following

three types:
(a) Rotation around an axis,

u½ijk� ¼ ðl̂; n½ijÞðl; njjjÞðnjk�; ∂Þ; ð4:22Þ

or with tilde-expressions exchanged with nontilde
ones. Hidden in ðl̂; naÞ we have terms containing
the contractions ð ~l; naÞ which can be rewritten using
the completeness relation δμν ¼

P
~a ~n

~aμ ~n ~a
ν þ

P
~i ~p

μ
~i
~v~iν

to give ½ð ~l; ~n ~aÞð ~n ~a; naÞ þ ð ~l; ~p~iÞð ~v~i; naÞ�. The latter
terms contain the terms ð ~l; ~p~iÞ and thus off-shell
information when expressed through inverse
propagators.

(b) Diagonal rotations,

u½kl� ¼ ðl; n½kjÞðnjl�; ∂Þ þ ð ~l; ~n½kjÞð ~njl�; ~∂Þ: ð4:23Þ

(c) Crossed rotations,

u½ij�½kl� ¼ ð ~l; ~n½kjÞð ~njl�; l̂Þðl; n½ijÞðnjj�; ∂Þ
−ðl; n½ijÞðnjj�; l̂Þð ~l; ~n½kjÞð ~njl�; ~∂Þ: ð4:24Þ

It follows from the symmetrization properties and the
definitions of the transverse space vectors that all these
vectors in fact annihilate inverse propagators. This confirms
that the listed vectors are valid specialized IBP generating
vectors.
Multiplying the above vectors with generic tensors gives

further IBP vectors,

Y
i;j

ðni;lÞkið ~nj; ~lÞkj × u; ð4:25Þ

which can be used to give an overcomplete list of surface
terms. For the planar topologies (Sec. IV C 2) we have
checked that this list is sufficient to generate all surface
terms (see Sec. V).

2. Vectors and topologies

The dimensionality and the alignment of the transverse
spaces of a given integral topology determines which of the
above vectors are present. We collect this information in
Table I. We use the notation of Sec. III D and label integral
topologies by the pairs ðn; ~nÞ ¼ ðN − 1; ~N − 1Þ.
Type-a vectors can be constructed if the dimension

of one-loop transverse spaces at least 3; n < 2 or ~n < 2.
Type-b vectors can be constructed if the common trans-
verse space is at least two dimensional. Vectors of type c
can be constructed if each of the transverse spaces is at least
two dimensional; n < 3 and ~n < 3.
For example, the (1, 2) topology has a physical space

spanned by fp1; ~p1; ~p2g. The left transverse space is
D − 1 ¼ 3 dimensional and the right transverse space
D−2¼2 dimensional. For the “generic” and “semigeneric”
topologies the external momenta fp1; ~p1; ~p2g are linear
independent and thus they span three-dimensional space.
The common transverse space is then one dimensional.
We can construct type-a vectors, since the left transverse
space is three dimensional. The common transverse
space is one dimensional and no type-b vectors exist.
Type-c vectors exist, given that each loop has at least two
transverse directions. For the “simple” (1, 2) topology the
span fp1; ~p1; ~p2g is only two dimensional and the common
transverse space has two dimensions and type-b vectors
can be constructed.
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3. Nonplanar IBP generating vectors

As discussed above the relevant topologies are given by
ðN; ~N; N̂Þ ¼ ð2; 2; 2Þ and ðN; ~N; N̂Þ ¼ ð2; 2; 3Þ.
The first type of vectors may be introduced for both types

of topologies,

u ¼ ~e½ij�e0½kl�u½mn� − e½kl� ~e0½ij�u½mn� þ e½kl�e0½mn� ~u½ij�

− ~e½ij�e0½mn�u½kl� þ e½mn� ~e0½ij�u½kl� − e½mn�e0½kl� ~u½ij�; ð4:26Þ

with the auxiliary definitions

u½ij� ¼ ðn½ij;lÞðnjj�; ∂Þ; ~u½ij� ¼ ð ~n½ij; ~lÞð ~njj�; ~∂Þ;
e½ij� ¼ ðn½ij;lÞðnjj�; l̂Þ; e0½ij� ¼ ðn½ij;lÞðnjj�; p̂1Þ;
~e½ij� ¼ ð ~n½ij; ~lÞð ~njj�; l̂Þ; ~e0½ij� ¼ ð ~n½ij; ~lÞð ~njj�; p̂1Þ:

We used the rung momentum l̂ which may be obtained
from l and ~l by momentum conservation. The arbitrary
shift vectors q0, ~q0 and q̂0 are set to zero for simplicity. For
the ðN; ~N; N̂Þ ¼ ð2; 2; 2Þ topology a second such vector
can be constructed by exchanging all variables of left and
right loop.
Two additional primitive vectors can be constructed for

the (2, 2, 2) topology,

u ¼ ~euijk − e ~uijk;

u0 ¼ ~eu0ijk − e ~u0ijk; ð4:27Þ

with the various symbols defined by

uijk ¼ ðn½ij; l̂Þðnjjj;lÞðnjk�; ∂Þ;
u0ijk ¼ ðn½ij; p̂1Þðnjjj;lÞðnjk�; ∂Þ;
~uijk ¼ ð ~n½ij; l̂Þð ~njjj; ~lÞð ~njk�; ~∂Þ;
~u0ijk ¼ ð ~n½ij; p̂1Þð ~njjj; ~lÞð ~njk�; ~∂Þ;
e ¼ ðn½ij; l̂Þðnjjj;lÞðnjk�; p̂1Þ;
~e ¼ ð ~n½ij; l̂Þð ~njjj; ~lÞð ~njk�; p̂1Þ: ð4:28Þ

