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Lepton mass effects play a decisive role in the description of elastic lepton-proton scattering when the
beam’s energy is comparable to the mass of the lepton. The future Muon Scattering Experiment (MUSE)
experiment, which is devised to solve the “Proton Radius Puzzle,” is going to cover the corresponding
kinematic region for a scattering of muons by a proton target. We anticipate that helicity-flip meson
exchanges will make a difference in the comparison of elastic electron-proton vs muon-proton scattering in
MUSE. In this article, we estimate the σ meson exchange contribution in the t channel. This contribution,
mediated by two-photon coupling of σ, is calculated to be at most ∼0.1% for muons in the kinematics of
MUSE, and it appears to be about 3 orders of magnitude larger than for electrons because of the lepton-
mass difference.
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I. INTRODUCTION

Elastic lepton-nucleon scattering has proven to be a
valuable tool to gain insight into the structure of the
nucleon. Over the past few decades, development of
experimental technologies has made it possible to reveal
effects in observed cross sections or polarization asymme-
tries that are on the order of few tenths of a percent. Such
precision of experimental measurements requires theoreti-
cal calculations of electromagnetic corrections to be done
beyond the leading-order Born approximation. In particu-
lar, two-photon exchange (TPE) effects, which are found to
contribute at the level of few percent [1,2], appear to be
important in this context. At momentum transfers
Q2 ≲ 1 GeV2, TPE calculated within a hadronic frame-
work that only includes nucleon-size effects [2] is in good
agreement with new experimental data on charge asymme-
tries of electron vs positron scattering on the proton target
[3,4]. However, when we deal with a kinematic region
where the lepton’s mass m cannot be neglected, the effects
due to lepton helicity flip need to be taken into consid-
eration, potentially leading to larger theoretical uncertain-
ties that are not constrained by electron vs positron
comparison. It should be noted that TPE calculations
require the knowledge of a virtual Compton scattering
amplitude on the nucleon, the Born terms of which were
included in calculations of Ref. [5]. Our objective is to
consider inelastic terms that are most sensitive to the lepton
mass, namely, t-channel exchange of scalar mesons.
The real part of the TPE amplitude, which affects the

analyses of cross sections, can be studied through the
difference between elastic lepton-nucleon and antilepton-
nucleon scattering. Such a technique is going to be
implemented, for instance, in the future Muon Scattering

Experiment (MUSE) at Paul Scherrer Institute,
Switzerland. MUSE is motivated by the recent measure-
ments [6,7] of the charge radius of a proton rch. Both
results, rch ¼ 0.84184ð67Þ fm and rch ¼ 0.84087ð39Þ fm,
respectively, were obtained using Lamb shift measurements
in the muonic hydrogen atom and are inconsistent with
older values of the “radius” collected in nonmuonic experi-
ments. These nonmuonic measurements include two inde-
pendent determinations of the charge radius of the proton:
from elastic e − p scattering and from Lamb shift mea-
surements in the hydrogen atom. The combined electron-
based result is rch ¼ 0.8775ð51Þ fm [8]. This means that
the discrepancy between muonic and electronic results is
> 7σ. Because of this, the problem has been named the
“Proton Radius Puzzle” and has led to the proposal [9] for
the MUSE experiment. This experiment will measure
simultaneously elastic μ� − p and e� − p scattering.
This will enable experimentalists to compare e vs μ charge
radii measured in the same setting, as well as test several
possible explanations of the puzzle, such as the lepton
universality violation, physics beyond the Standard Model,
and enhanced TPE contributions.
The goal of MUSE is to extract the charge radius of the