D. Surface terms from IBP generating vectors
for planar integrals

The surface terms are obtained by computing the
divergence with the above IBP vectors inserted into the
loop integrands (4.25).
A number of properties of the vectors lead to simplified

expressions in the planar topologies. All vectors annihilate
the inverse propagators. Furthermore, the divergence of
the above primitive IBP vectors (4.22)–(4.24) vanishes: the
total derivative of rotation generators vanishes because of
its antisymmetric index structure. Similarly the diagonal
rotation generators (4.23) as well as the ones around an axis
(4.22) have vanishing divergence. Finally the crossed
rotation generators (4.24) give

∂μu
μ
½ij�½kl� þ ~∂ν ~uν½ij�½kl� ¼ ð ~l; ~n½kjÞð ~njl�; n½jjÞðl; nji�Þ

− ðl; n½ijÞðnjj�; ~n½ljÞð ~l; ~njk�Þ ¼ 0:

ð4:29Þ
In general, inverse propagators have to be included in

computing surface terms from IBP vectors (2.7), however,
with the IBP vectors annihilating all inverse propagators the
derivation simplifies to taking the divergence,

m̂u ¼ ∂μ

�Y
a; ~a

ðna;lÞkað ~n ~a; ~lÞk ~a × uμ
�

þ ~∂ν

�Y
a; ~a

ðna;lÞkað ~n ~a; ~lÞk ~a × ~uν
�

¼ ðuμ∂μ þ ~uν ~∂νÞ
�Y

a; ~a

ðna;lÞkað ~n ~a; ~lÞk ~a
�
: ð4:30Þ

This is the main result of this article providing an over-
complete list of surface terms; these are given by the
action of the above IBP vectors (4.22)–(4.24) on the basis
tensors (3.21). The master integrals have to be taken from
the complement and can be chosen as the lowest powers of
the irreducible numerators. In Sec. V we validate that this
set of surface terms is in fact complete. For the nonplanar
case the divergence-containing terms of the primitive
vectors are not expected to vanish, but can easily be
included.

TABLE I. Here we display how the IBP-vector types are
associated with integral topologies. Three types of IBP vectors
are presented in Sec. IV C. These are associated with rotations
around an axis (type a), diagonal rotations (type b) and crossed
rotations (type c). The integral topologies determine which and
howmany of the three types of vectors can be constructed. Herewe
summarize this information for planar integral topologies. Only
planar topologies of the master integrals with a central rung are
considered. The topologies are specified by (legs left, legs right);
this refers to the attached legs on the left/right loop (see Sec. III D).
The (2,3) topologies have no unconstrained internal coordinates
and, thus, no horizontal IBP vectors can be constructed.

Types of IBP vectors

(Legs left, legs right) Generic Semigeneric Simple

(0, 0) a, b, c � � � � � �
(0, 1) a, b, c a, b, c � � �
(0, 2) a, b, c a, b, c a, b, c
(0, 3) a a a, b, c
(1, 1) a, c a, b, c a, b, c
(1, 2) a, c a, c a, b, c
(1, 3) a a a
(2, 2) c c c
(2, 3) � � � � � � � � �
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It is interesting to note here that numerators m̂u (4.30)
can be inserted as well for topologies with the powers of the
propagators altered,

Z
dDldD ~l

m̂uðl; ~lÞ
ðρ0Þk0 � � � ð~ρð ~N−1ÞÞkð ~N−1Þ

¼ 0; ð4:31Þ

for the horizontal vectors u defined in Secs. IV C and III C.

E. Geometric interpretation

The picture that emerges is that horizontal IBP vectors
are particular infinitesimal rotations in the transverse
spaces. In fact, we may decompose a generic multiloop
diagram into rungs, which join in vertices as displayed in
Fig. 3. For each rung we can use adapted coordinates,
identify an associated transverse space and, as in the one-
loop problems, obtain simple quadratic equations (3.4).
Candidate IBP vectors have to keep the individual quad-
ratic equation invariant and thus must be generators of
rotations. (As above we set propagator components of the
vectors to zero.) At the vertices momentum conservation
has to be imposed yielding additional linear constraints. To
discuss this case further we assume a vertex that joins k
rungs with additional external momentum pv entering,

lk ¼ −ðl1 þ � � � þ lk−1 þ pvÞ:

Typical IBP vectors have to be combinations of the
individual rotation generators, which rotate within the
individual transverse spaces. Momentum conservation then
imposes an interesting compatibility condition between
the rotations; it requires that the individual rotations of the
rung momenta li≠k lead to a resulting rotation in the
transverse space of the dependent momentum lk.
There are a number of interesting questions that should

be addressed. Maybe the most fundamental being the
question if it suffices to consider horizontal IBP vectors
with vanishing ρ components. Furthermore, it would be
interesting to take further advantage of the representation
theory of the generators. For example it should be possible
to decompose polarization states with respect to their
rotation properties under the IBP transformations in order
to reduce state sums in the loops. We leave these and other
questions to the future.

F. Lie-algebra structure

We add a speculative discussion about the fundamental
question, that being how far the physical amplitudes are
determined by unitarity? We want to address this question
leaving the master integrals aside and consider their
coefficients as the physical quantities.
In order to obtain the integral coefficients, we first try to

reconstruct the integrand. Given that perturbative field
theories are algebraic and power-counting conditions hold,
we have a finite number of terms which can be fixed on

shell on generalized cuts. Terms that are missed in one
unitarity cut have to be proportional to inverse propagators
and can be determined if the set of all generalized cuts is
considered. Knowing the integrand, we still have to identify
the physical terms which correspond to the coefficients of
the master integrals.
Given the loop integrand, the physical information can

be extracted once we have a split up into surface terms and
master integrands; it is given by the coefficients di of the
master integrands. The analogous statement holds for the
numerators of unitarity cuts; once the split up into surface
terms (closed forms) and the remaining on-shell master
integrands is known, we can obtain the physical informa-
tion of the unitarity cut as the master coefficients don-shellj .
However, a priori, it is not clear that the same physics

is contained in the two kinds of master coefficients, di
and don-shellj . The core structure for identifying master
integrands is the above IBP vectors in their on-shell or
off-shell versions. Each one of them determines a set of
surface terms and master integrals. Now, the fact that we
find a correspondence between the vectors means that the
on-shell and off-shell integrand decompositions can be
lined up and with it the physical coefficients. In this way
we believe that the off-shell continuation of the IBP vectors
is a fundamental structure allowing the unitarity cuts to
organize the amplitudes’ physics, possibly according to
transcendentality.
We close this discussion by summarizing that two

structures play an important role for the construction of
the IBP vectors: the IBP relation (2.8) and the Lie-algebra
structure. These do not only allow us to construct the
vectors and surface terms but also provide a way to lift on-
shell to off-shell information. The off-shell continuation
works as follows: we first match the on-shell vectors to
rotation generators and then extend the generators off-shell
maintaining their Lie-algebra structure. The remaining
ambiguity proportional to inverse propagators is eliminated
by considering additional unitarity cuts and the horizon-
tality condition.

V. COUNTING MASTER INTEGRANDS ON SHELL

Here we use an on-shell approach to validate our main
results presented in the previous section. To this end we
compare two distinct ways to obtain master integrands
for each of the discussed integral topologies. In the first
approach we compare the linear span of special IBP
relations (surface terms) with the span of irreducible tensor
insertions. The difference of the two gives the master
integrands which we count,

Nmaster ¼ Nirreducible − Nibp−relation: ð5:1Þ
We count modulo inverse propagators which is equivalent
to counting the functions when pulled back to the maximal-
cut phase spaces.
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In the second approach we consider the structure of
on-shell phase spaces directly to count master integrals.
The logic of the on-shell approach goes as follows.
We have shown in Sec. III G that all surface terms from
IBP relations are turned into on-shell surface terms, that is,
exact forms on the maximal cuts. Thus the set of all exact
forms has to encompass the ones from IBP relations
Nibp−relation ≤ Nexact. Furthermore, we have discussed in
Sec. III F that independent tensor insertions remain inde-
pendent functions on the maximal cuts. Thus, when the
tensor integrals are (maximally) cut, they yield linear
independent holomorphic forms of maximal degree on
the maximal-cut phase spaces

Nirreducible ¼ Nclosed:

To exploit these observations we construct the complete
set of exact forms of maximal degree (a combinatorial
problem) and then compare the linear spans of exact and
closed forms. The difference of the two is expected to give
at least a lower bound on the number of master integrals,

N0
master ¼ Nclosed − Nexact;

and is a topological property of the on-shell phase spaces.
We will confirm that we obtain the same number of master
integrals Nmaster ¼ N0

master in both approaches (Sec. V C).
Given that the number of irreducible tensors matches in
both approaches, we conclude that we have found the
maximal set of independent surface terms

Nexact ¼ Nibp−relation:

Thus, we verify that the set of primitive IBP vectors is
complete and generates all surface terms. Similarly, the
set of surface terms is complete, in the sense that their
complement in the irreducible numerator tensors, i.e. the
master integrands, are distinguishable by unitarity cuts.
Nevertheless, symmetric integration contours can still
lead to a small number of linear combinations of master
integrands which integrate to zero.
Throughout the construction we assume generic, non-

vanishing propagator and external masses. This helps in
the following way: on the one hand this mimics the
D-dimensional questions and, on the other hand, the phase
spaces of the maximal cuts are then most regular allowing
us to use standard differential calculus.
We have checked the approach for consistency. We have

two distinct software implementations producing identical
results. We have anchored the results with the examples we
know of: we reproduce the (well-known) one-loop counts
of master integrals and spurious terms. Furthermore, we
reproduce the count of nine master integrals in the double-
box [51,55] and four master integrands [63] in the sunset
topology with generic masses. The results are consistent
with the integral count presented earlier in Ref. [64] which,

however, considers the four-point topologies which often
have vanishing external masses.
Some of the on-shell methodology has become available

in a recent publication [51] for selected multiloop
topologies. These involve typically maximal cuts yielding
one-dimensional phase spaces. We work in a different
direction considering generic multidimensional phase
spaces, exploit it to inspire the off-shell construction and
compute the number of master integrands for all planar
integral topologies.