proton with error bars similar to previous e − p measure-
ments. As a result, in order to have systematic uncertainties
under control, the relative unpolarized cross section observ-
ables have to be calculated at a level of few tenths of per
cent, making theoretical estimations of QED corrections,
and TPE in particular, extremely important. These calcu-
lations are complicated by the fact that kinematic con-
ditions of MUSE are such that the beam momenta in the
100–200 MeV range do not allow us to use the ultra-
relativistic (UR) limit (m → 0) in muon estimations.
Therefore, as it was pointed out above, the helicity-flip
meson-exchange amplitudes will play an important role
in TPE calculations. Precision requirements of MUSE
suggest that the interference of these amplitudes with the
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one-photon exchange (OPE) amplitude can be substantial
enough to be taken into account. We would expect the
largest contribution there to be coming from the long-range
light meson exchanges in the t channel, making neutral
pions look like the most tempting candidates for the leading
contribution (see Fig. 1). It appears, however, that the
interference between the vector current, which represents
the one-photon-exchange process, and the pseudoscalar
current, which represents the pion exchange, is zero for the
case of unpolarized particles. Consequently, we predict the
largest nonvanishing t-channel interference contribution to
be obtained from the scalar σ [also known as f0ð500Þ]
meson exchange. This exchange manifests itself in the
nucleon’s polarizabilities estimations [10] and in the D term
of the nucleon’s generalized parton distributions [11]; for
the detailed discussion of f0ð500Þ properties, please see the
review in Ref. [12]. Besides that, the idea to consider scalar,
pseudoscalar, and tensor meson exchanges in an elastic
lepton-proton scattering was also discussed in Ref. [13].
However, the authors of that paper considered only the
scattering of ultrarelativistic electrons, thereby neglecting
the mass-dependent contribution.
In this paper, we estimate the leading σ meson exchange

contribution to the unpolarized scattering cross section in
MUSE kinematics and show that the analogous (calculated
to the same order in the fine structure constant) single-pion
exchange contribution is zero.

II. ELASTIC LEPTON-PROTON
SCATTERING FORMALISM

To describe the following elastic lepton scattering off of a
proton

lðk1Þ þ pðp1Þ → lðk2Þ þ pðp2Þ; ð1Þ

we will use the Mandelstam variables

s ¼ ðk1 þ p1Þ2; t ¼ q2 ¼ ðk1 − k2Þ2;
u ¼ ðk1 − p2Þ2: ð2Þ

The left diagram in Fig. 1 represents the leading-order
OPE contribution. The corresponding lepton and proton
vector currents are given by

jvμ ¼ ūðk2Þγμuðk1Þ; ð3Þ

Jvμ ¼ Ūðp2Þ
�
γμF1ðQ2Þ þ iσμνqν

2M
F2ðQ2Þ

�
Uðp1Þ; ð4Þ

where M is the mass of the proton, F1ðQ2Þ and F2ðQ2Þ
are the Dirac and Pauli form factors, σμν ≡ i

2
½γμ; γν�,

Q2 ≡ −q2 > 0.
The scalar (pseudoscalar) σ (π) meson exchange process

is described by the right diagram in Fig. 1. Associated
scalar (pseudoscalar) currents can be written as

js ¼ fsūðk2Þuðk1Þ; jp ¼ fpūðk2Þγ5uðk1Þ;
Js ¼ gsŪðp2ÞUðp1Þ; Jp ¼ gpŪðp2Þγ5Uðp1Þ; ð5Þ

where fsðpÞ ¼ fsðpÞðQ2Þ and gsðpÞ ¼ gsðpÞðQ2Þ are the form
factors that describe the coupling of σ (π) to the lepton and
proton, correspondingly. There is no information available
about the fsðpÞ form factor. Therefore, we will introduce a
theoretical model to estimate the leading contribution to
this quantity. This model is discussed in Sec. IV.
The square of the matrix element that includes one

photon, one scalar meson (mass ms), and one pseudoscalar
meson (mass mp) exchanges is given by

jMj2 ¼ jMv þMs þMpj2
≈ jMj21γ þ 2Re½MvMs�� þ 2Re½MvMp��; ð6Þ

where for the l� scattering we have

M1γ ≡Mv ¼∓ ie2

Q2
jvμJvμ;

MsðpÞ ¼ −
i

Q2 þm2
sðpÞ

jsðpÞJsðpÞ:

Note that in Eq. (6) we neglected jMsj2, jMpj2, MsMp�,
and MpMs� terms. These terms are irrelevant for estima-
tions within the required level of accuracy. The detailed
derivation of the explicit form of the second term in Eq. (6)
as well as the proof that the third term in this equation is
zero are given in the Appendix.

III. BORN APPROXIMATION

The most convenient frame to calculate the first term in
Eq. (6) is the Breit frame, our notations for which are
summarized in the left column of Eq. (7). The Breit frame is
defined as the frame in which there is no energy transfer
between the lepton and the proton q ¼ ð0; ~qBÞ. It makes
the square of the 4-momentum transfer to be simply
related to the square of its spatial component: q2 ¼ −~q2B.
Consequently, the transition from the Breit frame to any
other frame can be performed in a straightforward manner,

FIG. 1. One-photon and one σ (π) meson exchange diagrams.
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Breit frame∶8>>>>><
>>>>>:

p1 ¼ ðEB;−
~qB
2
Þ;

p2 ¼ ðEB;
~qB
2
Þ;

k1 ¼ ðεB; ~k1BÞ;
k2 ¼ ðεB; ~k2BÞ:

Lab frame∶8>>>>><
>>>>>:

p1 ¼ ðM; 0Þ;
p2 ¼ ðE2; ~p2Þ;
k1 ¼ ðε1; ~k1Þ;
k2 ¼ ðε2; ~k2Þ:

ð7Þ

The details of deriving the result, using the Born
approximation in the Breit frame, can be found in
Ref. [14]. The only peculiarity that needs to be taken into
account due to the nonzero mass of the lepton is the
modified energy of the lepton

εB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ Q2

4 sin2 θB
2

s
;

where θB is the scattering angle in the Breit frame and m is
the lepton’s mass.
To be consistent with MUSE, we assume that the beam

and the target have no polarization preference. This means
that the matrix element has to be summed over the final
polarizations and averaged over initial ones. Then, the
corresponding Breit frame result obtains the form

jMj21γ;B ¼ 4M2e4

Q2

�
4m2

Q2
G2

EðQ2Þ þ 2τG2
MðQ2Þ

þ ðG2
EðQ2Þ þ τG2

MðQ2ÞÞcot2 θB
2

�
; ð8Þ

with τ≡ Q2

4M2 > 0. The electric GEðQ2Þ and magnetic
GMðQ2Þ Sachs form factors are defined by

GEðQ2Þ ¼ F1ðQ2Þ − τF2ðQ2Þ; ð9Þ

GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ: ð10Þ

These form factors fall off similarly with Q2 in the
kinematic region of our interest (Q2 ≲ 0.1 GeV2). Thus, to
a good approximation, the underlying parametrization can
be chosen to describe their Q2 behavior [15],

GEðQ2Þ ¼
�
1þQ2

Λ2

�
−2
; GMðQ2Þ ¼ μGEðQ2Þ;

with Λ2 ¼ 0.71 GeV2 and the magnetic moment of the
proton μ ¼ 2.793.
The Breit frame result Eq. (8) can be converted to the lab

frame through the simple relation between the
corresponding scattering angles; our notation for the lab
frame is shown in the right column of Eq. (7). As a
consequence, the Born approximation matrix element in the
lab frame is

jMj21γ ¼
4M2e4

Q2

�
4m2

Q2
G2

EðQ2Þ þ 2τG2
MðQ2Þ

þ ðG2
EðQ2Þ þ τG2

MðQ2ÞÞ 4~k21~k
2
2

Q4ð1þ τÞ sin
2θ

�
; ð11Þ

where θ is the scattering angle. From now on, all the
expressions will be given in the lab frame.
The differential cross section for the described process,

Eq. (1), can be written as [16]

dσ
dΩ

¼ 1

ð4πÞ2
1

4M2

~k22
j~k1jðj~k2j þ ε1

M j~k2j − ε2
M j~k1j cos θÞ

jMj2;

ð12Þ

where the energy of the scattered lepton can be recon-
structed from the knowledge of the scattering angle and
initial parameters as [17]