A. A one-loop example

We first explain the approach in a simple one-loop
example namely the triangle functions. The setup is
analogous to the off-shell construction in Sec. IVA.
There the complete set of surface terms has been obtained
as well as the irreducible tensor insertions. We can read off
the result,

Nmaster ¼ Nirreducible − Nibp−relation ¼ 1;

with Nirreducible ¼ 7 and Nibp−relation ¼ 6.
We next turn to the on-shell approach. Upon imposing

the on-shell conditions ρi ¼ 0, we are left with the on-shell
phase space parametrized by α� which are constrained by
the simplified quadratic equation c ¼ αþα− þ Cð0Þ ¼ 0.

1. Algebraic function ring and differentials

The on-shell phase space is one dimensional and we have
to use 1-forms as integration measures. We first construct
all 0-forms, i.e. algebraic functions and then take outer
derivatives to obtain the exact 1-forms. The ring of
functions is generated by αþ and α−,

ðαþÞkþðα−Þk− ; kþ þ k− ≤ 3; ð5:2Þ
with the rank of the monomials restricted by power
counting.
The independent functions are obtained by using

the relation αþα− ¼ −C with the shorthand notation
C ≔ Cð0Þ. Thus, as in the off-shell case the independent
functions are given by 1, ðαþÞm or ðα−Þn; whenever a mixed
term of αþ and α− appears it can be turned into the constant
C. The set of all differentials are generated by the freely
generated ring of formal expressions dαþ and dα−,

ðαþÞkþðα−Þk−dα�; kþ þ k− ≤ 3: ð5:3Þ
The linear independent differentials are obtained by impos-
ing the on-shell conditions dc ¼ 0 and cdα� ¼ 0 for the
differentials. We can first reduce to 14 terms ðα�Þkdα�
reducing the coefficient functions. Then we use the relation
αþdα− þ α−dαþ ¼ 0 to relate the forms ðαþÞðk>1Þdα− ¼
CðαþÞk−2dαþ (and ðα−Þðk>1Þdαþ ¼ Cðα−Þk−2dα−) to
obtain the seven independent forms (Nclosed ¼ 7),
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ðαþÞkþdαþ; ðα−Þk−dα−; αþdα− ¼ −α−dαþ; k� ≤ 3:

ð5:4Þ

The set of all exact differentials is given by taking outer
derivatives on the function ring (5.3) with ðkþ þ k−Þ ≤ 4.
Losing the constant function we obtain six (Nexact ¼ 6)
exact forms dððα�ÞkÞ ¼ kðα�Þk−1dα�. These forms are
linear independent and no further reduction is needed.
Compared to the set of all 1-forms the exact ones do not
include α−dαþ making it a representative of a master
integral as the only nonexact form. Thus we obtain

N0
master ¼ Nclosed − Nexact ¼ 1;

with Nclosed ¼ 7 and Nexact ¼ 6. In more general cases it is
often convenient to count the combined sets of closed and
exact forms as well as the exact forms, with a relaxed
power-counting restriction on the exact forms to avoid
boundary effects. We observe Nmaster ¼ N0

master ¼ 1 which
is the well-known result. From the topology of the
maximal-cut phase space this is expected, since we have
one nontrivial cycle which the form αþdα− is dual to.
We close with a remark: we can make contact with the

standard on-shell notation. We may solve the quadratic
equation αþα− ¼ −C and use the explicit parametrization
αþ ¼ t and α− ¼ −C=t. The set of tensor insertions is
given by tk and ðC=tÞk. It is straightforward to write down
all closed forms by acting with the outer derivative on the
functions tk with k being a positive or negative integer.
From the generated forms ðtkdt=tÞ only dt=t cannot be
obtained from acting on the functions tk since dt=t¼ dlnðtÞ
with lnðtÞ being nonpolynomial. Again we obtain a single
nontrivial closed form.We conclude that there is one master
integrand with the on-shell representation dt=t and six
surface terms tkdt=t with k ≠ 0 and jkj ≤ 3.

B. Two-loop computations

Computing the off-shell data is straightforward follow-
ing the instructions of Sec. IV D. For the on-shell con-
struction a number of ingredients are needed. We need to
give a classification of the relevant integral topologies and
their on-shell equations. Furthermore, we need an algo-
rithm to construct exact and closed forms. We will turn to
these points in the following.