ε2 ¼
ðε1 þMÞðε1M þm2Þ þ ~k21 cos θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −m2sin2θ

p

ðε1 þMÞ2 − ~k21cos2θ
:

ð13Þ

Finally, one can find the expression for the differential
cross section in the Born approximation by plugging
Eq. (11) into Eq. (12),

dσ1γ
dΩ

¼
�
G2

EðQ2Þ þ τG2
MðQ2Þ

1þ τ

þ Q2

4ε1ε2 −Q2

�
2τ −

m2

M2

�
G2

MðQ2Þ
�
dσM
dΩ

¼ 1

ϵmð1þ τÞ ½τG
2
MðQ2Þ þ ϵmG2

EðQ2Þ� dσM
dΩ

; ð14Þ

where

4ε1ε2 −Q2 ¼ ðs − uÞ2 −Q2ð4M2 þQ2Þ
4M2

and the Mott cross section is given by

dσM
dΩ

¼ α2

Q4

ð4ε1ε2 −Q2Þ~k22
j~k1jðj~k2j þ ε1

M j~k2j − ε2
M j~k1j cos θÞ

ð15Þ

with the fine-structure constant α≡ e2
4π and Q2 ¼ 2ðε1ε2 −

j~k1jj~k2j cos θ −m2Þ. This is in an agreement with results
of Ref. [18].
The quantity ϵm describes a measure of the longitudinal

polarization of the virtual photon in the UR limit, and it can
be found to be
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ϵ−1m ¼ 1 − 2ð1þ τÞ 2m2 −Q2

4ε1ε2 −Q2

¼ ðs − uÞ2 þQ2ð4M2 þQ2Þ − 4m2ð4M2 þQ2Þ
ðs − uÞ2 −Q2ð4M2 þQ2Þ :

ð16Þ

The reason we write the Born results in the form of
Eqs. (14)–(16) is because they can be easily compared
to the well-known UR expressions [19]

�
dσ1γ
dΩ

�
UR

¼ ½τG2
MðQ2Þ þ ϵG2

EðQ2Þ�
ϵð1þ τÞ

�
dσM
dΩ

�
UR

;

�
dσM
dΩ

�
UR

¼ α2

4ε21

cos2 θ
2

sin4 θ
2

ε2
ε1
;

ϵ−1 ¼ ðϵ−1m ÞUR ¼ 1þ 2ð1þ τÞtan2 θ
2
:

IV. INTERFERENCE WITH σ EXCHANGE

The σ meson is the lightest scalar meson observed in
nature, and it describes a medium-range nucleon-nucleon
attraction [20,21], which is responsible for the nuclear
binding. The precise position of σ’s pole is difficult to
establish because it has a large decay width and because it
cannot be explained by a naive Breit-Wigner resonance.
For these reasons, a considerable number of different
models exists to characterize the properties of σ. These
models give us various estimations of the coupling of σ to
the proton. In our calculations, we choose to follow the
predictions of models [10] and [22]. The former approach
uses the effective hadron Lagrangian in the quark model to
calculate σNN coupling. The latter one, in its turn, employs
the knowledge about the Compton scattering amplitudes
and the electromagnetic polarizabilities. As a result, these
models provide us with following couplings to the proton:
gσpp ¼ 3 ÷ 7 (mσ ¼ 500 MeV) and gσpp ¼ 13.1 ÷ 13.2
(mσ ¼ 666 MeV), respectively.
The second term in Eq. (6) describes the interference

between the left and right diagrams of Fig. 1. One can
show (see Appendix) that the appropriate matrix element
describing l� scattering off of the proton is given by

2Re½MvMs�� ¼∓ 8mMðs − uÞe2
Q2ðQ2 þm2

σÞ
GEðQ2ÞgσppRe½fs�:

ð17Þ

Note that the obtained expression, Eq. (17), is propor-
tional to the real part of σ’s coupling to the lepton as well as
to the mass of the lepton, which means that it is going to be
enhanced considerably for the muons.
The form factor fs can be found by considering all the

possible ways in which σ can couple to the lepton. We

claim that the dominant contribution there will be provided
by the diagram shown in Fig. 2. Having the coupling of σ to
the lepton identified, we can construct the corresponding
amplitude

T ¼ ie4
Z

d4p
ð2πÞ4 ūðk2Þ

γνðpþmÞγμ
p2 −m2

uðk1Þ
1

q21
Δμν

1

q22
≡ ūðk2Þfsuðk1Þ; ð18Þ

where the integration is performed over the momentum p
of the intermediate lepton, q1 and q2 are the momenta
of exchange photons that carry polarizations μ and ν,
respectively. Δμν depicts the coupling of virtual σ to two
virtual photons. The most general form for Δμν is given
in [23]

Δμν ¼ Aðq2; q21; q22Þðgμνðq1 · q2Þ − q1νq2μÞ þ Bðq2; q21; q22Þ
× ðq21q2μ − ðq1 · q2Þq1μÞðq22q1ν − ðq1 · q2Þq2νÞ:

ð19Þ

As we can see, this coupling consists of two terms: the
first term represents transverse photons exchanges, and the
second term represents longitudinal photons exchanges.
The latter one includes the form factor Bðq2; q21; q22Þ,
which is challenging to model due to the experimental
inability to measure longitudinal photons’ contribution.
Since the main goal of this article is to estimate the leading
helicity-flip contribution for the scattering of muons in the
given kinematics (related to future MUSE measurements),
we will consider only the contribution from transverse
photons and neglect the contribution from longitudinal
photons (that may be of the same order).
To calculate the first term in Eq. (19), we use the vector

meson dominance (VMD) model to depict the correspond-
ing form factor Aðq2; q21; q22Þ. Here, we should note that we
assume that the σ meson couples each photon via a ρ
meson. As a result, the Δμν vertex takes the form

Δμν ¼
gσγγ�

1 − q2
1

m2
ρ

��
1 − q2

2

m2
ρ

� ½gμνðq1 · q2Þ − q1νq2μ�; ð20Þ

FIG. 2. Coupling of σ meson to the lepton via two-photon
conversion.
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wheremρ is the mass of the vector ρmeson and gσγγ is the σ
meson coupling constant to two real photons. gσγγ can be
found from the knowledge of the decay width Γσ→γγ . Both
quantities are related via

gσγγ ¼
�
4Γσ→γγ

πα2m3
σ

�
1=2

: ð21Þ

We do not fix a value of the decay width Γσ→γγ

but instead use a range obtained in the partial wave
amplitudes analysis [24], Γσ→γγ ¼ 1.8 ÷ 2.3 keV
(mσ ¼ 500 MeV), as well as the range obtained in the
Compton scattering analysis [10], Γσ→γγ ¼ 2.3 ÷
2.9 keV (mσ ¼ 666 MeV).
In VMD, the amplitude T in Eq. (18) takes the form of

Passarino-Veltman’s five-point functions. Using the under-
lying identity from Ref. [25] and applying it twice, as
necessary,

1

AB
¼ 1

B − A

�
1

A
−
1

B

�
;

one can show that the five-point function in Eq. (18) can be
reduced to the sum of standard three-point functions due to
the fact that only two of 4-momenta in the σγγ vertex are
independent. We calculate these three-point functions
numerically using the LoopTools software [26] and obtain
the form factor’s fs dependence on Q2 shown in Figs. 3
and 4.
It should be noted that the Δμν vertex in VMD falls

off as ∼Q−4 at high momentum transfers. This is consistent
with the asymptotic scaling rules [27] if the σ meson
is viewed as a quasibound state of two pions (or a
qqq̄q̄ state).