1. Setup

The maximal cuts are obtained using the adapted
coordinates (Sec. III) by setting the inverse propagators
to zero. Consequently, the maximal-cut phase spaces are
parametrized by the internal coordinates αa and ~α ~a with
quadratic equations (3.8) and (3.9) of the following form
imposed:

c ¼ αaαa þ C ¼ 0;

~c ¼ ~α ~a ~α ~a þ ~C ¼ 0;

ĉ ¼ Ĉa ~aα
a ~α ~a þ Ĉ ~a ~α

~a þ αaĈa þ Ĉ ¼ 0; ð5:5Þ

where C, ~C, Ĉ, Ĉa, Ĉ ~a and the matrices Ĉa ~a are determined
from the explicit kinematic configuration of external
momenta and the integral topology. In the nonplanar case
we had a further equation ĉ0 ¼ 0 but we focus on the planar
cases now.
The function space is generated (nonminimally) by

tensor insertions evaluated on the maximal cut, which is
given here by the monomials,

Y
a; ~a

αkaa ~α
~k ~a
~a : ð5:6Þ

The set of independent (irreducible) functions is obtained
by imposing the on-shell conditions (5.5). Algebraically
one considers the above monomials modulo multiples of
the on-shell conditions; that is modulo the ideal generated
by the on-shell conditions. We assume a fixed set of
external momenta and masses. The coefficients can be
viewed as constants and we can use sufficiently generic
integer-valued expressions for simplicity.
Power counting restricts the monomials. Assuming that a

vertex contributes at most a single power of loop momen-
tum we obtain the restriction

P
aka ≤ ðN þ 1Þ, P ~a

~k ~a ≤
ð ~N þ 1Þ and

P
aka þ

P
~a
~k ~a ≤ N þ ~N. For simplicity we

will impose the power-counting constraint in the following,
although the approach is not limited to power counting
renormalizable theories.

2. Equations and topology

The quadratic equations (5.5) simplify for certain topol-
ogies. This in turn changes the symmetry content, which is
characterized by the IBP vectors, and consequently the
number of master integrals. The final form of the quadratic
equations will be given below for the individual topologies.
The first two quadratic equations are invariant under

orthogonal transformation of the internal space variables αa

and ~α ~a. These rotations may be used to transform the rung
equation to a canonical form. Here we use the vNV vectors
to fix the form of the rung equation and insert integer
coefficients for our computations.
We distinguish integral topologies as well as integrals

with and without momenta (pb and pt in our conventions)
attached to the top and bottom rung vertices. These external
momenta in the rung equations influence the alignment of
the transverse and physical spaces of the respective loops.
Three classes of integrals are distinguished, where we
restrict ourselves to the diagrams with n ¼ ðN − 1Þ legs
and ~n ¼ ð ~N − 1Þ legs attached to left and right loop,
respectively. Without loss of generality we assume
( ~n ≥ n) configurations. The dimensions of the left and
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right transverse spaces are (D − n) and (D − ~n), respec-
tively. Apart from the distinct dimensionality we assume
that the transverse spaces differ by a generic rotation from
one another.
(1) Generic case. These correspond to (n, ~n)-leg dia-

grams with nonvanishing pb and pt. The dimension
of the common physical space is Minðnþ ~n;DÞ
and the common transverse space has dimension
MaxðD − n − ~n; 0Þ. The quadratic equation for the
central rung is given by

XD−n− ~n

i¼1

ðα − ĈÞið ~α − ĈÞi þ
XD− ~n

b; ~b¼D−n− ~nþ1

Ĉb ~bα
b ~α ~b

þ
XD− ~n

~b¼D−n− ~nþ1

Ĉ ~b ~α
~b þ

XD−n

b¼D−n− ~nþ1

αbĈb þ Ĉ ¼ 0:

In the (D − n − ~n)-dimensional common transverse
space we can line up the basis vectors ni and ~ni to
obtain a unit diagonal bilinear term; this justifies the
form of the first term. We have ~n remaining trans-
verse directions from the left loop and n ≤ ~n from
the right loop. The left transverse basis can then be
rotated, so that ( ~n − n) transverse vectors nb>ðD− ~nÞ of
the left loop are orthogonal to the ~n basis vectors ~nb
of the right loop. The n directions fnb; ~nbg
with ðD − n − ~nþ 1Þ ≤ b ≤ ðD − ~nÞ lie at generic
angles with respect to each other. The latter gives
rise to the generic n × n matrix Ĉb ~b ∼ ðnb; ~n ~bÞ.
The linear terms represent the orientation of the
external momenta with respect to the transverse
bases. The vectors Ĉi arise from the inner products
ðpb; niÞ ¼ ðpb; ~niÞ. The constant vectors Ĉb and Ĉ ~b
arise from contractions of the transverse space
vectors of the left/right loop with the physical
directions.

(2) Semigeneric case. By this topology we mean that
only one rung vertex has external momentum
attached. Without loss of generality we assume
pb ¼ 0:

XD−n− ~n

i¼1

αi ~αiþ
XD− ~n

b; ~b¼D−n− ~nþ1

Ĉb ~bα
b ~α ~bþ

XD− ~n

~b¼D−n− ~nþ1

Ĉ ~b ~α
~b

þ
XD−n

b¼D−n− ~nþ1

αbĈbþ Ĉ¼ 0:

The only change compared to the generic case is that
the constant vectors Ĉi vanish since pb ¼ 0.

(3) Simplest case. By this topology we mean that
pb ¼ pt ¼ 0. Relative to the generic case this
implies the following simplifications. The vectors
Ĉi vanish and, furthermore, the external momenta

attached to the left and right loop are linearly
dependent. Thus the dimension of the common
transverse space increases by one,

XD−n− ~nþ1

i¼1

αi ~αi þ
XD− ~n

b; ~b¼D−n− ~nþ2

Ĉb ~bα
b ~α ~b

þ
XD− ~n

~b¼D−n− ~nþ2

Ĉ ~b ~α
~b þ

XD−n

b¼D−n− ~nþ2

αbĈb þ Ĉ ¼ 0:

These equations represent the essence of the two-loop
integrands and give a moduli space of the on-shell con-
ditions. Here the equations are required as the input for the
computation of the exact forms as well as the irreducible
numerators.

3. The algorithm

We will now construct holomorphic differential forms
of maximal degree on the unitarity-cut phase spaces and
relate them to surface terms obtained as IBP relations. We
will compare and count both results as a consistency check
and a validation of the completeness of the surface terms
computed earlier.
The considerations go as follows. Tensor insertions

appear as volume elements (or forms) on the internal
space following the split-up (2.6). Furthermore, although
the coordinates ðαa; ~α ~aÞ are complex valued the volume
element arises from tðl; ~lÞdDldD ~l, which is holomorphic
so that it suffices to consider holomorphic forms and
functions. (In practice this means that we do not need to
use ᾱa, dᾱa etc.) Since the holomorphic forms have
maximal degree they are in fact closed.
In addition to the closed forms we need to consider exact

forms given that all IBP vectors generate exact forms on
shell (Sec. III G). Both types of forms are defined on the
on-shell spaces which are algebraic varieties. It will be
sufficient to consider polynomial forms on these spaces
(see also Sec. V B 4).
Eventually we count master integrals. These are given by

closed forms that are nonexact, i.e. that are not surface
terms.
We will first generate overcomplete sets of closed and

exact forms in a combinatorial way. These sets of forms
will be denoted by Ω̂closed and Ω̂exact, respectively. In a
second step we will reduce Ω̂closed and Ω̂exact by vanishing
forms Ωzero to obtain the linear independent sets Ωclosed ¼
Ω̂closed=Ωzero and Ωexact ¼ Ω̂exact=Ωzero. The vanishing
forms Ωzero have nontrivial algebraic expressions but
vanish when the on-shell conditions are taken into account,
e.g. the 1-form dc is equivalent to zero on-shell dc ∼ 0
(3.20). The form degree matches the dimensionality
of the phase space which we denote by m. For convenience
we label the on-shell conditions by an index i;
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fcig ¼ fc; ~c; ĉ;…g and enumerate the transverse coordi-
nates by a single label i with fαig ¼ fαa; ~α ~ag.
Polynomial n-forms can be obtained in a combinatorial

way; first of all one has to take outer products of the
independent algebraic 1-forms to obtain a basis of n-forms.
Next one multiplies these forms by monomials in the
transverse coordinates to obtain forms up to a fixed
polynomial rank. Such n-forms are given by

ωn ¼
�Y

i

ðαiÞki
�
dαj1 ∧ … ∧ dαjn : ð5:7Þ

The symbols ki denote non-negative integers. We are
interested in the linear span of such forms over the complex
numbers.
The vanishing form Ωzero are given as the linear span of

the following m-forms:
(1) Algebraic m-forms ωm multiplied by an on-shell

relation ci,

ωzero ¼ ciωm: ð5:8Þ

(2) Forms obtained from outer products with a differ-
ential of the on-shell relation,

ωzero ¼ dci ∧ ωm−1: ð5:9Þ

The exact forms ωexact ∈ Ω̂exact are generated by taking
outer derivatives on holomorphic forms of one degree less
than the volume form,

ωexact ¼ dωm−1: ð5:10Þ

The closed forms Ω̂closed are given by the holomorphic
algebraic m-forms (5.7).
With closed, exact and vanishing forms available, the

independent forms are obtained as equivalence classes of
the relations,

ωm ∼ ωm þ ωzero: ð5:11Þ

We thus obtain Ωclosed ¼ Ω̂closed=Ωzero and Ωexact ¼
Ω̂exact=Ωzero.
Finally, we can count master integrals Ωmaster as closed

forms that are nonexact. We compare the linear spans of
Ωclosed and Ωexact; we quotient Ωclosed by Ωexact,

N0
master ¼ dimðΩmasterÞ; Ωmaster ¼ Ωclosed=Ωexact:

In principle the polynomial order of the forms is restricted
by power counting. However, it is often simpler to relax
the power-counting conditions. At least in the present cases
the number of master integrals is not reduced by power-
counting conditions. Furthermore, it is convenient to
compute the dimensionality of Ωmaster indirectly by

N0
master ¼ dimðΩclosed∪ΩexactÞ − dimðΩexactÞ: ð5:12Þ

This helps to avoid boundary effects due to limiting the
polynomial rank of the forms; for a fixed polynomial
degree the set of exact forms does not need to be a subset of
the closed ones.
We implemented the above computations by translating

to a related polynomial problem (see the Appendix). In fact
we can treat the basis forms as auxiliary coordinates. Exact
as well as closed forms then appear as polynomials. The
vanishing forms can be interpreted as polynomial relations
generating an ideal. The constructions of exact and closed
forms then transforms to reducing the polynomials asso-
ciated with exact and closed forms in the extended affine
coordinate ring by the ideal of the vanishing forms.