Once the form factor fs was evaluated, the interfer-
ence cross section dσI

dΩ was found by plugging Eq. (17)
into Eq. (12). The interference contribution is charge
dependent. Therefore, to find the difference between
elastic lþ − p and l− − p scattering, it is convenient to
define

dσ�

dΩ
¼ dσ1γ

dΩ
� dσI

dΩ
≡ dσ1γ

dΩ
ð1� δÞ: ð22Þ

Then, the asymmetry A is given exactly by δ,

A≡
dσþ
dΩ − dσ−

dΩ
dσþ
dΩ þ dσ−

dΩ

¼ δ: ð23Þ

The corresponding angular dependence of δ is shown in
Fig. 5 at the momenta of MUSE. It is worth mentioning that
the value of gσpp coupling, in general, depends on the
momentum transfer squared. However, this dependence
affects negligibly the final calculations in ourQ2 range. For
instance, if we choose the well-tested OBE potential
dependence [20] as the model, our final result changes
relatively only by 0.4%.
Analytically, one can find that

δ ¼ −
m
πα

gσppGEðQ2ÞRe½fs�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τð1þ τÞð1 − ~ϵ2mÞM2 þm2ð1þ τÞð1 − ~ϵmÞ2

p
½ð~ϵm þ ηÞG2

EðQ2Þ þ τG2
MðQ2Þ�ðQ2 þm2

σÞ
;

ð24Þ
where

η ¼ 2m2

Q2
ð1 − ~ϵmÞ; ð25Þ

0.0 0.1 0.2 0.3 0.4 0.5

1.0

0.5

0.0

0.5

Q2,GeV2

R
e

f s
,p

pm
Electron

FIG. 3. Electron coupling form factor fs for Γσ→γγ ¼ 1.8 ÷
2.3 keV [24] (shaded region, solid lines, mσ ¼ 500 MeV) and
Γσ→γγ ¼ 2.3 ÷ 2.9 keV [10] (transparent region, dashed lines,
mσ ¼ 666 MeV).

0.0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

Q2,GeV2

R
e

f s
,p

pm

Muon

FIG. 4. Muon coupling form factor fs for Γσ→γγ ¼
1.8 ÷ 2.3 keV [24] (shaded region, solid lines, mσ ¼
500 MeV) and Γσ→γγ ¼ 2.3 ÷ 2.9 keV [10] (transparent region,
dashed lines, mσ ¼ 666 MeV).
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~ϵm ¼ ðs − uÞ2 −Q2ð4M2 þQ2Þ − 4m2ð4M2 þQ2Þ
ðs − uÞ2 þQ2ð4M2 þQ2Þ − 4m2ð4M2 þQ2Þ

¼ Q2ϵm − 2m2

Q2 − 2m2
: ð26Þ

Note that ~ϵm ¼ 1 at Q2 ¼ 0 and ~ϵm → 0 at Q2 ¼ Q2
max.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we calculated the contribution from the
scalar σ meson exchange to the differential cross section of
elastic lepton-proton scattering. To obtain the result, we
revised the ultrarelativistic Born approximation calcula-
tions, taking into account a nonzero mass of the lepton. Our
main finding is that the σ exchange contribution is about 3
orders in magnitude larger for the massive muon than for
the much lighter electron in the kinematics of MUSE. Our
result can be treated as an additional and independent
contribution to TPE calculations of Ref. [5], which were
performed under the assumption of the elastic (proton)

intermediate state. Our contribution appears to be on the
order of ≲0.1% for muons. It is comparable in magnitude
with the inelastic contribution that was calculated in
Ref. [28] by employing the forward doubly virtual
Compton scattering approximation, and it is about five
times smaller than the leading (elastic) contribution.
In summary, we have evaluated explicitly the contribu-

tion of t-channel σ meson exchange to TPE. This con-
tribution is proportional to the lepton mass, and therefore it
is strongly enhanced for muons and suppressed for the
electrons in MUSE kinematics.
The obtained result was compared with the unpolarized

lepton-proton scatteringpredictions ofRef. [29]. In that paper,
the authors discuss the effects due to a light scalar boson
exchange with mϕ ∼ 1 MeV. In particular, they have found
that for the scatteringofmuons the corresponding interference
contribution is on the order of 10−6. The boson considered
there possesses exactly the same properties as the σ meson,
besides the fact that the mass of the σ meson and the mass of
the scalar bosonaredifferent.Therefore, itwasnotdifficult for
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FIG. 5. Asymmetry for Γσ→γγ ¼ 1.8 ÷ 2.3 keV, gσpp ¼ 3 ÷ 7 (shaded region, solid lines, mσ ¼ 500 MeV) and
Γσ→γγ ¼ 2.3 ÷ 2.9 keV, gσpp ¼ 13.1 ÷ 13.2 (transparent region, dashed lines, mσ ¼ 666 MeV).
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us to check our calculations for mσ ¼ 1 MeV. Our estima-
tions are inagoodagreementwithRef. [29]. It shouldbenoted
that the increased contribution due to the smaller mass in the
bosons’propagator is compensated by the smaller value of the
coupling gϕpp.
The main impediment to performing our calculations

was the lack of knowledge about the virtual σ meson
coupling to two photons. In this work, we performed an
estimation of this coupling accounting only for the cou-
pling to the transverse photons in the vector meson
dominance model. The prediction showed little sensitivity
to the momentum dependence of gσpp coupling in the
considered kinematics.
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APPENDIX: CALCULATION OF INTERFERENCE
CONTRIBUTIONS

In this Appendix, we provide the derivation of the
interference between vector (γ-exchange) and scalar (σ
meson exchange) currents as well as between vector and
pseudoscalar (π meson exchange) currents for the unpo-
larized lepton scattering off of the proton target. Both
contributions can be calculated by using expressions for the
currents given in Eqs. (3)–(5) and by following the standard
procedure of summing over the final and averaging over
initial spin states of the particles. As a result, one can
find that

2Re½jνμJνμðjsJsÞ�� ¼
1

4
f�sg�s

�
F1ðQ2ÞTr½ðk2 þmÞγμðk1 þmÞ�Tr½ðp2 þMÞγμðp1 þMÞ�

þ i
2M

F2ðQ2ÞTr½ðk2 þmÞγμðk1 þmÞ�Tr½ðp2 þMÞσμνqνðp1 þMÞ�
�

þ 1

4
fs gs

�
F�
1ðQ2ÞTr½ðk2 þmÞðk1 þmÞγμ�Tr½ðp2 þMÞðp1 þMÞγμ�

þ i
2M

F�
2ðQ2ÞTr½ðk2 þmÞðk1 þmÞγμ�Tr½ðp2 þMÞðp1 þMÞσμνqν�

�
; ðA1Þ

2Re½jνμJνμðjpJpÞ�� ¼
1

4
f�pg�p

�
F1ðQ2ÞTr½ðk2 þmÞγμðk1 þmÞγ5�Tr½ðp2 þMÞγμðp1 þMÞγ5�

þ i
2M

F2ðQ2ÞTr½ðk2 þmÞγμðk1 þmÞγ5�Tr½ðp2 þMÞσμνqνðp1 þMÞγ5�
�

þ 1

4
fp gp

�
F�
1ðQ2ÞTr½ðk2 þmÞγ5ðk1 þmÞγμ�Tr½ðp2 þMÞγ5ðp1 þMÞγμ�

þ i
2M

F�
2ðQ2ÞTr½ðk2 þmÞγ5ðk1 þmÞγμ�Tr½ðp2 þMÞγ5ðp1 þMÞσμνqν�

�
: ðA2Þ

By calculating the traces above, employing the fact that Dirac and Pauli form factors are real functions of Q2, and using
the definition Eq. (9), one can show that

2Re½jνμJνμðjsJsÞ�� ¼ 8gs

�
mMð2s −Q2 − 2m2 − 2M2ÞF1ðQ2Þ − m

2M
Q2

�
s −m2 −M2 −

1

2
Q2

�
F2ðQ2Þ

�
Re½fs�

¼ 8mMðs − uÞGEðQ2ÞgsRe½fs�;
2Re½jνμJνμðjpJpÞ�� ¼ 0: ðA3Þ
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