4. Discussion of the on-shell measure

The counting of master integrands in the previous
subsections was based on polynomial differential forms
on the unitarity-cut phase space. However, while the off-
shell volume element is algebraic, the on-shell one arises
from integrating out delta-function constraints. Thus the
cutting procedure leads to holomorphic forms that differ
from polynomial ones. For the smooth spaces we are
dealing with, the volume element carries a nonsingular
factor. (This factor can be obtained from the coordinate
changes but we will not need it here.)
Nevertheless, we argue that the algebraic count provides

sufficient information. The number of master integrands
is given by a topological quantity and we assume that the
algebraic computation is sufficient to obtain its value.

C. Master integrand counting

We have implemented the construction of closed and
exact polynomial differential forms in Mathematica [65].
As input we used the on-shell conditions given in
Sec. V B 2 and we computed the expected number of
master integrals N0

master. The computations were per-
formed for generic numerical coefficient matrices in the
quadratic equations.
In a second computation we constructed the primitive

IBP vectors using adapted coordinates. We then computed
surface terms using these vectors. (Technically we com-
puted Lie derivatives of the closed algebraic forms with
respect to the IBP vectors.) We confirm that the number of
master integrands Nmaster matches in both approaches,

N0
master ¼ Nmaster; ð5:13Þ

for all considered planar topologies. As a reference
we give the counts of the master integrands below in
Table II.
For completeness we give as well the total number of

irreducible numerator tensors, which were obtained here
by reducing the function ring of the internal coordinates by
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the quadratic relations in Sec. V B 2. These numbers
match the results in the literature [46,50,51,66]. This
check is based on the same input equations as used for
computing surface terms and counting master integrands.
Thus comparing irreducible numerators validates our
input equations.
We omitted results for diagrams with bubbles on internal

lines. These topologies are special cases, since they come
with dependent propagators to start with. These cannot be
set on shell at the same time or, for degenerate internal
masses, lead to doubled propagators. The corresponding
results are marked with an asterisk and referred to as simple
ð0; nÞ topologies. The number of master integrands and
irreducible tensors is given by f1; 1; 1; 2g for the topologies
(0, 1), (0, 2), (0, 3) and (0, 4), respectively.
The count of the master integrands is useful by itself but,

furthermore, confirms the completeness of the IBP gen-
erating vectors given. The count confirms that we have a
complete set of surface terms. Here complete refers to the
property that no further relations between the master
integrands can be found within the same integral topology.
The number of integrands is consistent with partially

available results [50,51,64]. Comparing the number of
master integrals is less simple, given that the results for
integrals and integrands can differ (due to symmetry
properties). Nevertheless, we find the results consistent
with available results.

VI. SUMMARY AND FUTURE DIRECTIONS

We have discussed new methods and results which are
required for multiloop matrix element generators based
on a numerical unitarity approach. The methods form a
synthesis of established techniques to obtain integral
relations (or surface terms) and the unitarity approach.
Interesting connections have been exposed between the
classification of loop integrands, special IBP relations [52]
and topological properties of unitarity-cut phase spaces.
We have presented a number of results: first of all, we

have constructed a complete set of off-shell integral
relations (surface terms) (4.30) for the planar two-loop
topologies. These relations are obtained from a new type of
horizontal IBP generating vectors. We have shown that
their associated IBP relations hold as well if propagator
powers are simply changed (Sec. IV D). In addition, as an
intermediate result we have computed the number of master
integrands which is related to a topological property of the
unitarity-cut phase spaces.
Further results include the geometric interpretation of

IBP vectors and convenient coordinates to identify irre-
ducible tensor insertions (Sec. III F). Moreover, we have
exposed an important link between on-shell and off-shell
integrals of loop amplitudes (Sec. III G), and have iden-
tified a useful Lie-algebra structure in the construction
(Secs. IV B,IV C,IV F).
We have performed a number of checks. The results for

the number of master integrands are consistent with the
partially available results [50,51,64]. Using the identical
input, we have counted irreducible numerator tensors. The
counts match results from earlier constructions of loop
integrands [44–46,66]. We have obtained surface terms in
two distinct ways; an explicit construction using a gen-
erating set of IBP vectors as well as a combinatorial, on-
shell approach. The fact that the results agree demonstrates
that a complete set of surface terms has been obtained. This
implies as well that the classification of the generating IBP
vectors is complete for the generic planar integrals.
A number of formal questions have to be addressed for

computing multiloop amplitudes based on the presented
methods. First of all, it will be important to verify that the
provided IBP vectors suffice for integral topologies with
vanishing external masses. This is plausible from factori-
zation properties but needs to be checked in detail. Second,
it will be interesting to understand the role of horizontal
IBP vectors in higher-loop computations. These vectors
are an off-shell continuation of the tangent vectors of the
unitarity-cut phase spaces and should continue to be the
core structure for the construction of multiloop integrands.
Third, we have exposed a Lie-algebra structure, given that
the IBP vectors are generators of rotations. It will be useful
to exploit this to simplify computations further (e.g. reduce
state sums). Furthermore, with generic expressions given,
one may study the integrands’ dependence on external
momenta (e.g. obtain differential equations for master

TABLE II. The number of master integrands are given. No
symmetry properties of the integrals are taken into account. Only
planar topologies of the master integrals with a central rung are
considered. The topologies are specified by (legs left, legs right);
this refers to the attached legs on the left/right loop and is denoted
as well by (N − 1, ~N − 1) in the text. The number of master
integrands are obtained in our on-shell approach and validated
using off-shell IBP vectors. The counts refer to integrals with
standard power counting of QCD-like theories but are expected to
hold as well beyond this (e.g. gravity theories). For completeness,
the total number of irreducible tensor insertions for the given
topologies is displayed. The numbers hold for QCD-like power
counting. The asterisk marks topologies with bubble diagrams on
internal lines which have doubled/dependent propagators to start
with.

# master integrands

(Legs left,
legs right) Generic Semigeneric Simple

Irred.
tensors

(0, 0) 4 1 1 42
(0, 1) 4 1 � 80
(0, 2) 6 1 � 65
(0, 3) 2 2 � 18
(1, 1) 9 5 1 111
(1, 2) 8 8 1 69
(1, 3) 2 2 2 14
(2, 2) 9 9 9 32
(2, 3) 4 4 4 4

HARALD ITA PHYSICAL REVIEW D 94, 116015 (2016)

116015-22



integrals). Finally, interesting extensions include as well the
application of the surface terms to the computation of real
radiation contributions and subtraction terms.
The best combination of analytical and numerical

methods for multiloop computations is not obvious in
the moment, however, we are motivated by the one-loop
successes of the unitarity method to aim for analogous
strategy for multiloop computations. The computation of
NNLO QCD cross sections is a very challenging task given
that so many pieces have to be controlled and combined.
We hope that the methods discussed in this article can
contribute to new precision predictions for the LHC
experiments in the long run.
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APPENDIX: TECHNICAL CONSTRUCTION OF
POLYNOMIAL FORMS

We can relate the problem of constructing differential
forms on smooth algebraic surfaces to reducing an affine
coordinate ring by an ideal. We have already encountered
the reduction of a polynomial ring by an ideal when
constructing irreducible numerators (Sec. III F): to this
end we write down all polynomials of the internal α
variables and use the on-shell relations ρi ¼ 0 and the
constraints c ¼ ~c ¼ ĉ ¼ 0 to identify equivalent polyno-
mials. The construction of forms is related to this. We start
with the standard form calculus in the affine space and
consider differential forms with polynomial coefficient
functions. When we pull back the forms to the maximal-
cut phase spaces, initially independent forms become
linearly dependent. In order to reduce the linearly depen-
dent forms we use a technical trick; we collect the basis
forms as well as the affine coordinates into an extended
coordinate ring (see. [67], Chap. II.8 on differentials for
inspiration),

coordinate ring: fα1; α2;…; y1 ¼ dα1; y2 ¼ dα2;…g:
ðA1Þ

When pulled back to the maximal-cut phase space, combi-
nations of the forms vanish, which is expressed by an ideal
in the auxiliary space of α and y coordinates,

generators of ideal: fc; ~c; ĉ;…; dc; d~c; dĉ;…; yiyj;…g:
ðA2Þ

Here the differentials of the on-shell relations dc ¼
ð∂acÞdαa ¼ ð∂acÞya give polynomial equations mixing
α’s and y’s. Furthermore, the relations yiyj ¼ 0 constrain
us to form degree one. The set of linearly independent
forms is then obtained by reducing polynomials in α’s
and y’s which are linear in yb by the ideal.
For forms of generic degree (n) one proceeds

analogously. Again one includes all basis forms as
coordinates,

coordinate ring: fα1; α2;…; y½i1;…;in� ¼ dα½i1;i2;…;in�;…g
with dα½i1;i2;…;in� ≔ dαi1 ∧ … ∧ dαin ;

and defines relations (an ideal) by the original on-shell
relations, their derivatives as well as squares of the
differentials,

generators of ideal: fc; ~c;…; dc ∧ dα½i1;i2;…in−1�;…;

d~c ∧ dα½i1;i2;…in−1�;…;

y½i1;i2;…;in�y½j1;i2;…;jn�;…g;

where the expressions dc ∧ dα½i1;i2;…in−1� have to be written
as linear expressions in the coordinates y½i1;…in�,

dcj ∧ dα½i1;i2;…;in−1� ¼ ∂bcjdαb ∧ dα½i1;i2;…;in−1�

¼ ð∂bcjÞy½b;i1;i2;…;in−1�:

Thus we can start with the set of n-forms with polynomial
coefficient functions and then use the polynomial reduction
procedures to obtain independent n-forms of a smooth
algebraic variety. The reduction of exact forms can be
done in a similar way, where one first generates exact
forms and then interprets them as polynomials in the
auxiliary coordinate ring. The reduction steps work as
described above.
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